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1. Executive Summary

This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls”
under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a
phase-resolving wave forecasting technique for application to the active control of Wave Energy
Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine
radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward
propagation of the wave field in space and time. The scope of the project was to develop and assess
the performance of this novel forecasting system. Specific project goals were as follows:

e Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation
model suitable for phase-resolved computation of nearshore wave transformation over
variable bathymetry.

e Compare the accuracy and speed of performance of the wave model against a deep water
model in their ability to predict wave field transformation in the intermediate water depths
(50 to 70 m) typical of planned WEC sites.

e Develop and implement a variational assimilation algorithm that can ingest wave imaging
radar observations and estimate the time-varying wave conditions offshore of the domain
of interest such that the observed wave field is best reconstructed throughout the domain
and then use this to produce model forecasts for a given WEC location.

e Collect wave-resolving marine radar data, along with relevant in situ wave data, at a
suitable wave energy test site, apply the algorithm to the field data, assess performance,
and identify any necessary improvements.

e Develop a production cost estimate that addresses the affordability of the wave forecasting
technology and include in the Final Report.

The developed forecasting algorithm (“Wavecast™) was evaluated for both speed and accuracy
against a substantial synthetic dataset. Early in the project, performance tests definitively
demonstrated that the system was capable of forecasting in real-time, as the GPU-based wave
model backbone was very computationally efficient. The data assimilation algorithm was
developed on a polar grid domain in order to match the sampling characteristics of the observation
system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave
data (i.e. forward runs of the wave model) were generated to be used as ground truth for
comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases,
Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients
were between 0.84-0.95 when compared to the input data. Dependencies on shadowing,
observational noise, and forecast horizon were also identified.

During the second year of the project, a short field deployment was conducted in order to assess
forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and
observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR.
At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing
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field project funded separately. Unfortunately, the position and heading information that was
available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in
a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast
and the data from the in situ wave buoy. Although the wave and wind conditions during the field
test were complex, the comparison showed a promising reconstruction of the wave spectral shape,
where both peaks in the bimodal spectrum were represented. However, the total reconstructed
spectral energy (across all directions and frequencies) was limited to 44% of the observed
spectrum.

Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging
radar observations and a physics-based wave model shows promise for short-term phase-resolved
predictions. Two recommendations for future work are as follows: first, we would recommend
additional focused field campaigns for algorithm validation. The field campaign should be long
enough to capture a range of wave conditions relevant to the target application and WEC site. In
addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading
instrumentation (this instrumentation is commercially available but not standard on commercial
fishing vessels). The second recommendation is to expand the model physics in the wave model
backbone to include some nonlinear effects. Specifically, the third-order correction to the wave
speed due to amplitude dispersion would be the next step in order to more accurately represent the
phase speeds of large amplitude waves.

2. Introduction

A key task in Wave Energy Converter (WEC) development is to optimize device performance for
commercial viability. A promising optimization tool is an active control system, which tunes WEC
performance to characteristics of the incoming wave field. This enables maximization of energy
capture, and potentially protection of the device from extreme waves as well. Accurate and optimal
control of WEC devices depends on real-time, phase-resolved wave forecasts on time horizons of
the order of several to tens of wave periods. While considerable research has been conducted on
WEC control schemes, the mechanism for providing accurate wave forecasts over these time
horizons remains an open question.

This project addressed the challenge of wave-by-wave forecasting for WEC controls applications.
The targeted time horizon for forecasting was 3-5 min over spatial domains approximately 3-5
km on a side. The technology combines three components: 1) a GPU-based wave model backbone,
2) a wave imaging marine radar observing system, and 3) a data assimilation algorithm. Under this
project, the components were combined into a novel wave forecasting system called “Wavecast”.
The components are described in more detail below.

Wave model backbone: The wave model backbone contains the governing physics for wave
propagation in space and time. The wave model was chosen by considering the application to WEC
devices and the expected wave environment at offshore wave energy test sites. For this project, we
utilized a wave model based on the Mild Slope Equations (MSESs) as they are fast and efficient to
use for waves in intermediate water depths, where refraction, shoaling, and dispersion are all
important. The model utilizes a polar grid domain in order to match the sampling scheme of marine
radars. The project used the MSEs in their linear form. However, by adding nonlinear correction



terms, the MSEs are capable of accounting for second order stokes nonlinearities. This is a
potential future addition to the model.

Wave-imaging marine radar: These systems are commercially available and are standard
installations on all non-recreational ocean-going vessels. For this project, radar observations were
collected using a Si-Tex (Radarpc25.9) X-band imaging radar. The radar was mounted onboard a
charter fishing vessel called the Umatilla Il. Observations were collected offshore of Newport, OR
at the South Energy Test Site (SETS) operated by the Northwest National Marine Renewable
Energy Center. The radar image data are used to estimate the “radial slope” (the slope of the wave
surface in the azimuthal look-direction of the radar beam) using a recently derived relationship to
radar backscatter intensity (Lyzenga & Walker, 2015).

Data assimilation algorithm [Wavecast]: The complete forecasting algorithm, Wavecast, is a set
of modules built to run on GPU (graphical processing unit) hardware. The algorithm uses radial
slope data as input and produces a reconstruction and prediction of water surface elevation at all
grid points within the model domain. Wavecast applies a variational inverse-modeling approach
that utilizes the adjoint of the underlying wave model backbone in order to produce the wave
hindcast/forecast. Like all phase-resolving wave models, the necessary input to the wave model
backbone is the time varying, offshore boundary condition (typically, surface elevation time series
along the offshore boundary). Hence, the data assimilation algorithm estimates the time-varying
offshore boundary condition that will yield a wave field simulation that is a best fit to a set of radar
observations (e.g. 5-10 minute sequences of radar images). This can then be used to propagate the
waves forward in space and time beyond the footprint of the input data to produce the forecast.

Starting from an initial guess for the wave field (typically, simply a flat sea surface), a solution of
the wave model adjoint is used to compute the gradient of the error in the initial solution with
respect to the offshore boundary condition. This gradient is then used to compute an update to the
time-varying offshore boundary condition that reduces the error between the wave field
reconstruction and the observations. This process is iterated until the error is reduced to an
acceptable level and the best reconstruction of the observed waves in the domain. In the present
implementation, the radar images are parsed into discrete time intervals over a partial annular
region near the offshore boundary of the domain of interest. Wavecast then assimilates the
observations from each interval to produce the reconstructions and forecasts across the entire
domain, each of these are then appended in order to produce a ‘seamless’nowcast/forecast of the
waves in the domain. This output includes wave propagation into the near-field target area (e.g. a
WEC array) providing a short-term (several minutes) prediction of the waves expected at the target
area in the interior of the domain. The expectation is that the wave forecasts can be utilized to
estimate excitation forces, oscillation velocities, or air pressures inside a device in real-time for
WEC feed-forward control.

