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Redox on clay mineral surfaces

[1] Oscarson et al., 1991 [6]  Hofstetter et.al, 2006
[2] Manning and Goldberg, 1997 [7] Neumann et al., 2013
[3] Lin and Puls, 2000 [8] Alexandrov and Rosso 2013
[4] Hofstetter et. al, 2003 [9] Gorski et al., 2013
[5] Stucki, 2006

• Redox on clay mineral surfaces: catalysis 
and direct e- transfer.1-4

• Iron in clay minerals: traces to up to 30 
wt.%.5

• Structural iron is redox-active. 6,7

• Experiments: e- transfer at edge sites and 
through  basal surface.7

• Computation: e- transfer at edge sites only, 
no evidence for e- transfer through  basal 
surface.8

• Unique Fe2+/Fetotal − Eh relationships.  
Structural parameters (Fetotal, layer charge, 
and quadrupole splitting values) control 
the reactivity of clay structural Fe.9

Figure from Gorski et al., ES&T, 2013
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Adsorbed Fe(II) oxidizes to Fe(III) on the 
goethite surface and resulting 
intermediate Fe(III) phase (unidentified) 
is oxidizes As(III) to As(V).

Amstaetter et al., 2010

Fe(II)-activated goethite

Ilgen et al., 2012

Nontronite activated by partial reduction

Non-reactive Fe(III)-nontronite is activated 
(becomes an oxidant) when <20% of structural Fe(III) 
is reduced to Fe(II).  Surface is passivated after 
reacting.



Objective

• Mechanistic model of the structural iron (Fe) reactivity in clay minerals

Our previous findings

• Non-reactive Fe(III)-nontronite is activated (becomes an oxidant) when <20% of structural 
Fe(III) is reduced to Fe(II).  Surface is passivated after reacting.

Remaining unknowns

• Does this “activated” nontronite react with other redox-active elements?

• Reactivity as a function of Fe(II)/Fe(III) ratio in the octahedral clay sheet.

• Do impurities in the natural nontronite affect the reactivity?

• What is the surface passivation mechanism?

Experimental approach

• Synthesis and characterization of pure Fe-
phyllosilicate

• Reactivity of synthetic Fe-phyllosilicate 
compared to the natural and “activated” 
nontronites, using As(III) as a “probe”

• in situ diffuse reflectance coupled to the 
aqueous speciation analysis for As and Fe.
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Fe Fe
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Aqueous and solid phase speciation

Ocean Optics Manual Spectra Suite Operating Manual (2009)

Diffuse Reflectance

• Aqueous speciation: liquid 
chromatography coupled to an 
inductively coupled plasma mass 
spectrometer (LC-ICP-MS) (As), UV-vis 
(Fe).

• Solid phase speciation of arsenic and 
selenium: X-ray Absorption 
Spectroscopy (XAS) at Advanced 
Photon Source, Argonne National Lab.
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Sodium Hydroxide, Silicic acid, Ferrous 
Sulfate, and Sodium Dithionite

Aged in Parr vessels, 150°C 
for 50 hours

Washed, centrifuged, 
aged for 24 hours in 1 M 
NaCl

Clay washed, and dialyzed for 
96 hours in deionized water

Synthesis route 1 (R1)
Tetraethyl orthosilicate, Aluminum 
Chloride, Ferrous Chloride, and 
Hydrazine (or Sodium Dithionite)

pH adjusted to 8 using 
Calcium Hydroxide

Added 160 mg of Calcium 
Carbonate as pH buffer

Aged at 89°C for 8 weeks

Synthesis route 2 (R2)

Purged with CO2 for 12 hours,
centrifuged, washed with de-
ionized water, then freeze-
dried.

Characterization

XRD, XRF, Raman, 
SAXS, FTIR, SEM, BET, 
Mössbauer, XAS

Synthesis and characterization of Fe-phyllosilicates

http://auctions.biosurplus.com/view-auctions/catalog/id/111/lot/13169/
http://www.google.com/url?sa=i&rct=j&q=parr+vessel&source=images&cd=&cad=rja&docid=VsImejKIXzYcBM&tbnid=1lXS3g2-nS-VGM:&ved=0CAUQjRw&url=http://www.gogenlab.com/products/general-purpose-bomb-parr-4745&ei=DFrwUbbnDeKDjALM3oCQCg&psig=AFQjCNE8omccI2Eyr9HsqUJ6WjqtLliH5g&ust=1374792576481642
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152___12774531_-1
http://auctions.biosurplus.com/view-auctions/catalog/id/111/lot/13169/
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Batch reactors: Activation of structural Fe by 
partial reduction

1 NAu-1

2 NAu-1, activated

3 SIP

4 SIP, activated

5 NAu-1

6 NAu-1, activated

7 SIP

8 SIP activated

9 SIP activated, dup

10 Aqueous control

• Batch reactors to track the oxidation of As(III); 

• Passive and activated natural nontronite (NAu-
1) and synthetic Fe-phyllosilicate (SIP);

• LC-ICP-MS for arsenic speciation.

