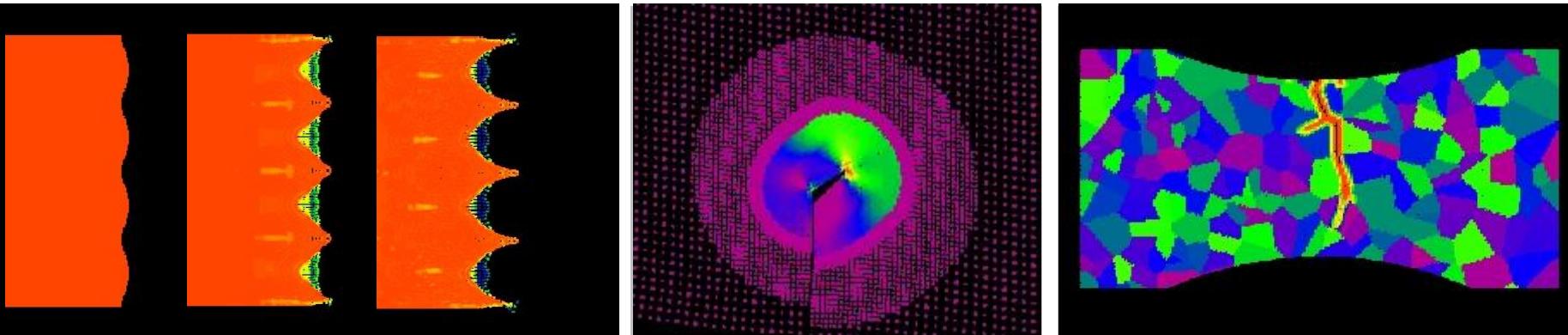


Exceptional service in the national interest



The thermodynamic form of peridynamics with application to phase transformations

Stewart Silling

Sandia National Laboratories
Albuquerque, New Mexico

ICTAM, Montreal, August 23, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

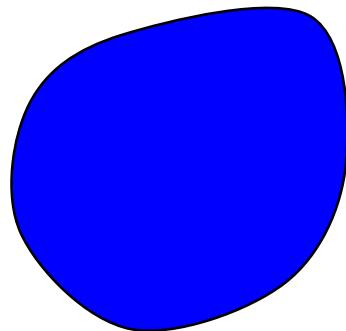
- Peridynamic mechanics summary
- Thermodynamic form of peridynamics
 - Frechet derivatives
 - First and second laws
 - Free energy and mechanics in a nonlocal model
 - Example: surface tension
- Peridynamic multiphase material models
 - Energy dissipation and kinetic relations
 - Computational example

Not covered in this talk: Peridynamic heat diffusion equations. But see

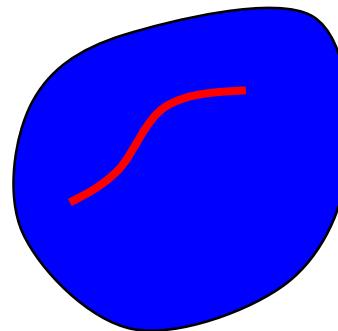
- Bobaru & Duangpanya. "The peridynamic formulation for transient heat conduction." International Journal of Heat and Mass Transfer 53 (2010) 4047-4059.
- Oterkus, Madenci, & Agwai. "Peridynamic thermal diffusion." Journal of Computational Physics 265 (2014) 71-96.
- Du, Gunzburger, Lehoucq, & Zhou, "Analysis and approximation of nonlocal diffusion problems with volume constraints" SIAM review, 54 (2012) 667-696.

Peridynamics: * What it is

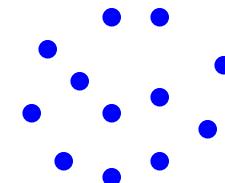
- It's an extension of continuum mechanics to media with cracks and long-range forces.
- It unifies the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect



Discrete particles

- Our goals
 - Nucleate cracks and seamlessly transition to growth.
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

