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Abstract

Solid freeform fabrication has the potential to affect both financial and environmental
concerns for manufacturing enterprises. However, when planning for installation of a new machine
tool, accurate energy usage estimation relies heavily on the data and model selections of the
estimator. This project used a variety data sources and model decision options to examine the
spread of energy consumption and global warming potential estimates for a fused deposition
modeling machine. In addition to primary and secondary data sources, the use of similar machines
was explored as proxy estimates for the target machine. A Monte Carlo simulation was constructed
to vary the model selections, machine utilization, and data sources. The results indicated data
sources and model decisions had large effects on the output and that most model estimates were
low.

Introduction

The manufacturing industry is ever-growing more conscious of the triple-bottom line
(financial, environmental, and social impacts) of production activities. In addition to awareness,
increased instrumentation of machine tools provides data to better assess each impact area. One
commonly employed technique to evaluate any, or all, of these impact areas is Life Cycle
Assessment (LCA), where the inputs and outputs of each process in each life cycle phase are
tabulated [1]. The tabulated results typically provide point estimate of the impact, but often lack
sufficient information about uncertainty in the result to be widely useful. Although many
methods have been proposed to address uncertainty issues in LCA point-estimates, no clear
solution has been accepted in the literature [2] [3] [4] [5].

Uncertainty in this document is categorized into three areas 1) parameter, 2) model, and 3)
scenario, following [6]. First, parameter uncertainty arises from inaccuracy of the value(s)
assigned to each variable, or parameter, in a given model. Parameter uncertainty stems from
inherent randomness of the process, assignment of data from proxy technologies/machines, error
in collected test data, and non-representative data for the population in question. Second, model
uncertainty is attributed to simplification of process physics, negligence of pertinent processes or
inputs, and incomplete or inaccurate process knowledge. Third, scenario uncertainty comes from
the use of aggregate data which assumes homogeneity and sourcing data from inadequately
representative processes or exclusion of relevant data. Scenario uncertainty could be ignoring
pertinent the geographical, temporal, or technological specifics of the system in question.

When uncertainty is included in a LCA, typically only parameter or scenario uncertainty
have been considered. Some proposed qualitative methods for evaluating input data sources [7]



[8], but fail to add significant value in comparing results or quantitative risk assessment. More
robust methods for incorporating uncertainty involve statistical simulation [9] [10] [11], but
typically only vary the values of predetermined parameters in a single fixed model. Many LCA
studies do not address the issue of uncertainty, some avoid interpretation errors [12]. Thus, a
more comprehensive inclusion of uncertainty in LCA is needed to ensure usefulness of the
results. Namely, a statistical simulation that includes model variations can illustrate the variety of
estimates that may be generated for a single assessment. Environmental impacts are often
reported using a variety of metrics which represent the potential for environmental damage. In
this work, only gaseous emissions that contribute to climate change were considered, historically
tabulated as carbon-dioxide equivalent mass and named Global Warming Potential (GWP) [13].
The recent interest in Additive Manufacturing and 3D printing, but limited work assessing
sustainability, makes the case study on Fused Deposition Modeling (FDM) in this paper highly
relevant.

The objective of this study was to examine the combined effects of parameter, scenario,
and model uncertainty in predicting the energy usage and associated global warming potential of
parts made on a FDM machine in a Northern California job shop.

Methodology

This methodology is separated into two main sections the first describes the prediction
scheme and second describes data collection. The prediction scheme includes how the simulation
of energy intensity and GWP estimates were conducted, the models. The prediction scheme
allowed for data at different levels of granularity, scenarios. For example, the U.S.A. national
average cost per kilowatt-hour of electricity was less precise of a proxy than the California
average for estimating energy costs for a machine installed in Berkeley, California. Since the
actual implementation details of a target machine are not necessarily known in a general
application, proxy estimators were included. The data collection section provides how power
measurements were taken and what literature data was included.

