

Exceptional service in the national interest

Estimating Potential Revenue from Electrical Energy Storage in PJM

Raymond H. Byrne, Ricky J. Concepcion, and Cesar A. Silva-Monroy

Acknowledgment: this research was funded by the U.S. DOE energy storage program under the guidance of Dr. Imre Gyuk.

Objectives:

- Formulate the revenue maximization problem for energy storage in PJM
- Analyze historical data for a representative system
- Identify the strategy that maximizes potential revenue
- Present results for a heuristic trading strategy that does not require perfect foresight

PJM Regulation Market:

Payments for capacity and mileage

RMCCP Regulation Market Capability Clearing Price

RMCCP credit = $REG_t \times \eta_t \times RMCCP_t$

RMPCP Regulation Market Performance Clearing Price

RMPCP credit = $REG_t \times \eta_t \times \beta_t^M \times RMPCP_t$

where:

η_t Performance score at time t (%)

β_t^M Mileage ratio at time t

$RMPCP_t$ Regulation Market Performance Clearing Price (\$/MWh)

$RMCCP_t$ Regulation Market Capability Clearing Price (\$/MWh)

REG_t hourly integrated regulation

Energy Storage Model:

Arbitrage

$$S_t = \gamma_s S_{t-1} + \gamma_c q_t^R - q_t^D$$

$$0 \leq S_t \leq \bar{S}, \forall t \in T$$

$$0 \leq q_t^R \leq \bar{q}^R, \forall t \in T$$

$$0 \leq q_t^D \leq \bar{q}^D, \forall t \in T$$

Arbitrage and Frequency Regulation

$$S_t = \gamma_s S_{t-1} + \gamma_c q_t^R - q_t^D + \gamma_c \gamma_t^{RD} q_t^{REG} - \gamma_t^{RU} q_t^{REG}$$

$$0 \leq S_t \leq \bar{S}, \forall t \in T$$

$$0 \leq q_t^R + q_t^{REG} \leq \bar{q}^R, \forall t \in T$$

$$0 \leq q_t^D + q_t^{REG} \leq \bar{q}^D, \forall t \in T$$

Cost Function:

P_t LMP for energy at time t \$/MWh

C_d Cost for discharging (\$/MWh)

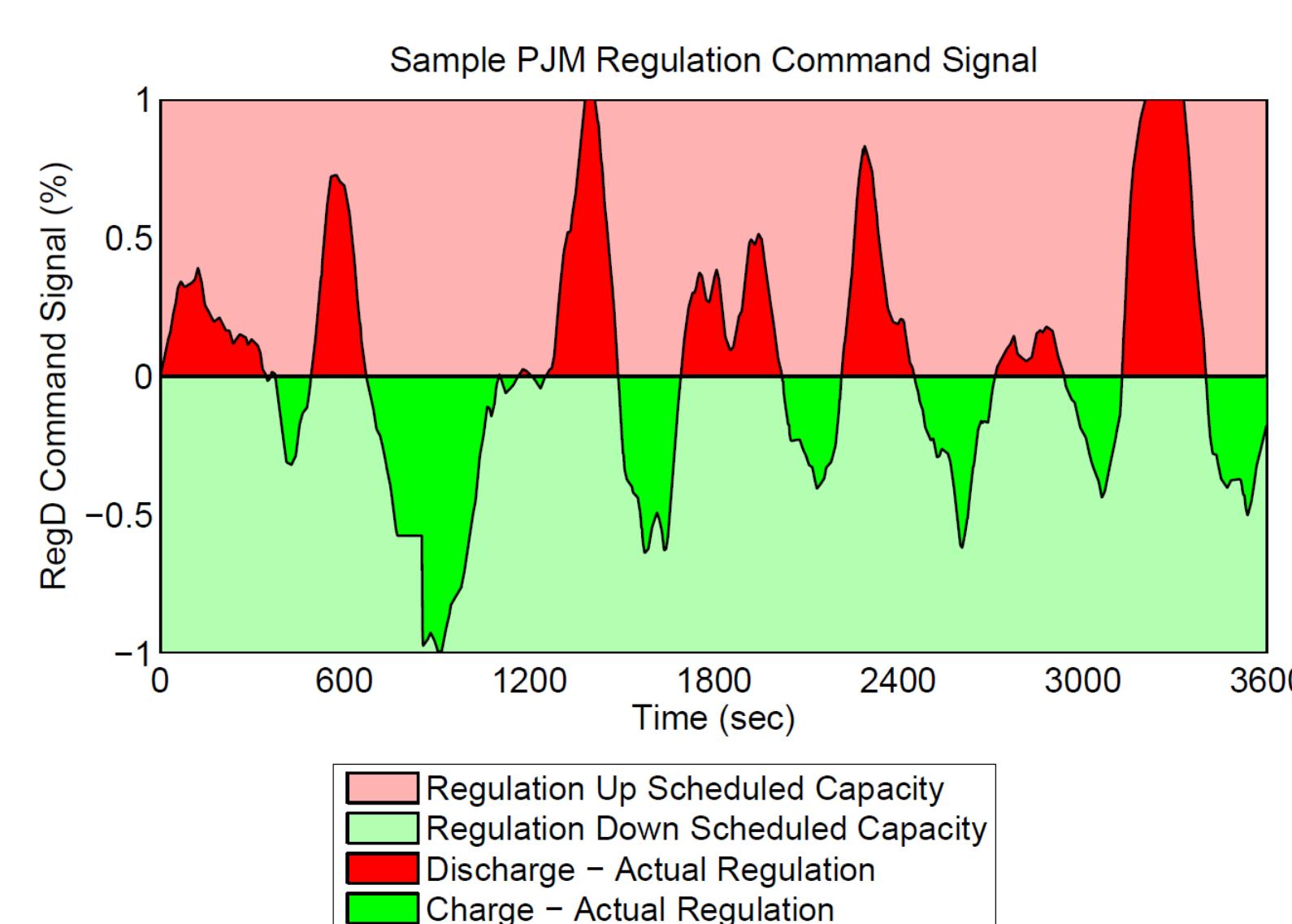
C_r Cost for recharging (\$/MWh)

