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Reactivity of Fe(lll) in the Octahedral Sheet of
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Redox on clay mineral surfaces

Redox on clay mineral surfaces: catalysis
and direct e fransfer.!4

Iron in clay minerals: fraces to up to 30
wt.%.

Structural iron is redox-active. ¢7

Experiments: e tfransfer at edge sites and
through basal surface.”

Computation: e tfransfer at edge sites only,
no evidence for e transfer through basal
surface .8

Unique Fe?*/Fe,,, — En relationships.
Structural parameters (Fe,... layer charge,
and quadrupole splitting values) control
the reactivity of clay structural Fe.?

[1] Oscarson et al., 1991 [6] Hofstetter et.al, 2006

[2] Manning and Goldberg, 1997 [71 Neumann et al., 2013

[3] Lin and Puls, 2000 [8] Alexandrov and Rosso 2013
[4] Hofstetter et. al, 2003 [9] Gorski et al., 2013

[5] Stucki, 2006
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Fe(ll)-activated goethite

Nontronite activated by partial reduction

As(V) As(III)
%

Fe?*, Fe(y  Fe(ll) As (V)
7
@‘ / goethite a-FeO @
72
sec. Fe mineral %

As (V)

oz
[+Fe(ll)]

[NoAs()] 1 [With As(il)
///_/

= Fe(ll) ~ As(lll)

®

~ As(lll)

®

A\

v
\
AL

I = Fe(ll) ~ As(V

Amstaetter et al., 2010

Adsorbed Fe(ll) oxidizes to Fe(lll) on the
goethite surface and resulting
intermediate Fe(lll) phase (unidentified)
is oxidizes As(lll) to As(V).

Step 2: Oxidation of As(lll) to As(V)
H;AsO; + [Fe,05] — HiAsO, + 2[Fe0]

Step 1: Adsorption of As(ll1)

As(Il)

Fe(ll) ‘_

Step 5: Adsorption of As(V)

@ Fe(ll) ‘ <

Step 3: desorption of As(V) and release of Fe(ll)
1| As(V)aq|Fe(ll)aq

Step 4: Homogeneous reduction of As(V) to As(lIl) by Fe(ll)
H;AsO,aq + 2Fe(OH),aqg—>H;As0;aq +Fe,05s

ligen et al., 2012

Non-reactive Fe(lll)-nontronite is activated
(becomes an oxidant) when <20% of structural Fe(lll)
is reduced to Fe(ll). Surface is passivated after
reacting.




Objective ) i,

« Mechanistic model of the structural iron (Fe) reactivity in clay minerals

Our previous findings

« Non-reactive Fe(lll)-nontronite is activated (becomes an oxidant) when <20% of structural
Fe(lll) is reduced to Fe(ll). Surface is passivated after reacting.

Remaining unknowns
 Does this “activated” nontronite react with other redox-active elements?

« Reactivity as a function of Fe(ll)/Fe(lll) ratio in the octahedral clay sheet.
« Do impurities in the natural nontronite affect the reactivity?

*  What is the surface passivation mechanism®@

Experimental approach

« Synthesis and characterization of pure Fe-

phyllosilicate

» Reactivity of synthetic Fe-phyllosilicate As @ s S
compared to the natural and “activated” /e\ o °

nontronites, using As(lll) as a “probe” :

« Insitu diffuse reflectance coupled to the Fe Fe
aqgueous speciation analysis for As and Fe. é ®




° ° ° Sandia
Aqueous and solid phase speciation Lufre

Diffuse Reflectance el

E’ml~ ﬁIG—Spectrometer @
= _L o

LC-ICP-MS

~ Light Sotree
#—Reflection Probe

4—Sample

I poRopn Typical Reflection Setup

Ocean Optics Manual Spectra Suite Operating Manual (2009)

« Aqgueous speciation: liquid
chromatography coupled to an

EXAFS spectroscopy instrumental setup

Tonization Chambers inductively coupled plasma mass
{ ey aisen spectrometer (LC-ICP-MS) (As), UV-vis
: f i L (Fe).
"&_ Z’H"*D « Solid phase speciation of arsenic and
Sample  cybrating selenium: X-ray Absorption
standard Spectroscopy (XAS) at Advanced

Photon Source, Argonne National Lab.
6




Synthesis and characterization of Fe-phyllosilicates (i) i

Synthesis route 1 (R1)

Laboratories

Synthesis route 2 (R2)

Sodium Hydroxide, Silicic acid, Ferrous
Sulfate, and Sodium Dithionite

Tetraethyl orthosilicate, Aluminum
Chloride, Ferrous Chloride, and
Hydrazine (or Sodium Dithionite)

Aged in Parr vessels, 150°C
for 50 hours

pH adjusted to 8 using i‘ ‘
Calcium Hydroxide

Washed, centrifuged,
aged for 24 hoursin 1 M
NaCl

Added 160 mg of Calcium
Carbonate as pH buffer

Aged at 89°C for 8 weeks

Clay washed, and dialyzed for
96 hours in deionized water

Purged with CO, for 12 hours,
centrifuged, washed with de-
ionized water, then freeze-
dried.