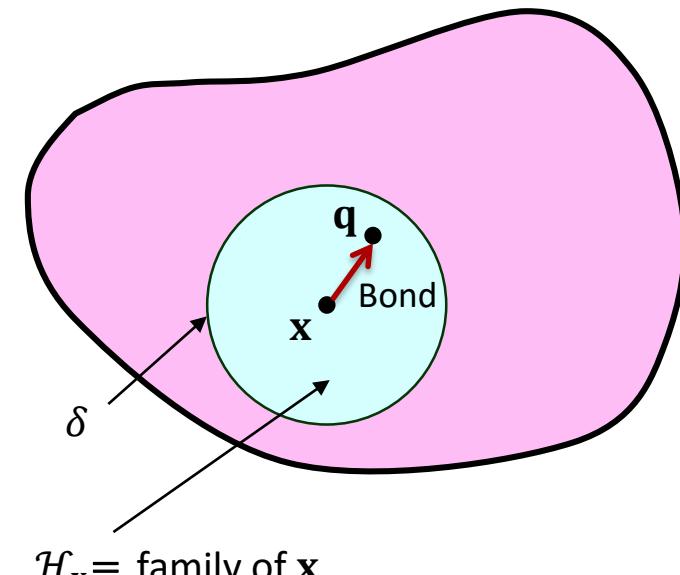
Peridynamics concepts: Horizon and family

- Any point \mathbf{x} interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of \mathbf{x} is called the “family” of \mathbf{x} , \mathcal{H}_x .

Peridynamic equilibrium equation

$$\int_{\mathcal{H}_x} \mathbf{f}(\mathbf{q}, \mathbf{x}) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

\mathbf{f} = bond force density



- The peridynamic field equations don't use spatial derivatives
 - so they are compatible with cracks.

General references

- SS, Journal of the Mechanics and Physics of Solids (2000)
- SS and R. Lehoucq, Advances in Applied Mechanics (2010)

Structure of the bond force

- Equilibrium equation:

$$\int_{\mathcal{H}_x} f(q, x) dV_q + b(x) = 0 \quad \forall x \in \mathcal{B}.$$

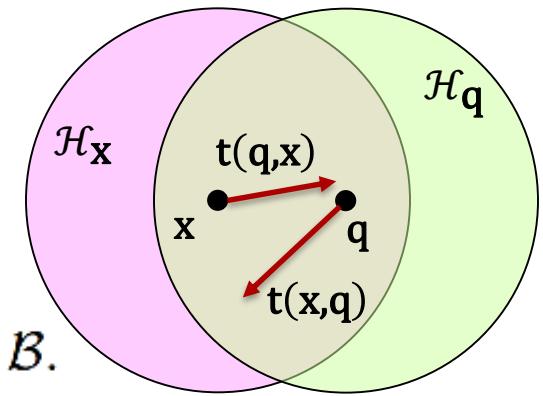
- The pairwise bond force f has the following structure:

$$f(q, x) = t(q, x) - t(x, q)$$

where the t terms are found from the material models at x and q separately:

$$t(q, x) = \underline{T}[x]\langle q - x \rangle, \quad t(x, q) = \underline{T}[q]\langle x - q \rangle.$$

- This “state notation” is described next...



States

- A *state* is a mapping whose domain is a family.

$$\underline{A}(\xi) = \text{something}$$

where ξ is a bond in a family \mathcal{H} .

- Famous states: Deformation state...

$$\underline{Y}[x]\langle q - x \rangle = y(q) - y(x) = \text{deformed image of the bond}$$

Force state...

$$\underline{T}[x]\langle q - x \rangle = t(q, x) = \text{force density within a bond}$$

- Dot product of states \underline{A} and \underline{B} :

$$\underline{A} \bullet \underline{B} = \int_{\mathcal{H}} \underline{A}(\xi) \underline{B}(\xi) d\xi.$$

Functions of states

- Let $\Psi(\underline{A})$ be a scalar-valued function of a state.
- Suppose there is a state $\Psi_{\underline{A}}(\underline{A})$ such that for any small increment $d\underline{A}$,

$$\Psi(\underline{A} + d\underline{A}) - \Psi(\underline{A}) = \Psi_{\underline{A}}(\underline{A}) \bullet d\underline{A}.$$

- Then $\Psi_{\underline{A}}(\underline{A})$ is the *Fréchet derivative* of Ψ at \underline{A} .
- Famous Fréchet derivative: Force state in an elastic material...