3. Background

There are two main approaches to forecasting that have been proposed in the existing literature.
One method aims to make wave predictions at the WEC location using a purely
mathematical/statistical model. The idea is to record surface elevation or excitation forces at the
target location (e.g. at the WEC), and predict into the future based on the past record. This scheme
is illustrated in Figure 1 (a). Proposed approaches using this scheme include decomposition of the
signal into individual frequency components (Halliday et al., 2011), or autoregressive methods

8



such as linear auto regression and neural networks (Fusco & Ringwood, 2010a, 2010b; Schoen et
al., 2011). Forecasting based on these purely computational approaches (i.e. not physics-based)
has been shown to work for one to two wave periods, but beyond that the accuracy of the forecast
breaks down. A competing idea is illustrated in Figure 1 (b), which is often referred to as
Deterministic Sea Wave Prediction (DSWP). This idea is to observe the sea surface at a distance
from the target forecast point, then use a wave model to reconstruct and propagate the wave field
forward in space and time. If the modeled waves can be propagated to the WEC faster than the
transit time of the actual waves, a forecast can be made.

@ , ~< (b) .
/7
///// T~< S~a 4 ///'. -
~ ~ / '\ :
Va4 S~ S / 7 ~
’ ’ ~< ’ ¢ o
7 7 = 7
/7 /7 v 7
/7 /7 7 7 .
/7
Predicted Predicted
Waves
Waves

Observed Observed
Waves Waves

—~—

—~—
~

-~

Figure 1. Two main approaches to wave-by-wave forecasting (figure based on Fusco &
Ringwood, 2010a): (a) forecast in time using wave record at point location and (b) forecast in
space and time using observations at a distance.

Our work used the latter approach. DSWP is a relatively new area of research with limited
literature, the majority of which is designed for vessel motion forecasting applications. While some
work has been undertaken on the forecasting of nonlinear waves (e.g. Wu, 2004; Blondel et al.,
2008; Zhang et al., 1999), computational time requirements have not yet allowed for the utilization
of such approaches in real-time. For practical applications, previous work has mainly used linear
wave theory without refraction/diffraction effects (Belmont et al., 2003; Belmont et al., 2006;
Belmont et al., 2014;). Since many applications are for marine operations, DSWP methods are
often focused on the prediction of quiescent intervals (Belmont, et al., 2006; Belmont et al., 2014).
Knowledge of these intervals may be sufficient for nautical applications such as cargo transfer and
helicopter landing; however, for WEC control applications a continuous forecast is desired (with
perhaps additional emphasis on extreme events).

In DSWP, observations of the sea surface at a distance from the target are the needed input to the
wave model. Such observations are collected either from a set of wave buoys that record water
surface elevation time series, or via a remote sensor, which collects signal from thousands of
discrete observation points throughout the spatial domain, but remote sensing data are generally
noisier and less direct measurements of water surface elevation. Using a small number of direct
observation points with DSWP has been shown to present challenges in multi-directional seas
(Janssen et al., 2001; Belmont et al., 2014). Additionally, the deployment of large numbers of wave



buoys can be costly, and real-time transmission of the wave data to the forecast system presents
an added operational challenge.

Remote sensing offers the benefit of a much larger data stream; however, a long-dwell platform is
necessary (i.e. satellites won’t work). Lidar has been proposed as a remote sensor, but is most
effective for sea surface observations when operated at small incidence angles (i.e. high altitudes),
thus limiting the observation range (Belmont et al., 2008). A plausible option is the wave imaging
marine radar, which is well known for its ability to image ocean waves via the tilt-induced
modulations of radar backscatter intensity. Radar is also an attractive remote sensing tool because
of its existing widespread nautical use, its reasonable cost, and its ability to image waves at
distances of 1-3 km.

The project team involved Drs. Merrick Haller, David Walker, and Patrick Lynett. Dr. Merrick
Haller (Oregon State University) served as the overall team leader and has 17 years of experience
in the collection and analysis of remote sensing observations in order to study wave transformation
processes. His group maintains two real-time, shore-based marine radar observing stations in
Oregon and he is one of the founding Principle Investigators of the DOE-funded Northwest
National Marine Renewable Energy Center. The other members of the OSU team include Randy
Pittman (Faculty Research Assistant) who is the radar engineer and Alexandra Simpson (Graduate
Research Assistant) who performed substantial data analysis, synthesis and reporting.

Team member Dr. David Walker (SRI International, Ann Arbor, MI) has twenty-five years of
experience in conceiving and executing research and development programs in ocean remote
sensing, wave and circulation modeling, assimilation of remote sensing data, and algorithm
development. In the past five years, he has served as Primary Investigator on over $7 million of
government contracts with ONR for remote sensing and data assimilation work. He has previously
developed algorithms for estimation of deep water waves from shipboard marine radars for the
purpose of environmental situational awareness.

Team Member Dr. Patrick Lynett (University of Southern California) has been working in the field
of wave modeling for 15 years. He is the developer of the COULWAVE Boussinesq wave model
used for coastal and ocean wave propagation.

4. Results and Discussion

4.1. GPU-based Wave Model

The structure of the Wavecast algorithm is summarized in Figure 2. Choosing the wave model
backbone for Wavecast was done with consideration of the application to the existing WEC sites
offshore of Newport, OR. Existing phase-resolving wave models that are applicable to non-
deepwater conditions are limited to those based on either the Boussinesg equations or the Mild-
Slope Equations (MSESs). Other options, such as nonlinear spectral models, potential flow models,
and Navier-Stokes models are not yet possible to solve in faster than real time, as needed. In order
to choose between the Boussinesq and MSEs, the wave climatology at the SETS offshore of
Newport, OR was reviewed. Figure 3 illustrates the conditions in the context of wave model
physics. The horizontal axis is a non-dimensional parameter representing relative water depth, and
the vertical axis is nondimensional wave height. The points on the plot are derived from historic
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data from the field site and represent the potential combinations of wave height, wave period, and
water depth. The range of parameters was wave height, 1-8 m, wave period, 6-16 seconds, and
water depth, 30-80 meters. The majority of the wave conditions fall in the wave model regions of
linear and second-order stokes waves. Hence, it was determined to proceed with a linear wave
model based on the MSEs.

Radar observes the sea
surfcace.

Radial slopes are computed using
the Radar Model; these data are
assimilated.
A series of source functions are iterated until
the best-fit wave field reconstruction is

produced.

The best-fit reconstruction is propagated
foreward in space and time through the
polar model domain.

A forecast is extracted from a
location where modeled waves can
be computed faster than actual
Wwaves arrive.

Figure 2. Structure of the Wavecast algorithm.

The MSEs are widely used in regions of intermediate water depths where wave breaking is less
important but refraction and diffraction are non-negligible. Originally derived by Berkhoff (1972),
they can be divided into a set of hyperbolic, time-dependent equations given by:

on cC (w® —k%CCy)
E+|7-[79\7¢]+—g Y2 p=0 )
9 =0 @)

ot

The current version of Wavecast is configured using these equations. However, by using nonlinear
correction terms, the MSEs can account for second order stokes nonlinearities. Implementing the
nonlinear correction terms is potential future work from this project.
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Figure 3. Wave conditions typical of a WEC site, with regions of MSE applicability.

