

INL/CON-17-41438

PREPRINT

TASK ALLOCATION IN
GEO-DISTRIBUTATED
CYBER-PHYSICAL
SYSTEMS
10th International Topical Meeting on
Nuclear Plant Instrumentation, Control and
Human Machine Interface Technologies
(NPIC-HMIT)

Rachit Aggarwal and Carol Smidts

March 2017

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

TASK ALLOCATION IN GEO-DISTRIBUTED CYBER-PHYSICAL

SYSTEMS

Rachit Aggarwal and Carol Smidts

Department of Mechanical and Aerospace Engineering

The Ohio State University

201 W 19th Ave, Columbus, OH – 43210

aggarwal.112@osu.edu; smidts.1@osu.edu

ABSTRACT

This paper studies the task allocation algorithm for a distributed test facility (DTF), which

aims to assemble geo-distributed cyber (software) and physical (hardware in the loop) components

into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual

prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an

instrumentation interface for carrying out reliability experiments remotely such as fault

propagation analysis and in-situ testing of hardware and software components in a simulated

environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the

UCPS, i.e. a significant time delay in communication that threatens the stability of the ECP and is

not an appropriate representation of the behavior of the UCPS. This can be mitigated by

implementing a task allocation algorithm to find a suitable configuration and assign the software

components to appropriate computational locations, dynamically. This would allow the ECP to

operate more efficiently with less probability of being unstable due to the delays introduced by

geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach

along with Dynamic Programming to identify the optimal network configuration to keep the time

delays to a minimum.

Key Words: task allocation, cyber-physical systems, optimization, dynamic programming

1 INTRODUCTION

A distributed test facility (DTF) is a facility which aims to assemble geo-distributed cyber (software)

and physical (hardware in the loop) components into a prototype cyber-physical system (CPS). It provides

an instrumentation interface for carrying out reliability experiments remotely such as fault propagation

analysis and in-situ testing of hardware and software components in a simulated environment. Our

research on DTF [1] arises from the need for such a facility towards the conversion of instrumentation

and control systems in the nuclear power industry. Digital instrumentation and control systems are

gradually replacing their analog counterparts in current nuclear power plants and are the new standard in

future designs in both safety-critical and non-safety-critical systems.

The DTF is comprised of hardware (HW) and software (SW) components which are dispersed

physically. The hardware components are immovable physical processes such as thermal hydraulic loops

and associated sensors, filters, actuators, controllers, etc. and software components can be simulations of

physical processes, digital controllers, etc. Unfortunately, the assembly of the geo-distributed software

and hardware components in the DTF introduces artificial delays and poses a big challenge in keeping the

 Rachit Aggarwal is a Master of Science student at the Department of Mechanical and Aerospace Engineering at The Ohio State

University. His research interests are controls and optimization of large-scale interconnected systems.

Carol. S. Smidts is the a Director of Reliability and Risk Laboratory and a Professor in Department of Mechanical and

Aerospace Engineering at The Ohio State University.

system stable and running over a network. The geo-distribution in the assembly components and sub-

systems introduces an overhead that is not inherent to the UCPS, i.e. it adds a significant time delay in

communication that could compromise the stability of the ECP and result in an inappropriate

representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation

algorithm to estimate an optimal configuration and assign the software components to appropriate

computational locations in real-time. This would allow the ECP to operate as long as possible i.e. the

probability of the ECP becoming unstable due to the delays (fictitiously introduced by the geo-

distribution) is minimum.

Many of the task allocation problems [2]-[6] address the assignment problem with an objective of

minimizing the net cost of resources used. The problem of task allocation in the distributed test facility is

a network optimization problem with an objective to communicate (transfer data packets) in a geo-

distributed network in the least possible time such that the system under test, i.e. ECP, remains stable.

Most of the network optimization problems are formulated as minimum cost or maximum flow problems.

References [7] and [8] discuss optimization algorithms where the cost of each arc in a multi-source,

multi-sink network is a stochastic variable. These algorithms only address the problem of finding an

optimal path through the set of connected nodes. However the DTF poses a challenge to the movement of

the software components in the network as the route in the geo-distributed network (e.g. WAN) is already

nearly optimal.

This paper presents a novel approach of solving the network optimization problem with uncertainties

in arc/edge cost (time delay). This simple algorithm, coupled with its parallelization capability, allows it

to be implemented in real-time.

