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ABSTRACT 

This paper studies the task allocation algorithm for a distributed test facility (DTF), which 

aims to assemble geo-distributed cyber (software) and physical (hardware in the loop) components 

into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual 

prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an 

instrumentation interface for carrying out reliability experiments remotely such as fault 

propagation analysis and in-situ testing of hardware and software components in a simulated 

environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the 

UCPS, i.e. a significant time delay in communication that threatens the stability of the ECP and is 

not an appropriate representation of the behavior of the UCPS. This can be mitigated by 

implementing a task allocation algorithm to find a suitable configuration and assign the software 

components to appropriate computational locations, dynamically. This would allow the ECP to 

operate more efficiently with less probability of being unstable due to the delays introduced by 

geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach 

along with Dynamic Programming to identify the optimal network configuration to keep the time 

delays to a minimum.  
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1  INTRODUCTION 

A distributed test facility (DTF) is a facility which aims to assemble geo-distributed cyber (software) 

and physical (hardware in the loop) components into a prototype cyber-physical system (CPS). It provides 

an instrumentation interface for carrying out reliability experiments remotely such as fault propagation 

analysis and in-situ testing of hardware and software components in a simulated environment. Our 

research on DTF [1] arises from the need for such a facility towards the conversion of instrumentation 

and control systems in the nuclear power industry. Digital instrumentation and control systems are 

gradually replacing their analog counterparts in current nuclear power plants and are the new standard in 

future designs in both safety-critical and non-safety-critical systems. 

The DTF is comprised of hardware (HW) and software (SW) components which are dispersed 

physically. The hardware components are immovable physical processes such as thermal hydraulic loops 

and associated sensors, filters, actuators, controllers, etc. and software components can be simulations of 

physical processes, digital controllers, etc. Unfortunately, the assembly of the geo-distributed software 

and hardware components in the DTF introduces artificial delays and poses a big challenge in keeping the 

                                                 
 Rachit Aggarwal is a Master of Science student at the Department of Mechanical and Aerospace Engineering at The Ohio State 

University. His research interests are controls and optimization of large-scale interconnected systems.  

Carol. S. Smidts is the a Director of Reliability and Risk Laboratory and a Professor in Department of Mechanical and 

Aerospace Engineering at The Ohio State University. 



system stable and running over a network. The geo-distribution in the assembly components and sub-

systems introduces an overhead that is not inherent to the UCPS, i.e. it adds a significant time delay in 

communication that could compromise the stability of the ECP and result in an inappropriate 

representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation 

algorithm to estimate an optimal configuration and assign the software components to appropriate 

computational locations in real-time. This would allow the ECP to operate as long as possible i.e. the 

probability of the ECP becoming unstable due to the delays (fictitiously introduced by the geo-

distribution) is minimum.  

Many of the task allocation problems [2]-[6] address the assignment problem with an objective of 

minimizing the net cost of resources used. The problem of task allocation in the distributed test facility is 

a network optimization problem with an objective to communicate (transfer data packets) in a geo-

distributed network in the least possible time such that the system under test, i.e. ECP, remains stable. 

Most of the network optimization problems are formulated as minimum cost or maximum flow problems. 

References [7] and [8] discuss optimization algorithms where the cost of each arc in a multi-source, 

multi-sink network is a stochastic variable. These algorithms only address the problem of finding an 

optimal path through the set of connected nodes. However the DTF poses a challenge to the movement of 

the software components in the network as the route in the geo-distributed network (e.g. WAN) is already 

nearly optimal. 

This paper presents a novel approach of solving the network optimization problem with uncertainties 

in arc/edge cost (time delay). This simple algorithm, coupled with its parallelization capability, allows it 

to be implemented in real-time. 

2 TASK ALLOCATION 

The task allocation algorithm described in this paper estimates an appropriate configuration of the 

ECP such that each software component is assigned to one of the available computational facilities while 

taking into account the amount of data being transferred in the network (flow variable), the time (cost) 

taken for transition of a software component, computational resources (cost) and the uncertainty in the 

delay time (cost) in the network. A software component can be installed at several locations depending on 

the computational requirements and additional legal restrictions. A computational facility can have more 

than one software component installed. A software component can be invoked at a particular location by 

sending a checkpoint file to that location. 

The section is divided further into four subsections. Section 2.1 lists some definitions associated with 

the graph theory, which will be extensively used in the algorithm. Sections 2.2 and 2.3 describe the 

method in detail and then finally, in Section 2.4, two case studies are presented. 