Anoxic Oxic

Reactivity experiments

CH3COONH4/CH3COOH buffer 
to remove carbonates 

Citrate-Bicarbonate-
Dithionite treatment [1]

Saturate with Na+

< 2 um size fraction

~24 wt.% Fe(III)
~19 wt.% Fe(III)
~5 wt.% Fe(II)

NAu-1 reduced/re-oxidized

[1] Stucki, J. et al. (1984) Clays and Clay Minerals 32, 191



XRD SIP crystalline structure matching 
nontronite NAu-1

SIP has lower degree of crystallinity 
and  more tri-octahedral domains 
compared to NAu-1

SAXS Similar geometry (platelets) for the 
NAu-1and SIP, and liquid crystalline 
ordering

FTIR Matching Si-O bands at 1100 cm-1: 
similar silicate framework

SEM Typical platelet geometry, smaller 
size in SIP

BET SIP - 136.6 m2/g, and

NAu-1 - 46.5 m2/g.

7

Characterization of SIP

XRD

SAXS



Mössbauer Spectroscopy
• Fe(II) content in the SIP is on 

the order of 1-3% of total Fe;

• Free of Fe-oxide impurities;

• Fe(III) in the phyllosilicate
is predominantly (or 
completely) octahedral.
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X-ray Photoelectron Spectroscopy

High resolution Fe 3p spectra

• NAu-1 – exclusively Fe(III);
• Ferroceladonite – Fe(II) – preliminary (not 

accounting for the shoulder on the left) – 37%;  
Black shoulder – another Fe(III) in a different 
structural position; 

• SIP – minor Fe(II).

Characterization of SIP



As XAFS
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Reactivity of SIP and NAu-1

• XAFS data – qualitatively similar.
• As form bi-dentate inner-sphere 

complex on nontronite NAu-1 
surface.  
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Reactivity of SIP and NAu-1 OXIC 

• Surfaces are inactive if no Fe(II) in the octahedral sheet;
• Surfaces are activated by partial reduction: Catalyze oxidation of As(III) by dissolved O2.
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Reactivity of SIP and NAu-1

ANOXIC 

• Surfaces are activated by partial 
reduction:

• Direct oxidation of As(III) by 
octahedral Fe(III);

• Higher degree of oxidation for SIP 
vs NAu-1;

• Surfaces passivate with reaction progress.

0

20

40

60

80

100

0.1 1 10 100 1000

A
s(

II
I)

aq
, %

 t
o

ta
l

Time, hours

N-Nont-Red

N-Nont
0

20

40

60

80

100

0.1 1 10 100 1000

A
s(

II
I)

aq
, %

 t
o

ta
l

Time, hours

N-SIP-Red

N-SIP



10

Reactivity of SIP and NAu-1

OXIC 

• Surfaces are inactive if no Fe(II) in the 
octahedral sheet;

• Surfaces are activated by partial reduction:
• Catalyze oxidation of As(III) by 

dissolved O2;

• Surfaces passivate with reaction progress.
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Comparison between As(III) and Se(IV) oxidation in 
the presence of oxidized and partially reduced NAu-1

• Different reactivity towards As(III) and Se(IV) could be due to the difference in 
sorption complex geometry: inner-sphere bi-dentate (As), outer-sphere (Se).
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in situ measurements by Diffuse Reflectance:

Method development:
 Vary sodium dithionite to clay 
mineral ratio for in situ monitoring the 
Fe(II)-Fe(III) intervalence electron 
transfer band;
 Monitoring response vs time as 
clay minerals are re-oxidized.

Experiments:
 in situ diffuse reflectance 
response when clay minerals are 
spiked with Fe(II), or As(III)

Reactivity experiments



in situ diffuse reflectance

11

Dithionite /
clay mineral
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0.01 mM

0.02 mM

0.005 mM

SIP spiked with Fe(II)

0.01 mM

1 mM

0.1 mM

NAu-1 spiked with Fe(II)

NAu-1

in situ diffuse reflectance

• Increase in the area with increasing 
concentration of added Fe(II) is 
indicative that Fe(II)-Fe(III) moieties are 
formed as Fe(II) adsorbs to the clay 
mineral surface.  



SIP vs. activated SIP spiked with As(III)
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in situ diffuse reflectance

1 hour

• Decrease in the area for the activated 
(partially reduced) SIP with increasing 
concentration of added As(III) is indicative 
that Fe(II)-Fe(III) moieties are “consumed” 
as it reacts with As(III).  

• Area for the non-activated SIP is not 
affected by the concentration of As(III).



Diffuse reflectance: Summary
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• Method resolution is sufficient to 
capture the changes in the Fe(II)-
Fe(III) intervalence electron 
transfer band in situ during:

• reduction by dithionite

• re-oxidation by dissolved O2

• reactions between clay 
structural iron and dissolved 
Fe(II) and As(III).

• NAu-1 and SIP exhibit similar 
reactivity trends.

• Method development is needed 
for quantitative tests.
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Summary

• SIP and NAu-1 have similar structure;
• Surfaces are inactive if no Fe(II) in the octahedral sheet;
• Surfaces are activated by partial reduction:

• Catalyze oxidation of As(III) by dissolved O2;
• Direct oxidation of As(III) by octahedral Fe(III);

• Surfaces passivate with reaction progress.

H3AsO3 + 1/2O2(aq) H2AsO4
- + H+

H3AsO3 + [Fe2O3] H2AsO4
- + H+ + 2[FeO]

[FeO] + H2O Fe2+ + 2OH-

H2AsO4
- + 2Fe2+ + 3OH- H3AsO3 + 2Fe2O3 +2H2O
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Fast Slow
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