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T. K. Fowler 
August 17, 1999

Abstract
We consider Rayleigh-Taylor instability of the liquid-plasma interface of a 

spheromak ignited by slow compression discussed previously. We conclude that instability 
may indeed occur despite the stabilizing influence of magnetic shear in the spheromak. If it 
occurs, instability would be greatest for modes concentrated toward the midplane. As for 
the cylindrical LINUS configuration, rotation about the geometric axis would stabilize these 
modes, but at the price of roughly doubling the input energy and reducing the gain. 
However, even in the absence of rotation, in a sphere instability occurs only at the end of 
compression near the stagnation point. Revised estimates of the fusion energy gain taking

this brief period of instability into account still give, within the uncertainties, a gain G ~ 20 

for our earlier example with an input energy of 150 MJ and fusion yield of 3 GJ.

* * * * * * * * *

1. Formulation of the Stability Problem
We consider a spherical shell of conducting liquid imploding on a spheromak inside 

the shell, discussed in Reference [1]. As before, we assume incompressibility and only 
later correct for the energy of compression in the liquid. Ignoring viscosity, both the liquid 
and the spheromak are described by the MHD magnetic equation and the momentum 
equation given by:

p dv/dt = - V P + C (1)

where P = p + B2/2po with pressure p and C is the magnetic curvature term. Linearizing 

gives a force term p, g where [2]:

g = - d v0 / dt . (2)

The effective gravity g, not present for a static non-accelerating equilibrium state, is 

a potential source of Rayleigh-Taylor instability at the interface where p, = - B, .Vpo is



large. Neglecting curvature and v.V in the convective derivative gives the standard 

equation for purely growing or oscillating Rayleigh-Taylor modes [3]:

5" + (P '/p )5' - k2 ( 1 - g (p' / p) to-2 ) % = 0 (3)

where E, is the displacement perpendicular to the surface, (') denotes derivatives

perpendicular to the surface, k lies in the surface and g is the effective gravity due to 
acceleration. The steep gradient causes the solution to localize near the surface of the liquid 
with frequency:

to = (kg)1/2 for k < (p '/p) . (4)

Hence modes grow if g < 0 (gravity pointing inward toward the spheromak). As noted 
below, g at the surface changes sign during compression, so that instability, if it occurs, 
does so near the end of the compression cycle when the compression of the field begins to 
decelerate the liquid.

2. Calculation of g
The effective gravity g can be calculated by integrating Eq. (1) over r and using 

incompressibility to determine v(r) from V .v = 0. For a cylindrical implosion, in which v

is purely radial and unperturbed quantities are constant over cylindrical surfaces, this can be 
carried out exactly. Also for the spheromak an initially spherical implosion remains so until 
near stagnation when the non-uniform pressure of the spheromak causes velocity flows in

0 and f>. Ignoring these velocity components, we integrate Eq. (1) over the liquid layer

RS < r < Ro with vr °c r "2 and solve to obtain the approximate effective gravity at any 

position on the liquid-plasma interface at r = RS:

gg = - dVdt = 3/2 (vg2/RS ) - (PS /p RS ) (5)

where we drop small contributions at the outer surface (thick layer, RS < Ro).
From flux conservation, the magnetic pressure at the liquid surface scales as:
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?S = B2/2|lo (R/R^)4 (6)

where B and R are the field and radius at stagnation (v = 0). Then the solution to Eq. (5) is: 

v = [ ( 2 ?S /p ) ( RS /R - 1 ) ] 1/2 (7)

gS = - (R/p R) (4 - 3 R/R ) . (8)

Instability sets in (g < 0) at RS = 4/3 R, at which point the implosion velocity is maximum: 

v = °_32 v* (9)

where vA = B/Vp po is the liquid Alfven speed at stagnation. The g at stagnation is:

g = - (B2/2po)/(pR ) = - 1/2 v//R . (10)

The effective gravity is largest at the midplane and diminishes toward the geometric 
axis of the spheromak. The average value is given by energy conservation. From Eq. (6),

the magnetic energy inside the spheromak scales as EM °c R-1 with derivative:

dEM/dt = - EMvS/RS (11)

while the change in kinetic energy in the liquid layer is:

dE^/dt = <?S>A,v, . (12)

with surface area AS . To conserve energy the average pressure on the surface is:

<?S> = EM/A^R^ = 1/3 <B2>/2Po (13)

with volume average field energy and corresponding <gS > by Eq. (8).