Characterization o
XRD, XRF, Raman, —
51.36

SAXS, FTIR, SEM, BET,
Mossbauer, XAS

From Keeling et al., 2000

Composition of NAu-1

ALO, Fe,0, MgO CaO Na,0 K,0 Total,

Wt % Wt. % Wt. % Wt. % Wt. % %
35.94 0.19 3.57 0.03 0.01 99.5

8


http://auctions.biosurplus.com/view-auctions/catalog/id/111/lot/13169/
http://www.google.com/url?sa=i&rct=j&q=parr+vessel&source=images&cd=&cad=rja&docid=VsImejKIXzYcBM&tbnid=1lXS3g2-nS-VGM:&ved=0CAUQjRw&url=http://www.gogenlab.com/products/general-purpose-bomb-parr-4745&ei=DFrwUbbnDeKDjALM3oCQCg&psig=AFQjCNE8omccI2Eyr9HsqUJ6WjqtLliH5g&ust=1374792576481642
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152___12774531_-1
http://auctions.biosurplus.com/view-auctions/catalog/id/111/lot/13169/
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Reactivity experiments ) s

Batch reactors: Activation of structural Fe by
partial reduction

Anoxic Oxic < 2 um size fraction
1 NAu-1 5 NAu-1
: CH,COONH,/CH.,COOH buffer
2 NAu-1, activated 6  NAu-1, activated 3to remo:/e c;rbonates
3 SIP 7 SIP
. Citrate-Bicarbonate-
4 SIP, activated 8  SIP activated Dithionite treatment [1]
9  SIP activated, dup Saturate with Na+
10 Aqueous control
NAu-1 reduced/re-oxidized
Anoxic (glove box) Oxic (bench top)
S OO e =
1.2 3 4 5 6 7 8 9 10

« Batch reactors to track the oxidation of As(lll);

« Passive and activated natural nontronite (NAuU-
1) and synthetic Fe-phyllosilicate (SIP);

. . . ~19 wt.% Fe(lll)
« LC-ICP-MS for arsenic speciation. ~5 wt.% Fe(ll)

|1| Stucki, J. et al. ‘1984: Clazs and Claz Minerals 32, 191 5

~24 wt.% Fe(lll)




Characterization of SIP
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XRD

SAXS

FTIR

SEM

BET

SIP crystalline structure matching
nontronite NAu-1

SIP has lower degree of crystallinity
and more fri-octahedral domains
compared to NAuU-1

Similar geometry (platelets) for the
NAu-1and SIP, and liquid crystalline
ordering

Matching Si-O bands at 1100 cm™':
similar silicate framework

Typical platelet geometry, smaller
size in SIP

SIP - 136.6 m?/g, and
NAuU-1 - 46.5 m?/g.

Relative Intensity

XRD

&2
o

| [NAu-1

14 24 34 44 54 64 74

2 theta
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' m=-25
100 |

10F

SAXS

Slope indicative of
m=-27 structure dimensionality

/(m = -2 for ideal 2D material)

Liquid crystalline ordering
of platelets at ca. 5.2 nm

NAu-1
Synthetic




Characterization of SIP rh)

Mossbavuer Speciroscopy

940000 - Oxlate treated (optimum fit) * Fe(”) COﬂTenT in The SlP iS on Ng
Si ,
g 00 ’ - Free of Fe-oxide impurities; s
E 880000 "
2 850000 » Fe(lll) in the phyliosilicate IR .00, e
Evoeri is predominantly (or N @OaD
840000 perimental W
 Fe(lll}-Oct completely) octahedral.
820000 I I | I I | | I 1
-10-8 6 4 -2 0 2 4 6 8 10
Velocity, mm/s 70’5 Fe(III)
653 2
X-ray Photoelectron Spectroscopy oo F‘*"°°e'a"°"\"‘i e (Il
u = 555
High resolution Fe 3p spectra - o
* NAu-1 —exclusively Fe(lll); “’::
* Ferroceladonite — Fe(ll) — preliminary (not = Fe () shoulder
accounting for the shoulder on the left) — 37%; .
Black shoulder — another Fe(lll) in a different :
structural position; 1
« SIP—minor Fe(ll). Binding Ensrgy (oV)



