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ABSTRACT

This paper studies the task allocation algorithm for a distributed test facility (DTF), which
aims to assemble geo-distributed cyber (software) and physical (hardware in the loop) components
into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual
prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an
instrumentation interface for carrying out reliability experiments remotely such as fault
propagation analysis and in-situ testing of hardware and software components in a simulated
environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the
UCPS, i.e. a significant time delay in communication that threatens the stability of the ECP and is
not an appropriate representation of the behavior of the UCPS. This can be mitigated by
implementing a task allocation algorithm to find a suitable configuration and assign the software
components to appropriate computational locations, dynamically. This would allow the ECP to
operate more efficiently with less probability of being unstable due to the delays introduced by
geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach
along with Dynamic Programming to identify the optimal network configuration to keep the time
delays to a minimum.
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1 INTRODUCTION

A distributed test facility (DTF) is a facility which aims to assemble geo-distributed cyber (software)
and physical (hardware in the loop) components into a prototype cyber-physical system (CPS). It provides
an instrumentation interface for carrying out reliability experiments remotely such as fault propagation
analysis and in-situ testing of hardware and software components in a simulated environment. Our
research on DTF [1] arises from the need for such a facility towards the conversion of instrumentation
and control systems in the nuclear power industry. Digital instrumentation and control systems are
gradually replacing their analog counterparts in current nuclear power plants and are the new standard in
future designs in both safety-critical and non-safety-critical systems.

The DTF is comprised of hardware (HW) and software (SW) components which are dispersed
physically. The hardware components are immovable physical processes such as thermal hydraulic loops
and associated sensors, filters, actuators, controllers, etc. and software components can be simulations of
physical processes, digital controllers, etc. Unfortunately, the assembly of the geo-distributed software
and hardware components in the DTF introduces artificial delays and poses a big challenge in keeping the
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system stable and running over a network. The geo-distribution in the assembly components and sub-
systems introduces an overhead that is not inherent to the UCPS, i.e. it adds a significant time delay in
communication that could compromise the stability of the ECP and result in an inappropriate
representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation
algorithm to estimate an optimal configuration and assign the software components to appropriate
computational locations in real-time. This would allow the ECP to operate as long as possible i.e. the
probability of the ECP becoming unstable due to the delays (fictitiously introduced by the geo-
distribution) is minimum.

Many of the task allocation problems [2]-[6] address the assignment problem with an objective of
minimizing the net cost of resources used. The problem of task allocation in the distributed test facility is
a network optimization problem with an objective to communicate (transfer data packets) in a geo-
distributed network in the least possible time such that the system under test, i.e. ECP, remains stable.
Most of the network optimization problems are formulated as minimum cost or maximum flow problems.
References [7] and [8] discuss optimization algorithms where the cost of each arc in a multi-source,
multi-sink network is a stochastic variable. These algorithms only address the problem of finding an
optimal path through the set of connected nodes. However the DTF poses a challenge to the movement of
the software components in the network as the route in the geo-distributed network (e.g. WAN) is already
nearly optimal.

This paper presents a novel approach of solving the network optimization problem with uncertainties
in arc/edge cost (time delay). This simple algorithm, coupled with its parallelization capability, allows it
to be implemented in real-time.

2 TASKALLOCATION

The task allocation algorithm described in this paper estimates an appropriate configuration of the
ECP such that each software component is assigned to one of the available computational facilities while
taking into account the amount of data being transferred in the network (flow variable), the time (cost)
taken for transition of a software component, computational resources (cost) and the uncertainty in the
delay time (cost) in the network. A software component can be installed at several locations depending on
the computational requirements and additional legal restrictions. A computational facility can have more
than one software component installed. A software component can be invoked at a particular location by
sending a checkpoint file to that location.

The section is divided further into four subsections. Section 2.1 lists some definitions associated with
the graph theory, which will be extensively used in the algorithm. Sections 2.2 and 2.3 describe the
method in detail and then finally, in Section 2.4, two case studies are presented.

2.1 Definitions

Graph: A graph is a collection of vertices and edges which connect the vertices. It is represented as
G(V,E) where V is a set of vertices or nodes and E is a set of edges or arcs. In an undirected graph, an
edge is an unordered pair of vertices whereas in a directed graph, an edge is an ordered pair of vertices. A
graph can also be a weighted graph where W(EGN) denote the edge weights (also known as the cost of
traversing the edge).