4.2. Radar Post-Processing Algorithm

X-band marine radars are commercially available and standard installations on all non-recreational
ocean-going vessels. For this project, radar observations were collected by a Si-tex (Radarpc25.9)
X-band imaging radar. The role of the radar in the forecasting system is to collect observations of
the sea surface over a 2-3 km radius region surrounding the WEC. The raw data recorded by the
radar are values of backscatter intensity, which is a relative measure that is dependent on sea
surface roughness at the “Bragg” wavelengths (~3cm) and the relative angle between the water
surface and the radar beam, but is not a direct measure of either. A radar imaging model is needed
to extract wave information from these images. In this work, we utilized a recently derived radar
imaging model that directly links the backscatter intensity, I, from a horizontally polarized radar
operating at low grazing angles and the radial slope, n,,, of the ocean surface without the need for
external calibration as follows:

_ h[i(r¢)
n(r,¢) = 2o 1] @3)

Using knowledge of the radar height, h, the radial component of the sea surface slope in the radar
look-direction, n,. can be computed at each range, r, and azimuth angle, ¢. The value (I(r, ¢)) is
the local mean of intensity at each range and azimuth location. For the full derivation of the radar
model, the reader is directed to Lyzenga and Walker (2015). The radial slope is the parameter used
for data assimilation in Wavecast.

Wave shadowing is accounted for using knowledge of the radar’s baseline noise, where all values
falling below this noise level are considered shadowed and masked out of the observation data.
The remaining illuminated pixels are considered to have wave information. The radar model is
applied to these data, transforming the intensity into radial slope. This pre-processing is performed
on the radar data before assimilation into the Wavecast algorithm.
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4.3.  Forecast Algorithm Development

The data assimilation algorithm applies a variational inverse-modeling approach that utilizes the
adjoint of the underlying wave model backbone in order to determine the initial conditions
necessary for the wave forecast. Like all phase-resolving wave models, the necessary input to the
wave model backbone for prediction in nearshore regions is the time varying off-shore boundary
condition. Hence, the objective of the data assimilation algorithm is to estimate the time-varying
offshore boundary condition that will yield a wave field simulation that is a best fit to a set of radar
observations (e.g. 5-10 minute sequences of radar images).

Starting from an initial guess for the wave field (typically, simply a flat sea surface), a solution of
the wave model adjoint is used to compute the gradient of the error in the initial solution with
respect to the offshore boundary condition. This gradient is then used to compute an update to the
time-varying offshore boundary condition that reduces the error between the wave field
reconstruction and the observations. This process is iterated until the error is reduced to an
acceptable level and the best reconstruction of the observed waves in the domain. In the present
implementation, the radar images are parsed into discrete time intervals over a partial annular
region near the offshore boundary of the domain of interest. Wavecast then assimilates the
observations from each interval to produce the reconstructions and forecasts across the entire
domain, each of these are then appended in order to produce a ‘seamless’nowcast/forecast of the
waves in the domain.

Solving for the source function is accomplished by including a source S in the MSEs, then solving
iteratively:

ne= —V-(CC,V) + (w? — szCg)(j) +S 4)
¢t =-1n (5)

In the MSEs, the first equation solves for the water surface elevation, 1, and the second solves for
the velocity potential, ¢, using knowledge of the wave speed C, wave group speed C,, and
wavenumber, k, as a function of position for a fixed angular frequency w. An important aspect of
the MSE:s is that they are solved for a single frequency. Thus, the source function is computed for
only one frequency at a time. If the spectrum of waves is broad or bimodal, it is necessary to solve
the MSEs for each component, thus resulting in several source functions. The resulting single-
frequency wave fields will be combined into a complete description of the wave field for final use.
Each frequency’s source function is determined through an iterative process of minimizing a cost
function, which is defined as:

)= [[ 3000 =2 1M e Dt ©

where 7, is the radial derivative of the model estimated slope, 72?5 is the observed radial slope,
and M (x, t) is a shadow mask. The shadow mask is a binary matrix determined from the radar data
falling below the noise level, where 1’s are illuminated regions of the sea surface, and 0’s are
shadows in the lee of wave crests. As the model reaches a solution closer to the observations, the
cost function is minimized.
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We wish to minimize J subject to the constraint that the wave field is a solution of the MSEs. The
resulting conditions for the minimum leads to a set of adjoint equations:

Ne= —V- (CCqub) + (a)2 — kZCCg)gb +S @)
l/Jtr =—a+ M(nr - U?bs)r (8)
with
aJ _
75 = P (X t) 9)

as the gradient of the cost function with respect to the source term. The adjoint equations are solved
with the error in the present prediction of the radial slope field as input. They are solved backward
in time (t' = —t) and serve to propagate errors in the prediction back to the time and location of
corresponding errors in the source term S(x,, t). The gradient of J with respect to the source term,
used to adjust the source term to modify S in a way that reduces J is computed from the solution
to the adjoint equations as shown.

In each iteration, the wavemaker source S is updated using the gradient of the cost function, where
b is a constant determined using least-squares estimation:

Snew =S — bp(xs) (10)

S is updated with S, for the proceeding iterations. The forward and adjoint equations are solved
iteratively until convergence of J. This procedure in the algorithm can be summarized in the
following steps:

1. Assume a zero initial guess for the source function.
2. Compute the error in the radial slope (source term for the adjoint y equation) and execute
the adjoint model.
3. Compute the gradient of the cost function with respect to the source function at the
wavemaker location from the adjoint solution.
4. Adjust the source function from its initial guess using this gradient.
5. Execute the forward model for a new MSE solution; the cost function will be reduced from
step 2.
6. Repeat steps 2-5 until the cost function converges.
These steps are carried out once for every specified frequency in the model configuration. Thus,
there will exist a source function for each specified frequency, which may be used independently
to propagate waves through the domain. The wave fields from each source function are summed
to produce the final wave field.
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Figure 4. Schematic of Wavecast polar domain. The annulus of data used for assimilation is shown
in blue. The sponge layer is outlined in dashed red. The grid lines of the computation domain are
shown as grey lines at 1:50 and 1:7 scales for range and azimuth, respectively.