Reactivity of SIP and NAu-1 ) i,

NAU_SIP_xafs_comparison

o

As XAFS

T T
N2_NAu_48hrs_merge ——
N2_SIP_48hrs_allmerge —

NAU_SIP_xafs_comparison
35 T T

T T
N2_NAu_48hrs_merge ——
N2_SIP_48hrs_allmerge ——

Koxk ()

& & IS S o N - @ @
T T T T T T T

25

- I
1+ \/\/—v - -10 I 1 I 1 I 1 I
0 2 4 6 8 10 12 14

Wavenumber (A1)

normalized xp(E)
P

05 -
D—J

05

NAU_SIP_xafs_comparison

T
N2_NAu_48hrs_merge ——

I ! I ! I
11800 12000 12200 12400 12600 N2_SIP_48hrs_alimerge ——

Energy (eV)

« XAFS data - qualitatively similar.
* As form bi-dentate inner-sphere
complex on nontronite NAu-1

surface.

xR A%

Radial distance (A)



Reactivity of SIP and NAu-1 OXIC
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As(I11) As(V) As(Il1)As(V)

Activated nontronite —
2 weeks

| Activated nontronite —
| 48 hours
Nontronite — 2 weeks

Na arsenate

Activated synthetic
phyllosilicate — 2 weeks

Activated synthetic
phyllosilicate — 48 hours

Synthetic phyllosilicate —
2 weeks

Normalized xpu(E)

A

Normalized xp(E)

Na arsenate

Na arsenite

11830 11860 11890 11920 11830 11860 11890 11920
Energy (eV) Energy (eV)

Surfaces are inactive if no Fe(ll) in the octahedral sheet;

Surfaces are activated by partial reduction: Catalyze oxidation of As(lll) by dissolved O2.

10




Reactivity of SIP and NAu-1 ) i,
ANOXIC

100 Wb-=nos - M 100 M- b TNT.___? ;
0 B g ey et 8
g 2 ﬁ
R 60 - < 60 ﬁ
S 40 - 8 40 -
7 ,, B N-Nont-Red = ,o | - N-SIP-Red *
] z : )
-48--N-Nont -48--N-SIP *
O I I I 1 0 I I I 1
0.1 1 10 100 1000 0.1 1 10 100 1000
Time, hours Time, hours
« Surfaces are activated by partial 100 A A
reduction: _ 80
« Direct oxidation of As(lll) by 260 A,
octahedral Fe(lll); 2 0
» Higher degree of oxidation forSIP
vs NAU-1; ® N-SIP-Red A
0 T T 1
. ) . 1 10 100 1000
« Surfaces passivate with reaction progress. Time, hours

9




Reactivity of SIP and NAu-1
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OXIC

100 W-------------M------- 100 W-------- - ommmmn- 'y
90 %, )y T‘+---§ 90 ™, ' ’! !
s 80 - \ T 80 - "
® 70 - % \ o 70 -
S 60 = '- X 60
X . @ O-Nont- \ X
S 50 - @ O-Nont-Red “ S 50 -
= 40 - -, -4-0-Nont ' 2 40 - T e
= ' = -
Z 30 - *'.‘ 7 30 - +
ig - a i ig | @ 0-SIP-Red
i F : | -4-0-SIP v
0 e ﬁ  am 0 | | 1l
0.1 1 100 1000 0.1 1 10 100 1000
Time, hours Time, hours
100 A
« Surfaces are inactive if no Fe(ll) in the 80 |
octahedral sheet; g
£ 60
Q
. . . =S
« Surfaces are activated by partial reduction: = 40 -
« Catalyze oxidation of As(lll) by £ 50
i . O-SIP-Red A
dissolved O,; . | A,
10 100 1000
« Surfaces passivate with reaction progress. Time, hours 10




Comparison between As(IIl) and Se(IV) oxidation in ) i
the presence of oxidized and partially reduced NAu-1 o

As(ll) As(V)

- : | 20 4 As As 2 -
. I 1 oy
| ! Na,;HAsO, i <
g juv NAu-1-R-As(1ll) 3 : T g1
S B3 < 5l , _
E Vi NAu-1-As(Ill) X = _ 0 10 20
= NaAsO ~ ‘;‘ k(A1)
e 1 2 -~
P e
= L 1 VM~ ~—
@ T 1 1
a 11850 11870 11890 11910 0 3 6 9
E (eV) R (A)
se(Iv) | se(vi) Se
1 Na,5e0, n
—_ L NAu-1-R-Se(IV) < -
— 2 'O pronoundc
E %ﬁ mx US' i g“ EhE”fEEtLErdS
- NAu-1-5e(IV) - =
= }| [« 4
g i - | 5 r‘f/J W\AA’V\IJ“-\/\_.—_
‘s —_—
E : '15 T T T 1 i T T 1
5 ' | 0 3 6 9
0 12625 ]]2%%5 12725 0 3 6 9 12
Ele k (A) R(A)

 Different reactivity towards As(III) and Se(IV) could be due to the difference in
sorption complex geometry: inner-sphere bi-dentate (As), outer-sphere (Se).
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Saqdial
Reactivity experiments ) b,

in situ measurements by Diffuse Reflectance:

Method development:

= Vary sodium dithionite to clay
mineral ratio for in situ monitoring the
Fe(ll)-Fe(lll) intfervalence electron
transfer band;

=  Monitoring response vs time as
clay minerals are re-oxidized.