2 TASK ALLOCATION

The task allocation algorithm described in this paper estimates an appropriate configuration of the

ECP such that each software component is assigned to one of the available computational facilities while

taking into account the amount of data being transferred in the network (flow variable), the time (cost)

taken for transition of a software component, computational resources (cost) and the uncertainty in the

delay time (cost) in the network. A software component can be installed at several locations depending on

the computational requirements and additional legal restrictions. A computational facility can have more

than one software component installed. A software component can be invoked at a particular location by

sending a checkpoint file to that location.

The section is divided further into four subsections. Section 2.1 lists some definitions associated with

the graph theory, which will be extensively used in the algorithm. Sections 2.2 and 2.3 describe the

method in detail and then finally, in Section 2.4, two case studies are presented.

2.1 Definitions

Graph: A graph is a collection of vertices and edges which connect the vertices. It is represented as

𝐺(𝑉, 𝐸) where 𝑉 is a set of vertices or nodes and 𝐸 is a set of edges or arcs. In an undirected graph, an

edge is an unordered pair of vertices whereas in a directed graph, an edge is an ordered pair of vertices. A

graph can also be a weighted graph where 𝑊(𝐸𝐺𝑁
) denote the edge weights (also known as the cost of

traversing the edge).

Subgraph: A subgraph of a graph 𝐺 is another graph formed from a subset of the vertices and edges

of 𝐺. The vertex subset must include all endpoints of the edge subset, but may also include additional

vertices. A spanning subgraph is one that includes all vertices of the graph; an induced subgraph is one

that includes all the edges whose endpoints belong to the vertex subset.

Graph Isomorphism: An isomorphism of graphs 𝐺(𝑉𝐺 , 𝐸𝐺) and 𝐻(𝑉𝐻 , 𝐸𝐻) is a bijection between the

vertex sets of 𝐺 and 𝐻, 𝑓: 𝑉𝐺 → 𝑉H such that any two vertices 𝑢 and 𝑣 of 𝐺 are adjacent (i.e. connected by

an edge) in 𝐺 if and only if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐻, i.e. (𝑢, 𝑣) ∈ 𝐸𝐺 ⇔ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐻.

Subgraph Isomorphism: For graphs 𝐺(𝑉𝐺 , 𝐸𝐺) and 𝐻(𝑉𝐻 , 𝐸𝐻), a subgraph isomorphism from 𝐺 to 𝐻

is a function 𝑓: 𝑉𝐺 → 𝑉H such that if (𝑢, 𝑣) ∈ 𝐸𝐺 ⇒ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐻.

2.2 Principle

The principle of task allocation is to find an optimal configuration of SW component assignment to

the SW locations such that the time taken for the exchange of information between the hardware nodes

(i.e. locations where physical processes exist) and the computational facilities (i.e. where the software

components are executed) is minimal. This depends on the predicted values of the time delay in each

network arc which is a stochastic variable modeled using time series analysis. The optimal configuration

has an associated probability of having time delays below the critical time delay. The critical time delay is

the time delay beyond which the system becomes unstable. This configuration is subject to the constraint

that there are enough computational resources for all the software components assigned to a particular

location. The next step is to check whether the software can be moved (transfer the checkpoint file) to a

new location in a time lower than the critical time delay. This optimization approach facilitates estimation

of the optimal software assignment, dynamically.

2.3 Method

Before the task allocation is performed, the first stage is to define the system and its constraints. The

following is the list of steps in this stage.

 Network layout: A directed graph 𝐺𝑁(𝑉, 𝐸) of hardware locations and software locations as

vertices and their network connectivity as edges is defined.

 System layout: The hardware (HW) and software (SW) components for the UCPS along with

their communication link (the direction of the data between any two specified HW or SW

components) is identified. A directed graph 𝐺𝑆(𝑉, 𝐸) of the UCPS with hardware and software

components as vertices and their communication link as edges is defined.

 Hardware map: As each HW component is associated with only one HW location, a one-to-one

map of component-location associations is defined i.e. 𝑓𝐻𝑊: 𝑉𝐺𝑆,𝐻𝑊 → 𝑉𝐺𝑁,𝐻𝑊

 Software constraints maps: SW being a virtual component can be executed at any SW location

which meets the requirements such as licensing, computational resources and memory. A one-to-

many map of component-location associations is defined. 𝑓𝑆𝑊: 𝑉𝐺𝑆 ,𝑆𝑊 → 𝑉𝐺𝑁,𝑆𝑊

For task allocation, the following are the steps in this second stage.