The Wavecast model domain is shown in Figure 4 and encompasses the radar data used for
assimilation, as well as an extension of the domain where the forecast is produced. This extension
is the region where the target forecast is extracted. The full domain is defined in polar coordinates
for compatibility with the range-azimuth collection scheme of radar imagery. In Figure 4, the gray
range and azimuth gridlines are a coarsened representation of the model resolution. The resolution
of the model domain used in this study is 3 meters in range and 0.7 degrees in azimuth. Sponge
layers are drawn as red dashed lines inside of the outer bounds of the computation domain, and are
used for minimizing reflection off the boundary walls. Each available radar image would fill up
the entire computation domain, however the full scans are not used for data assimilation. Rather,
only an annulus at the outer ranges of the radar scan is used. A representation of this assimilation
annulus is outlined in blue. Only the outer ranges of the radar scan are used for the sake of reducing
computation time; it is shown that an annulus encompassing several wavelengths is enough for
estimating the source function. The orientation of this annulus with respect to the location of
interest for forecasted waves is important. The annulus must be oriented so that it contains up-
wave information, e.g waves travelling towards the location of interest. Additionally, the annulus
must be chosen at an optimal range distance from the location of interest. The distance between
the inner edge of the assimilation annulus and the location of interest determines how much buffer
time the model has for computation. In other words, the travel time of the actual waves in the
region is the maximum allowable time for model computation, such that the forecast will be
produced before the actual waves arrive. Increasing this distance will increase the time into the
future that the waves can be forecasted. However, the distance at which the annulus can be placed
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is limited by data quality from the radar. As range increases in a radar scan, so does wave
shadowing (i.e. there is less wave information). The annulus must be placed at an optimal range
such that forecast time is maximized but high enough data quality is maintained.

The estimated source function is applied for forward propagation along the outermost range of the
domain as indicated in Figure 4. From this outermost range, the waves propagate across the domain
towards the origin. The location of interest for the forecast can be anywhere within the computation
domain inside of the sponge layers. The closer to the origin this location is chosen, the longer the
possible forecast time horizon.

4.4.  Synthetic Data Generation and Performance Assessment

A synthetic dataset is used for assessment of Wavecast accuracy. The synthetic dataset is generated
using the wave model backbone to generate synthetic multidirectional wave fields based on
realistic wave spectra and then analytically transforming the surface elevations into radial slopes
for assimilation into Wavecast. Noise and shadowing are also added to the radial slope data for a
more realistic representation of radar image data, as explained below. An example simulated wave
spectrum is shown in Figure 5.

For this spectrum, the significant wave height is 2.4 meters, with a peak period of 10 seconds, and
mean wave direction of 270 degrees. The surface elevation time series for this wave field are
generated by using the MSEs to propagate the wave components across the polar grid using a
uniform water depth of 65 meters. The frequency and direction components are summed to create
a synthesized, multi-frequency, and multidirectional wave field. From the surface elevations, the
radial slope is computed for assimilation in Wavecast. This is done by taking the finite differenced
derivative of the surface elevation along each range line, where for each range r and azimuth ¢,
the radial slope 7,- is:

T](ri+1' (p) - T](ri—lﬂ ¢)
2 Ar

n-(ri, ) =

Snapshots of the surface elevation and radial slope in polar coordinates are shown in
Figure 6. Shadowing is accomplished through simple geometric consideration. Along
each range line, the incidence angle, 6, is the angle between the radar beam drawn to the
sea surface, and the normal to the location the radar is mounted. If at any range, r, the
incidence angle is less than any prior incidence angle, the sea surface at that r is shadowed.

A schematic of this is shown in Figure 7. (11)
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Figure 5. Wave spectrum used for generation of the synthetic dataset.
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Figure 6. (a) Synthetically generated water surface elevation (b) Radial component of the sea
surface slope computed form the surface elevations using a finite difference derivative.
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Figure 7. Schematic of wave shadowing.

The thermal noise is simulated by empirically evaluating a radar dataset collected in Newport,
Oregon. In the domain of the shore-mounted radar, there is a bluff that blocks the radar signal,
leaving a large shadowed region behind it. The intensity of backscatter noise behind the bluff is
purely noise. The noise in the raw intensity signal is normally distributed with a mean of 12.2 and
a standard deviation of 3.5. A synthetic time series of intensity noise, I; can be generated using a
normally distributed random number generator; however, the intensity noise must be converted to
radial slope noise, n,.y, for addition to the radial slope synthetic input. To do this, the radar model
(Lyzenga & Walker, 2015) is considered. An empirical constant, € is derived which, when
multiplied to the synthetically generated intensity noise, generates random radial slope noise. In
equation 13, I(r, @, t) represents the intensity at a location where there is a wave signal (e.g. not
behind bluff), Iy, is the noise mean computed in the region behind the bluff, and < > is the operator
for the local mean.

Nen = €lye(r, @, t) (12)
h 1
T rliGen —1N0>] &

From considering two datasets collected offshore Newport, OR, a best approximation for € is
determined to be 0.05. Using geometric shadowing considerations and this derivation of radial
slope noise, synthetic datasets are generating using a range of simulated radar heights. With
decreasing radar height, shadowing is more prominent in the domain. An example dataset using a
5 meter radar height is shown in Figure 8 (a). The shadowed radial slope with addition of simulated
noise is shown in Figure 8 (b). Transects through the shadowed surface elevation and radial slope
are shown in Figure 9.
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Figure 8. (a) Surface elevations with shadowing applied from a 5 meter high radar. (b) Radial

slopes with shadowing applied from a 5 meter high radar, and synthetic thermal noise added. The
outlined annulus shows the data assimilated in Wavecast.
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the dashed line in Figure 8 (b).
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The synthetic radial slope data is used for data assimilation in Wavecast. Five trials are presented:
four trials of varying radar height with simulated noise, and one trial with no shadowing or noise.
Results from these trials are presented in Table 1 and described in more detail here.

The Wavecast output can be assessed for accuracy by comparing time series to the ground truth
surface elevation data. Six locations throughout the Wavecast domain are chosen for comparison,
as labeled in Figure 10. Locations 1 and 2 are within the assimilation annulus, thus these waves
are reconstructed by Wavecast as opposed to predicted. Locations 3 and 4 are outside of the
assimilation annulus, thus these time series have been predicted by Wavecast. Locations 1-4 lie
along the azimuth of wave propagation. For azimuthal time series comparisons, Locations 5 and 6
are chosen at the same range as Location 1, but varying azimuthally.