Experiments:

= |n situ diffuse reflectance
response when clay minerals are
spiked with Fe(ll), or As(lll)




in situ diffuse reflectance

Yes

0.8 -
R ISP
06 & e
...
8 04 - :
E N
02 &
NAu-1
0 | |
0 1 2
Ratio (Sodium Dithionite/Clay)
2 .
O
?’ Seo
1.5 - 0 Sso
Y
] S
i v
o 1 - (]
v I
<
05 1 1
Lad SIP
0 | [
0 1 2

Ratio (sodium dithionite/clay)

Dithionite /
clay mineral

0.6
*a. 250/100
05
. 100/10
0.4 -
: 50/100
03 -
i 25/100
0.2 :

5 10/100
0.1

Baselin

Absorbance

0 | ) - . . ;
625 675 725 775 825 875 925
Wavelength (nm) 11




in situ diffuse reflectance 04 | SIP spiked with Fe(ll)

055 . NAu-1 spiked with Fe(ll) 03 /0.005 mM
Q
§ 0.01 mM
1T mM -g 0.2
g 05 2
< 0.02 mM
£ 0.1 mM 0.1 o pat  ttheeiua s st st
§ 0.01 mM
<045 -
O | I I |
600 650 700 750 800
Wavelength (nm)
0.4 T T | T | 0.85
600 650 700 750 800 0 S ¢
Wavelength (nm) 0.75 NAu-1
0.65
* Increase in the area with increasing © SIP
concentration of added Fe(ll) is < 0>
indicative that Fe(ll)-Fe(lll) moieties are 0.45
formed as Fe(ll) adsorbs to the clay
mineral surface. 0.35 - ‘ |
0 0.5 1
FeCl, (mM) 12




in situ diffuse reflectance
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SIP vs. activated SIP spiked with As(lll)
03 @ SIP-Red

. 90 “ -------- oo T ....... !T’
. AN

70 -

Area

60 -

50 - *
40 “ e

30
20 7 @ 0-SIP-Red
107 _m-osip “
T 1 0 T I T
0 2 0.1
As(Ill), mM

1 10 100 1000
Time, hours

Decrease in the area for the activated
(partially reduced) SIP with increasing
concentration of added As(lll) is indicative

that Fe(ll)-Fe(lll) moieties are “consumed”
as it reacts with As(lll).

o
@
As(lll)aq, % total
...l

Area for the non-activated SIP is not
affected by the concentration of As(lll).
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Diffuse reflectance: Summary Ll

1.4 -
12 - « Method resolution is sufficient to
1 - capture the changes in the Fe(ll)-
© 0.8 - Fe(lll) infervalence electron
<os @ ". ¢ transfer band in situ during:
04 1 %o ‘. % . reduction by dithionite
0.2 -
, | Reduced NAu-1 . re-oxidation by dissolved O,

10 100 1000 10000

Time (min) * reactions between clay
14 7 structural iron and dissolved
12 - Fe(ll) and As(lll).
o *® Qo
. ® Oy « NAu-1 and SIP exhibit similar
g oc ¢ > PN ’ ¢ reactivity trends.
04 - ? « Method development is needed
02 . ¢ for quantitative tests.
. Reduced SIP
10 100 1000 10000
Time (min) 14




Summary rh
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« SIP and NAu-1 have similar structure;
« Surfaces are inactive if no Fe(ll) in the octahedral sheet;
« Surfaces are activated by partial reduction:
« Catalyze oxidation of As(lll) by dissolved O,;
« Direct oxidation of As(lll) by octahedral Fe(lll);
« Surfaces passivate with reaction progress.

(1) HASO,+1,0,(aq) —> H,ASO, + H*

e H;AsO; + [Fe,O0;] —> H,AsO, + H* + 2[Fe(]

(3) [FeOl+H,0 —> Fe?+20H

(1)
As(lll) As(V)

Reactive surface é’é Fast SIOW@ Passivated surface

As(Ill) ~4\5( V) As‘}v)aq As(11])aq |00
N N Tt Q T :
2e
Fe(ll)ag > Fe(lll) PRXEE

VRN
Fe(lll)-Fe(lll) moieties

Fe(ll)-Fe(lll) moieties @