Prediction Scheme

A variety of scenarios may exist for the installation and operation of a given machine tool.
Similarly, literature estimates for a single machine tool implementation may encode these
differences due to investigator knowledge, literature completeness, devoted study time, and
invested resources. To model this variety, several combinations of data sources represented
varying degrees of 1) scope of included elements, 2) proxy appropriateness, and 3) investment in
the estimate. The scope of an estimate determines which major components are included, here
major elements were denoted Value Add Process, Machine Auxiliary Processes, HVAC, and
Lighting. Each iteration of the scope in the simulation was expanded by including an additional
component (Table 1). The selected proxies were chosen to represent plausible data sources of
similar technology, another FDM machine, and a photopolymer-jetting machine. Each unique
combination of the data sources represents a single scenario. Practitioners may favor different
models and data sources, this was captured by iterating over several options within each defined
scope (Table 1). To capture this variety, at each Scope, common models were considered



separately for each Component (Table 2). Each unique combination of Scope, Scenario Model,
and Data Source represents a set of point estimates.

While the Scenario Models in Table 2 provide a high level description of the calculation,
the details follow. Energy was defined as the integral of instantaneous power over time. This was
discretized into a sum over the various contributing energy sources, listed as Components in
Table 1 and Table 2. For generality, the energy delivery efficiency, denoted 1, was broken down
into extraction from raw materials, transportation of the extracted materials, conversion into
electricity, and finally transmission to the machine. However, since all of the machines
considered in this study received energy from the same system this delivery efficiency was
extracted from the sum as a constant, 1yyta1. Energy per kilogram of part produced is equivalent
to the sum of instantaneous power consumption, P, over the time, t, required to produce the part
(Equation (1)). This was further broken down to include the energy consumed by the machine,
Enachine> the heating, ventilation and air-conditioning (HVAC), Eyyac, and the lighting
allocated to the machine, Ejignting (Equation (1)).
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The Value Add process is denoted production in the subscripts of the equations
(Equations (2) and (3)). This production and additional machine processes for FDM and
Photopolymer Jetting were discretized into a warm-up, production, idle, and standby operational
phases with differing time lengths following the work of [14]. Each operational phase duration
was scaled by the total of the phases to provide a utilization, or duty cycle, for the machine. The
time to complete a given job is also varied in accordance with the range of job sizes collected
over the course of the sample period, denoted tj,p, with the average length t;,,. This duration of

tiop then provided the length of time needed to deposit one kilogram of material based on the

previously determined utilization. Adjusting the time lengths in this manner was to apply the
energy used during down time of the machine to the products it produced.
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The ambient temperature control (HVAC) and lighting in the facility were allocated to all of the
machines according to the models listed in Table 2 with data from [15] [16] (Equation (3)).
Where the Square Footage model means the total power used by the metered HVAC system was
applied equally over the area used by the machine and auxiliary components. The Thermal Load
model used the waste heat, @, generated by the machine during each operational phase and
assumes the HVAC system must counter this energy load (Equation (3)).
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Once the scenarios were defined, a Monte-Carlo simulation was then conducted using
MATLAB. For each scenario, each parameter from each data set was conditioned with a
probability distribution. Since many of the available data sources provided either a mean and
standard deviation, or just the range of values the probability distribution is not known. Thus,
probability distributions were selected among Uniform, Gamma, Normal, and Lognormal as an
additional model variation (Table 3). When mean and variance are provided, the maximum and
minimum values were set to 5 standard deviations away from the mean value. Similarly, when
only a maximum and minimum value were provided, the mean was set as the average of the two
values and the minimum set as 3 standard deviations below the mean. Fixing the relations of
minimum value and mean value allowed for calculation of probability distribution factors where
appropriate.

Table 1. Resource consumption analysis boundary conditions, or scopes. Each subsequent scope
includes the components of all previous scopes.