At each location, the correlation coefficient between the Wavecast output and ground truth time
series is computed. When assimilation data is used without noise or shadowing, the highest
correlation is achieved (0.84-0.95 varying by location). With the lowest radar height (2 meters)
much of the domain is shadowed, thus the poorest correlation is achieved (0.41-0.9). When
shadowing is applied, the outer azimuths at Locations 5 and 6 are the most influenced, as
shadowing has a larger influence the more oblique the wave direction. Sample time series
correlations are shown in Figure 11 (no noise or shadowing) and Figure 12 (noise and shadowing
with 5 m radar height).
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Figure 10. Schematic of synthetic domain used in Wavecast. The annulus used for data
assimilation is outlined in blue. The sponge layer is outlined in red. The numbered locations
represent points used for time series comparison of Wavecast output to ground truth surface
elevations.
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Figure 11. (a) Time series comparison between Wavecast output and synthetic ground truth
surface elevations with no noise or shadowing. These time series lie in the direction of wave
propagation at various range locations 1-4, as seen in the schematic in Figure 10. (b) Time series
comparison between Wavecast output and synthetic ground truth surface elevations with no noise
or shadowing. These time series lie along the same range at three azimuthal locations, locations 1,
5 and 6 seen in the schematic in Figure 10.
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Figure 12. (a) Time series comparison between Wavecast output and synthetic ground truth
surface elevations with simulated radar noise and shadowing from a 5m tall radar. These time
series lie in the direction of wave propagation at various range locations 1-4, as seen in the
schematic in Figure 10. (b) Time series comparison between Wavecast output and synthetic ground
truth surface elevations with simulated radar noise and shadowing from a 5m tall radar. These time
series lie along the same range at three azimuthal locations, locations 1, 5 and 6 seen in the
schematic in Figure 10.
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Radar Correlation Coefficient (1 = perfectly correlated)

Height Reconstructed Predicted Wide Azimuths
(m) 1 2 3 4 5 6

2 0.76 0.9 0.78 0.85 0.41 0.48
3 0.79 0.9 0.82 0.86 0.45 0.52
5 0.83 0.88 0.87 0.87 0.59 0.54
10 0.89 0.91 0.9 0.88 0.89 0.74
Nonoise ;g 094 | 095 0.9 0.85 0.94
or shadow

Table 1. Summary of results from synthetic trials with varying simulated radar height.

4.5.  Field Data Collection and Performance Assessment

On December 15, 2015, a dataset of radar and in situ surface elevation measurements was collected
offshore of Newport, OR. The radar was mounted onboard the Umatilla 11, a 50 foot charter fishing
vessel that can be seen in Figure 13 (a). In situ surface elevation data were being simultaneously
recorded by a TRIAXY'S Directional Wave Buoy. The TRIAXY'S buoy can be seen from onboard
the Umatilla Il in Figure 13 (b). The meteorological conditions on December 15 were complex.
A schematic of the data collection is shown in Figure 14.

The frequency spectrum and directional spectrum collected by the TRIAXY'S buoy during the field
data collection period are shown in Figure 15 (a) and (b), respectively. The spectrum is bimodal,
components at both 11 and 20 second periods are present. These are challenging conditions for the
Wavecast system because the MSE is solved using a single frequency at a time. Thus, in order to
reconstruct both swells, a minimum of two solutions to the MSEs need to be found.

(a) (b)

Figure 13. (a) Radar mounted on the Umatilla I1. (b) TRIAXY'S buoy as seen from onboard the
Umatilla II.
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Figure 15. (a) Frequency spectrum recorded by the TRIAXYS during field data collection. (b)
Frequency-direction spectrum recorded by the TRIAXY'S during field data collection.

An additional challenge during data collection was that the relative wind and wave directions were
non-ideal for wave imaging in the radar data. The most optimal radar images are collected when
the radar is looking in the same direction as the wind, which yields the maximum amount of surface
roughness on the faces of the waves. When the radar is not looking in the same direction as the
wind, the radar does not get as strong of a reflection from the surface, and will not see waves as
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far out in the domain. Reports from the National Data Buoy Center Station 46050 indicate that
throughout the data collection period of the field testing, the wind direction shifted from
perpendicular to the radar look direction, to opposite of the radar look direction. It is likely that if
the wind were in the same direction as the waves during this collection period, waves would be
seen at further ranges. The main effect this has on the field dataset is that the wave signal is weak
at the location of the TRIAXYS buoy. In other words, the boat should have been closer to the
TRIAXYS to yield a stronger assimilation dataset for forecasting at the TRIAXYS location. In
future studies, the wind conditions should be taken into consideration when determining the ranges
of radar data used for the assimilation, noting that waves will be imaged at further ranges in the
domain when the wind is in the radar look direction.

The electronic compass headings originally recorded for rectification of ship motion using an
inexpensive compass were too noisy to be used for effective stabilization and geo-rectification.
Thus, a two-part correction scheme was developed that utilizes features within the radar imagery,
namely ocean waves and the signatures of two moored buoys. The waves were treated as a
stationary image-to-image feature.

Each radar image was cross correlated to the previous image such that the relative rotation that
created a maximum wave alignment between the images was found and was assumed to represent
the relative ship rotation that occurred between images. The mean of the rotations was removed to
account for the fact that the waves are not perfectly stationary, rather propagating through the
image. Once the images are reasonably well stabilized using this technique, the signatures of two
moored buoys become visible in running averages of the radar images, seen in Figure 16. The
buoys were then used in a second cross-referencing scheme, where the location of the buoys in
each image is matched to the preceding image. Additionally, the GPS coordinates of the buoys are
known with 50 m certainty, so the images can be geo-referenced spatially. The result is a dataset
of stabilized and geo-referenced radar data with spatial and temporal overlap to the TRIAXYS
buoy data. This radar dataset is used for assimilation, and spectrally validated to the TRIAXYS
buoy. Due to lack of adequate precision in the geo-reference scheme, the phase-resolved
comparison was not successful.

To prepare the radar intensity data for use in Wavecast, the radial slope of the waves is estimated
using the previously described radar model. The radial slopes computed from the stationary radar
dataset are used for data assimilation in Wavecast. The domain configuration overlaid on one
snapshot of radial slope data is shown in Figure 17. The domain was chosen carefully such that (1)
the computation domain contained the location of the TRIAXYS (2) the assimilation domain
contained up-wave data and (3) the assimilation domain contained wave data not masked out by
shadowing. In this configuration, the TRIAXY'S is within the assimilation domain, therefore the
modeled waves at this location would not actually be forecasted waves but would be reconstructed
waves; however, the purpose of this analysis is to assess overall accuracy potential at this point in
time. When assimilating this dataset in Wavecast, two frequencies are chosen for the solution to
the MSEs. This is because the seas were bimodal, this there are two major frequency components,
which will be propagating at different velocities.
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Figure 16. Geo-rectification process for ship-mounted radar data collected on the Umatilla I1.