q_t^D Energy discharged at time t (MWh)

q_t^R Energy charged at time t (MWh)

q_t^{REG} Regulation capability at time t (MWh)

η_t Performance score at time t (%)


β_t^M Mileage ratio at time t

$RMPCP_t$ Regulation Market Performance Clearing Price (\$/MWh)

$RMCCP_t$ Regulation Market Capability Clearing Price (\$/MWh)

e^{-rt} Discounting term (time value of money)

$$\max \sum_{t=1}^T [(P_t - C_d) q_t^D - (P_t + C_r) q_t^R + q_t^{REG} \eta_t (\beta_t^M RMPCP_t + RMCCP_t)] e^{-rt}$$

Results for 2014/2015 Market Data:

ARBITRAGE AND REGULATION OPTIMIZATION RESULTS USING PERFECT KNOWLEDGE, JUNE 2014-MAY 2015.

Month	% q^R	% q^D	% q^{REG}	Revenue
06/14	0.65	0.41	98.67	\$487,185.94
07/14	1.22	0.38	98.06	\$484,494.90
08/14	1.20	0.38	98.06	\$354,411.61
09/14	1.23	0.52	97.73	\$401,076.97
10/14	1.30	0.38	97.85	\$535,293.84
11/14	1.71	0.58	96.43	\$431,106.41
12/14	1.07	0.50	96.92	\$341,281.46
01/15	0.80	1.10	97.34	\$443,436.10
02/15	1.03	1.37	96.59	\$998,392.65
03/15	0.87	0.71	98.41	\$723,692.29
04/15	0.90	0.20	98.76	\$527,436.11
05/15	1.02	0.37	98.62	\$666,290.70
Total				\$6,394,098.97

ARBITRAGE AND REGULATION OPTIMIZATION RESULTS USING PERFECT KNOWLEDGE, JUNE 2014-MAY 2015.

COMPARISON OF REVENUE STREAMS.

Month	RMCCP Credit	RMPCP Credit	Arbitrage Credit	Total Revenue
06/14	\$356,412.73	\$130,286.06	\$487.16	\$487,185.94
07/14	\$351,131.53	\$135,123.18	-\$1,759.82	\$484,494.90
08/14	\$231,708.06	\$124,760.87	-\$2,057.32	\$354,411.61
09/14	\$280,496.49	\$121,979.31	-\$1,398.84	\$401,076.97
10/14	\$389,520.38	\$148,445.40	-\$2,671.94	\$535,293.84
11/14	\$315,773.83	\$117,698.79	-\$2,366.21	\$431,106.41
12/14	\$250,525.71	\$92,077.48	-\$1,321.73	\$341,281.46
01/15	\$335,093.93	\$102,707.75	\$5,634.43	\$443,436.10
02/15	\$837,537.28	\$141,229.67	\$19,625.70	\$998,392.65
03/15	\$561,451.79	\$160,354.43	\$1,886.07	\$723,692.29
04/15	\$373,388.33	\$155,942.07	-\$1,894.29	\$527,436.11
05/15	\$537,115.47	\$129,786.70	-\$611.47	\$666,290.70
Total	\$4,820,155.53	\$1,560,391.71	\$13,551.74	\$6,394,098.97
	75.38%	24.40%	0.21%	100%

Conclusions:

- For the year analyzed, the optimal policy to maximize revenue is to participate in the frequency regulation market
- A simple heuristic trading algorithm was able to capture 92.5% of the maximum potential revenue
- With gross revenue potential around \$6M/year, various energy storage technologies start to offer a reasonable payback period