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Much interest in the photoconductive properties of o
nanostructures from basic science & applied perspectives:

MoS, photoconductivity Carbon nanotube THz detector
(Lopez-Sanchez et al, Nat. Nanotech. 2013) (X. He et al., Nano Letters 2014)
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Graphene photodetector
(Mueller et al, Nat. Photon. 2010)

Nanowire solar cell
(Marianni et al., Nano Letters 2011)
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Several mechanisms have been proposed for the
origin of the photoresponse:

Photovoltaic

e Photoconductive

Bolometric

Photothermoelectric

 Photogating

We are interested in identifying which mechanisms govern
the properties of specific nanostructures and nanodevices.




Nanowires based on wide bandgap materials aFe.
promising for UV photodetectors:

ZnO nanowires GaN nanowires
Soci et al, NanoLett 2007 Lahnemann et al, NanoLett 2007
e 0T @ [wr 4
Questions:

-How do we differentiate between photocurrent mechanisms?

-Is there more than one mechanism?

Today:

-Combined optoelectronic and thermoelectric platform for nanostructures

-Application to GaN/AIGaN nanowires reveals coexistence of photoresponse mechanisms
with different spatial location and temporal behavior.

Calarco et al
Nano Lett 2005
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' o Nanowires grown by Ni- catalyzed MOVPE/MOCVD (VLS)

! e Highly-aligned vertical growth over large areas (2" r-sapphire wafer)

.'» Controllable densities as high as ~150 nanowires um:?
| Q. Li, G. T.Wand, Appl. Phys. Lett. 93, 043119 (2008)
Q.Li; J. R. Creighton, G.T. Wang. J. Crys. Growth 310 3706-3709 (2008)

i ® Primary [11-20] growth orientation (.L to (11-20) a-plane)
| . Triangularfaceted - (000—1) and equiv. (-1101) and (—110—1)

(€375 Wang etal., Nanotechnology 17 5773-5780 (2006)
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Sandia - Bottom-up llI-nitride nanowires ) e,

Electrical characterization
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G. T. Wang et al., Nanotechnology 17 5773-5780 (2006)

Q. Li, G. T. Wang, Appl. Phys. Lett. 93, 043119 (2008) Q. Li, Y. Lin, J.R. Creighton, J. Figiel, G.T. Wang, Phys. Lett. 92 093105 (2008)
Q. Li, J. R. Creighton, G.T. Wang. J. Crys. Growth 310 Adv. Mat., 21 2416-2420 (2009) Y. Lin, Q. Li, A. Armstrong, and G. T. Wang, Solid State
Commun., 149, 1608 (2009)

3706-3709 (2008)

Optical imaging and spectroscopy In-situ TEM Theory

GaN/InGaN core-shell NW
366-760 nm (20 nm steps)
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Q. Li, G. T. Wang, Nano Lett,, 2010, 10 (5), 1554 [GaN defect CL] T. Westover et al., Nano Lett., 9, 257 (2009). |  B.Wong etal., Nano Lett 11 (8), 3074,
Q. M. Li, G. T. Wang, “Appl. Phys. Lett., 97, 181107, 2010. [Gan/InGaN] [in-situ NW breakdown] 2011
P.C. Uppadhya et al. Semicond. Sci. Tech. 25 024017 (2010) [Ultrafast] LY.H tal N Lett 11 (4). 1618
A. Armstrong, Q. Li, Y. Lin, A. A, Talin, G. T. Wang, APL 96, 163106 (2010). [DLOS] (2011) “aEg_esit‘Z Han%rr‘r?ecliaﬁics]( ):
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GaN/AlGaN core/shell nanowires )

N-face

B. Wong et al., Nano Lett 11 (8), 3074, 2011

GaN core: 900 °C; AlGaN shell: ~1050 °C, shell thicknesses ~10 — 35 nm, Al
content from ~20 — 30% (EDS), tapered ~150-250 nm widths, ~ 15 um lengths

Previous theoretical and experimental work predicts/suggests formation of
electron gas in GaN/AIGaN core-shell nanowires * Lietal, Nano Lett. 6, 1468 (2006)

GaN/AlGaN of interest for:
- Light emitting diodes and lasers
- High speed electronics (2DEG HEMTs)
- Solar blind/UV photodetectors 7
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Scanning Photocurrent Microscopy
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Klee et al, Nano Letters 15, 2612 (2015)

Thermoelectric + SPCM Platform

heater

E. Song et al., Nanotechnology, 27, 015204 (2016)
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Thermoelectric Properties in Core-Shell Nk

Core-Shell NW thermoelectric transport

Carrier concentration

-~
2! — o~ -.‘
( !i J
Nanostructuring (phonon)

*All thermoelectric properties; Ohmic contacts.

o(T)=0,+0,*exp(-E (ks T))+0,*exp(-E, ks T))

Electrical Conductivity

1.0

® GaN

m GaN/AIGaN #1

A GaN/AIGaN #2

v GaN/AIGaN #3

B GaN/AlIGaN/GaN #1
A GaN/AIGaN/GaN #2

o, (Sfcm) o4 (5/cm) Egz (meV) oz{Sfcm)  E,z(meV)

