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What We Do 

1. Capability Development (relevant to Encapsulation and Bonding)  
a. Understanding of Polymer Material Structure-Processing-

Properties Relationships 
b. Understanding of Stress in Polymers 

2. Material Properties Analysis 
3. Problem Solving 



Our Vision: Validated Model-Based Lifecycle Engineering 
for Packaging Design 

research 
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development 
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high rate 

failure 

How do we make it? 

How does it perform? 

What can go wrong? 

(Constitutive Eqns) 

(Cure Chemistry) 

(Failure Metrics) 
Current Focus Areas 

Adhesive 

Polymer Nonlinear Viscoelastic (NLVE) Model 

Current talk Predict Stress/Strain and Understand Impact on Performance 

J.M. Caruthers, et al., Polymer, 2004, 45, 4577 
D.B. Adolf, et al., Polymer, 2004, 45, 4599 
D.B. Adolf, et al., Polymer, 2009, 50, 4257 



Capability Development: Evolution of Constitutive 
Representation of Polymers 

Linear Elasticity Linear Viscoelasticity Nonlinear Viscoelasticity 

+ temperature 
dependencies 

+ manufacturing 

+ failure metrics 
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+ aging 



Hierarchy of Polymer Material Characterization for Modeling 
Nonlinear Viscoelasticity (NLVE) 

Bare Bones Approach 
Measure:  
1. calorimetric Tg 
2. filler volume fraction 
 
 
 
 
Model Parameterization: 
Estimate NLVE response based 
on universal properties and rule 
of mixtures approach  
 
 
 
 
 
 
Limitations/Potential Errors: 
• Must be rigid fillers (e.g., 

alumina, silica, mica…) 
• Breadth of relaxation spectra 
• Nonlinear material clock 

Quick and Dirty Approach  
Measure:  
1. filler volume fraction 
2. thermal strain versus 

temperature 
3. elastic shear modulus versus 

temperature 
 
Model Parameterization: 
Estimate NLVE response based 
on universal properties and 
rule of mixtures approach.  
Compare predictions to data.  
Ability to tweak relaxation 
spectra and prefactors to 
better match predictions to 
data.  
 
Limitations/Potential Errors: 
Lack definition of clock for 
nonlinear relaxations 

The Whole Shebang 
Measure:  
1. filler volume fraction 
2. thermal strain versus temperature 
3. elastic shear modulus versus 

temperature 
4. compressive stress-stain through 

yield at multiple temperatures 
5. shear mastercurve 
6. glassy volume relaxation 
7. creep at multiple temperatures 

and stress levels 
 
Model Parameterization: 
Populate material specific SPEC 
NLVE model 
 
 
Advantage: 
Model can now predict yielding AND 
(physical) aging with more 
confidence 

Critical Encapsulants/Adhesives Other Options not Possible Material Evaluations 



Polymer Thermoset Cure Stress Topics 

1. Materials investigated 
2. Characterization of material evolution associated with reaction 
3. Structural response tests to design cure schedules and validate models 

a. Confined Cure 
b. Free-surface Cure 



1Mix ratio, cure schedule, and more can be found in SAND2013-8681 

2Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828_DEA.html   
3Mix ratio, cure and typical properties can be found at:  http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 

Materials 

EPON® Resin 828 
Diglycidylether of Bisphenol-A 

Diethanolamine 

828/DEA2 and 828/GMB/DEA3 

Tg ~ 70C 

828/T4031 and 828/GMB/T403 

EPON® Resin 828 
Diglycidylether of Bisphenol-A 

Jeffamine® T-403 Polyetheramine 

Tg ~ 80C 
(when mixed stoichiometrically epoxy-amine) 

3M D32 glass microballoons 

http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html


Why is Cure Stress Important? 
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Failure can occur during cure! 

Geometry: Thin Disk on Cylinder Structural Response 

Temperature Profile 
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1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 
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Kropka et al., SAND2016-5543 



Reaction Kinetics 
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Mathematical Representation of the Autocatalytic Behavior 

It is not sufficient for our favored 828/DEA! 
But why and what is needed to predict the behavior of this material? 

drives reaction rate to increase with reaction extent 

This framework works well for 828/T403 
Kropka et al., SAND2013-8681 

McCoy et al., under review 

(phenomenological way to 
represent vitrification) 

(Arrhenius activation) 



What Makes the Kinetics of 828/DEA so Interesting? 

McCoy et al., under review 

Simple Kinetics for the initial “Adduct-Forming Reaction” 

But what happens after that, during what we call the “Gelation Reaction”? 

Epoxide-alcohol addition reaction? 
Catalysis by the tertiary amine formed during the adduct-forming reaction? 
Epoxy self-polymerization? 
All of the above? 