Scope Component Added Item(s)
1 Value Add Process Energy
2 Additional Machine Processes | Energy
3 HVAC& Lighting Energy

Table 2. Energy consumption component scenarios specifying data sources and scenario model

decisions.
Component | Number |  Scenario Model Data Source
. A Measurement Primary
X[j;ﬁlizfii B Data Sheets Machine Suppliers
C Industry Average National Data Set
0 No Contribution n/a
HVAC 1 Square Footage Primary
2 Thermal Load Estimated
Lichtin I No Contribution n/a
ghting 11 Square Footage Primary

Table 3: Summary of probability distributions used to condition parameter values

Distribution Form Representation
) x—a Enforces the least information on variance
Uniform F(x,a,b) = b—a’ x € {a, b} of the estimate, but over a fixed interval
_% Ensures only real positive values with no
Gamma | gy o ) = 1 J- x2-1€__ | upper bound, but mode is more flexible
I'(ar) B than the lognormal
X—Uu Mathematical limit of most
Normal F(x,p0) =@ ( ) measurements, unimodal




Inx —pu Ensures only real positive values with no
) upper bound

Lognormal F(x,u,0) =@ (
a

For each conditioned parameter 5000 samples were taken from the chose probability distribution
from Table 3. The parameters were then combined according to the selected model for each
component and the energy and GWP values totaled. GWP was calculated by multiplying the
energy values by the weighted sum of GWP factors for the selected data set. Different energy
sources had different GWP factors and they were combined prior to multiplication. The majority
of the simulation used a single probability distribution for all of the parameters, selected from
Table 3. One additional distribution of estimates was generated making selections more specific
to the ‘target’ machine. This target machine served as a datum to compare all other estimates and
represents the narrowest bounds on the estimated results.

Data Collection

Power Consumption Measurement

Energy consumption was efficiently collected by characterizing the machine tool energy
usage by operation phase. A Yokogawa CW240 placed in between the machine power cord and
the wall outlet on the shop floor. Each machine was used normally in the course of the machine
shop business. During the course of operation output mass and time of production were recorded
for 6 weeks. The process for this energy characterization was inspired by the Baseline Energy
Consumption model from [17]. Clemon, et al., adapted this model for additive manufacturing in
FDM and Photopolymer-jetting machines [14] [18]. Thus, the amount of data required to
determine the energy consumption of each machine was greatly reduced without significant loss
of granularity. Machine operation was characterized into several operational phases. The
operational phases for sorting energy data include warm-up, idle, production, and standby. For
each build, energy demands were averaged based on operation phase. The variation recorded in
the data provided a variance for demand in each phase. Further, the minimum and maximum
uptime for the machine over the recording period provide a percentage and range of utilization
for the simulation. Uptime is collected from the machine on-board job log.

Environmental Impact Estimate

Three environmental impact scenarios were considered for Global Warming Potential
(GWP) emissions, measured by carbon dioxide equivalent weight for greenhouse gases, due to
energy consumption. The first emissions scenario, denoted G1, was the estimated impact
according to an Economic Input-Output (EIO) analysis. EIO analysis uses information from the
U.S. Commerce and U.S. Environmental Protection Agency in concert for a linear estimate of
the GWP per kWh purchased from the power sector [19]. The second GWP scenario, G2, used
data on the upstream and downstream externalized effects of power delivery from a report by the
National Academy of Sciences [20]. This report provided energy delivery efficiency for both G1
and G2. In G2, estimated GWP emissions and energy by fuel type were retrieved from [20], the
mix of fuel types was determined by the selected energy use data for each scenario. Finally, the
third GWP scenario, G3, used a combination of literature for the California specific energy mix
and more thorough accounting of GWP emissions from [20] [22] [21].

Error Assessment



In order to assess the error in a simulated estimate, details of the final machine tool
installation were required. The machines studied were Dimension 1200SST produced by
Stratasys for FDM, uPrint SE produced by Stratasys for FDM, and Connex350 produced by
Objet for Photopolymer-Jetting. The Dimension 1200SST was selected as the target machine, or
datum, for subsequent comparison and uncertainty calculation.

Two proxy machines were used to simulate the estimation process, uPrint SE and
Connex350. The uPrint SE was expected to be a more accurate proxy given it was also an FDM
machine, the Connex350 serves as a proxy via an adjacent technology. Operational scenarios
were selected based on 6 weeks of monitoring the frequency and duration of use of all 3
machines in a university job shop in Berkeley, California. Data on the facility HVAC and
lighting energy consumption was collected from utility monitoring and added as an additional
input to energy consumption. Peripheral components used to run the machines, such as
computers, were considered captured in the building usage since these machines support a large
number of activities in addition to the target machine.

