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The thermodynamic form of peridynamics
with application to phase transformations




Outline ) 5.
* Peridynamic mechanics summary
 Thermodynamic form of peridynamics
e Frechet derivatives
e First and second laws
e Free energy and mechanics in a nonlocal model
e Example: surface tension
e Peridynamic multiphase material models
e Energy dissipation and kinetic relations
e Computational example

Not covered in this talk: Peridynamic heat diffusion equations. But see

* Bobaru & Duangpanya. "The peridynamic formulation for transient heat conduction."
International Journal of Heat and Mass Transfer 53 (2010) 4047-4059.

e Oterkus, Madenci, & Agwai. "Peridynamic thermal diffusion." Journal of Computational
Physics 265 (2014) 71-96.

* Du, Gunzburger, Lehoucq, & Zhou, “Analysis and approximation of nonlocal diffusion
problems with volume constraints” SIAM review, 54 (2012) 667-696.




Peridynamics:* What it is ) .

e |t's an extension of continuum mechanics to media with cracks and long-range
forces.

e |t unifies the mechanics of continuous and discontinuous media within a single,
consistent set of equations.

Continuous body Discrete particles

Continuous body ith a defect
with a defec

e Qur goals
e Nucleate cracks and seamlessly transition to growth.
e Model complex fracture patterns.

e Communicate across length scales.
* Peri (near) + dyn (force)




Peridynamics concepts: rh) i,
Horizon and family

e Any point x interacts directly with other points within a distance o called the “horizon.”

e The material within a distance § of x is called the “family” of x, Hx.

Peridynamic equilibrium equation

f f(q,x) dVyq +b(x) =0

X

f = bond force density

* The peridynamic field equations

don’t use spatial derivatives H,= family of x
* so they are compatible with
cracks.

General references
eSS, Journal of the Mechanics and Physics of Solids (2000)
* SSand R. Lehoucq, Advances in Applied Mechanics (2010)




Structure of the bond force =

e Equilibrium equation:

f f(q,x) dVy+b(x) =0 VxeB

x

e The pairwise bond force f has the following structure:

f(q,x) = t(q,x) — t(x,q)

where the t terms are found from the material models at x and q sepa-
rately:

t(q,x) = T[x][{q—x),  t(x,q)=T[ql(x—q).

e [ his “state notation” is described next...




States ) dei

e A state is a mapping whose domain is a family.
A{£) = something

where £ is a bond in a family H.

e Famous states: Deformation state...

Y [x]{q — x} = ¥(q) — y(x) = deformed image of the bond

Force state...

T[x]{q — x} = t(q,x) = force density within a bond

e Dot product of states A and B:




Sandia

Functions of states )

e Let U(A) be a scalar-valued function of a state.

e Suppose there is a state ¥, (4) such that for any small increment d4,

V(A +dA) — U(A) = T4(A) e dA.

e Then U4(A) is the Fréchet derivative of ¥ at A.

¢ Famous Fréchet derivative: Force state in an elastic material...
T=Wy
where W is the strain energy density.
dW =T e dY

sums up the work done by bond forces through incremental bond defor-
mation.




Discontinuities are treated within the )
basic field equations

Laboratories
e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Broken bond
Crack path

Cracking in a composite lamina Impact against reinforced concrete




Peridynamic form of the 7 i,
thermodynamic laws

Laboratories

e First [aw expression:
¢ = TeY+r+h
= f T(& g) dVe +r + h,

where ¢ is the internal energy density, r is the source rate, h is the rate
of heat transport.

e Second law expression:
bn>r+h

where @ is the temperature and 7 is the entropy.