2.1 Definitions 

Graph: A graph is a collection of vertices and edges which connect the vertices. It is represented as 

𝐺(𝑉, 𝐸)  where 𝑉 is a set of vertices or nodes and 𝐸 is a set of edges or arcs. In an undirected graph, an 

edge is an unordered pair of vertices whereas in a directed graph, an edge is an ordered pair of vertices. A 

graph can also be a weighted graph where 𝑊(𝐸𝐺𝑁
) denote the edge weights (also known as the cost of 

traversing the edge). 

Subgraph: A subgraph of a graph 𝐺 is another graph formed from a subset of the vertices and edges 

of 𝐺. The vertex subset must include all endpoints of the edge subset, but may also include additional 

vertices. A spanning subgraph is one that includes all vertices of the graph; an induced subgraph is one 

that includes all the edges whose endpoints belong to the vertex subset. 



Graph Isomorphism: An isomorphism of graphs 𝐺(𝑉𝐺 , 𝐸𝐺) and 𝐻(𝑉𝐻 , 𝐸𝐻) is a bijection between the 

vertex sets of 𝐺 and 𝐻, 𝑓: 𝑉𝐺 → 𝑉H such that any two vertices 𝑢 and 𝑣 of 𝐺 are adjacent (i.e. connected by 

an edge) in 𝐺 if and only if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐻, i.e. (𝑢, 𝑣) ∈ 𝐸𝐺  ⇔ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐻. 

Subgraph Isomorphism: For graphs 𝐺(𝑉𝐺 , 𝐸𝐺)  and 𝐻(𝑉𝐻 , 𝐸𝐻), a subgraph isomorphism from 𝐺 to 𝐻 

is a function 𝑓: 𝑉𝐺 → 𝑉H such that if (𝑢, 𝑣) ∈ 𝐸𝐺  ⇒ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐻. 

2.2 Principle 

The principle of task allocation is to find an optimal configuration of SW component assignment to 

the SW locations such that the time taken for the exchange of information between the hardware nodes 

(i.e. locations where physical processes exist) and the computational facilities (i.e. where the software 

components are executed) is minimal. This depends on the predicted values of the time delay in each 

network arc which is a stochastic variable modeled using time series analysis. The optimal configuration 

has an associated probability of having time delays below the critical time delay. The critical time delay is 

the time delay beyond which the system becomes unstable. This configuration is subject to the constraint 

that there are enough computational resources for all the software components assigned to a particular 

location. The next step is to check whether the software can be moved (transfer the checkpoint file) to a 

new location in a time lower than the critical time delay. This optimization approach facilitates estimation 

of the optimal software assignment, dynamically. 

2.3 Method 

Before the task allocation is performed, the first stage is to define the system and its constraints. The 

following is the list of steps in this stage. 

 Network layout: A directed graph 𝐺𝑁(𝑉, 𝐸) of hardware locations and software locations as 

vertices and their network connectivity as edges is defined. 

 System layout: The hardware (HW) and software (SW) components for the UCPS along with 

their communication link (the direction of the data between any two specified HW or SW 

components) is identified. A directed graph 𝐺𝑆(𝑉, 𝐸) of the UCPS with hardware and software 

components as vertices and their communication link as edges is defined. 

 Hardware map: As each HW component is associated with only one HW location, a one-to-one 

map of component-location associations is defined i.e. 𝑓𝐻𝑊: 𝑉𝐺𝑆,𝐻𝑊 → 𝑉𝐺𝑁,𝐻𝑊 

 Software constraints maps: SW being a virtual component can be executed at any SW location 

which meets the requirements such as licensing, computational resources and memory. A one-to-

many map of component-location associations is defined. 𝑓𝑆𝑊: 𝑉𝐺𝑆 ,𝑆𝑊 → 𝑉𝐺𝑁,𝑆𝑊 

For task allocation, the following are the steps in this second stage. 

 Feasible network configuration: Based on 𝑓𝐻𝑊 and 𝑓𝑆𝑊, a list of permutations is constructed. A 

set 𝑆𝐹𝑁𝐶 of the permutations that are subgraph isomorphic to the network layout graph 𝐺𝑁 are 

the feasible network configurations for implementing the UCPS. 

 Network reduction: Some of the vertices and edges are never a part of any of the feasible 

network configuration subgraphs. Hence those edges can be dropped out to reduce the 

computational load in further steps. 

 Direct path definition: Some vertices may have a limited direct connectivity for it to be qualified 

for inclusion in the network layout. This affects the performance during transitions between the 

feasible configurations. So, in this step, a set of additional network edges 𝐸𝐺𝑁,𝑑𝑖𝑟𝑒𝑐𝑡  is defined 

for the SW locations (vertices) which are not connected in the reduced network. 



