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Abstract

It is widely reported in the literature that for direct-injection Diesel engines, stepped-lip piston geometry exhibits
fuel efficiency and emission advantages over re-entrant piston geometry at some injection timings. This
observation is present both under low-load EGR-diluted Low-Temperature Combustion (LTC) and medium-load
conventional diesel combustion regimes. However, this geometry-induced mechanisms fQmincreased heat
release rates and higher combustion and/or thermal efficiency is not fully understood. In or derstand
the mechanism, experimental investigation of piston geometry effects on fuel-air mixture prg geded.
This work utilizes a fuel tracer laser-induced fluorescence (LIF) technique to condu Rar
measurements of in-cylinder fuel distribution under non-combusting conditions ingj
bore optical Diesel engine. In this study, two transparent piston bowls - adapi
stepped-lip geometry respectively - are compared. By taking area-ayg
coordinate fashion, the temporal and spatial trends show tha tends tg
injected fuel on the lip shoulder, which promotes better hg ation and g

unburnt fuel from penetrating into the squish region b Jlish flow. Furtl
computational investigations such as high-speed imz nder soot nat
mixing, speed/load/spray targeting sensitivities a eded to stug
clean and efficient diesel combustion.
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Thermal Efticiency (%)

What makes the stepped-lip bowl more efficient than the conventional bowl?
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What makes the stepped-lip bowl more efficient than the conventional bowlI?
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Cumulative Wall Heat Loss (J)

“Cycle-resolved analyses do not suggest lower wall heat loss with the
stepped-lip piston bowl geometry.”
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Combustion Phasing (°aTDC)

“Fuel conversion efficiency improvements with the stepped-lip piston
are most closely related to enhanced late-cycle heat release rates.”
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Does stepped-lip piston result in a mixture formation distribution more
favorable for complete combustion and enhanced turbulent mixing?

Does piston-induced Decreased wall- Changes in mixture
soot interaction formation /

Smaller piston Changes in local

changes in cold flow
structure have big effects surface area heat transfer

on mixture preparation?
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flow?
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PLIF Experiments in the SNL 0.48L light- [ariawaliiass % A
duty single-cylinder optical engine I —— W el /1 = 268

)

* Engine operation
1500 rpm
Non-combusting, 0%

Fuel: 42 vol% n-hexads A+ 58 vol%
heptamethylnonane

Fused silica
piston top

Piston mirror

Bore x stroke 82 mm x 90.4 mm
Compression ratio

Injector type Solenoid

Included Angle



SNL optical piston bowl geometries

* Two quartz pistons have identical:
* Bowl volume =0.028 L
* Squish height =1.35 pm
* Compression ratio = 1}
* No valve cut-outs

Re-entrant

Stepped-lip




PLIF setup: laser plane locations

-20 CAD ATDC

Plane 1 (P1) is set half of squish height |
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PLIF: data collection and processing

Three sets of images for a given crank angle, plane, and operating point (51
images per set)

* Background (no fuel injection)
* Flat-field (6/8 injections in intake stroke)
* Fuel injection image (desired operating point)

* Fuel injection Image sets taken over range starting from injection ending prior to
SOC.

9:15min’s measurement schedule to maintain temperatures and pressures

Distortion correction according to established ray-tracing routine
_ Sa Ecai Ta Peai on(Teqr)
Xfuel,d Xfuel,cal Scal Ed Tcal Pd on (Td)
Xfuet,a = (moles nC16H34 + moles iC16H34 + moles 1MN) / (total moles of
CO2, N2, nC16H34, iC16H34, and 1MN).




A sample of dewarped PLIF images with re-entrant geometry
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A sample of dewarped PLIF images with re-entrant geometry
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A sample of dewarped PLIF images with stepped-lip geometry
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A sample of dewarped PLIF images with stepped-lip geometry
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A sample of dewarped PLIF images with stepped-lip geometry
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Uncertainties of PLIF measurements

* Dewarping-induced error in radial
locations: measurements near chamber
center (R<~7mm) is not reliable.
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Combustion Efficiency (%)

Points of interest for optical investigation
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Is there a simple metric to quantify piston geometry impact on in-cylinder

mixture preparation?
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Area-averaged fuel mole fraction is calculated in polar coordinates to
quantify spray-dominated mixture preparation pattern.
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Area-averaged fuel mole fraction with re-entrant bowl under LTC regime
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Area-averaged fuel mole fraction with stepped-lip bowl under LTC regime
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Stepped-lip piston exhibits leaner mixture formation in squish region
under LTC regime.
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Area-averaged fuel mole fraction with re-entrant bowl under CDC regime
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Area-averaged fuel mole fraction with stepped-lip bowl under CDC regime
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High Xrueia observed in lip region implies better air utilization with

stepped-lip piston geometry.
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Conclusion - Stepped-lip bowl exhibits less squish area. In EGR-
diluted LTC region, this geometry results in less CO from squish-region
lean mixtures. Therefore, higher combustion efficiency.
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Conclusion - Stepped-lip geometry results in localized high fuel
concentration on lip shoulder, which implies better air utilization.
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Future work: Understanding the geometry-induced mechanisms
for increased heat release rates and higher efficiency.

. ) Decreased wall- Changes in mixture
* Optical experiments: SNL soot interaction formation /

in-cylinder flow

o High—speed soot natural Smaller piston Changes in local
Iuminosity imaging surface area heat transfer

e Computational studies: UW

* Bowl geometry, fuel
injection, and combustion
impact on in-cylinder flow

* Speed / load /spray
targeting sensitivities

Enhanced late-cycle Improved
turbulent mixing(?) air utilization

heat loss

Improved Emissions
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PLIF: computation of fuel concentrations

. _ Sq Ecqi Tq Peqi 0N(Teql)
fuel,d fuel,cal Scal Ed Tcai Pg on(Ty)

— S: background-subtracted, distortion-corrected image intensity

— [E: measured laser pulse energy
— T : bulk gas temperature from GT-Power model
— P: cylinder pressure from GT-Power model

— on: product of absorption cross section and quantum yield; function of
temperature alone

* Calibration with homogeneous mixture of known concentration (Xz,e; /)
— “Flat-field” correction

 on(T)is determined with separate measurements and analyses



PLIF temperature calibration

* on(T) determined from flat-field
images taken at various crank angles
and for various intake temperatures

* Upper limit of possible flat-field fuel
concentrations limited by wall-
wetting

— $x=0.3

e Comparison with previous

temperature calibration

Coefficients between 14-18% higher
than previously determined values

— The arbitrary normalization of the
calibration curve is responsible for
the majority of this discrepancy

e Future plans include expanded
calibration dataset
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