$$\underline{\mathbf{T}} = W \underline{\mathbf{Y}}$$

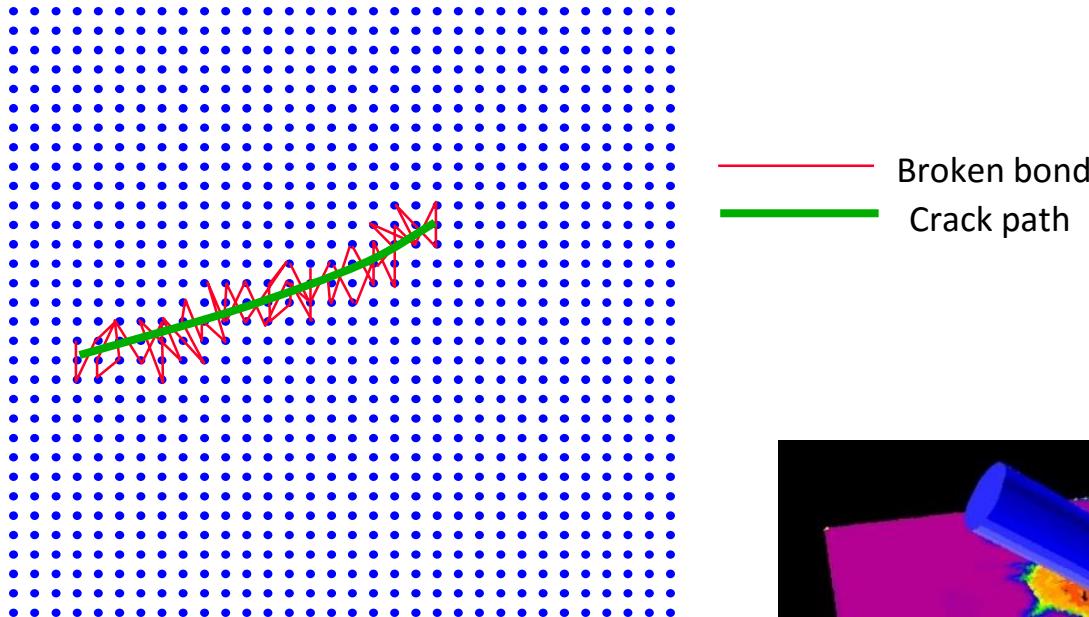
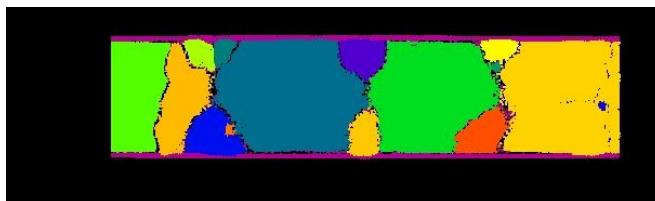
where W is the strain energy density.

$$dW = \underline{\mathbf{T}} \bullet d\underline{\mathbf{Y}}$$

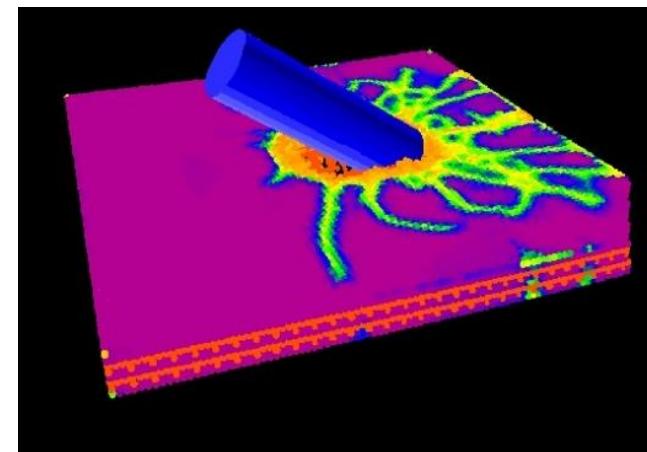
sums up the work done by bond forces through incremental bond deformation.

Discontinuities are treated within the basic field equations

- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.



Cracking in a composite lamina



Impact against reinforced concrete

Peridynamic form of the thermodynamic laws

- First law expression:

$$\begin{aligned}\dot{\varepsilon} &= \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + r + h \\ &= \int_{\mathcal{H}} \underline{\mathbf{T}}(\xi) \cdot \dot{\underline{\mathbf{Y}}}(\xi) \, dV_{\xi} + r + h,\end{aligned}$$

where ε is the internal energy density, r is the source rate, h is the rate of heat transport.

- Second law expression:

$$\theta \dot{\eta} \geq r + h$$

where θ is the temperature and η is the entropy.