3



3. Rotational Stabilization
For a cylinder, it is possible to suppress Rayleigh-Taylor growth at the interface by 

rotation that effectively alters g. This requires a rotation speed comparable to the implosion 
speed so that the required energy is about double that required to compress the plasma [2].

Hence stabilization by rotation reduces the efficiency e by a factor of 2 and the gain G «= e2

by a factor of 4 [1], thus reducing the gain from G = 20 to G = 5 for the cases shown in 

Reference [1].
Moreover, unlike the cylinder, in the spheromak gravity points in all directions 

(though progressively weaker in directions along the geometric axis of symmetry) so that 
rotation about a single axis (the geometric axis) may not be fully stabilizing. Also, whereas 
the necessary rotation is easily imparted to a cylinder simply by setting the shell in rigid 
rotation, for the spheromak it would be necessary to tailor the rotational input to spin only 
the inner surface. The difference lies in the fact that, for the cylinder, both the implosion 
speed and the injected rotational speed increase as r-1, so that a weak initial rotation 
matching the implosion speed continues to do so as the implosion proceeds. For the 
sphere, rotation scales as r-1 but the implosion speed scales as r-2, so that excess rotation is 
required initially, tailored to impart no more than is required to stabilize the system at 

stagnation. 4

4. Shear Stabilization
As is pointed out in Reference [1], the spheromak confined within a rigid flux 

conserver of spherical or oblate shape can be made stable to ideal MHD modes by virtue of 
magnetic shear. Thus, by manipulating the injection pressure to insure the proper shape of 
the liquid boundary, the spheromak can be made internally stable during the compression 
up to the point that g reverses sign and Rayleigh-Taylor surface modes develop.

It may be that shear stabilizes or weakens surface modes. For the case of pure 
growth or oscillation, the shear and gravity effects can be compared through appropriate 
terms in the perturbed energy:

SW = | %2 (B2/2|io) [ (p '/p R) - (1/R L ) ] (14)

where LS is the shear length, R is the radius of the spheromak, and in the first term we 

introduced the maximum g ~ - p/pR and p ~ B2/2po . For a mode of given k, solutions of

Eq. (3) are localized within a thickness k-1 around the boundary, where the steep density 

gradient causes the gravity term to outweigh the shear term even when the sheared field
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diffuses into the liquid. Moreover the magnitude of the maximum gravity overcomes shear 

even for maximum wavelengths k ~ R-1 (as can be seen by approximating p '/p ~ 8 (r - R) 

assuming R < Ls).

5. Instability Growth Estimates and the Burn Time
It may be that, because g is stabilizing ( > 0) until compression is nearly complete, 

instability does not matter. To see this, we now estimate instability growth and its effect on 
the burn time.

In Reference [1], we estimated the burn time T = 2R/v for implosion velocity v,

which, in terms of the Alfven speed, was estimated to be v = vA/V 3. The maximum

implosion velocity given by Eq. (9) is smaller by a factor (3/4)2, giving a longer burn time. 

The actual burn time depends also on the onset of ignition, around 5 KeV in a pure DT 
plasma. For the examples of Reference [1] based on T = 10 KeV by compression at

stagnation, ignition occurs at RS/R = V2, giving a shorter T = 2(V2 - 1)(R/v)~ R/v, which

is, however, about the same as the estimate of Reference [1] using instead v in Eq. (9). 
Thus, given the uncertainties, we conclude that our previous estimate for the burn time is 
reasonable for a stable implosion, namely:

T = 2^3 R/vA = 3.46 R/vA . (15)

A different estimate would be t = N y - 1 for some reasonable number of e-folds

before instability quenches the burn, y being the instability growth constant.