Additivity of the internal energy density [

Laboratories

e How to distribute the rate of work done by nonlocal forces acting between
subregions By and By?

e A 50/50 allocation between the subregions leads to a non-additive concept
of ¢ (Williams & Gurtin, 1971).

e Peridynamic approach: each point owns the work done through the forces
in its own force state:

£(x) = Tx] o Y[x] +r(x) + h(x)

é(q) = Tla] ® Y[a] + r(q) + h(q).

e The resulting ¢ is additive:

f é+ f ¢ = / é.
By By BiUBs




Forces and entropy in terms of free energy™ .
o Free energy:
P =¢e—0n.
SS & Lehoucq, Adv Appl Mech (2010)
. Simple material: Oterkus, Madenci & Agwai, JMPS (2014)
(Y. 6)

First 4+ second laws imply (through Coleman-Noll or similar method):
T =y, n=—1g.
If a rate-dependent term is included,
T=¢y +TY)
then it can be shown that the following dissipation inequality must hold:

Y ¢ TYY) > 0.

It is sufficient but not necessary that

Y(€) e TUY)(€) >0 V&€ Hx




Examples of how nonlocality in )
thermodynamics could be useful

A peridynamic material model of the form

T=—(p(¥)+0)

where p is pressure, ¥ is dilatation, and o is a constant qualitatively models
surface tension.

Soap bubbles

Multiscale model of crack growth




Equilibrium between phases
(elastic, isothermal)

A

Elastic bond
force density

Py ($)

Maxwell line
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Examples of phase transformations
in different settings:

Elastic bars: Ericksen

Crystals: James

Strings: Purohit & Bhattacharya

Lattices: Truskinovsky & Vainchtein

* |nelastic continuum: Levitas

0 —— Strain €~ — |/ Strain et

Phase boundary has f
internal structure in a
nonlocal model




Structure of the phase boundary ) i
in a peridynamic model (Emu)

* Hard load problem in a bar.
» Similar results to Dayal & Bhattacharya (2006).
 The phase boundary contains internal structure, finite width and energy.
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Energy dissipation model for a bond

h
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e A moving phase boundary must dissipate energy (e.g. Abeyaratne and

Knowles, 1991).

e Introduce a dissipative term into the material model:

TE) = by (&) +~v(X (&) +Y(—¢)

= Uy (€) + 1V (x+ &) —2y(x) + y(x — &)

where v > 0 is a constant.

e Can show the new term satisfies the dissipation inequality.

e Observe the dependence on the “curvature” of the velocity field — expect
it to be significant only within a phase boundary.




Scaling of the damping coefficient o) e
with horizon

o Set u(z,t)=U(z), z=xz— VL.

e Can show that the total rate of energy dissipation is

L V253 00
diie — 1 / (U™)? dz.

— o0

e Suppose we want to change horizon ¢ but keep s the same.

e Since U" o 672, and the phase boundary width is of order &, it follows
that v is independent of ¢.




The peridynamic dissipation model ) e
generates a kinetic relation

e Conjecture: V depends only on the total rate of energy dissipation through
the kinetic relation (Abeyaratne & Knowles, 1991):

Pdiss .— F V(F)
where F is the driving force,

F = (E+ — E_)(U — D'Equﬂ).

o We found ddss = V2 if ~ is scaled appropriately, hence

_r
K

V(F)




Phase boundary subjected to a small )
change in remote loading (Emu)

* Peridynamic simulation of a bar using the dissipation model discussed above.

* Perturb the boundary conditions and watch the phase boundary motion.

* Decaying exponential motion tends to confirm the kinetic relation derived
above.

Phase boundary position

Change in boundy;
displacement i

Time




Including temperature dependence ) .

Elastic bond
force density
+ Yy ()
Cold
Hot

Maxwell line
depends on 6

Bond strain s

Thermoelastic material model

Bond strain s

-/

n
>

Temperature 6

Strain at constant bond force




Conclusions ) i

= Consistent strongly nonlocal thermodynamics is apparently possible in
peridynamics.

= Applications include nanoscale forces and fracture processes.

= New way of modeling dissipation takes advantage of state-based material
modeling.

= With a suitable elastic material model, it leads to a kinetic relation and
stable phase boundary motion.

= Open gquestion: how to treat static metastable states.