Additivity of the internal energy density

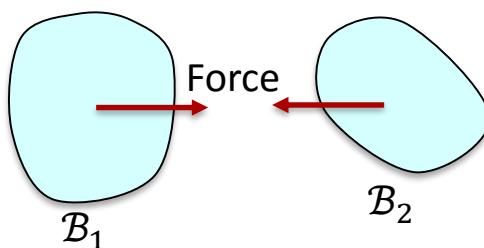
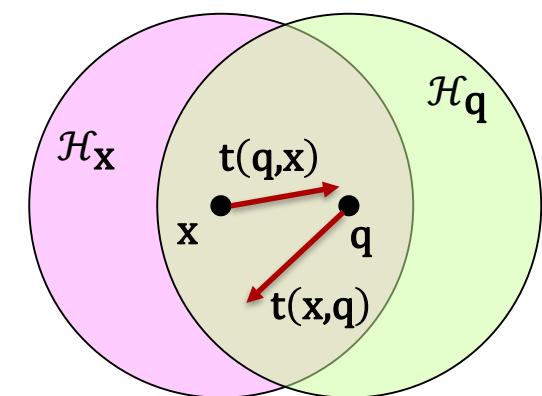
- How to distribute the rate of work done by nonlocal forces acting between subregions \mathcal{B}_1 and \mathcal{B}_2 ?
- A 50/50 allocation between the subregions leads to a non-additive concept of ε (Williams & Gurtin, 1971).
- Peridynamic approach: each point owns the work done through the forces in its own force state:

$$\dot{\varepsilon}(\mathbf{x}) = \underline{\mathbf{T}}[\mathbf{x}] \bullet \dot{\underline{\mathbf{Y}}}[\mathbf{x}] + r(\mathbf{x}) + h(\mathbf{x})$$

$$\dot{\varepsilon}(\mathbf{q}) = \underline{\mathbf{T}}[\mathbf{q}] \bullet \dot{\underline{\mathbf{Y}}}[\mathbf{q}] + r(\mathbf{q}) + h(\mathbf{q}).$$

- The resulting ε is additive:

$$\int_{\mathcal{B}_1} \dot{\varepsilon} + \int_{\mathcal{B}_2} \dot{\varepsilon} = \int_{\mathcal{B}_1 \cup \mathcal{B}_2} \dot{\varepsilon}.$$



Forces and entropy in terms of free energy

- Free energy:

$$\psi = \varepsilon - \theta\eta.$$

- Simple material:

$$\psi(\underline{Y}, \theta)$$

- First + second laws imply (through Coleman-Noll or similar method):

$$\underline{T} = \psi_{\underline{Y}}, \quad \eta = -\psi_{\theta}.$$

- If a rate-dependent term is included,

$$\underline{T} = \psi_{\underline{Y}} + \underline{T}^d(\dot{\underline{Y}})$$

then it can be shown that the following dissipation inequality must hold:

$$\dot{\underline{Y}} \bullet \underline{T}^d(\dot{\underline{Y}}) \geq 0.$$

- It is sufficient but *not necessary* that

$$\dot{\underline{Y}}(\xi) \bullet \underline{T}^d(\dot{\underline{Y}})(\xi) \geq 0 \quad \forall \xi \in \mathcal{H}_x.$$

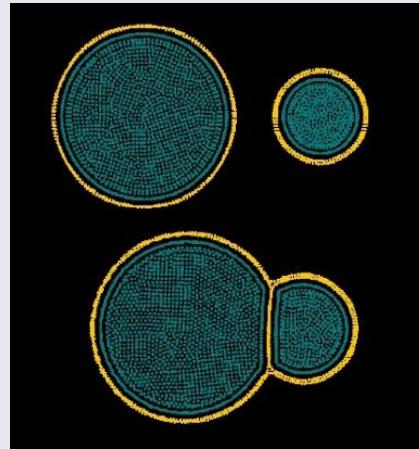
 SS & Lehoucq, Adv Appl Mech (2010)
 Oterkus, Madenci & Agwai, JMPS (2014)