 Transition time cost: A list of all edges associated with each SW transition from 𝑖 𝑡𝑜 𝑗 where 𝑖 ≠
𝑗;   𝑖, 𝑗 ∈ 𝑆𝐹𝑁𝐶 feasible configuration is built. Transition time cost is defined as 𝐶𝑖𝑖(𝑊(𝐸𝐺𝑁

)), 

where 𝑊(𝐸𝐺𝑁
) is the set of edge weights. 

 Definition of one simulation iteration cost: In the ECP deployment, for each time step of the 

simulation, the data needs to be moved from one vertex to another. Based on how the simulation 

iteration is defined, a cost function based on the time delays of the edges involved is defined. Let 

this cost be defined as 𝐶𝑖𝑖(𝑊(𝐸𝐺𝑁
)). For example, when the ith feasible configuration is a single 

cyclic loop, the cost function can be defined as sum of the all the time delays due to network 

communication on each edge and computational time on each node. This can also be interpreted 

as the cost to stay in the ith feasible configuration. 

 Monte Carlo Trial: The following steps are performed for each random trial. 

o Time delay sampling: Based on the time series model (obtained a priori to the task 

allocation), randomized network time delay samples are generated. These samples form the 

set 𝑊(𝐸𝐺𝑁
).  

o Cost matrix: A cost matrix is generated for each time step, k. 𝐶𝑖𝑖
𝑘(𝑊(𝐸𝐺𝑁

)) is the cost for 

staying in the same feasible configuration and 𝐶𝑖𝑗
𝑘 (𝑊(𝐸𝐺𝑁

)).  is the cost for transition time 

to switch from configuration 𝑖 𝑡𝑜 𝑗. 

o Cost function: It is the actual cost for a switch to happen. It is defined as the sum of the cost 

to stay in the feasible configuration and the cost of the switch, i.e. 𝐶𝑖𝑗
𝑘 =  𝐶𝑖𝑖

𝑘(𝑊(𝐸𝐺𝑁
)) +

𝐶𝑖𝑗
𝑘 (𝑊(𝐸𝐺𝑁

)). 

o Dynamic Programming (DP): In this step Bellman’s principle [9] is used for dynamic 

programming. The equation below is a modified Bellman’s optimality equation which 

accounts simulation time at each time step, 𝐶𝑗𝑗
𝑘 (∙), and the switching time, 𝐶𝑖𝑗

𝑘 (∙). 

𝑉𝑖(𝑘) = min
𝑗

{
𝐶𝑖𝑗

𝑘 (∙) + 𝑉𝑗(𝑘 + 1) if 𝑖 = 𝑗

𝐶𝑖𝑗
𝑘 (∙) + 𝐶𝑗𝑗

𝑘 (∙) + 𝑉𝑗(𝑘 + 1) otherwise
, where 𝑉(∙) is the value function. 

o Final path: The output of DP is the optimal policy consisting of feasible configuration j as a 

function on time t while accounting the transitions. This optimal policy will result in the 

least network time overhead for all the time steps in planning horizon. 

The result of this task allocation problem is represented using a probability plot of the system being 

stable in a particular configuration. 

2.4 Case Study 

We present two case studies to illustrate the method described above. These are the assumptions for 

the following case studies. 

 Only 1 SW component (𝑆𝑊𝑖 , 𝑖 ∈ {1, … , 𝑛(𝑆𝑊)}) can be executed at only 1 SW location 

(𝑆𝑊𝐿𝑗, 𝑗 ∈ {1, … , 𝑛(𝑆𝑊𝐿)})  at a time. 

 All SW locations support all SW components. 

 Packet size is constant for simulation messages and checkpoint files. 

 Additional software transition paths may be defined to facilitate faster software transitions. 

 All software locations fulfill the computational requirements for the software components. 



 The order of the computational time for executions at each node is considered negligible 

compared to the network time delay. 

