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1 Abstract

A numerical algorithm for computing the field components B, and B, and their r and
z derivatives with open boundaries in cylindrical coordinates for circular current loops is
described. An algorithm for computing the vector potential is also described. For the
convenience of the reader, derivations of the final expressions from their defining integrals
are given in detail, since their derivations (especially for the field derivatives) are not all
easily found in textbooks. Numerical calculations are based on evaluation of complete
elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic
integrals of a fairly general type, in some cases the elliptic integrals can be evaluated
without first reducing them to forms containing standard Legendre forms. The algorithms
avoid the numerical difficulties that many of the textbook solutions have for points near
the axis because of explicit factors of 1/r or 1/72 in the some of the expressions.

2 Integrals for the field components B, and B..

All units used in this note are MKS. The current loop has radius a and is positioned at
z = 0. Loops with centers offset from z = 0 are treated by a shift in z of the field point.
The current is denoted by I, and has units of amperes. The field is given by the Biot-Savart
law, which in this case takes the form

o Lo (= =
B»_,uola/ ¢X(r—r)d¢ (1)
0

T n 7 — 7[3

In Eq. 1, 7 is the field point and 7 is the source point. The current vector is I¢. The
field point has coordinates r, 6, z and the source point coordinates a, ¢,0 in the cylindrical
coordinate system. Since the field has axisymmetry, By = 0 and with no loss of generality



the field point can be taken to be r,0,z. With this notation, Eq. 1 gives for the field
components

wola ™ cos ¢pdo
) = tola, - @
2 Jo (r24 a2 — 2arcos ¢ + 22)
By(r,z) =0 (3)
B.(r,2) = ,ugla/ (a —rcos¢)do -
21 Jo (r2+ a2 — 2ar cos ¢ + 22)¥/

By(r,z

3 Elliptic-integral expressions for B, and B,

The right-hand sides of Eqgs. 2 and 4 are complete elliptic integrals. To put them in
Legendre form, we make the change of variables ¢ = 7/2 — ¢/2. Then d¢ = —2di) and
cos ¢ = 2sin? 1) — 1. The expression for B, becomes

~ pola z ™/2 (sin? ¢ — cos? ) dip
- 3/2 0

Br(r.2) T [(a+7)2+ 22 (1 — k2 sin? ¢)3/2 ©

with k% = 4ar/[(a + 7)? + 22]. The expression for B, becomes

_ pola 1 /”/2 [(a —r)sin? ¢ + (a + 1) cos® Y] di
T [(a+r)2 422 o (1 — k2 sin2 )/

B.(r,z) (6)
The elliptic integrals in Eqs. 5 and 6 can be expressed as linear combinations of the
complete elliptic integrals of first and second kinds E and K, and unlike the case of the
field from thin solenoids, do not involve elliptic integrals of the third kind. However,
sometimes, for numerical reasons, elliptic integrals other than £ and K will be used.

4 Numerical evaluation of the elliptic integrals for B, and
B,

The complete elliptic integrals for B, and B, can be efficiently evaluated by use of the
Bulirsch algorithm cel[l], which evaluates a generalized complete elliptic integral of the
form
(a cos? 1) + bsin? w) dy

cos? ) + psin® ) (cos? ¢ + k2sin? 1)) 1/2
The quantity k. in Eq. 7 is sometimes called the complementary modulus and is defined
to be k. = (1 — k?)1/2 . We rewrite the expression for the square of the complementary
modulus in order to reduce roundoff error:

2 (a—1)? + 22
© (a+r)2422

w/2
cel(ke,p,a,b) = /0 ( (7)

(8)
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For evaluation of field derivatives we will need the canonical complete elliptic integrals of
the first and second kind K (k) and E(k). They are evaluated by calls to cel as follows:

w/2 dw
K(k) = /0 (1 — k2 sin? w) 172 et Y

and

/2
E(k) = /O (1— k2sin2 )"/ dp = cel (ke, 1,1, k2) (10)

We will also need the elliptic integrals D(k), defined by

p(ky = KR —E() _ /OW/Q : sin® ydy 5 = cel(k,1,0,1) (11)

1 — k2sin®¢) Y

and C(k), defined by

- /2 gin2 1) cos?
C(k) = K(k) — 2D(k) :/ ¥ pdy (12)
o

k? 1 — k2sin® ¢)3/2

Both D(k) and C(k) are finite for £ = 0, with D(0) = n/4 and C(0) = #/16. It will
be shown in a later section that even though C(k) is not of the form of Eq. 7, it can
nevertheless be evaluated with cel.