Subgraph: A subgraph of a graph G is another graph formed from a subset of the vertices and edges
of G. The vertex subset must include all endpoints of the edge subset, but may also include additional
vertices. A spanning subgraph is one that includes all vertices of the graph; an induced subgraph is one
that includes all the edges whose endpoints belong to the vertex subset.



Graph Isomorphism: An isomorphism of graphs G (V;, E;) and H(Vy, Ey) is a bijection between the
vertex sets of G and H, f:V; — Vy such that any two vertices u and v of G are adjacent (i.e. connected by
an edge) in G if and only if f(u) and f(v) are adjacentin H, i.e. (u,v) € E; & (f(u),f(v)) € Ey.

Subgraph Isomorphism: For graphs G (V;, E;) and H(Vy, Ey), a subgraph isomorphism from G to H
is a function f:V; — Vg such that if (u,v) € E; = (f(u),f(v)) € Ey.

2.2 Principle

The principle of task allocation is to find an optimal configuration of SW component assignment to
the SW locations such that the time taken for the exchange of information between the hardware nodes
(i.e. locations where physical processes exist) and the computational facilities (i.e. where the software
components are executed) is minimal. This depends on the predicted values of the time delay in each
network arc which is a stochastic variable modeled using time series analysis. The optimal configuration
has an associated probability of having time delays below the critical time delay. The critical time delay is
the time delay beyond which the system becomes unstable. This configuration is subject to the constraint
that there are enough computational resources for all the software components assigned to a particular
location. The next step is to check whether the software can be moved (transfer the checkpoint file) to a
new location in a time lower than the critical time delay. This optimization approach facilitates estimation
of the optimal software assignment, dynamically.

2.3 Method

Before the task allocation is performed, the first stage is to define the system and its constraints. The
following is the list of steps in this stage.

e Network layout: A directed graph Gy (V,E) of hardware locations and software locations as
vertices and their network connectivity as edges is defined.

e System layout: The hardware (HW) and software (SW) components for the UCPS along with
their communication link (the direction of the data between any two specified HW or SW
components) is identified. A directed graph Gs(V, E) of the UCPS with hardware and software
components as vertices and their communication link as edges is defined.

e Hardware map: As each HW component is associated with only one HW location, a one-to-one
map of component-location associations is defined i.e. fyw: Vo uw = Vey,aw

e Software constraints maps: SW being a virtual component can be executed at any SW location
which meets the requirements such as licensing, computational resources and memory. A one-to-
many map of component-location associations is defined. foy: Vi sw = Vi sw

For task allocation, the following are the steps in this second stage.

o Feasible network configuration: Based on f,, and fsy,, a list of permutations is constructed. A
set Spyc Of the permutations that are subgraph isomorphic to the network layout graph G, are
the feasible network configurations for implementing the UCPS.

o Network reduction: Some of the vertices and edges are never a part of any of the feasible
network configuration subgraphs. Hence those edges can be dropped out to reduce the
computational load in further steps.

o Direct path definition: Some vertices may have a limited direct connectivity for it to be qualified
for inclusion in the network layout. This affects the performance during transitions between the
feasible configurations. So, in this step, a set of additional network edges E, qgirec: 1S defined
for the SW locations (vertices) which are not connected in the reduced network.



Transition time cost: A list of all edges associated with each SW transition from i to j where i #
J; i,J € Spnc feasible configuration is built. Transition time cost is defined as Cy;(W (Eg),)),
where W (Eg, ) is the set of edge weights.

Definition of one simulation iteration cost: In the ECP deployment, for each time step of the
simulation, the data needs to be moved from one vertex to another. Based on how the simulation
iteration is defined, a cost function based on the time delays of the edges involved is defined. Let
this cost be defined as C;; (W (Eg,,)). For example, when the i" feasible configuration is a single
cyclic loop, the cost function can be defined as sum of the all the time delays due to network
communication on each edge and computational time on each node. This can also be interpreted
as the cost to stay in the i"" feasible configuration.

Monte Carlo Trial: The following steps are performed for each random trial.

