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Abstract

We demonstrate that discrete Lyapunov exponents are isomorphic to numeric overflows of
the capacity of an arbitrary noiseless and memoryless channel in a Shannon communication
model with feedback. The isomorphism allows the understanding of Lyapunov exponents in
terms of Information Theory, rather than the traditional definitions in chaos theory. The
result also implies alternative approaches to the calculation of related quantities, such as
the Kolmogorov Sinai entropy which has been linked to thermodynamic entropy. This work
provides a bridge between fundamental physics and information theory. It suggests, among
other things, that machine learning and other information theory methods can be employed
at the core of physics simulations.

1 Introduction

In physics, the Lyapunov exponents are quantities that characterize the rate of separation of
infinitesimally close time trajectories [Boel6, WSSV85, CCCP97] in the phase space of a physical
system. Quantitatively, two trajectories in the phase space with initial separation 6Zgy will diverge
(provided that the divergence can be treated within the linearized approximation) at a rate given
by

|0Z(t)| ~ e|6Zo| (1)

where A is the Lyapunov exponent.

The rate of separation can be different for different orientations of the initial separation vector.
Thus, there is a spectrum of Lyapunov exponents equal in number to the dimensionality of the
phase space. It is common to refer to the largest one as the Maximal Lyapunov exponent (MLE),
because it determines a notion of predictability for a dynamical system. Negative exponents
indicate convergence, while a positive MLE is usually treated as an indication that the system is
chaotic.

With the recent rising popularity of the topic [Will7], an often-posed question is how to connect
this metric of predictability in physics to Shannon’s model of communication [Sha01] in information
theory. Intuitively, information theory also provides a metric of predictability by measuring the
distortion of signals. This article shows that this intuition is indeed correct. The distortion of the
‘trajectory signal’ sent over the channel is caused by a bit rate larger than the channel capacity.
However, in a noiseless channel, the cause of such information loss is due to numerical overflow in
the decoding of output message instead of an additive noise source.

2 Model of Communication in Information Theory

Figure 1 shows the communication model as assumed in this article. Sender and receiver “commu-
nicate” one iteration of a trajectory evolution |§Z,| to |6Z, 1| by encoding each vector canonically
as an integer N,,. The memoryless and noiseless channel transforms the integer with some arbitrary
set of operations into a new integer N, 1 which can then be decoded canonically as well. The
feedback is introduced to model the iteration, i.e. the feedback is assumed to be an identical copy
operation. It is well known that feedback does not change the capacity of a discrete memoryless
channel.
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Figure 1: An isomorphism between Shannon’s model of communication and Lyapunov exponents.
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3 Isomorphism

Without loss of generality, let |§Zg| be encoded as an integer Ngo. This will take log,(Ng) bits.
Since the channel is noiseless, each bit arrives at the decoder without loss if and only if the output
of the channel transition function f : N,, — N, 11 does not exceed log,(Np) bits. In other words,
the channel capacity is log,(Ng).

We can now define a function f(N,, N,11) = A; that characterizes the channel transition:

i = log, <N§1> . (2)

In words, A; measures the difference in bits between the received message N;y; and sent message
N;.

Let ¢ be the number of iterations to go from [6Zy| to |6Z;|. It is self-evident that the channel
is lossless only for when A; < 0. In fact, if A\; < 0 for sufficiently small \;, and sufficiently large
number of iterations, then |0Z;| will converge to 0. For A; > 0 the transformation itself exceeds the
channel capacity, i.e. \; bits are lost. With regards to N;,;, this means that the error is 2% N;.
For example, a full one bit lost means an error of 21°N;. Therefore, we can establish that:

Nip =2%N;. (3)

The error induced over all iterations ¢ is therefore Z::O Ai, with A; > 0. The maximum possible
error in our model is therefore yielded when all \; are positive. The total error is then ZZ:O Ai-

We can then define:

1< \;, for \; >0
A==-S"1,,=0"" 4
t;’ {0, for \; <0 )

as the mean error over all A;. The deviation from N; — Ny = N; then becomes:
N; < 2MNy. (5)

Since changing the base of a logarithm only involves a multiplication with a constant, which
can be done in the encoder (and reversed in the decoder), we have shown that Equation 1 and
Equation 5 are isomorphic. [

4 Conclusion

Negative \; may contribute to canceling out errors, therefore our method yields an inequality.
Having said that, in a practical setting, there may also be the quantization error. However, since
the channel errors are the result of overflows they can be avoided by allocating enough bits and
trading off compute time for arbitrary precision. This changes the predictability discussion into
a discussion about computational complexity. Since we have shown our \; to be isomorphic to
discrete Lyapunov exponents, we can assume that the sum of the positive \; also corresponds to
the Kolmogorov Sinai entropy [Rue78], which was originally derived from the Shannon entropy.
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