 Feasible network configuration: Based on 𝑓𝐻𝑊 and 𝑓𝑆𝑊, a list of permutations is constructed. A

set 𝑆𝐹𝑁𝐶 of the permutations that are subgraph isomorphic to the network layout graph 𝐺𝑁 are

the feasible network configurations for implementing the UCPS.

 Network reduction: Some of the vertices and edges are never a part of any of the feasible

network configuration subgraphs. Hence those edges can be dropped out to reduce the

computational load in further steps.

 Direct path definition: Some vertices may have a limited direct connectivity for it to be qualified

for inclusion in the network layout. This affects the performance during transitions between the

feasible configurations. So, in this step, a set of additional network edges 𝐸𝐺𝑁,𝑑𝑖𝑟𝑒𝑐𝑡 is defined

for the SW locations (vertices) which are not connected in the reduced network.

 Transition time cost: A list of all edges associated with each SW transition from 𝑖 𝑡𝑜 𝑗 where 𝑖 ≠
𝑗; 𝑖, 𝑗 ∈ 𝑆𝐹𝑁𝐶 feasible configuration is built. Transition time cost is defined as 𝐶𝑖𝑖(𝑊(𝐸𝐺𝑁

)),

where 𝑊(𝐸𝐺𝑁
) is the set of edge weights.

 Definition of one simulation iteration cost: In the ECP deployment, for each time step of the

simulation, the data needs to be moved from one vertex to another. Based on how the simulation

iteration is defined, a cost function based on the time delays of the edges involved is defined. Let

this cost be defined as 𝐶𝑖𝑖(𝑊(𝐸𝐺𝑁
)). For example, when the ith feasible configuration is a single

cyclic loop, the cost function can be defined as sum of the all the time delays due to network

communication on each edge and computational time on each node. This can also be interpreted

as the cost to stay in the ith feasible configuration.

 Monte Carlo Trial: The following steps are performed for each random trial.

o Time delay sampling: Based on the time series model (obtained a priori to the task

allocation), randomized network time delay samples are generated. These samples form the

set 𝑊(𝐸𝐺𝑁
).

o Cost matrix: A cost matrix is generated for each time step, k. 𝐶𝑖𝑖
𝑘(𝑊(𝐸𝐺𝑁

)) is the cost for

staying in the same feasible configuration and 𝐶𝑖𝑗
𝑘 (𝑊(𝐸𝐺𝑁

)). is the cost for transition time

to switch from configuration 𝑖 𝑡𝑜 𝑗.

o Cost function: It is the actual cost for a switch to happen. It is defined as the sum of the cost

to stay in the feasible configuration and the cost of the switch, i.e. 𝐶𝑖𝑗
𝑘 = 𝐶𝑖𝑖

𝑘(𝑊(𝐸𝐺𝑁
)) +

𝐶𝑖𝑗
𝑘 (𝑊(𝐸𝐺𝑁

)).

o Dynamic Programming (DP): In this step Bellman’s principle [9] is used for dynamic

programming. The equation below is a modified Bellman’s optimality equation which

accounts simulation time at each time step, 𝐶𝑗𝑗
𝑘 (∙), and the switching time, 𝐶𝑖𝑗

𝑘 (∙).

𝑉𝑖(𝑘) = min
𝑗

{
𝐶𝑖𝑗

𝑘 (∙) + 𝑉𝑗(𝑘 + 1) if 𝑖 = 𝑗

𝐶𝑖𝑗
𝑘 (∙) + 𝐶𝑗𝑗

𝑘 (∙) + 𝑉𝑗(𝑘 + 1) otherwise
, where 𝑉(∙) is the value function.

o Final path: The output of DP is the optimal policy consisting of feasible configuration j as a

function on time t while accounting the transitions. This optimal policy will result in the

least network time overhead for all the time steps in planning horizon.

The result of this task allocation problem is represented using a probability plot of the system being

stable in a particular configuration.

2.4 Case Study

We present two case studies to illustrate the method described above. These are the assumptions for

the following case studies.