2.4.1 Case study 1 – two possible configurations 

In this example, the network layout and the system layout are shown in Figure 1(a) and (b), 

respectively. Given the above assumptions for HW and SW mapping, a set of feasible configurations is 

found as shown in Table I and Figure 1(c). Figure 2(a) shows the reduced network graph which is a 

subgraph of the network graph as in Figure 1(a). There are two possible transitions between the feasible 

configurations – (a) 𝐸1 to 𝐸2 and (b) 𝐸2 to 𝐸1. 𝐸1 to 𝐸2 involves movement of SW2 from node 3 to node 4 

and SW1 from node 4 to node 5, whereas 𝐸2 to 𝐸1 involves movement of SW2 from node 4 to node 3 and 

SW1 from node 5 to node 4. Since edge (4,3) and (5,4) does not exist in 𝐸𝐺𝑁
, the transition via longer 

route could be costly. Hence, we attempt introduce a direct return path to determine the effect of such a 

modification. This case study compares two sub-cases – one with no direct return paths for transition 

(Figure 2(a)) and another with direct return paths for transitions (Figure 2(b)).  Table II lists the various 

time delay distributions assumed for this case. 

 

 

System Layout (Figure 1(b)) 

𝐸𝐺𝑆
 

Feasible configurations (in Figure 1(a)) 
Config 1: 𝐸1 ⊂ 𝐸𝐺𝑁

 Config 2: 𝐸2 ⊂ 𝐸𝐺𝑁
 

(HW1, HW2) or (1,2) (1,2)  (1,2) 
(HW2, SW2) or (2,4) (2,3) (2,4) 
(SW2, SW1) or (4,3) (3,4) (4,5) 
(SW1, HW1) or (3,1) (4,1) (5,1) 

 

 
 

 

Figure 1. (a) Network Configuration: Network Layout for Early Conceptual Prototype (ECP) (b) Actual 

System Configuration (c) Feasible Configurations 

Table I. Determination of Feasible Configurations 

Figure 2. (a) Case without a dedicated return path (also a reduced network) 

(b) Case with dedicated return path 



 

Edges Time delay distribution [msec] Edges Time delay distribution [msec] 

(1, 2) 𝑁(100,3) (4, 5) 𝑁(10,3) 

(2, 3) 𝑁(𝜇1(𝑡),3) (5, 1) 𝑁(103,3) 

(2, 4) 𝑁(𝜇2(𝑡),3) (4, 3) 𝑁(10,3) 

(3, 4) 𝑁(10,3) (5, 4) 𝑁(10,3) 

(4, 1) 𝑁(103,3)   

where 𝑁(𝑎, 𝑏) is the Normal distribution with mean a and variance b; 𝜇1(𝑡) = 0.5𝑡 +
110;  𝜇2(𝑡) = 100 + 4|𝑡 − 10|; 𝑡 = 𝑘Δ𝑡; Δ𝑡 = 0.04 𝑠𝑒𝑐 

Figure 3 shows a sample Monte Carlo trial. Figure 3(a) shows the simulation times for the ECP for 

the respective configurations. Based on the minimum of the simulation times at each time step a 

recommended configuration is shown in Figure 3(b). Figure 4 shows the optimal path determined using 

dynamic programming in each trial. Figure 5 shows the probability of the system (ECP) being optimal in 

the feasible configurations as a function of time. This process helps in making a decision for choosing the 

feasible configurations in planning horizon. 

 

 

Table II. Time Delay Distributions 

Figure 3. One sample Monte Carlo trial - (a) simulation times for ECP, (b) recommended configuration 

Figure 4. Determination of the optimal path in one sample Monte Carlo trial – (a) Case without a 

dedicated return path (b) Case with dedicated return path 



 

 

2.4.2 Case study 2 – three possible configurations 

This case is similar to the previous example. One additional edge is introduced in the network layout 

as shown in Figure 6(a) with the same system layout as in Figure 1(b). Similar to the previous case, a set 

of feasible configurations is found as shown in Figure 6(c). This case study also compares two sub-cases 

– one with no direct return paths for transition (Figure 7(a)) and other with direct return paths for 

transitions (Figure 7(b)). Table III lists the various time delay distributions assumed for this case. 

Figure 8 shows a sample Monte Carlo trial where a desired configuration is found based on the 

minimum of the simulation times at each time step. Figure 9 shows the optimal path determined using 

dynamic programming in each trial and Figure 10 shows the probability of the system (ECP) being 

optimal in the feasible configuration as a function of time. It can be noticed that in the case without the 

return path, it may not be optimal to switch at all because of the long switch times involved. Hence, it is 

recommended to have direct switching paths to have the best optimal configuration at all the times. 