The environmental impact scenario options are limited to GWP as measured in kilograms
of carbon-dioxide equivalent weight for this study. Data sources for energy mix, delivery
efficiency, and GWP produced per kilowatt-hour began most broadly with economically
correlated emissions and improve in specificity with literature data from national and state-
specific sources. EIO data serves for the most basic and broad estimate scenario [19]. The
intermediately detailed estimate data comes from the National Research Council [20]. The most
detailed accounting of emissions and efficiency comes from a combination of literature, namely
the State of California [21], the National Academy of Sciences [20] and a quality study by
Hondo [22].

Results

The inclusion of various data sources and energy allocation methods into the prediction
scheme provided an informative distribution of energy and global warming potential estimates.
Distinct operational phases were present for all three machines. Separation of operational phases
was completed by manually selecting transition points in accordance with the machine controller
display and checked graphically.

Table 4. Power demand by operation state for Dimension 1200SST Fused Deposition Modeling

Machine
. Average Standard
Operation State | o, o\ (%V) Deviation (W)
Warm Up 685 270"
Idle 243 63
Production 784 26
Standby 162 23

" Distribution for warm-up is multi-modal contributing to a large variance



Power demand for the Dimension 1200SST Fused Deposition Modeling machine clearly
shows differing low frequency cycles during different operating phases. The warm up phase has
a long period of continuous power demand preceded by a short energy spike and short period of
low power demand. The production phase has a low cycle of high energy demand as well as high
frequency oscillations with lower amplitude (Figure 1).The anomaly was induced by the loading
door being left open for an extended period of time (5 minutes). A short secondary warm-up
period is contained within the anomaly. Summary data for each phase indicates the production
phase has the highest overall power demand (Figure 1). Idle and standby phases are separated
due to 1) idle may transition to production, but standby must transition to warm-up and 2) the
differing power demand.
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Figure 1. Dimension 1200SST instantaneous power demand from off state with overnight soak
and production of a small part
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Figure 2. uPrint SE instantaneous power demand from off state with overnight soak and
production of a small part [14].

The uPrint SE power demand graph follow very similarly to the Dimension 1200SST with
a long warm-up period of continuous power consumption followed by a production phase with a
distinct low frequency of high amplitude and higher frequency with lower amplitude
Figure 2). Differently than the two FDM machines, the Connex 350 has a constant high power
consumption level when in production (Figure 3).
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Figure 3. Connex 350 instantaneous power demand from off state with overnight soak and
production of a small part [14].

The point estimates generated according to all of the variations in model, data source, and
parameter values show a mean that is less than the specific case of the target machine (Figure 4).
The mean energy consumption of the target machine was 92 kWh/kg with a standard deviation
of 11 kWh/kg. The mean energy consumption of all estimates was 64 kWh/kg with a standard
deviation of 15 kWh/kg. Three data sources were used to calculate GWP corresponding to the
distribution of energy consumption estimates giving a tri-modal histogram. The majority of
GWP estimates were below the target machine mean GWP estimate (Figure 5). The mean GWP
of all estimates was 84 kg CO2-eq/kg part produced, with a standard deviation of 48 kg CO»-
eq/kg part produced. The mean GWP estimate for the target machine was , 120 kg COz-eq/kg
part produced, with a standard deviation of 14 kg CO2-eq/kg part produced. The three peaks
from all estimates result from the differences in each data set for GWP factors, whereas the
target machine has a limited GWP factor range due to its location in Berkeley rather than
anywhere in California, or the United States.
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Figure 4. Energy intensity estimates from all considered scenarios and data sources

O

1
100 120 140

[

B T
Target

a8 All Estirnates
Lix]
ek}
L=
£ 4l -
ks
L
S 3k J
(k]
pay)
&
= o 7
L]
T
ool 4

|:| / 1 1 1 1 L L

1 al 100 150 200 250 300 350

Global Warming Potential (kg CO,efkg)

Figure 5. Global Warming Potential estimates from all considered scenarios and data sources
Discussion

The distribution of estimates indicates 1) not every part was produced with an equivalent
embodied energy and 2) resource consumption and environmental impact estimates with
minimal or missing variance information may be significantly different than the realized
quantities.

