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Abstract

We consider Rayleigh-Taylor instability of the liquid-plasma interface of a
spheromak ignited by slow compression discussed previously. We conclude that instability
may indeed occur despite the stabilizing influence of magnetic shear in the spheromak. If it
occurs, instability would be greatest for modes concentrated toward the midplane. As for
the cylindrical LINUS configuration, rotation about the geometric axis would stabilize these
modes, but at the price of roughly doubling the input energy and reducing the gain.
However, even in the absence of rotation, in a sphere instability occurs only at the end of

compression near the stagnation point. Revised estimates of the fusion energy gain taking
this brief period of instability into account still give, within the uncertainties, a gain G = 20

for our earlier example with an input energy of 150 MJ and fusion yield of 3 GJ.
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1. Formulation of the Stability Problem

We consider a spherical shell of conducting liquid imploding on a spheromak inside
the shell, discussed in Reference [1]. As before, we assume incompressibility and only
later correct for the energy of compression in the liquid. Ignoring viscosity, both the liquid
and the spheromak are described by the MHD magnetic equation and the momentum

equation given by:

p dv/dt - VP + C (1)

where P = p + B*/2y, with pressure p and C is the magnetic curvature term. Linearizing

gives a force term p, g where [2]:

g = _dv, /dt . )

The effective gravity g, not present for a static non-accelerating equilibrium state, is

a potential source of Rayleigh-Taylor instability at the interface where p, = - & .Vp, is



large. Neglecting curvature and v.V in the convective derivative gives the standard

equation for purely growing or oscillating Rayleigh-Taylor modes [3]:

&+ (p/p)E - K (1 -gp'/po’)E = 0 G)

where & is the displacement perpendicular to the surface, (') denotes derivatives

perpendicular to the surface, k lies in the surface and g is the effective gravity due to
acceleration. The steep gradient causes the solution to localize near the surface of the liquid

with frequency:

® = (kg)"” for k <(p'/p) : (4)

Hence modes grow if g < 0 (gravity pointing inward toward the spheromak). As noted
below, g at the surface changes sign during compression, so that instability, if it occurs,
does so near the end of the compression cycle when the compression of the field begins to
decelerate the liquid.

2. Calculation of g
The effective gravity g can be calculated by integrating Eq. (1) over r and using

incompressibility to determine v(r) from V.v =0. For a cylindrical implosion, in which v

is purely radial and unperturbed quantities are constant over cylindrical surfaces, this can be
carried out exactly. Also for the spheromak an initially spherical implosion remains so until

near stagnation when the non-uniform pressure of the spheromak causes velocity flows in

0 and ¢. Ignoring these velocity components, we integrate Eq. (1) over the liquid layer

R, <1 <R, with v e r* and solve to obtain the approximate effective gravity at any

position on the liquid-plasma interface at r = Rg:

8s - - dvy/dt - 3/2 (vi'/Rg) - (Ps/pRy) (5)

where we drop small contributions at the outer surface (thick layer, R, <R ).

From flux conservation, the magnetic pressure at the liquid surface scales as:



P, = B2 RRY ©)

where B and R are the field and radius at stagnation (v = 0). Then the solution to Eq. (5) is:

[(2Ps/p) (Rg/R - 1)]" (7)

Vs

8s - (Ps/pRs) (4 -3 RS/R) : (8)

Instability sets in (g < 0) at R =4/3 R, at which point the implosion velocity is maximum:
v = 032v, (9)

where v, = BA pu, 1s the liquid Alfven speed at stagnation. The g at stagnation is:

g = -(BY2u)/(pR) = -12vR . (10)

The effective gravity is largest at the midplane and diminishes toward the geometric

axis of the spheromak. The average value is given by energy conservation. From Eq. (6),

the magnetic energy inside the spheromak scales as E,, «< Ry with derivative:

dE, /dt = - E,vi/Rg (11)
while the change in kinetic energy in the liquid layer is:

dE,/dt = <P>A v, . (12)
with surface area A . To conserve energy the average pressure on the surface is:

<PS> = E /AR = 1/3 <B*>/2y, (13)

with volume average field energy and corresponding <g, > by Eq. (8).



3. Rotational Stabilization
For a cylinder, it is possible to suppress Rayleigh-Taylor growth at the interface by
rotation that effectively alters g. This requires a rotation speed comparable to the implosion

speed so that the required energy is about double that required to compress the plasma [2].
Hence stabilization by rotation reduces the efficiency € by a factor of 2 and the gain G o< &’

by a factor of 4 [1], thus reducing the gain from G = 20 to G = 5 for the cases shown in
Reference [1].

Moreover, unlike the cylinder, in the spheromak gravity points in all directions
(though progressively weaker in directions along the geometric axis of symmetry) so that
rotation about a single axis (the geometric axis) may not be fully stabilizing. Also, whereas
the necessary rotation is easily imparted to a cylinder simply by setting the shell in rigid
rotation, for the spheromak it would be necessary to tailor the rotational input to spin only
the inner surface. The difference lies in the fact that, for the cylinder, both the implosion
speed and the injected rotational speed increase as ', so that a weak initial rotation
matching the implosion speed continues to do so as the implosion proceeds. For the
sphere, rotation scales as r' but the implosion speed scales as r°, so that excess rotation is
required initially, tailored to impart no more than is required to stabilize the system at

stagnation.

4. Shear Stabilization

As is pointed out in Reference [1], the spheromak confined within a rigid flux
conserver of spherical or oblate shape can be made stable to ideal MHD modes by virtue of
magnetic shear. Thus, by manipulating the injection pressure to insure the proper shape of
the liquid boundary, the spheromak can be made internally stable during the compression
up to the point that g reverses sign and Rayleigh-Taylor surface modes develop.