GaN #1 90.1+0.2 90.7+35 31.8+0.9
GaN/AlGaN #1 43.4+0.2 770108 345406 124+05 54104
GaN/AlGaN #2 37.3+05 36.3+0.1 28.3+0.0 46403 3.0+00
GaN/AlGaN #3 786104  44.0+11 281+1.7 165+15 56+08
GaN/AlGaN/GaN #1 | 31.2+0.2 35.3+0.8 349+1.2 109+02 48104
GaN/AIGaN/GaN #2 | 30.6+1.1 14.8+0.4 13.3+1.1  108+1.0 1.4+08

20 30 40

1000/T (1/K)

— Heavily doped UID GaN

Nean=1.3x101%¢cm3

Low activation, energy second conduction channel is present in

GaN/AlGaN and GaN/AlGaN/GaN NWs



		

		σ0 (S/cm)

		σ1 (S/cm)

		Ea1 (meV)

		σ2 (S/cm)

		Ea2 (meV)



		GaN #1

		90.1 ± 0.2

		90.7 ± 3.5

		31.8 ± 0.9

		-

		-



		GaN/AlGaN #1

		43.4 ± 0.2

		77.0 ± 0.8

		34.5 ± 0.6

		12.4 ± 0.5

		5.4 ± 0.4



		GaN/AlGaN #2

		37.3 ± 0.5

		36.3 ± 0.1

		28.3 ± 0.0

		4.6 ± 0.3

		3.0 ± 0.0



		GaN/AlGaN #3

		78.6 ± 0.4

		44.0 ± 1.1

		28.1 ± 1.7

		16.5 ± 1.5 

		5.6 ± 0.8



		GaN/AlGaN/GaN #1

		31.2 ± 0.2

		35.3 ± 0.8

		34.9 ± 1.2

		10.9 ± 0.2 

		4.8 ± 0.4



		GaN/AlGaN/GaN #2

		30.6 ± 1.1

		14.8 ± 0.4

		13.3 ± 1.1

		10.8 ± 1.0 

		1.4 ± 0.8








Electron and Hole Gas in Core-Shell NWs @
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The sign of the Seebeck coeff. indicates the type majority of carriers

GaN

@
® GaN/AIGaN
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 Sof GaN/AIGaN is 3 about times the one of GaN. Increased S due to possible
electron gas (EG has a low thermal activation energy).

 Sof GaN/AlGaN/GaN is the smallest. Hole gas layer in the GaN outer shell
induced by electron gas layer in core.




Scanning Photocurrent Microscopy at @,
zero bias

134nA

Distance (um)

Distance (um)

Likely candidate: photothermoelectric effect




Thermoelectric + Optoelectronic @M.

use the heater to generate a thermal gradient across the source and drain as in the normal

thermoelectric measurement, and at the same time we focus the red laser on a particular location on
the nanowire device.
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Seebeck coefficient directly measured: -78 uV/K

Sign of Seebeck agrees with sign of photocurrent

V across NW depends on heater power, indicating light acting same as heat

For illumination of the already hot (cold) electrode, the voltage increases
(decreases) indicating that the light serves the same role as heat.

Also allows extraction of temperature increase (16.5 K/mW)

From temperature increase can extract materials properties by modeling (e.g.

heat transfer coefficient ~2 x 108 W/m?K,) 13
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What about the photogating? e

» Emerges when there is an applied source-drain bias:

Photocurrent now appears in the channel,
with only one sign.
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Photothermoelectric

Photogating

Comparing photothermoelectric and
photogating mechanisms
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Temporal behavior
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The story is not so simple: -
coexistence of mechanisms

30
20
10+

C'o nta'ct il

As the voltage is increased, the sign of the

g ol photocurrent at/near the contacts changes sign!
— -0}
é -20:- Time scale for decay shows that at low bias the
3 o photothermoelectric effect dominates, but at larger

or - bias the photogating effect dominates.

50 ——V, =-0.1V

0 20 20 60 80
Time (s)
F. Léonard et al, Nano Letters 15, 8129 (2015) 16
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DOE’s National Nuclear Safety Administration, under
contract No. DE-AC-04-94AI-85000.
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Scanning Photocurrent Microscopy
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Enhanced thermoelectric transport in @
AlGaN/GaN nanowires

0 - ® GaN
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i A GaN/AlGaN/GaN
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A: Cross-section STEM image of GaN/AlGaN core-shell NW. B: SEM image of our Temperature (K)
thermoelectric characterization platform. Right inset: zoom-in showing a GaN/AlGaN
nanowire suspended on the 4 metal contacts. Left top inset: SEM top view of the same -
Measured Seebeck coefficient versus T.

device measurements; lead 1 is the heater for thermoelectric voltage measurements.

e AlGaN/GaN core-shell NW shows greater Seebeck coefficient by > 2x vs. GaN NW
* Enhanced Seebeck coefficient may be result of electron gas channel at AIGaN/GaN
interface

E. Song, Q. Li, B. Swartzentruber, W. Pan, G. T. Wang, J. A. Martinez, "Enhanced thermoelectric transport in modulation-
doped GaN/AlGaN core/shell nanowires", Nanotechnology, 27, 015204 (2016). 20
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