We see that cel is general enough to evaluate the integral in Eq. 5 with one call and
we get for B,

) = wola z

T (a2 422
Turning now to the equation for B, (Eq. 6), we see that cel is again general enough to
evaluate the elliptic integral in one call:

B,(r, z cel(ke, k2, —1,1) (13)

_ uola 1

Bir2) =" (a+7)2+ 2]

cel(ke, k2, a+r,a—7) (14)

3/2

If only B, and B, are to be computed, Eqs. 13 and 14 should be used. However, if field
derivatives are also to be calculated, additional calls to cel will be required for evaluation
of K(k), E(k), D(k), and C(k). Therefore, in order to minimize the total number of calls
to cel, Eqs. 5 and 6 can be rewritten in such a way that the integrals for B, and B, are
expressed as linear combinations of K (k), E(k), and D(k). For B,, we use the integrals
2.584 40. and 42. of Gradshtein and Ryzhik [2], with the result

_ mola z 1
T [(a+7)2+ 22P/2 k2

B (r, 2) 2K (k) — E(k) — 2D (k)] (15)



To do this for B,, we rewrite Eq. 6 in the form

I 1 /2 — 2rsin® 1) d
B.(r,z) = Al 3/2 / o7 = 2o 1@)/21? (16)
T [(a+71)?+ 22 0 (1 — k2sin? 1)
Using the integrals 2.584 37. and 2.584 40. of Ref. [2], we get
1 1 1
B.(r,z) = 2¢ —(a+r)E(k) —2rK(k)+2rD(k)]  (17)

T [(a+7)2+ 2P/ k2

Expressions for B, and B, have been published in various places, e.g. Refs. [3], [4]
and [5]. Reference [4] also has expressions for the four field derivatives. The expressions in
Refs. [3] and [4] contain only the elliptic integrals E' and K. As a result, the expressions for
B, and 0B, /0z contain factors of 1/r (or equivalently, factors of 1/k?) and the expression
for 0B,/0r in Ref. [4] has a factor of 1/r2. Therefore, if the expressions in [3] and [4] are
to be used, separate expansions in r must be used to avoid roundoff error and division by
zero when 7 is small or zero. The expression for B, in Ref. [5] uses the elliptic integral
B(k) and thereby avoids an explicit factor of 1/r, but [5] does not have expressions for
field derivatives.

In this memo, expressions containing D(k) are used to eliminate explicit factors of 1/r
in B, and 0B, /0z, and an expression containing both D(k) and C(k) is used to eliminate
a factor of 1/7? in the evaluation of B,./dr. This eliminates the need for separate small-k
expansions to evaluate fields and field derivatives for small r.

5 Loop Vector Potential

Having the capability of computing numerical values of the vector potential for an ax-
isymmetric magnetic field is useful in fluxline plotting and in computing the canonical
momentum in numerical charged-particle trajectory integration with Hamiltonian dynam-
ics. For fluxline plotting, we note that as a consequence of Stoke’s theorem, the magnetic
flux ® passing through a circular disk of radius r centered on and perpendicular to the
axis of symmetry at axial position z is given by ®(r, z) = 27rAy(r, z). Fluxlines in the 7, z
plane are contours of constant ®(r, z).
In the usual gauge, the vector potential for a circular current loop in cylindrical coor-
dinates r, 6, z is given by R
gomla o, (18)

e |7 — 7|

As before in the derivation of the field components, 7 is the field point, ¥ the source
point, and the current vector is I¢. The vector potential from Equation 18 has only a 6
component, given by

Ag(r, 2) = wola /7r cos ¢ do
2 Jy [r2+a2—2arcos¢+22]1/2

(19)
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As before, the change of variables ) = m/2 — ¢/2 is applied to the integral of Eq. 19 and
we get

Ag(r, 2)

pola 1 /2 (sin? ¢ — cos? 1)) dip
— 20 . /O (20)

T [(a+71)%+ 22 (1 — k3 sin®4)1/2

where k? has the same definition as in Section 3. The elliptic integral in Eq. 20 can be
directly evaluated with a single call to cel, giving:

I 1
_ Hola cel(ke,1,—1,1) (21)

Ap(r, 2) p [(a+7~)2+22]1/2

If, in addition to B,, B, and Ay, field derivatives are also to be calculated, an equivalent
expression derived from 2.584 4. and 6. of Ref. [2] should be used:

_ kola _ ! 2D(k) — K (k)] (22)