Examples of how nonlocality in thermodynamics could be useful

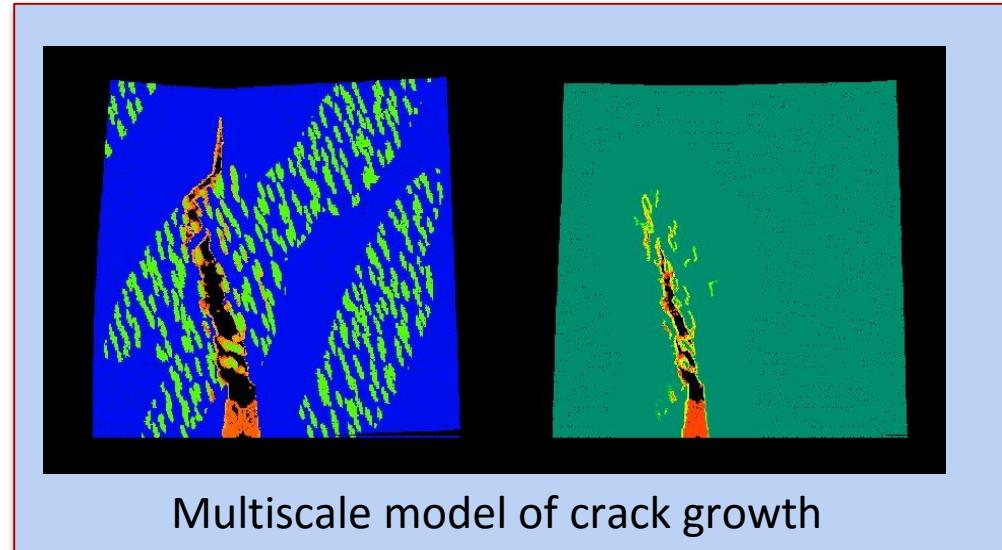
A peridynamic material model of the form

$$\underline{\mathbf{T}} = -(p(\vartheta) + \sigma) \frac{\mathbf{Y}}{|\mathbf{Y}|}$$

where p is pressure, ϑ is dilatation, and σ is a constant qualitatively models surface tension.

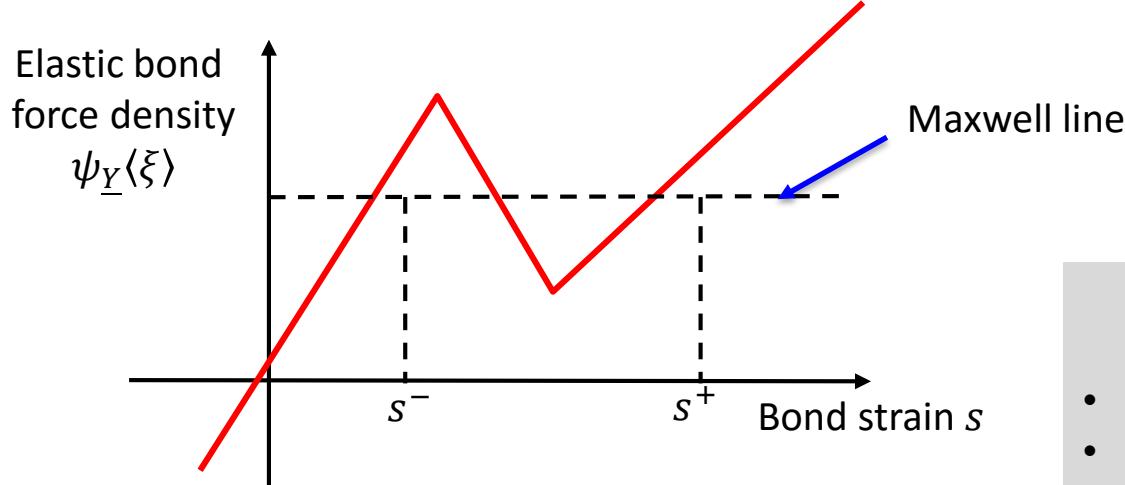


Soap bubbles



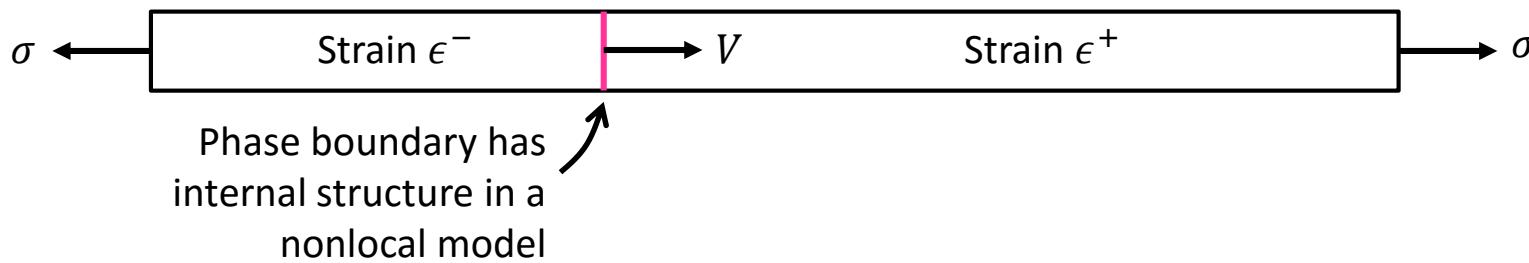
Multiscale model of crack growth

Equilibrium between phases (elastic, isothermal)