As mentioned, a phase-resolved wave comparison was not possible due to the lack of accurate
GPS data. However, a spectral comparison between the Wavecast forecasted waves and the in situ
buoy observations was still performed. This is presented in Figure 18. In Figure 18 (a) the
significant wave height (Hsig) is computed throughout the Wavecast model simulation at each
location in the domain. From the TRIAXYS buoy data, the anticipated Hsig 1.8 meters. The
maximum Hsig reached in the Wavecast modeled waves is 1.6 meters, with an average Hsig
throughout the domain of 0.77 meters. A spectral comparison is performed between the TRIAXY'S
spectrum and the spectrum of modeled waves at the anticipated location of the TRIAXYS, as
indicated by the points shown in the Southwest corner of the domain in Figure 18 (a). This spectral
comparison is shown in Figure 18 (b). The two peaks in the spectrum are resolved, however only
44% of the spectral energy is reconstructed by Wavecast.
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Despite adequately reconstructing the shape of the spectrum, a 44% reconstruction of energy is a
poor representation of the capabilities of Wavecast. We believe this is due to the quality of the
field dataset. The major reasons impacting the quality of the dataset are (1) inability to precisely
locate the buoy in the radar image domain (due to rectification uncertainty) and (2) poor
orientation of the forecast point (i.e. the TRIAXYS buoy) with respect to the wind and wave
direction within the radar images. The main factor influencing (1) is the quality of the GPS
heading data used for rectifying the images. There are several factors influencing (2). During
collection of the field dataset, the location of the TRIAXYS is on the outskirts of well-defined
wave information, as can be seen in Figure 17. There is substantial shadowing in (and up-wave
of) the radar imagery at the location of the TRIAXYS. Thus, there is minimal wave information
with which Wavecast can reconstruct and predict the waves at the TRIAXY'S location. In future
field tests, pre-planning the vessel deployment based on wind and wave conditions should lead to
a better result. Having shown successful reconstruction of synthetic radial slope with realistic
noise and shadowing, there is substantial evidence that Wavecast would perform well given a
higher quality field dataset.

4.6.  Model Timing Capabilities and Constraints
The analysis of Wavecast performance in this study is focused primarily on performance accuracy.
This section defines the domain and computation constraints of making Wavecast operational in
real-time. The key requirement of the system is that the data assimilation and forward propagation
can be computed in faster than real time. In other words, the modeled waves must be computed at
the location of interest before the actual waves arrive.

Wavecast’s computation is dependent on a number of tunable parameters. While the data used for
assimilation is always radar imagery on a polar domain, the size and duration of assimilation data
is tunable. Likewise, while the computation domain is a polar grid nested inside of the assimilation
region, the size of this domain determines how long the model takes to perform its computation.
A list and description of the tunable parameters is given in Table 2, and a diagram of the parameters
on the Wavecast domain is shown in Figure 19.

A time-space diagram of forecast model timing constraints is shown in Figure 20. The y-axis
represents one spatial dimension. i.e. range distance. Xassim IS the size of the assimilation domain
in range (meters). The full y-axis represents the entire range of the domain, from the outer edge to
the origin. The distance between the assimilation region and the origin is called Xpred, and is the
distance across which the predicted waves travel to the origin. The x-axis represents time in
seconds. The first step in the model is to record the radar observations. The duration over which
observations are collected is called Tobs. Once the observations are recorded, the data assimilation
and calculation phase can begin. The duration of each computation phase is depicted as Atcomp. In
this schematic, the computation time was determined using a sample Wavecast trial of synthetic
data, with the specified model configuration. During the computation phase, two major steps are
achieved (1) the observed data is assimilated for computation of the source function and (2) the
source function is propagated from the outer boundary of the domain, through Xassim and Xpred.

In order to create a forecast, the computation must be performed before the actual waves arrive at

the location of interest. Thus, the velocity at which the actual waves travel is considered. The
characteristic speed of wave transformation is the group velocity, Cg. This rate is shown as a
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diagonal line in Figure 20. The diagonal line is drawn from the inner edge of the assimilation
region, because the predicted waves must be computed before the first observed waves arrive at
the location of interest. In this schematic, the location of interest is the origin. The time between
the completion of the computation and the arrival of the actual waves at the location of interest is
the duration in advance that the waves can be forecasted, At In this to-scale schematic, the

waves are predicted 75 seconds in advance.

Parameter

Description

Effect on Computation Time

# frequencies

Number of frequencies
for which the MSEs are
solved.

The Mild Slope Equations are solved once per frequency specified.
Thus, the number of frequencies used linearly increases the
computation time.

Xpred

Range of the
computation domain

Increasing the range of the computation domain will linearly
increase the computation time, but will also increase the time it takes
for the actual waves to propagate across the domain. So far it has
been shown that the computation time is faster than the propagation
time, thus increasing the range of the computation domain will
ultimately increase how far in advance the waves can be forecasted,

Atfcst

Xassim

Range of assimilation
domain

The size of the assimilation domain has the same impact on
forecasting as Xpred. An additional influence of Xassim is that
increasing the assimilation range improves the accuracy of the
source function. The assimilation range should be large enough to
capture several wavelengths, but should not be extend to a range of
the radar image where there is considerable wave shadowing.

Tobs

Duration of observations
used for assimilation

The computation begins after the assimilation data has been
observed. The observations used for assimilation must be long
enough to adequately reconstruct the wave field, on the order of tens
of wave periods. The minimum observation time should be used
while still maintaining forecast accuracy.

Azimuthal extent of grid

The azimuthal extent of the assimilation region and computation
region must be the same. The azimuthal extent should be wide
enough to capture the spread of wave directions in the assimilation
data. Increasing azimuthal extent will increase computation time.

Sponge layer

Absorption of waves
along outer boundaries
of domain to prevent
reflection.

The sponge layer is a region that absorbs waves along the outermost
range of the assimilation region, the outermost azimuths, and the
innermost range of the computation domain. It should be at least 1-2
wavelengths. The sponge layer does not have a direct influence on
computation time, however the larger it is made the smaller the
computation domain.

Table 2. Tunable parameters in Wavecast with a discussion of influence on forecast accuracy and
timing.

The forecast available after the computation phase is shown for each model run below the domain
origin in Figure 20. The first forecast begins with still water until the arrival of the first waves.
Forecasted waves begin at the origin once the first observed waves at the inner edge of the
assimilation domain arrive. The duration of the forecast is dictated by the region and duration of
the assimilation data. The dashed diagonal line represents the last observed wave at the outer range
of the assimilation domain. Since this is the last observed wave, it will be the last wave able to be
forecasted. Thus, the duration of the first forecast lasts until the first diagonal dashed line crosses
the domain origin.
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Figure 19. Diagram of Wavecast parameters.

The second forecast is available after the computation using the second observation period. This
forecast will begin at the start of the second observation. The second forecast also begins with still
water, because the waves from the first forecast have not yet arrived. Note that when the waves
arrive, the forecasts contain overlapping waves. Configuring a domain such that forecasts contain
overlapping waves is not necessary, although it would allow for though it will provide improved
accuracy.