 Only 1 SW component (𝑆𝑊𝑖 , 𝑖 ∈ {1, … , 𝑛(𝑆𝑊)}) can be executed at only 1 SW location

(𝑆𝑊𝐿𝑗, 𝑗 ∈ {1, … , 𝑛(𝑆𝑊𝐿)}) at a time.

 All SW locations support all SW components.

 Packet size is constant for simulation messages and checkpoint files.

 Additional software transition paths may be defined to facilitate faster software transitions.

 All software locations fulfill the computational requirements for the software components.

 The order of the computational time for executions at each node is considered negligible

compared to the network time delay.

2.4.1 Case study 1 – two possible configurations

In this example, the network layout and the system layout are shown in Figure 1(a) and (b),

respectively. Given the above assumptions for HW and SW mapping, a set of feasible configurations is

found as shown in Table I and Figure 1(c). Figure 2(a) shows the reduced network graph which is a

subgraph of the network graph as in Figure 1(a). There are two possible transitions between the feasible

configurations – (a) 𝐸1 to 𝐸2 and (b) 𝐸2 to 𝐸1. 𝐸1 to 𝐸2 involves movement of SW2 from node 3 to node 4

and SW1 from node 4 to node 5, whereas 𝐸2 to 𝐸1 involves movement of SW2 from node 4 to node 3 and

SW1 from node 5 to node 4. Since edge (4,3) and (5,4) does not exist in 𝐸𝐺𝑁
, the transition via longer

route could be costly. Hence, we attempt introduce a direct return path to determine the effect of such a

modification. This case study compares two sub-cases – one with no direct return paths for transition

(Figure 2(a)) and another with direct return paths for transitions (Figure 2(b)). Table II lists the various

time delay distributions assumed for this case.

System Layout (Figure 1(b))

𝐸𝐺𝑆

Feasible configurations (in Figure 1(a))
Config 1: 𝐸1 ⊂ 𝐸𝐺𝑁

 Config 2: 𝐸2 ⊂ 𝐸𝐺𝑁

(HW1, HW2) or (1,2) (1,2) (1,2)
(HW2, SW2) or (2,4) (2,3) (2,4)
(SW2, SW1) or (4,3) (3,4) (4,5)
(SW1, HW1) or (3,1) (4,1) (5,1)

Figure 1. (a) Network Configuration: Network Layout for Early Conceptual Prototype (ECP) (b) Actual

System Configuration (c) Feasible Configurations

Table I. Determination of Feasible Configurations

Figure 2. (a) Case without a dedicated return path (also a reduced network)

(b) Case with dedicated return path

Edges Time delay distribution [msec] Edges Time delay distribution [msec]

(1, 2) 𝑁(100,3) (4, 5) 𝑁(10,3)

(2, 3) 𝑁(𝜇1(𝑡),3) (5, 1) 𝑁(103,3)

(2, 4) 𝑁(𝜇2(𝑡),3) (4, 3) 𝑁(10,3)

(3, 4) 𝑁(10,3) (5, 4) 𝑁(10,3)

(4, 1) 𝑁(103,3)

where 𝑁(𝑎, 𝑏) is the Normal distribution with mean a and variance b; 𝜇1(𝑡) = 0.5𝑡 +
110; 𝜇2(𝑡) = 100 + 4|𝑡 − 10|; 𝑡 = 𝑘Δ𝑡; Δ𝑡 = 0.04 𝑠𝑒𝑐

Figure 3 shows a sample Monte Carlo trial. Figure 3(a) shows the simulation times for the ECP for

the respective configurations. Based on the minimum of the simulation times at each time step a

recommended configuration is shown in Figure 3(b). Figure 4 shows the optimal path determined using

dynamic programming in each trial. Figure 5 shows the probability of the system (ECP) being optimal in

the feasible configurations as a function of time. This process helps in making a decision for choosing the

feasible configurations in planning horizon.

Table II. Time Delay Distributions

Figure 3. One sample Monte Carlo trial - (a) simulation times for ECP, (b) recommended configuration

Figure 4. Determination of the optimal path in one sample Monte Carlo trial – (a) Case without a

dedicated return path (b) Case with dedicated return path

2.4.2 Case study 2 – three possible configurations

This case is similar to the previous example. One additional edge is introduced in the network layout

as shown in Figure 6(a) with the same system layout as in Figure 1(b). Similar to the previous case, a set

of feasible configurations is found as shown in Figure 6(c). This case study also compares two sub-cases

– one with no direct return paths for transition (Figure 7(a)) and other with direct return paths for

transitions (Figure 7(b)). Table III lists the various time delay distributions assumed for this case.