Though the Rayleigh-Taylor growth rate increases with k, actually only modes of 
small k are of interest. The large k modes grow first and effectively make the pressure 
gradient at the interface less steep as surface bumps jet inward. By the time the jets protrude 
a distance comparable to the wavelength, the “mean” state given by the symmetric average 
is no longer unstable to modes of this wavelength. Progressively the mean surface 
“diffuses” inward, dominated by longer and longer wavelength distortions -- most 
importantly those on the order of the radius at which instability sets in. Thus as a “worst 
case scenario” we consider modes of wavelength kR = 1, yielding, by Eqs. (4) and (10):

y = V kg < (1/V 2) vA/R (16)
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and an instability-limited burn time

T > V2 N (R/vA) . (17)

Comparing Eqs. (15) and (17), we see that, even if it occurred, instability would 
not significantly alter the gain estimated in Reference [1] for a growth period of 2.5 
e-folds, giving a perturbation amplification factor exp 2.5 = 12. Thus growing 

perturbations would not exceed R (the “encroachment” criterion of Reference [2]) for 
surface ripples of order 0.1 R (stagnation radius) at the onset of instability. This may not be 
a very stringent criterion. Actually initial perturbations damp during the stable implosion 
phase, due to terms omitted in Eq. (3).

6. Effect on the Gain
We now revise the estimates of the fusion energy gain G in Reference [1] to take 

into account the conclusions above.
The gain formula derived in Reference [1] is:

G = 8 [3.2 x 10-5 e2&, R Bi (2EC/R B^/ % WRC1^ (18)

e = {1/2 [ 1 + ( 1 + 2 ocE C4/3/VoBi )1/2 ] } -1 (19)

where we have added a “NEW” beta factor inadvertently left out in Reference [1] and the 

factors 8 = a = 1 in that reference.

To illustrate the new effects, we recalculate G for the old and new formulas for the 
case Ro = 1.77 m (Vo = 23.2 m3) and input energy E = 150 MJ given previously in Table 1 
of Reference [1]. Again we assume a LiPb eutectic with bulk modulus Bi = 2 x 1010 Pa and

sound speed cs = 1600 m/s. The new cases are distinguished by a = 1/9, appropriate if we 

evaluate the energy of compression, J P2/2Bi, using the average pressure in Eq. (13); and 

also two values of 8, unity and 1/3, representing a burn for 2.5 or 0.8 e-folds,

respectively. Results for the gain G and compression efficiency e are given for several 

values of the volume compression ratio C:
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C GOLD eOLD GNEW (8=1) GNEw(S=1/3) e NEW

10 6 0.99 1.2 0.4 0.99
100 16 0.93 8.3 2.8 0.99
344 20 0.77 22 7.3 0.96
1000 16.5 0.53 43 14 0.86

As we found in Reference [1], for the old formula the maximum gain of 20 corresponds to 
an optimum efficiency while for the new formula, with less compression energy on 
average, the optimum occurs at unrealistically large compression ratios.

Once again we find a gain G ~ 20 to be a reasonable estimate consistent with a few 

e-folds of instability growth.

7. Conclusions
The conclusion from Reference [1] that ignition of a spheromak by compression 

appears feasible with fusion energy gains ~ 20 is reconfirmed, even taking into account the

potential for Rayleigh-Taylor instability. An imploding thick layer of conducting liquid can 

provide a stable container for a spheromak throughout spherical compression, until the 
spheromak radius is 3/4 that at stagnation, and the volume compression ratio is 40% of its 
final value. At this time, by virtue of spherical convergence, the implosion velocity is 1000 
times its initial value, so that very slow initial compression -- over a fraction of a second -­
can lead to strong compression at stagnation. By letting the slowly moving liquid layer 
implode freely, the kilobar pressures attained at ignition are absorbed by the liquid rather 
than the wall.

Thus it appears that liquid evaporation and transport into the plasma, not stability, is 
the main area of physics on which the ultimate feasibility of the concept depends.
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