By the time the third forecast is available, waves have reached the origin, thus the entire forecast
contains predicted waves. This will be the case for all proceeding forecasts. In this realistic
schematic of Wavecast, each forecast can be predicted 75 seconds in advance. Thus, there is a
continuous time series available of predicted waves 75 seconds before the actual waves arrive.
This time horizon can be shortened or lengthened by manipulating the assimilation and domain
size parameters depicted in this schematic. Additional influences on this time horizon will be the
number of frequencies solved for in the MSEs (this schematic represents a solution using a single
frequency), and the quality of the assimilated data. With lower quality assimilation data, for
example with increased wave shadowing or noise, Atcomp may increase slightly. However in the
synthetic trials presented in this paper, with significant wave shadowing and noise, Atcomp Was only
influenced on the order of several seconds.
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4.7. Hardware Requirements and Cost Estimate
This work was originally benchmarked on the following system:

* 2 Quad-core Intel Xeon @ 2.67 GHz
* 94 GB DRAM
« Graphical Processing Unit Geforce GTX 680

o 1536 Cores @ 1058 MHz
o 4GB DDR5 @ 192.2 GB/s Memory Bandwidth

During benchmarking the host computer utilized 1.5 CPU cores and 90 GB of RAM, the GPU
utilized all 1536 GPU cores and 435 MB of RAM. This configuration achieved real-time
forecasting over the domain and time scales shown in this report. Single-precision floating point
computation is sufficient for this application, which means that commodity range GPU is
acceptable. As indicated in Table 2, increasing the number of wave frequencies or the size of the
assimilation and forecasting domains will increase computational requirements. A seven-fold
increase in computational speed would be expected with the following hardware:

« GTX Titan X - top of the commodity/gamer range of GPUs ($1000)
* 3072 cores @ 1075 MHz, 12 GB DDRS @ 336.5 GB/s Memory Bandwidth, Dual Slot
* Should provide 1.75x the performance of the benchmark system (memory BW limited).

» Host - 4 rackmountable towers can accommodate 4 dual-slot GPU, scale CPU to match GPU
performance increase

* 4 GTX Titan X =4 x 1.75 GTX680 7x increase over benchmark
* 1.5 CPU cores x 7= 10.5 cores @ 2.7 GHz or greater

* 90 GB x 7 =630 GB of memory

» Example system would be a Supermicro 7048GR-TR

o 2 Xeon CPUs with 16 cores @ 3.2 GHz
o 1TB of DDR4 RAM
o 4 GTX Titan X cards

Estimated System Price: $30,000 (based on online information 2016)

Radar hardware: for this project we utilized a Si-Tex (Radarpc25.9) X-band imaging radar with a
9ft antenna. These systems are commercial off-the-shelf. We choose to use the largest available
antenna in order to have the best azimuthal resolution and the highest power transmitter in order
to have the largest radar range. In practice, a somewhat lower power transmitter and 6ft antenna
could be used with likely limited detrimental impact.

Estimated Radar Price: $12,000 (quote from B&F Electronics, July 2016)
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5. Accomplishments

The major accomplishment of this project is the development and verification of the Wavecast
algorithm. In fulfillment of the objectives of the project, Wavecast provides a novel method of
wave forecasting for application to Wave Energy Converter controls systems. The algorithm was
verified against synthetic wave data and it was demonstrated that, if the wave model backbone
contains the appropriate level of wave transformation processes, then accurate wave field
reconstruction and forecasting is possible. This result is robust to the expected levels of wave
shadowing and observational noise in the wave imaging marine radar observations. The
algorithm represents a proof-of-concept for wave forecasting via radar data assimilation.

Additionally, development was accomplished in the areas of wave slope extraction from radar
imagery, radar data assimilation, and GPU-based wave modeling and forecasting. These research
accomplishments provide the necessary strides towards the realization of a commercial radar-
based forecasting system.

Finally, a considerable amount of technical communication and dissemination to colleagues and
industry was also conducted. Midway through the project we conducted a public webinar on the
project that was attended by a number of industry participants and has led to follow-on work
with industry this year. Publication citations and a complete list of presentations are listed below.
Particularly notable, Alex Simpson received Best Oral Presentation awards at both the METS
2016 and YCSEC 2016 meetings.

5.1. Publications

e Simpson, A., M.C. Haller, D. Walker, P. Lynett, and R. Pittman. “Real-Time Wave-by-Wave
Forecasting via Assimilation of Marine Radar Data”, Marine Energy Technology Symposium
(METS 2016), extended abstract, 5 pages, 2016.

e Simpson, A. “Wave-by-Wave Forecasting via Assimilation of Marine Radar Data”, Master’s
Thesis, School of Civil & Construction Engineering, Oregon State University,
http://hdl.handle.net/1957/59904, 2016.

e Simpson, A.,, M.C. Haller, D. Walker, and P. Lynett, Wave-by-wave forecasting via
assimilation of marine radar data, in preparation for Journal of Oceanic and Atmospheric
Technology, 2017.

5.2.  Presentations acknowledging DOE support

e Poster presentation: Simpson, A., Haller, M.C., Walker, D., Lynett, P., Pittman, R., and D.
Honegger, “Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave
Forecasting”, Ocean Sciences Meeting, February 21-26, 2016, New Orleans, LA, USA.
Abstract ID: HI54A-1848.

e Oral Presentation: Simpson, A., “Real-Time Wave-by-Wave Forecasting via Assimilation of
Marine Radar Data”, Marine Energy Technology Symposium, April 25-27, 2016. Washington
DC.
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e Poster presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, Northwest National Marine Renewable Energy Center Annual Meeting,
September 19-20, 2016, Portland, OR, USA.

e Oral presentation: Haller, M., “Assimilation of Wave Imaging Radar Observations for Real-
time Wave-by-Wave Forecasting”, Northwest National Marine Renewable Energy Center
Annual Meeting, September 17-18, 2015, Portland, OR, USA.

e Poster Presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, Northwest National Marine Renewable Energy Center Annual Meeting,
September 17-18, 2015, Portland, OR, USA.

e Poster Presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, International Network of Offshore Renewable Energy Symposium, May 2015,
Naples, Italy.

e Poster Presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, International Network of Offshore Renewable Energy Symposium, October,
2015, Friday Harbor, WA, USA.

e Poster Presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, International Network of Offshore Renewable Energy Symposium, October 2016,
Orono, ME, USA.

e Oral Presentation: Simpson, A., “Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data”, Young Coastal Scientists and Engineers, June 2016, Kingston, Ontario, Canada.

6. Conclusions

The major finding of this research is that a physics-based wave forecasting scheme, which relies
on radar imagery as data for assimilation is a promising approach to wave-by-wave forecasting for
WEC controls applications. An algorithm (“Wavecast) was developed and its performance was
evaluated. Early in the project, performance tests definitively concluded that the system was
capable of real-time forecasting, as the GPU-based wave model backbone is very computationally
efficient. For verification of accuracy, a substantial set of synthetic wave data (i.e. forward runs of
the wave model) were generated to be used as ground truth for comparison to the reconstructions
and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good
accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when
compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon
were also identified. While evaluation using synthetic datasets is only a preliminary conclusion, it
has been shown that Wavecast is capable of real-time wave forecasting when the wave model
physics accurately represent the observational environment and conditions.

During the second year of the project, a short field deployment was conducted in order to assess
forecast accuracy under field conditions. The results of assimilating field data in Wavecast were
less good due to technical challenges with the GPS heading accuracy, and considerable
complexities in the environmental conditions on the day of data collection. An important lesson
learned is that high-accuracy position and heading instrumentation should be used for radar image
geo-rectification. This instrumentation is commercially available, but not standard on commercial
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fishing vessels. Despite a lack in phase-resolved comparison, conclusions can be drawn from
buoy-to-forecast spectral comparisons. During complex wave conditions (bimodal spectrum,
perpendicular wind and wave directions), Wavecast is capable of qualitatively reconstructing both
peaks in the spectrum. However, accurate reconstruction of the overall spectral wave energy has
not yet been demonstrated and additional field tests are recommended.