Heat flow measurements 
during the reaction at 
temperatures of 60, 70, 100, 
and 110C have been scaled 
by an activation energy, Ea, 
of 13.8 kcal/mol or 57.7 
kJ/mol 
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Ea = 13.8 kcal/mol 
= 57.7 kJ/mol 

Temperature Dependence of Peak Location and Time-
Temperature Superposition 

Simple Kinetics for the  
“Model” 828/T403 Material 

Not So Simple Kinetics for the 
828/DEA “Gelation Reaction” 

McCoy et al., under review Kropka et al., SAND2013-8681 

Ea = 14.6 kcal/mol 
= 60.9 kJ/mol 

Heat flow 
measurements have 
been scaled by an 
activation energy, Ea, 
of 14.6 kcal/mol or 
60.9 kJ/mol 

height 

time 



Initiation Propogation Termination 

McCoy et al., under review 

Proposed Mechanism for “Gelation Reaction” at Low 
Temperature 

The “weak” tertiary amine complex destabilizes at high temperature (~70C for 828/DEA) 



Challenges Representing 828/DEA Gelation Reaction Kinetics 
Mathematically 
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Concentration of the intermediates (e.g., X1, X2, X3…) of the subreactions (initiation, 
propagation, termination) must be taken into account 
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only works for isothermal reaction 

McCoy et al., under review 

no single 
activation energy 

no time-temperature 
superposition 



Temperature Jump Experiments Showing Intriguing Behavior 

Jump up to T=70C generates a much 
higher reaction rate than ever seen 
during T=70C isothermal cure 

Jump down to T=70C exhibits no 
activation energy for the reaction 



Material Evolution Associated with Reaction 
and Predictive Model Validation 



828/T403 Material Evolution with Reaction 
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Reaction Kinetics Cure Shrinkage 

-40

-20

0

20

40

60

80

0 50 100 150 200 250 300 350

50C-Series
60C-Series
70C-Individual
70C-Series
80C-Individual
90C-Individual
100C-Individual
110C-Individual

M
id

po
in

t (
In

fle
ct

io
n)

 T
g 

(o C
)

Time (min)

Kropka et al., SAND2013-8681 
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Predicting Cure Stress: Parameterizing the SPEC Cure Model 
Volumetric Cure Shrinkage 

Evolution of Equilibrium Shear 
Modulus During Cure 

Reaction Kinetics 

Evolution of Glass Transition Temperature During Cure 

 

dx
dt
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828/T403 Chemistry Limited 
Reaction Parameters 

Parameter Value 

Ea 13.8 kcal/mole 

ko 2.17x105 s-1 

b 0.17 

m 0.33 

n 1.37 
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828/T403 Tref Parameterization 

Parameter Value 

C3 900 C 

α∞ 500 ppm/C 

C5a 10 C 

C5b 0.97 

C5c -105 C 

C5d 1.0088 

C5e 0.73 
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Kropka et al., SAND2013-8681 



Predicting Cure Stress: Parameterizing the SPEC Cure Model 
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Material time is computed by using a shift factor, a 

The shift factor is a function of temperature, volume, deformation and reaction histories 

Kropka et al., SAND2013-8681 
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Predicting Cure Stress: Validation Tests 
Rubbery Cure Results 

epoxy 
steel 

4 mm 

1 mm 

F(t) 
reference height 

Good agreement between predictions and data, 
with known variations in boundary conditions 
during the test accounting for the spread in the data 

This capability will enable the design of cure schedules to minimize stress 

The Simple Test 

828/T403 
T=100C 

Kropka et al., SAND2013-8681 



Structural Response Tests to Design Cure Schedules and 
Validate Models 



Designing an Optimum Cure Schedule 

Isothermal reaction at a high temperature may be the fastest method to achieve complete 
cure, but other factors may drive the time-temperature profile in a different direction 

Isothermal
Temperature Ramps and Holds
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Time

Cure at intermediate temperature while 
material in liquid state to prevent potential 
exothermic heating for fast reactions 

keep temperature low to prevent potential 
exothermic heating or filler settling 

gelation 

Heat after gelation to balance cure 
shrinkage with thermal expansion and 
minimize stress developed 

Finish cure at high enough temperature 
to complete the reaction 





Confined Cure 

Thin Disk on Cylinder 



Isothermal Cure 
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Geometry: Thin Disk on Cylinder Structural Response 
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1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 
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Kropka et al., SAND2016-5543 
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Cure with Temperature Ramps and Holds 

No cracking/debonding observed and less disk deflection for larger post-
gelation thermal ramp (thermal expansion offsetting cure shrinkage) 

Geometry: Thin Disk on Cylinder 

Temperature Profile 

Structural Response 
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1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 
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Cure is often neglected when analyzing 
encapsulation stress, yet it is the major 
contributor to manufacturing stress 
under confined conditions! 

