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Abstract

Concern over counterfeiting or adulteration of products and materials is
growing. Methods of assurance based solely on a material or product passing
a performance requirement may fail to find an undesirable material change,
whether unintentional or nefarious. Typical methods of assurance based on
material composition may be undesirable because they require destructive
testing or have low probability of detecting small material changes. We
approach this problem from a different perspective: measure an orthogonal
set of materials properties using multiple, simple, and non-destructive
methods to build a material “signature”, then utilize statistical models to test
whether the material is what the provider purports it to be. Our method
allows a range of applications from raw materials to finished parts. We will
present results of this materials assurance scheme using over a dozen steels
with varying composition. Discussion will include methods of data collection,
data processing, and the ability to differentiate these steels non-
destructively.
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Definitions

= Materials
= Context in this talk — stainless steels
= “Raw” —vendor- or manufacturer-supplied (aka “as received”)
= “Finished part” — value-added (machined, assembled, or cast)
= Assurance
= “a positive declaration intended to give confidence”
= “promise or pledge; guarantee, surety”
= QOrthogonal

= Pertaining to or involving right angles or perpendiculars

= Statistically uncorrelated (i.e. zero covariance)
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Motivation

= Why do we need materials assurance?

= System performance (predictable & safe) and confidence

" Errors, counterfeit, adulteration — people and products at risk
= |t “passed” the specification — it must be good!

= Specifications can often be broad, miss alterations

= Criteria not always primary failure mode

= Error, contamination, adulteration, or fraud may not be detected
= Why not make the specification more precise?

= Cost (of manufacture and for verification testing)

= Supplier pushback
= Just do more testing!

= Cost, who validates, who performs, etc.



Consequences — “Specification” ) e,
testing did not find problems or fraud

= 1. Specification test: nitrogen content or total protein

= Dog food — passed // melamine used to spike N // deaths &
hospitalization

= |nfant formula — passed // melamine used to spike N // deaths?
= 2. Specification test: nutritional, GMP
= |nfant supplements — passed // algae or mold undetected // illnesses

= 3. Specification test: NO, emissions (while CO, testing)

= Diesel vehicles — passed // software fraud // altered performance

If you are looking “here” (total N) then you might be spoofed “there” (protein).




Concept — can we “fingerprint” by a

i Nofiowl
rapid, cheap, nondestructive group of tests?

Laboratories

= |deal measurements provide

= Orthogonal property space (uncorrelated properties)
= Confidence in identification

Thermal
‘Ultrasonic hardness
physical
XRF
density (—@ Mmentalanalysis
LIBS
- electrical
Magnetic
permeability A/SFM
RS ~al v
. : _ Impedance
Buddhist/Hindu Fable Spectroscopy

Goal — gain increased confidence of identity.



https://en.wikipedia.org/wiki/File:Blind.JPG
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Steel samples with diversity of ) s
physical and chemical properties.

= All with certifications of chemical composition.

A SRM Cr 13 - Mo 0.9 modified AISI 410
B SRM Cr 18 - Ni 9 modified AISI 321
C SRM Cr 24 - Ni 13 modified AISI 309
D SRM Cr9 - Mo 0.3 modified AISI 403
E SRM Cr16.1 —Ni 9.9

F SRM Cr18.5-Ni 9.5

G CarTech 316 Cr 17.6 — Ni 12.6

H CarTech 316L Cr17.5 - Ni 13.1

I CarTech 866 type 303-Se Cr 17.8 — Ni 8.7
J CarTech type 347 #538 Cr 17.8 — Ni 9.9
K BAS Cr15.2-Ni 6.2

L BAS Cr12.3 — Ni 12.6

M BAS Cr18.3 —Ni 9.6

N BAS Cr 25.6 — Ni 20.7

(0] BAS Cr18.0—Ni 9.0

P BAS Cr17.6 —Ni 8.7

Q BAS Cr18.1 —Ni 9.0

R BAS Cr18.7 — Ni 8.8
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Test 1: XRF elemental analysis