As mass customization becomes more commonplace with the rise of additive
manufacturing, the methodology and results from this study suggest the varying embodied
energy of every part may be uniquely identified. In particular, the connection of the duration
scaling in Equation (2) to a single part could provide this insight. Interpreting a point estimate of
energy usage or global warming potential may have significant and unrealized uncertainty based
on the assumptions and decisions of the estimator. This uncertainty is compounded when a point



estimate for energy is then used to generate a point estimate for GWP as seen by the mass of
estimates below the target machine in Figure 4 and again in Figure 5.

The proposed method included all three types of uncertainty in a LCA in estimating the
environmental impact due to energy consumption of a Fused Deposition Modeling machine in a
Northern California job-shop. Implicit in the simulation construction was that every set of
estimates is given the same weight from an equal number of samples, this suggests that a person
chosen at random to complete an estimate is equally likely to construct any of the simulated
results. The results suggest that point estimates will tend to underestimate the impacts, and that
proxy machines and processes are not necessarily good estimators for energy usage of a new
technology. Indication of the potential error due to the use of different data sets—even from very
similar machines—is demonstrated, which illustrates the need for this methodology. For example,
two of the three datasets used for estimating GWP have a limited range and shift a large portion
of the simulated estimates below the target. However, using the most liberal GWP factors from
the U.S. national averages, the estimates shift above the target.

The results support the notion that increased collection and clarity of data will continue to
improve resource intensity predictions and environmental impact assessments. The use of data
from proxy machines or technologies in an estimate may result in either overestimate or
underestimate. Whether the estimation is over or under is not necessarily known a priori and dev.
The decisions of the researcher in setting up an estimate of resource consumption and account
for sub-processes has a significant effect on the outcome of the results. In appropriately assigned
distributions may artificially widen or narrow the variance of an estimate. Even though life cycle
assessments are intended to enable standardized comparisons, comparative analyses using
multiple methods on the same data set are infrequently realized and should be conducted for
completeness.

The methodology presented here may be more broadly applicable to measuring and
estimating resource intensities and environmental impacts of other additive manufacturing
machines. The energy characterization method from [14] and [17] has been shown useful for
multiple FDM machines as well as Photopolymer Jetting, and could be useful in other additive
technologies. Extension of this work to include material, human health, or other factors is
possible with data and models for those factors. The results of this study demonstrate point
estimates should be considered with great caution by decision makers and enterprise planning for
resource consumption could benefit from estimates with wider ranges.
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Appendix

Table of input values for the hyper-assumed datum case. This table reflects the most complete
knowledge of the target machine operating conditions, Dimension 1200SST.

Table 5. Parameter treatments for Dimension 1200SST Fused Deposition Modeling Machine
datum case to compare against all other estimates

Datum Case Dimension 1200 SST
Parameter Minimum | Maximum | Mean | Standard | Distribution
Deviation
Power demand (W) — operational phase, production and idle are added for total power
demand during production
Warm up - - 685 1 Gamma
Idle - - 243 27 Gamma
Production - - 541 63 Gamma
Standby - - 162 23 Gamma
Time Fractions — to compute duty cycle/utilization/uptime of machine
Warm-up 0.01 0.1 - - Uniform
Idle 0 0.5 - - Uniform
Production 0.4 0.8 - - Uniform
Standby 0.05 0.5 - - Uniform
Auxiliaries 0.1 0.8 - - Uniform
Machine area (sq-ft) 10 12 - - Gamma
Auxiliary area (sq-ft) 16 18 - - Gamma
HVAC — as fraction of building HVAC loading
Building area (sq-ft) | 199898 199901 - - Uniform
Building power (W) | 99000 135000 - - Uniform
Effectiveness 0.3 0.5 - - Uniform
Lighting — per sq-ft of machine and auxiliary floor space
Room W/sq-ft - - 0.2 0.001 Uniform
Bulb efficiency 0.9 1 - - Uniform