Kropka et al., SAND2016-5543 



Dependence on Gel Temperature 
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The difference between gel temperature and final cure temperature (Tf) 
appears to be a primary factor in determining residual stress developed 

828/DEA/GMB1 

1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html Kropka et al., SAND2016-5543 
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Findings: 
• A temperature 3C higher than designed results in a higher gelation temperature and resulting strains are 

consistent with the higher gel temperature 
• A temperature 3C lower than designed also increases the gelation temperature (pushes gelation into the 

thermal ramp) and resulting strains are consistent with the higher gel temperature 

over 5 hour difference 
in gel time 

gel temperature ~52C 
for -3C setting 

Can differences be accounted for solely 
by 3C higher gel temperature?  

Sensitivity to Temperature Variations 

1http://www.sandia.gov/polymer-properties/828_DEA_GMB.html 

828/DEA/GMB1 

Kropka et al., SAND2016-5543 



Summary 

• “Thin Disk on Cylinder” test geometry gives reproducible results with 
sensitivity to even small changes in temperature 

• Methodologies to minimize stress associated with cure (e.g., balance 
cure shrinkage with thermal expansion) can be resolved 

• The choice of an optimum cure schedule involves trade-offs amongst 
key parameters, for example: 

• Residual stress 
• At low extents of reaction when encapsulant material is 

“weakest” 
• At final state (e.g., room temperature storage) 

• Processing/Cure time 
• Where application geometries vary from “Thin Disk on Cylinder” 

geometry, sensitivities of cure stress to test geometry should be 
evaluated 

• Each encapsulant material will require a unique “optimum” cure 
schedule  
 



Free-surface Cure 

metal 

epoxy he 

hm 

12″ 

1″ 

Bimaterial Beam 

strain gauge 

he = thickness of epoxy 
hm = thickness of metal 



Geometry Considerations 

Beam Strain 

Ee = Young’s modulus of epoxy 
Em = Young’s modulus of metal 

Optimum he/hm for maximum beam bending depends on modulus ratio of 
materials.  For epoxy-aluminum beam during epoxy cure, the optimum ratio is > 17 



Epoxy Thickness Dependence of Cure Strain  
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As anticipated, an increase in epoxy thickness (below he/hm = 17) increases the beam strain during cure.  The increase 
in equilibrium (T>Tg) modulus associated with GMB (~10x at full cure) addition outweighs the reduction in material 

shrinkage associated with cure (~2x)  and increases the aluminum beam strain by ~ 2X 

While GMB addition can help reduce stress associated with temperature changes below Tg 
in a fully cured, encapsulated part by reducing thermal expansion mismatches (between the 
encapsulant and encapsulate) without significant increase in encapsulant glassy modulus, 
the stress associated with free-surface cure (manufacturing) increases. 

Beam: 0.06” Al 
Tcure = 80C 



Epoxy Thickness Dependence of Cooling Strain  
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• as he increases, strain 
associated with cooldown 
decreases 
 

• for a given he, GMB reduces 
strain associated with 
cooldown 

1/6″ 

1/3″ 

1/2″ 

1/3″ 

1/2″ 

Findings: 
• Illustration of ability for GMB addition to reduce stress associated with temperature changes that go into the glass 
• As he is increased, the stiffness of the epoxy layer is increased (particularly below Tg).  The stiffer epoxy layer can 

contract the beam length-wise (during cooling) in addition to flexing the beam   

vs. 

Beam: 0.06” Al 
Tcure = 80C 

Note that cure in this less confined 
scenario (versus thin-disk-on-
cylinder) is a much smaller fraction 
of the overall manufacturing stress 
(cure + cooldown) 
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Using Time-Temperature Profile to Reduce Cure Stress 

Finding: 
Stress developed during free-surface cure can be reduced by implementing a post-gelation 
temperature ramp (as was also seen in confined cure) 

Beam: 0.06″ Al 
828/DEA/GMB 
he = 1/2″ 
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polymerization has 
slowed and thermal 
strain is dominant 
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Cure Stress Comparison Between Materials 

Beam: 0.06” Al 
he = 1/2″ 
Tcure = 80C 

Finding: 
Differences in beam strain between materials exist—need to verify whether differences are solely 
associated with material evolution during reaction (i.e., shrinkage and modulus development) or 
whether differences in exothermic heating between materials affect beam strain too 
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-exothermic heating between 5-12C for ½” 828/T403/GMB samples on beam 
-exothermic heating ~5C for 828/DEA/GMB sample in thin-disk on cylinder 
-1/2” beam samples use 2X more encapsulant than thin-disk on cylinder  
Need to check exothermic heating of 828/DEA/GMB in ½” bimaterial beam 