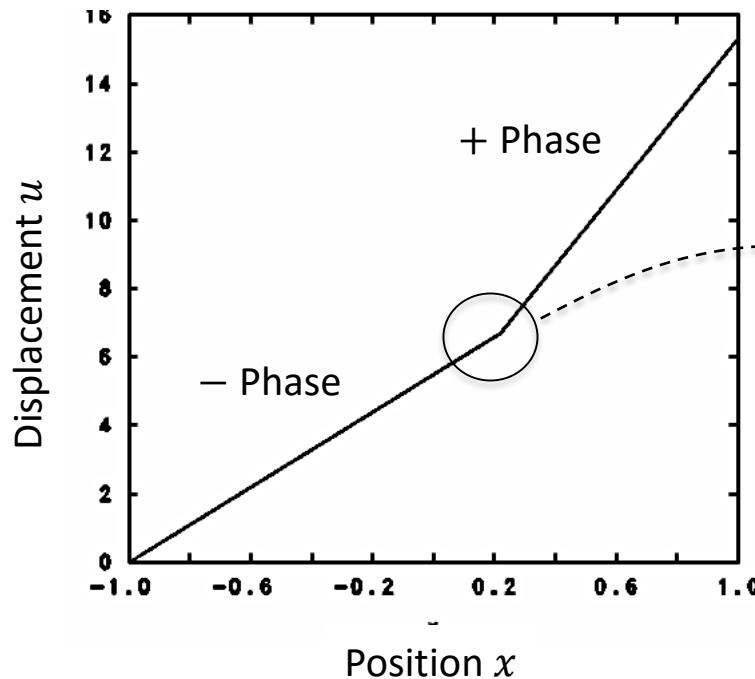
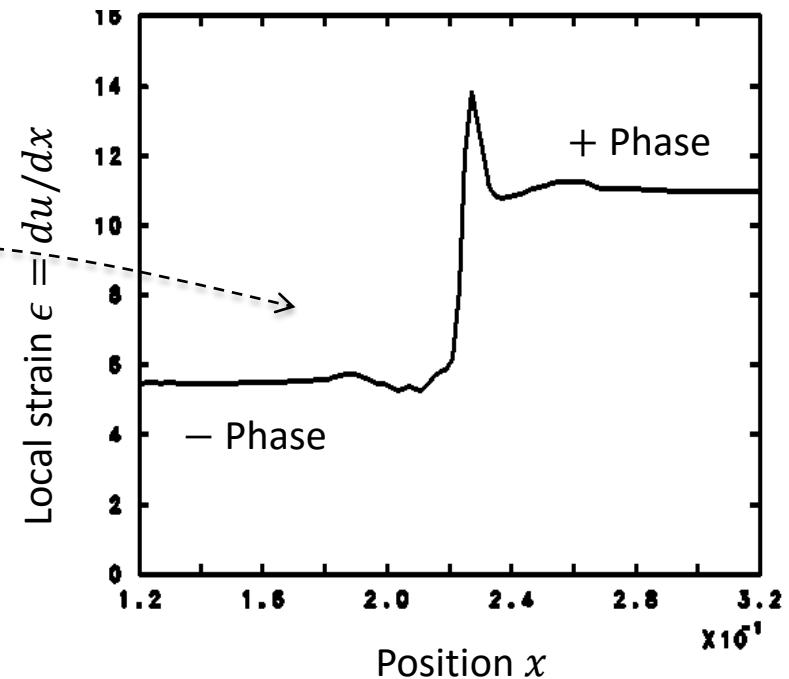
Examples of phase transformations
in different settings:

- Elastic bars: Ericksen
- Crystals: James
- Strings: Purohit & Bhattacharya
- Lattices: Truskinovsky & Vainchtein
- Inelastic continuum: Levitas



Structure of the phase boundary in a peridynamic model (Emu)

- Hard load problem in a bar.
- Similar results to Dayal & Bhattacharya (2006).
- The phase boundary contains internal structure, finite width and energy.