A = S e

6 Loop Field-Component Derivatives

Field-component derivatives are needed, for example, in tracking neutral particles that are
subject to spin-field gradient forces. Since the geometry of the problem is axisymmetric, the
0 derivatives are zero and we are left with the four derivatives 0B, /0r, 0B,/0z, 0B,/0r,
and 0B,/0z. The zero-curl condition gives 0B, /0z = 0B,/0r. The zero-divergence con-
dition gives 0B,./0r = —0B,/0z — B,/r. This leaves only two independent derivatives.
It is most convenient to compute the two z derivatives 0B, /0z and 0B,/0z and use the
zero-curl and zero-divergence conditions to compute the remaining two derivatives. Then,
for computation of 9B, /0r, the ratio B,/r is needed. For r that is not small in com-
parison to the loop radius, B,/r can be computed by dividing B, by r. For small r, a
series expansion in r can be used to avoid numerical difficulties. As r approaches zero,
B, (r,z)/r approaches a finite function of z only. This can be shown by Taylor-expanding

the integrand in Eq. 2 in the small parameter ¢ = r/(a? + 22)'/? and integrating over ¢.
This gives
By(r,z) _ pola3n az L0 27’2 4 35 a’r? : (23)
r T 4 (a2+z2)5/2 20+ z 8 (a2 + 22)

However, if we have a numerical algorithm for the elliptic integral C(k) (see Eq. 12), we
can go back to Eq. 15 and write 2K (k) — E(k) — 2D(k) = k*[D(k) — C(k)], after which we
have

B, ~ mola 4az 1
(r,z) =

B T [(atr)?+ 2P [Dk) = C(R)], (24)
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thereby eliminating the explicit factor of 1/r (i.e., 1/k?) in the expression for B, /r. It is
shown in Ref. [6] that C(k) can be computed with the older Bulirsch algorithm cel2, as

follows: /2
2k 2
= cel? 2
C(k) = ce (1+kc,0, (1+kc)3> (25)

It turns out that the newer Bulirsch algorithm cel, used everywhere else in this note, can
also be used to compute C(k):

2k, 2
=cel | ——,1,0, ———— 2
C(k) ce <1 T ]{67 707 (1 + kc)3> ( 6)

To get the derivative 0B, /0z, we go back to Eq. 2. Differention of the right-hand side
with respect to z gives

0B, (r, 2) = wola /7r cos ¢pd¢ 3,2 /” cos ¢do
0z 27 21 o [a? 412 — 2arcos ¢ + 22]3/2 o [a?+ 72— 2arcos ¢ + 22]5/2

(27)

Using the change of variables ¢ = /2 — ¢/2 now gives

0B, (r,2) = wola 1 /“/2 (sin2 ) — cos? ¢) dy
9z 7 ™ | [a+7)2+ 222 Jo (1 — k2 sin ¢)3/2

322 /2 (sin? ¢ — cos?1p) dip
28
[(a+7)2 + 225/ /0 (1 — k2 sin? ¢)5/2 } (28)

The first integral in Eq. 28 was already evaluated in computation of B, (see Eq. 13), but
with a call to evaluate a non-standard elliptic integral. Therefore, in to reduce the total
number of calls to cel, the alternative expression in Eq. 15 (without the factor of z) should
be used for this term. The second integral can be evaluated by use of 2.584 61. and 2.584
63. of Gradshtein and Ryzhik [2]. We get

/2 (sin? 1) — cos?
/0 ((1 —¢k2 sin? 1#1?2/6? - 37]14 [(2 + /{:?)K(k) o QkEE(k) B 2D(k)] (29)

The final expression for 9B, /0z is then

0B, _ pola 1 1
0: " {[(a—H“)Q v PR Z B 2D -
22 1

[(a +7)2 + 222 k¢ (2 kK (k) = 2k:B(k) — 2D (k)] } o



To get an expression for 0B, /0z, we go back to Eq. 4 and differentiate the right-hand side
with respect to z:

0B, (r,2) = —3z’u0[az/ﬂ (a — rcos¢)do (31)
9z 7 2rJo (r? 4 a2 — 2arcos¢ + z2)5/2
The change of variables ¢ = 7/2 — ¢/2 gives
0B, (r.2) = 32 pola 1 /,,/2 (a+r—2rsin®vy) dy (32)
oz T [at+r)?+222 0 (1 k2sin?y)?
The integrals
/ W - (33)
(1 — k2sin?v)
and -
/ sin® v dy (34)
(1 — k?sin? ¢)5/2

are evaluated, respectively, in 2.584 48. and 2.584 61. of Gradshtein and Ryzhik [2].
Combining their expressions with the other factors in Eq. 32 yields the final expression

aiz (r,2) = _Zﬂt;fa - r)21+ 22]5/2133 {[2(2 + D E(k) — K2K (k)] a+
WS 2 KW -2 - R 0EW] ) (@9)

In deriving Eq. 35, a factor of 1/k? in the second term was eliminated by substituting
4ar/[(a +1)% + 2% for k2.
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