= XRF (x-ray fluorescence)
= Elemental analysis (>0.1% wt.)
= Surface technique (~Y1um depth)

m F non- I W
ast, non-destructive Bruker M4 Tornado m-XRF

54 G RS R AT 1 A5 B A T AT B A D b AL
AT TR 1 1.0 17008 18 6B 15 5T

100 point measurements

Rh X-ray source focused to 25um
each spot was measured for 30s g =
X_ray energy 50kV and ZOOUA -'-HDd\-fztd*-'i3t¢~¢4t¥h45t}dﬁdﬁfr947t¥¥-dswngtf:l‘d
Chamber under vacuum at 19 mBar At oy st

AT B 67 B 67 bl 64-tB B5 bk 55D 67 e BB b ﬁs;@n‘
- s

A 2700 22 b USRI Gk 25 1 26 1 2708 26 b 29 bR Y
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Instrument-reported XRF tabular data ) e
shows unexpected variance (“A”- 410 SS).

. XRF-Derived Fe Mass Percentage in Sample A
= Replicates of form factors T geinsampleA
. 84 - 1
showing unexpected : i%fi%ﬁi‘f%%%%émmmﬁ
. L + F + P! | .
variance. RS SRR T I LR N
CUGO:_'N * N + + +l+ll_}_++-
= |nstrument reports S CEE v \ . o .
oy O | L Set5s
composition value basedon w | 8 Set 6 g
. . . (=] I |
internal calibration. L
== === === === == ===
= Detector drift
L|O M10L1ﬁ S‘\OSH 512813814821 822823824M‘\|M12M13M14M21M22M23M24L11 L|2 L|3 L14 L21 L22 LZS L24
" Energy-Shift Uncorrected Cr Kax, Fe Ko and Fe K3 Peaks
z ' ' A ' | Sample Format / replicate
L Set 5 Set6 =

Energy (keV)

‘ Zoom of Fe Ka.

peak shows shift | Shift of the energy axis is due to
detector drift — instrument reports
varying elemental content (sums

to 100%).

Normalized, Energy-Shift Uncorrected Fe Ka Peak
T T T T T T T

Intensity (arbitrary units)

64
Energy (keV)
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Solution: processing full spectra removes
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drift yielding consistent replicates (“A”- 410 SS).

Spectral Shift Correction

* We employed the Cr Ko, Fe Ko, and Fe K} emission lines to derive a
linear shift function and forced the Fe Ka peak at 6.404 keV to be
intercept of the energy-axis correction function.

» We adjusted all spectra energy axes with this correction function.

L10* Energy-Shift Corrected Cr Kar, Fe Ko and Fe Kp3 Peaks

Fe Ka

Error from detector
drift error corrected!

All spectra correctly
aligned in energy

Cr Kat

Intensity (arbitrary units)

Energy (keV)

[

Corrected data ported to
Principal Component Analysis
routine in Matlab

.

Principal Component Analysis (PCA)

* Poisson-scale data, D

* Compute mean in energy domain and create scaling matrix, H

=d,=-D1,, H= dmgl:d' 1]

] Cnmpute mean in observation domain and create scaling matrix, K
i
=d, = iimD, K = dicg [:1{‘_3} e g
* Scale the data
- D = HDK
* Perform PCA and un-scale factors g
- T5T=5 !

* T=H'T P=K'F

* Warimax Rotation of 8 PCA Factors ﬂ
* Rotate for spectral simplicity "
* |Improves isolation of emission lines .

e o Fackes

Using full XRF spectra resulted in uniform Fe, Cr composition.
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: -
Si content even at low levels of concentration
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PCA of corrected XRF spectra gives ) B _
better consistency and differentiation.

Using just XRF spectra to assess alloy differentiation.

%10° PCA Factor 1 XRF Abundance Loadings
32'6 I + é + i
5 - Iro : Without correction
g |+ f & + ¥ $ - 5 = £ ,J__: le I I $ % ; oo
g ié*"’* SRR AL LI %ﬁT QB%; i %}% of XRF composition:
g2af o large variation of
% b i
g,.|~— SampleA(410 SS) —— 1.  replicates.

LgMdLgSnBnBnSnSmSmSnSnSmMdvidvdVidvidMdMdMdLg LgLglglglglglyBC DEFGH I JKLMNO P QR
Sample Format and Location

PCA Factor 1 XRF Abundance Loadings

B 1| : | WITH correction of

2 : t XRF composition:

g . ;**zi . 4124 consistent

g | SampleA(410 8§) —— ¥ | composition and

g T P SN smaller variance for
O et d all steels.