It may be that shear stabilizes or weakens surface modes. For the case of pure
growth or oscillation, the shear and gravity effects can be compared through appropriate

terms in the perturbed energy:
W= J& ®720)[(e/pPR) - (IRL)] (14)

where L is the shear length, R is the radius of the spheromak, and in the first term we
introduced the maximum g = - p/pR and p = B*/2y1, . For a mode of given k, solutions of

Eq. (3) are localized within a thickness k™" around the boundary, where the steep density

gradient causes the gravity term to outweigh the shear term even when the sheared field



diffuses into the liquid. Moreover the magnitude of the maximum gravity overcomes shear
even for maximum wavelengths k = R (as can be seen by approximating p'/p = 8 (r - R)

assuming R <L)).

S. Instability Growth Estimates and the Burn Time
It may be that, because g is stabilizing ( > 0) until compression is nearly complete,
instability does not matter. To see this, we now estimate instability growth and its effect on

the burn time.

In Reference [1], we estimated the burn time T = 2R/v for implosion velocity v,

which, in terms of the Alfven speed, was estimated to be v = VA/\/ 3. The maximum

implosion velocity given by Eq. (9) is smaller by a factor (3/4)’, giving a longer burn time.
The actual burn time depends also on the onset of ignition, around 5 KeV in a pure DT

plasma. For the examples of Reference [1] based on T = 10 KeV by compression at
stagnation, ignition occurs at R/R = \2, giving a shorter T = 2(¥2 - 1)(R/v)= R/v, which

is, however, about the same as the estimate of Reference [1] using instead v in Eq. (9).
Thus, given the uncertainties, we conclude that our previous estimate for the burn time is

reasonable for a stable implosion, namely:

T = 2V3 R/v, = 346 RNV, . (15)
A different estimate would be T=N v ' for some reasonable number of e-folds

before instability quenches the burn, y being the instability growth constant.

Though the Rayleigh-Taylor growth rate increases with k, actually only modes of
small k are of interest. The large k modes grow first and effectively make the pressure
gradient at the interface less steep as surface bumps jet inward. By the time the jets protrude
a distance comparable to the wavelength, the “mean” state given by the symmetric average
is no longer unstable to modes of this wavelength. Progressively the mean surface
“diffuses” inward, dominated by longer and longer wavelength distortions -- most
importantly those on the order of the radius at which instability sets in. Thus as a “worst

case scenario” we consider modes of wavelength kR = 1, yielding, by Eqs. (4) and (10):

v = kg < (1N2) v,/R (16)



and an instability-limited burn time
T > V2 N RA,) . (17)

Comparing Eqs. (15) and (17), we see that, even if it occurred, instability would
not significantly alter the gain estimated in Reference [1] for a growth period of 2.5
e-folds, giving a perturbation amplification factor exp 2.5 = 12. Thus growing
perturbations would not exceed R (the “encroachment” criterion of Reference [2]) for
surface ripples of order 0.1 R (stagnation radius) at the onset of instability. This may not be
a very stringent criterion. Actually initial perturbations damp during the stable implosion

phase, due to terms omitted in Eq. (3).

6. Effect on the Gain
We now revise the estimates of the fusion energy gain G in Reference [1] to take
into account the conclusions above.

The gain formula derived in Reference [1] is:

G

8[32 X 10_5 8260 Ro Bi (2EC/V0 Bi)l/z/ Cs ]OLD[BOCI/S]NEW (18)

{(12[1 + (1 + 2aEC*/VB, )]} " (19)

m
Il

where we have added a “NEW?” beta factor inadvertently left out in Reference [1] and the
factors 0 = o0 = 1 in that reference.

To illustrate the new effects, we recalculate G for the old and new formulas for the
case R, =1.77 m (V, =23.2 m’) and input energy E = 150 MJ given previously in Table 1

of Reference [1]. Again we assume a LiPb eutectic with bulk modulus B, =2 x 10"’ Pa and
sound speed ¢, = 1600 m/s. The new cases are distinguished by o = 1/9, appropriate if we
evaluate the energy of compression, IPZ/ZBi, using the average pressure in Eq. (13); and

also two values of 0, unity and 1/3, representing a burn for 2.5 or 0.8 e-folds,

respectively. Results for the gain G and compression efficiency € are given for several

values of the volume compression ratio C:



C Gop  €op Gpw (&=1) GNEW(8: 13) ¢

NEW
10 6 0.99 1.2 0.4 0.99
100 16 0.93 83 2.8 0.99
344 20 0.77 22 13 0.96
1000 16.5 0.53 43 14 0.86

As we found in Reference [1], for the old formula the maximum gain of 20 corresponds to
an optimum efficiency while for the new formula, with less compression energy on

average, the optimum occurs at unrealistically large compression ratios.
Once again we find a gain G = 20 to be a reasonable estimate consistent with a few

e-folds of instability growth.

7. Conclusions

The conclusion from Reference [1] that ignition of a spheromak by compression
appears feasible with fusion energy gains = 20 is reconfirmed, even taking into account the

potential for Rayleigh-Taylor instability. An imploding thick layer of conducting liquid can
provide a stable container for a spheromak throughout spherical compression, until the
spheromak radius is 3/4 that at stagnation, and the volume compression ratio is 40% of its
final value. At this time, by virtue of spherical convergence, the implosion velocity is 1000
times its initial value, so that very slow initial compression -- over a fraction of a second --
can lead to strong compression at stagnation. By letting the slowly moving liquid layer
implode freely, the kilobar pressures attained at ignition are absorbed by the liquid rather
than the wall.

Thus it appears that liquid evaporation and transport into the plasma, not stability, is
the main area of physics on which the ultimate feasibility of the concept depends.
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