O

Time delay sampling: Based on the time series model (obtained a priori to the task
allocation), randomized network time delay samples are generated. These samples form the
set W(Eg,)-

Cost matrix: A cost matrix is generated for each time step, k. C (W (Eg,,)) is the cost for
staying in the same feasible configuration and Cl-’j-(W(EGN)). is the cost for transition time
to switch from configuration i to j.

Cost function: It is the actual cost for a switch to happen. It is defined as the sum of the cost
to stay in the feasible configuration and the cost of the switch, i.e. Ci’j- = Ci’g(W(EGN)) +

(W (Egy))-

Dynamic Programming (DP): In this step Bellman’s principle [9] is used for dynamic
programming. The equation below is a modified Bellman’s optimality equation which
accounts simulation time at each time step, Cj’j- (+), and the switching time, Ci’j- .

CEO +V(k+1) ifi =j

K X ~, where V() is the value function.
Ci;()+ () +Vi(k+1) otherwise

Vi(k) = mjn{

j
Final path: The output of DP is the optimal policy consisting of feasible configuration j as a
function on time t while accounting the transitions. This optimal policy will result in the
least network time overhead for all the time steps in planning horizon.

The result of this task allocation problem is represented using a probability plot of the system being
stable in a particular configuration.

2.4 Case Study

We present two case studies to illustrate the method described above. These are the assumptions for
the following case studies.

Only 1 SW component (SW;,i € {1,...,n(SW)}) can be executed at only 1 SW location
(SWLj,j€{1,..,n(SWL)}) atatime.

All SW locations support all SW components.

Packet size is constant for simulation messages and checkpoint files.

Additional software transition paths may be defined to facilitate faster software transitions.

All software locations fulfill the computational requirements for the software components.



e The order of the computational time for executions at each node is considered negligible
compared to the network time delay.

2.4.1 Case study 1 —two possible configurations

In this example, the network layout and the system layout are shown in Figure 1(a) and (b),
respectively. Given the above assumptions for HW and SW mapping, a set of feasible configurations is
found as shown in Table I and Figure 1(c). Figure 2(a) shows the reduced network graph which is a
subgraph of the network graph as in Figure 1(a). There are two possible transitions between the feasible
configurations — (a) E; to E, and (b) E, to E;. E; to E, involves movement of SW2 from node 3 to node 4
and SW1 from node 4 to node 5, whereas E, to E; involves movement of SW2 from node 4 to node 3 and
SW1 from node 5 to node 4. Since edge (4,3) and (5,4) does not exist in Eg, , the transition via longer
route could be costly. Hence, we attempt introduce a direct return path to determine the effect of such a
modification. This case study compares two sub-cases — one with no direct return paths for transition
(Figure 2(a)) and another with direct return paths for transitions (Figure 2(b)). Table Il lists the various
time delay distributions assumed for this case.

HwW1 HW?2 HW1 HW2

© @ @ @
4 > — Configl
--- Config2
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@ <
S\C,\,?l SWL3 ©) ®
SW1 SW2
®

swiL2
(a) (®

Figure 1. (a) Network Configuration: Network Layout for Early Conceptual Prototype (ECP) (b) Actual
System Configuration (c) Feasible Configurations

Table 1. Determination of Feasible Configurations

System Layout (Figure 1(b)) Feasible configurations (in Figure 1(a))
Eg, Config 1. E; c E;, | Config2: E, C Ej,,
(HW1, HW2) or (1,2) (1,2) (1,2
(HW2, SW2) or (2,4) (2,3) (2,4)
(SW2, SW1) or (4,3) (3,4) (4,5)
(SW1, HW1) or (3,1) (4,1 (5,1)

— Configl
- Config 2
------- Return path

Figure 2. (a) Case without a dedicated return path (also a reduced network)
(b) Case with dedicated return path



Table Il. Time Delay Distributions

Edges | Time delay distribution [msec] | Edges | Time delay distribution [msec]
(1, 2) N(100,3) (4, 5) N(10,3)

(2,3) N(p1(2),3) (5.1) N(103,3)

(2,4) N (p2(t),3) (4,3) N(10,3)

(3, 4) N(10,3) (5, 4) N(10,3)

(4, 1) N(103,3)
where N (a, b) is the Normal distribution with mean a and variance b; u,(t) = 0.5t +
110; u,(t) =100 + 4|t — 10]; t = kAt; At = 0.04 sec