LgMdLgSmSnBnSmSmSrSmSnEmMdMddMdvdMdMdMdLgLgLlglglglglgly BCDEFGH I JKLMNOPAQR
Sample Format and Location
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Tests 2-6: Density, Sound Velocity (SV), Heat Capacity (Cp), B e
Coefficient of Thermal Expansion (CTE)

Density Sound Velocity Heat Capacity

. Thermomechanical

Archimedes

Netzsch LFA 467 Analyzer (TMA)
. Volumetric measurement —
Balance change of physical
' dimension as a function of
«  Mettler-Toledo * 2.25 MHz, 5 MHz Panametric - temperature. .
AE160 balance NDT single element . Model: TA TMA Q400 (with
.  MS-DNY-43 longitudinal and shear wave cold stage)
density kit transducers. . Tenlperature Range: -50 to
* Olympus Panametrics -NDT 125 C o~
model 5800 computer . Heating rate: 3°C/min.
p= B (py - PL> TP, controlled Pulse/Receiver
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Results: Density, SV, Cp, CTE - ) e
building a fingerprint.

O Cr18.0-Ni9.00
Density Q Cr18.1-Ni8.95 Heat Capacity
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Full data set with elemental composition
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Factor analysis of combined data set )
uses PCA followed by MCR

v Principal Component Analysis (PCA)

v Given a matrix containing data, D, as a first step in many analyses we want principal

_ _ _ componen{s
P P2 Pr D=Tp!
v Such that T and P are an orthogonal basis sefs, that s a reduced dimensional
& t Tt representation of D, with ordered maximized variance.
+ Tisorthogonal (scores); P is orthonormal (loadings).
v Multivariate Curve Resolution (MCR)
! b k

+ Impose constraints on solution space
v Nonnegative matrix factorization

Replicate values for density, sound velocities (SV) (x0.01), heat capacity (Cp), and coefficient of
thermal expansion (CTE) (x0.1) were simulated using means and standard deviations from random
normal distribution.

Data used in the present one-class classification scheme omits As, Co, S, and Ta elemental data due
to limited incidence in steel samples. Due to missing values for thermal diffusivity (Td) and thermal
conductivity (Tc) and ferrite content, these are also omitted.

1. M. R. Keenan, [Multivariate Analysis of Spectral Images Composed of Count Data] John Wiley & Sons, Ltd, Chichester,

West Sussex, England(2007). 16
I EEEEEEEE—————————




Combined data analysis: matrix factor T

results to maximize differentiation
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Descriptor Mode PCA Factor 1

Descriptor Mode PCA Factor 4
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Plots show relative contribution of each test to each PCA factor.
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Combined Data Analysis: a look at sample )i
replicates

Sample Mode PCA Factor 1 E : Sample Mode PCAFactor6 B
}gg,il I.i. -E- .: U:‘-#-FI'Q
BT T TTEF AT KL HL STETTEF RTJTRLW HL
Sample Mode PCA Factor 2 : Sample Mode PCA Factor 7 3
| e O [T e g =
STECTEF AT TRTWIO[TIIR STETUEFTRT SR HL
Sample Mode PCA Factor 3 : Sample Mode PCA Factor 8
5| T T T T T T | . | | I [ i T i_'
[ e et el ) (v o Sl Y
STET O T TR T IR OWT '“3 TTBCOEF AT IKLAW UL
Samp|e Mode PCA Factor 4 1 Sample Mode PCA Factor 9 3
el el | A iy W] 13
STETTET AT T RLWT[O[T[[R -‘ e fii HL
Sample Mode PCA Factor § i Sample Mode PCA Factor10 3
ol TS T RN
STETTET RTITKLW R WTBCTTEF AT IRLT :
Material I.D. B Material I.D. -
(replicates plotted) (replicates plotted)




Target prediction rates using descriptors i) et
and cross-validation — can we classify?