Energy dissipation model for a bond

- A moving phase boundary must dissipate energy (e.g. Abeyaratne and Knowles, 1991).
- Introduce a dissipative term into the material model:

$$\begin{aligned}\underline{\mathbf{T}}(\xi) &= \psi \underline{\mathbf{Y}}(\xi) + \gamma(\dot{\underline{\mathbf{Y}}}(\xi) + \dot{\underline{\mathbf{Y}}}(-\xi)) \\ &= \psi \underline{\mathbf{Y}}(\xi) + \gamma(\dot{\mathbf{y}}(\mathbf{x} + \xi) - 2\dot{\mathbf{y}}(\mathbf{x}) + \dot{\mathbf{y}}(\mathbf{x} - \xi)),\end{aligned}$$

where $\gamma > 0$ is a constant.

- Can show the new term satisfies the dissipation inequality.
- Observe the dependence on the “curvature” of the velocity field – expect it to be significant only *within* a phase boundary.

Scaling of the damping coefficient with horizon

- Set $u(x, t) = U(z)$, $z = x - Vt$.
- Can show that the total rate of energy dissipation is

$$\dot{\Phi}^{\text{diss}} = \frac{\gamma V^2 \delta^3}{6} \int_{-\infty}^{\infty} (U''')^2 dz.$$

- Suppose we want to change horizon δ but keep $\dot{\Phi}^{\text{diss}}$ the same.
- Since $U''' \propto \delta^{-2}$, and the phase boundary width is of order δ , it follows that γ is independent of δ .

The peridynamic dissipation model generates a kinetic relation

- Conjecture: V depends only on the total rate of energy dissipation through the *kinetic relation* (Abeyaratne & Knowles, 1991):

$$\dot{\Phi}^{\text{diss}} := \mathcal{F}V(\mathcal{F})$$

where \mathcal{F} is the *driving force*,

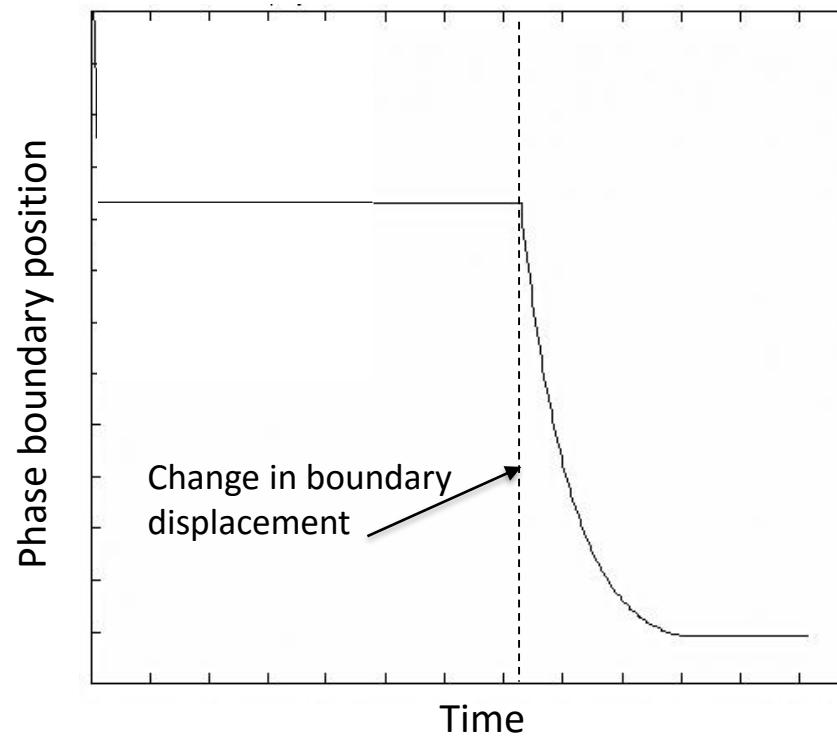
$$\mathcal{F} = (\varepsilon^+ - \varepsilon^-)(\sigma - \sigma_{\text{equil}}).$$