Cure Schedule Comparison for 828/T403/GMB 
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Finding: 
Stress developed during free-surface cure can be reduced by implementing a post-gelation 
temperature ramp 



Summary 

• “Bimaterial Beam” test geometry gives reproducible results and 
geometry can be tuned to examine specific aspects (cure, cooldown, 
beam flexure, beam contraction) 

• As was observed for confined cure, free-surface cure stress can be 
reduced by implementing a post-gelation temperature ramp to balance 
some of the material cure shrinkage with thermal expansion 

• These two test geometries, Thin Disk on Cylinder and Bimaterial Beam, 
examine rather extreme cases of confinement.  Most application 
geometries will fall somewhere in between these two extremes.  Thus, 
time-temperature profile as a tool to reduce cure stress should be 
applicable to all encapsulation and adhesive applications. 



Final Remarks 

o Stress developed during the manufacturing process of encapsulated 
components can be important 
• Methodologies to lower manufacturing stress exist 
• Test geometries to evaluate the specifics of a given material are 

available 
o We have learned much about the reaction progress of 828/DEA and 

hope to be able to continue building our capabilities for this widely 
used material 

o Promising results for predictive capabilities of the manufacturing 
process have been obtained, but more work is left to be done 
• Vitrification parameters need a closer look 
• Ability to predict behavior of more complicated materials (e.g., 

828/DEA) is still TBD 
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828/T403: Fillers and Cure Temperature 
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Beam: 0.06” Al 
he = 1/2″ 

note exothermic heating for ½” 
thick unfilled polymer samples 

unlike DEA cured materials, 
unfilled 828/T403 exhibited 
more strain than 828/T403/GMB 

sample temperature for 
828/T403/GMB not measured 

Finding: 
Exothermic heating of unfilled 828/T403 ½” thick samples leads to a thermal contraction contribution to 
the beam strain, in addition to the cure shrinkage—this could account for more beam strain for T=100C 
vs. T=80C cure despite anticipated equivalent reaction extents AND for more beam strain for unfilled vs. 
GMB filled T=80C cure 
Assumption: exothermic heating of GMB filled material would be less than for unfilled and this contributes to 
differences in beam strain between T=80C tests for materials 



828/T403: Cure Temperature and Polymer Thickness 
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Findings: 
•¼” epoxy thickness significantly reduced exothermic heating 
•¼” epoxy thickness significantly reduced beam strain, which is a function both of epoxy thickness and cure temperature 
•Within resolution of current measurements, when exothermic heating is minimized beam strain associated with cure is 
indistinguishable between T=80C and T=100C cure experiments 

Beam: 0.06″ Al 
828/T403 Beam: 0.06″ Al 

828/T403 

A lack of change in even the time of gelation signature between T=80C and T=100C cure for he=¼” casts doubt on the ability of the 
current test to resolve the effects of test variables at this he due to small beam strain signals (low signal-to-noise)   



828/T403: Polymer Thickness Dependence 
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It would be interesting to see what fidelity the model needs in order to predict 
the thickness dependence of the cooldown response 



828/T403: Polymer Thickness Dependence of T=80C Cure 
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Findings: 
•1/3” exothermic heating much more similar to ½” than ¼” 
•Despite similar exotherms, ½” beams experience more strain during cure than 1/3” beams.   Thus, a polymer thickness 
dependence is likely resolved. 



828/T403: Polymer Thickness Dependence of T=80C Cure 
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exothermic heating peak progression 
with polymer thickness 
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Findings: 
•Independent of exothermic heating amount, initiation of beam deflection occurs at maximum sample temperature.  
This suggests the maximum reaction rate occurs at gelation for 828/T403 (see similar observations for 828/DEA in 
McCoy et al.) 

Beam: 0.06″ Al 
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Beam: 0.06″ Al 
828/T403 
Tcure = 80C 
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828/T403: Polymer Thickness Dependence of T=100C Cure 

Findings: 
•Unlike T=80C cure, 1/3” exothermic heating much more similar to ¼” than ½”  
•Despite similar exotherms, 1/3” beams experience more strain during cure than ¼” beams.   Thus, a polymer thickness 
dependence is likely resolved. 
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1/3” sample leaked and one side of beam was 
stuck to fixture at end of test (but beam could 
otherwise flex freely)—no clear effect on 
polymer thickness uniformity across beam 
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828/T403: Polymer Thickness Dependence of T=100C Cure 
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Findings: 
•Independent of exothermic heating amount, initiation of beam deflection occurs at maximum sample temperature.  
This suggests the maximum reaction rate occurs at gelation for 828/T403 (see similar observations for 828/DEA in 
McCoy et al.) 

Beam: 0.06″ Al 
828/T403 
Tcure = 100C 

Beam: 0.06″ Al 
828/T403 
Tcure = 100C 
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