Figure 3 shows a sample Monte Carlo trial. Figure 3(a) shows the simulation times for the ECP for
the respective configurations. Based on the minimum of the simulation times at each time step a
recommended configuration is shown in Figure 3(b). Figure 4 shows the optimal path determined using
dynamic programming in each trial. Figure 5 shows the probability of the system (ECP) being optimal in
the feasible configurations as a function of time. This process helps in making a decision for choosing the
feasible configurations in planning horizon.
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Figure 3. One sample Monte Carlo trial - (a) simulation times for ECP, (b) recommended configuration
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Figure 4. Determination of the optimal path in one sample Monte Carlo trial — (a) Case without a

dedicated return path (b) Case with dedicated return path



(a) Probability of Config ID with time (b) Probability of Config ID with time
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Figure 5. Probability of the system (ECP) being in the available configurations as a function of time;
Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case
without a dedicated return path (b) Case with dedicated return path

2.4.2 Case study 2 — three possible configurations

This case is similar to the previous example. One additional edge is introduced in the network layout
as shown in Figure 6(a) with the same system layout as in Figure 1(b). Similar to the previous case, a set
of feasible configurations is found as shown in Figure 6(c). This case study also compares two sub-cases
— one with no direct return paths for transition (Figure 7(a)) and other with direct return paths for
transitions (Figure 7(b)). Table 11 lists the various time delay distributions assumed for this case.

Figure 8 shows a sample Monte Carlo trial where a desired configuration is found based on the
minimum of the simulation times at each time step. Figure 9 shows the optimal path determined using
dynamic programming in each trial and Figure 10 shows the probability of the system (ECP) being
optimal in the feasible configuration as a function of time. It can be noticed that in the case without the
return path, it may not be optimal to switch at all because of the long switch times involved. Hence, it is
recommended to have direct switching paths to have the best optimal configuration at all the times.

HW1 HW?2 HW1 HW2

HW1 HW?2
® @ o) @ © @
— o — Path1l
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1 ‘ 3
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SWL2 SWL2
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Figure 6. (a) Network Configuration: Network Layout for Early Conceptual Prototype
(ECP) (b) Actual System Configuration (c) Feasible Configurations
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Figure 7. (a) Case without a dedicated return path (b) Case with dedicated return path
Table I11. Time Delay Distributions

Edges | Time delay distribution [msec] | Edges | Time delay distribution [msec]
(1,2) N(100,3) (4,3) N(10,3)

(2,3) N (1 (D),3) (4,5) N(10,3)

(2,4) N (p2(t),3) (5. 1) N (u3(t),3)

(3,1) N(102,3) (5, 4) N(10,3)

(3, 4) N(10,3) (3,5) N(10,3)

(4,1) N(103,3) (5, 3) N(10,3)

where u,(t) = 0.5t + 110; u,(t) = 100 + 4|t — 10| ; u3(t) = 140 — 8|t — 10|;
t = kAt; At = 0.04 sec.
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(a) Recommended Config ID with time (a) Recommended Config ID with time
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Figure 9. Determination of the optimal path in the sample Monte Carlo trial — (a) Case without a
dedicated return path (b) Case with dedicated return path
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Figure 10. Probability of the system (ECP) being in the available configurations as a function of time;
Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case without a
dedicated return path (b) Case with dedicated return path

3 CONCLUSIONS

The algorithm described in this paper is aimed to mitigate the stability issues in a distributed test
facility caused by significant time delays in a geo-distributed system. The algorithm uses graph theory
techniques to find feasible configurations for deploying the ECP. It compares the feasible configurations
and determines the optimal configuration within the planning horizon by using dynamic programming



while taking into account the switching costs. The Monte Carlo scheme allows for uncertainties in the
time delays and vyields the conditional probability of the system being stable in the respective
configuration given that the simulation time is well under the critical time delay. This method also
provides insight into the necessity of having direct paths for software transitions to improve the optimal
solution.

Further research will delve more into the issue of computational complexity to determine the
limitations on the network configurations especially with large and complex networks. The future models
will also incorporate the software computational time for improved estimation. Efforts in optimizing the
algorithm and parallelizing the calculations are ongoing.
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