- We found $\dot{\Phi}^{\text{diss}} = KV^2$ if γ is scaled appropriately, hence

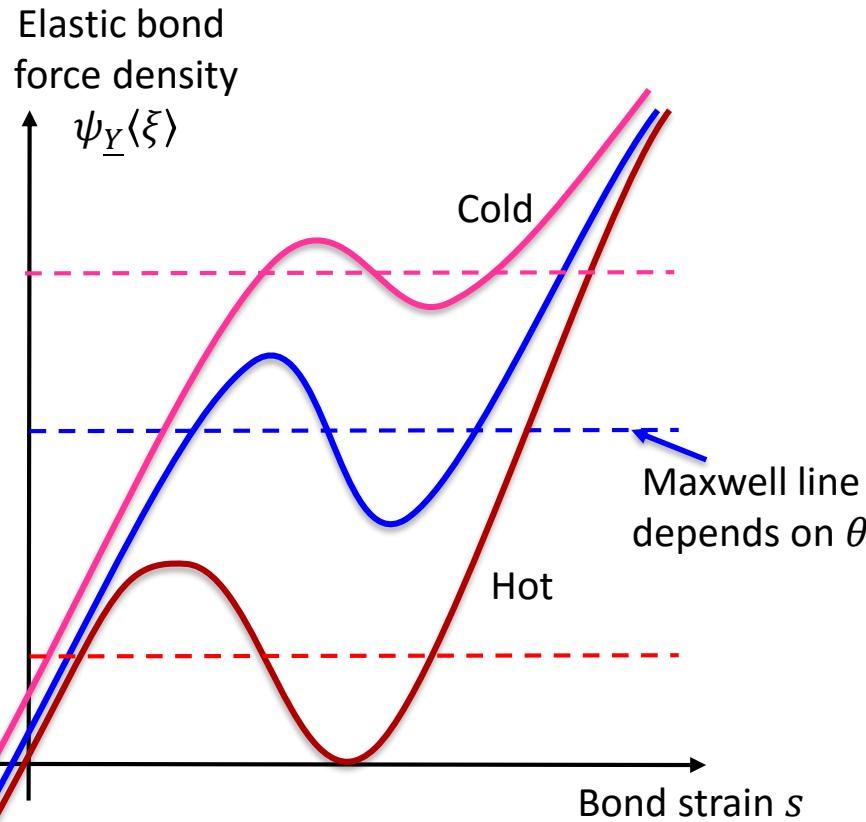
$$V(\mathcal{F}) = \frac{\mathcal{F}}{K}.$$

Phase boundary subjected to a small change in remote loading (Emu)

- Peridynamic simulation of a bar using the dissipation model discussed above.
- Perturb the boundary conditions and watch the phase boundary motion.
- Decaying exponential motion tends to confirm the kinetic relation derived above.

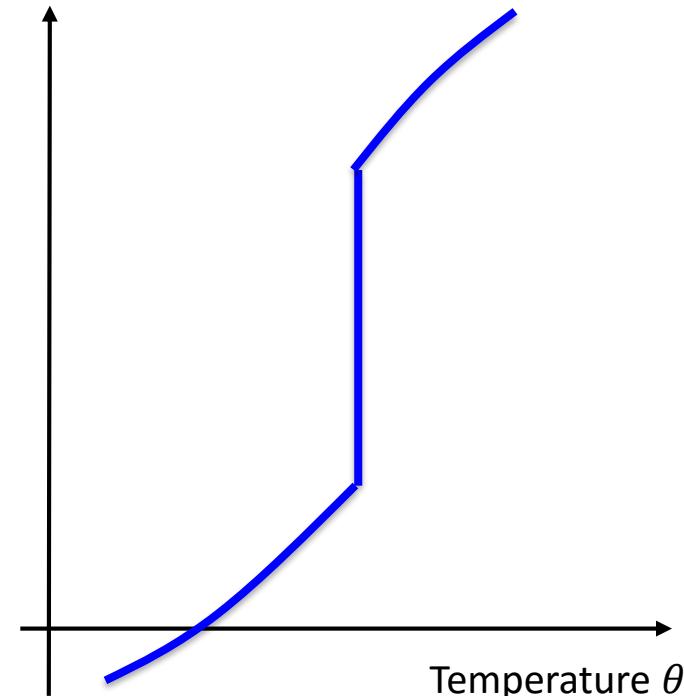


Including temperature dependence



Thermoelastic material model

Bond strain s



Strain at constant bond force

Conclusions

- Consistent strongly nonlocal thermodynamics is apparently possible in peridynamics.
 - Applications include nanoscale forces and fracture processes.
- New way of modeling dissipation takes advantage of state-based material modeling.
 - With a suitable elastic material model, it leads to a kinetic relation and stable phase boundary motion.
 - Open question: how to treat static metastable states.