Target Prediction Rates for Steels (% True Positives) — “fingerprint is robust”

Steel Sample ID
A.B CDUEFGH I J K L MNOUP QR
95 92 96 94 96 96 96 93 96 95 95 94 97 93 93 94 94 95

Non-target Prediction Rates (% False Positives) — “possibility of being spoofed”

Steel Sample ID
A B CDEF GH I J K M N O P Q R
O 0 0 0 0 0 O O 0 0 0 0 O

Steel Sample ID
H Il J K

Factors used in
feature fusion
a A WON = D>
[, I URGURNENY ; ;
a DN woN -0
o A ODN-~0O
© 00 BN -
D A ON -
a A ON-~TI
D A ODN -~ 2Z

1 1
2 2
3 3
4 4
7 6

N
o
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Summary and Conclusion

= Summary

= (Goal: to achieve a classification method based on a series of
simple, non-destructive tests

= We used 6 simple measurements (XRF, density, acoustic (2
modes), Cp, and CTE) to define a material “fingerprint” on 19
stainless steels

= All non-destructive; 2 tests are currently size independent
= 4 tests require alternate instrumentation for size independence
= Determined and eliminated XRF limitation to reduce variance

= Conclusion

= Through the use of PCA, we developed a one-class classifier
which is able to identify materials within the population to greater
than 93% success probability, with no false positives.

20
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Future Work and Acknowledgements

= Future Work
= Measuring more alloys with smaller compositional differences
= Measurements of hardened or surface treated
* Include more tests

= Acknowledgements

Measurements

Micah Ohlhausen, Adam Pimentel Density

Daniel Stefan Sound Velocity
Peter Duran CTE, Ferritescope
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= Sandia is a multiprogram laboratory operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. 21




Composition as per certificates of analysis ()i
provided with standards.

Fe | Cr | Ni ([Mn| Si | Cu | V | Mo | Sn | Co C B |[Nb| P S Ti | Pb | As | Ta | Ag | Se
A | 832 1331 028 | 077 | 052 | 0.065 0.92 0.06-0.1 0.1 | 902 | 90
B | 688 | 1835| 9.11 | 053 | 1.19 | 0.19 0.43 0.06-0.1 06 | 9021 %0
C | 618 | 2372|1326 | 023 | 037 | 0.19 0.059 0.06-0.1 0.03 | 992 | 90
D | 83 | 909 | 052 | 213 | 1.25 | 0.16 0.33 0.06-0.1 0.49 | 992 | 90
E | 705 | 161 | 99 | 2388 011 | 0.032 | 0.12 [0.0035| 0.13 0.0005 | 0.032 0.002 |0.0017
F | 681 | 185 | 94 | 338 014 | 0.064 | 0.12 | 0.006 | 0.12 0.0012 | 0.056 0.003 |0.0025
G |6442| 1760 | 1261 | 167 | 069 | 025 | 0.051 | 2.45 | 0.006 | 0.14 | 0.061 0.029 | 0.023 0.001 5E-04
H |6453| 1745|1312 | 134 | 03 | 025 | 007 | 244 043 | 0.018 0.028 | 0.022
I | 7100|1775 | 868 | 075 | 059 | 0.23 0.37 0.17 | 0.050 0.14 | 0.008 0.26
J |6877| 178 | 99 | 140 | 063 | 035 | 007 | 028 0.13 | 0.043 061 | 0.017 | 0.002
K |7745| 152 | 6.16 | 064 | 044 0.082 0.013 | 0.017 0.0007 | .011
L | 7377|1235 | 1255 | 0.74 | 046 0.092 0.010 | 0.018 0.0005 | .007
M | 7065 | 1830 | 965 | 0.77 | 0.51 0.088 0.015 | 0.017
N | 5196 | 2575|2070 | 0.77 | 064 0.054 | 0.100 0.016 | 0.010 0.0005 | .003
[l O [7102]1800] 900 | 09 [ 059 | 003 | 0.04 0.022 | 0.073 0.011 | 0.016 | 0.30 |
P |7012|1760| 870 | 066 | 05 221 | 0.006 0.074 0.05 | 0.050 | 0.021 0.0014| .01 |<0.001
| Q |7071|1805| 895 | 068 | 045 | | | | | | 0.069 | | 1.06 | 0.015 | 0.019 | | | | 0.0018 | | |
R |6961| 187 | 885 | 147 | 1.14 0.034 | 0.152 0.016 | 0.026
Red values calculated by difference. 2