Overall, wave-by-wave forecasting using data assimilation of radar imagery shows promise for
short-term phase-resolved predictions. There are several challenges to be addressed before the
system can be recommended for in-field use. The major barrier in this study was a lack of an
adequate field dataset. This barrier was overcome for the purpose of this project through the
creation of a substantial synthetic dataset. However, the immediate next-step on the path towards
system commercialization is evaluation using a more robust field dataset. This evaluation will
allow for improved understanding of forecast accuracy, as well as next-steps in optimization of
computation timing. This project has served as a promising proof-of-concept for the approach to
wave forecasting, and is a novel contribution to the optimization of Wave Energy Conversion
devices.

7. Recommendations for Future Work

7.1.  Inclusion of Nonlinear Correction terms in Wave Model

At present, the GPU-based wave model chosen for the forecasting algorithm is the linear Mild
Slope Equations (MSEs). Nonlinear correction terms exist for the MSEs that enable extension of
model applicability in more energetic sea states where nonlinearity is of increased importance.
Nonlinear effects are also of increased importance in order to achieve longer forecast horizons,
since they effect the wave speed, which has an integrated effect over longer forecast distances.

7.2.  Additional Field Testing

The field study conducted through this project was done with limited resources, and was conducted
during complex environmental conditions. The wind direction and wave direction were 90 degrees
offset, and the sea state was starkly bimodal. Additionally, the GPS chosen for this study for its
low-cost was not robust enough for adequate stabilization of the radar imagery. While the synthetic
testing of Wavecast shows very promising performance in accuracy and model timing, further field
testing of Wavecast is recommended. A radar dataset should be collected during a more simplistic
sea state. Additionally, a more robust GPS should be used, such as those used for nautical
applications that collect heading data from satellites as opposed to electronically. A device with at
least 0.5 degree heading resolution and meter-scale positioning should be considered.
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Appendix A: METS Extended Abstract. Real Time Wave-by-Wave Forecasting via
Assimilation of Marine Radar Data

Executive Summary: A key task in Wave Energy Converter (WEC) development is to optimize
device performance for commercial viability. For many of the proposed WEC designs, a promising
optimization tool is an active controls system that tunes WEC functionality to the characteristics
of the incoming wave field. This enables maximization of energy capture while protecting the
system from extreme wave conditions. There has been considerable research in WEC control
schemes, and a number of schemes depend on an accurate forecast for time horizons of several
wave periods.

The work herein addresses the challenge of wave-by-wave forecasting for WEC control
applications. Previous work of this type has been termed Deterministic Sea Wave Prediction
(DSWP). DSWP methods are designed to predict water surface elevations highly resolved in time
(wave-by-wave), as opposed to phase-averaged prediction of bulk wave properties (i.e. average
wave height) over longer time scales. There are two main approaches to DSWP: prediction based
on single-point measurements, such as from instrumentation mounted on the WEC, or prediction
based on multi-point measurements at a distance and the subsequent reconstruction of the
surrounding wave field. Our work herein falls under the latter category.

For this study, the multi-point wave measurements at a distance are derived from X-Band marine
radar image time series. These observations typically span a circular footprint of several kilometers
in radius, depending on wind and wave conditions. The radar collects image time series of
backscatter intensity which are then converted to surface slope in the radar look direction (radial
slope, n,-) using the method of Lyzenga and Walker. From radial slope time series throughout the
domain, a best-fit wave model hindcast is determined and used as the initial conditions for the
deterministic wave forecast. The wave model that we use for the hindcast and forecast is based on
the Mild Slope Equation formulated in polar coordinates (Polar-MSE).
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Appendix B: Master’s Thesis. Wave-by-Wave Forecasting via Assimilation of Marine Radar
Data

Executive Summary: A wave-by-wave forecasting system is desired for optimization of wave
energy conversion devices and for improving safety of vessel-based marine operations. This study
outlines the first validation attempts of a recently developed forecasting system called Wavecast.
The forecasting approach uses X-Band marine radar images for data assimilation, then reconstructs
and propagates the ocean wave field in both space and time using the Mild Slope Equation wave
model. For data assimilation, the radial component of the sea surface slope is computed from the
radar imagery using the recently-derived Radar Model (Lyzenga & Walker, 2015). The Radar
Model is a direct relationship between radar backscatter intensity and radial slope, without the
need for external calibration. Validation attempts of the forecasting system are carried out in two
phases. First, synthetic data is used. Two trials are presented: a simple monochromatic dataset, and
a nonlinear simulation of a realistic sea. Results of monochromatic testing show strong spectral
correlation, and time series correlation of up to 0.9 throughout the full domain. Results of nonlinear
testing show up to 83% spectral correlation of significant wave height, time series correlation up
to 0.9 among reconstructed waves, but some decay in correlation among predicted waves. Next a
field dataset is presented, which was collected by a ship-mounted radar offshore Newport, OR
with spatial and temporal overlap to a TRIAXYS wave profiling buoy. The field dataset provides
several challenges. Noise in the electronic compass readings prevented rectification of the ship’s
motion; however, this was overcome using a novel post-processing technique on the radar images
to georeference each scan without the need for electronic compass readings. Additionally,
uncertainty exists in the location of the TRIAXYS buoy; thus, a cross-correlation analysis was
performed on a small region surrounding the buoy’s anticipated location to determine the location
of maximum correlation between actual and model time series. Despite complexities in the field
dataset, assimilation of the field data in Wavecast shows good spectral reconstruction, with issues
remaining in time series correlation. The presented validation attempts provide improved
understanding of the accuracy and potential of Wavecast, and give support for the validity of the
Radar Model.

Appendix C: Journal Submission. Wave-by-Wave Forecasting via Assimilation of Marine
Radar Data

Executive Summary: This work describes a novel phase-resolving wave forecasting system. The
developed system, referred to as Wavecast, couples an X-band marine radar with the linear Mild
Slope Equations (MSESs) wave model for real-time reconstruction and forward propagation of the
sea surface in space and time. Wave information is extracted from the radar image time series
using a recently derived relationship between the radar backscatter intensity and the radial
component of the sea surface slope (Lyzenga & Walker, 2015). The approach of Wavecast is to
estimate a hindcast source function from the wave slopes in an annulus at the outer ranges of the
radar imagery. The source function is subsequently propagated using the MSEs across a polar
domain to a location of interest. When estimation and propagation of the source function are
computed in faster than real time, a forecast is made at a location of interest within the polar
domain. This paper covers theory, a description of Wavecast, phase-resolved synthetic validation,
and spectral field validation using radar and in situ data collected offshore Newport, OR.
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