 

Figure 5. Probability of the system (ECP) being in the available configurations as a function of time; 

Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case 

without a dedicated return path (b) Case with dedicated return path 

Figure 6. (a) Network Configuration: Network Layout for Early Conceptual Prototype 

(ECP) (b) Actual System Configuration (c) Feasible Configurations 



 

 

Edges Time delay distribution [msec] Edges Time delay distribution [msec] 

(1, 2) 𝑁(100,3) (4, 3) 𝑁(10,3) 

(2, 3) 𝑁(𝜇1(𝑡),3) (4, 5) 𝑁(10,3) 

(2, 4) 𝑁(𝜇2(𝑡),3) (5, 1) 𝑁(𝜇3(𝑡),3) 

(3, 1) 𝑁(102,3) (5, 4) 𝑁(10,3) 

(3, 4) 𝑁(10,3) (3, 5) 𝑁(10,3) 

(4, 1) 𝑁(103,3) (5, 3) 𝑁(10,3) 

where 𝜇1(𝑡) =  0.5𝑡 + 110; 𝜇2(𝑡) =  100 + 4|𝑡 − 10| ; 𝜇3(𝑡) =  140 − 8|𝑡 − 10|; 
𝑡 = 𝑘Δ𝑡; Δ𝑡 = 0.04 𝑠𝑒𝑐. 

 

 

Figure 7. (a) Case without a dedicated return path (b) Case with dedicated return path 

Table III. Time Delay Distributions 

Figure 8. Sample Monte Carlo trial - (a) simulation times for ECP, (b) recommended configuration 



 

 

 

 

3 CONCLUSIONS  

The algorithm described in this paper is aimed to mitigate the stability issues in a distributed test 

facility caused by significant time delays in a geo-distributed system. The algorithm uses graph theory 

techniques to find feasible configurations for deploying the ECP. It compares the feasible configurations 

and determines the optimal configuration within the planning horizon by using dynamic programming 

Figure 9. Determination of the optimal path in the sample Monte Carlo trial – (a) Case without a 

dedicated return path (b) Case with dedicated return path  

Figure 10. Probability of the system (ECP) being in the available configurations as a function of time; 

Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case without a 

dedicated return path (b) Case with dedicated return path 



while taking into account the switching costs. The Monte Carlo scheme allows for uncertainties in the 

time delays and yields the conditional probability of the system being stable in the respective 

configuration given that the simulation time is well under the critical time delay. This method also 

provides insight into the necessity of having direct paths for software transitions to improve the optimal 

solution. 

Further research will delve more into the issue of computational complexity to determine the 

limitations on the network configurations especially with large and complex networks. The future models 

will also incorporate the software computational time for improved estimation. Efforts in optimizing the 

algorithm and parallelizing the calculations are ongoing. 

4 ACKNOWLEDGMENTS 

We would like to extend our gratitude towards our research group members Michael Pietrykowski 

and Xiaoxu Diao for their support in this work. We would also like to thank our INL collaborator 

Shannon Bragg-Sitton for her support. This work was supported through the INL Laboratory Directed 

Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-

05ID14517.  

5 REFERENCES 

1. Q. Guo and C. Smidts, “A facility framework for distributed application,” IEEE Workshops of Intl 

Conference on Advanced Information Networking and Applications, pp.459-466. IEEE (2011). 

2. K. Subramoniam, M. Maheswaran and M. Toulouse, “Towards a micro-economic model for resource 

allocation in grid computing systems,” Canadian Conference on Electrical and Computer 

Engineering, vol. 2, pp.782-785. IEEE (2002) 

3. A. Billionnet, M.-C. Costa and A. Sutter, "An efficient algorithm for a task allocation problem," 

Journal of the ACM, 39, no. 3, pp.502-518 (1992) 

4. B. P. Gerkey and M. J. Mataric, “Multi-robot task allocation: Analyzing the complexity and 

optimality of key architectures,” IEEE International Conference on Robotics and Automation, vol. 3, 

pp. 3862-3868. IEEE (2003). 

5. M. J. Krieger, J. B. Billeter and L. Keller, “Ant-like task allocation and recruitment in cooperative 

robots,” Nature 406, no. 6799, pp.992-995 (2000). 

6. F. A. Kuipers, S. Yang, S. Trajanovski and A. Orda, “Constrained Maximum Flow in Stochastic 

Networks,” IEEE 22nd Intl Conference on Network Protocols, Raleigh, NC, pp.397-408 (2014) 

7. Ding, Sibo, “Uncertain minimum cost flow problem,” Soft Computing 18.11. pp.2201-2207 (2014). 

8. Boyles, Stephen D., and S. Travis Waller. “A mean‐variance model for the minimum cost flow 

problem with stochastic arc costs.” Networks 56.3. pp. 215-227 (2010). 

9. Bellman, Richard, The theory of dynamic programming, No. RAND-P-550. RAND CORP SANTA 

MONICA CA (1954). 


	INL-CON-17-41438 Cover
	INL-CON-17-41438