Figure 8 shows a sample Monte Carlo trial where a desired configuration is found based on the

minimum of the simulation times at each time step. Figure 9 shows the optimal path determined using

dynamic programming in each trial and Figure 10 shows the probability of the system (ECP) being

optimal in the feasible configuration as a function of time. It can be noticed that in the case without the

return path, it may not be optimal to switch at all because of the long switch times involved. Hence, it is

recommended to have direct switching paths to have the best optimal configuration at all the times.

Figure 5. Probability of the system (ECP) being in the available configurations as a function of time;

Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case

without a dedicated return path (b) Case with dedicated return path

Figure 6. (a) Network Configuration: Network Layout for Early Conceptual Prototype

(ECP) (b) Actual System Configuration (c) Feasible Configurations

Edges Time delay distribution [msec] Edges Time delay distribution [msec]

(1, 2) 𝑁(100,3) (4, 3) 𝑁(10,3)

(2, 3) 𝑁(𝜇1(𝑡),3) (4, 5) 𝑁(10,3)

(2, 4) 𝑁(𝜇2(𝑡),3) (5, 1) 𝑁(𝜇3(𝑡),3)

(3, 1) 𝑁(102,3) (5, 4) 𝑁(10,3)

(3, 4) 𝑁(10,3) (3, 5) 𝑁(10,3)

(4, 1) 𝑁(103,3) (5, 3) 𝑁(10,3)

where 𝜇1(𝑡) = 0.5𝑡 + 110; 𝜇2(𝑡) = 100 + 4|𝑡 − 10| ; 𝜇3(𝑡) = 140 − 8|𝑡 − 10|;
𝑡 = 𝑘Δ𝑡; Δ𝑡 = 0.04 𝑠𝑒𝑐.

Figure 7. (a) Case without a dedicated return path (b) Case with dedicated return path

Table III. Time Delay Distributions

Figure 8. Sample Monte Carlo trial - (a) simulation times for ECP, (b) recommended configuration

3 CONCLUSIONS

The algorithm described in this paper is aimed to mitigate the stability issues in a distributed test

facility caused by significant time delays in a geo-distributed system. The algorithm uses graph theory

techniques to find feasible configurations for deploying the ECP. It compares the feasible configurations

and determines the optimal configuration within the planning horizon by using dynamic programming

Figure 9. Determination of the optimal path in the sample Monte Carlo trial – (a) Case without a

dedicated return path (b) Case with dedicated return path

Figure 10. Probability of the system (ECP) being in the available configurations as a function of time;

Lower plot shows the density of the Monte Carlo particles in a particular configuration - (a) Case without a

dedicated return path (b) Case with dedicated return path

while taking into account the switching costs. The Monte Carlo scheme allows for uncertainties in the

time delays and yields the conditional probability of the system being stable in the respective

configuration given that the simulation time is well under the critical time delay. This method also

provides insight into the necessity of having direct paths for software transitions to improve the optimal

solution.

Further research will delve more into the issue of computational complexity to determine the

limitations on the network configurations especially with large and complex networks. The future models

will also incorporate the software computational time for improved estimation. Efforts in optimizing the

algorithm and parallelizing the calculations are ongoing.

4 ACKNOWLEDGMENTS

We would like to extend our gratitude towards our research group members Michael Pietrykowski

and Xiaoxu Diao for their support in this work. We would also like to thank our INL collaborator

Shannon Bragg-Sitton for her support. This work was supported through the INL Laboratory Directed

Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-

05ID14517.

5 REFERENCES

1. Q. Guo and C. Smidts, “A facility framework for distributed application,” IEEE Workshops of Intl

Conference on Advanced Information Networking and Applications, pp.459-466. IEEE (2011).

2. K. Subramoniam, M. Maheswaran and M. Toulouse, “Towards a micro-economic model for resource

allocation in grid computing systems,” Canadian Conference on Electrical and Computer

Engineering, vol. 2, pp.782-785. IEEE (2002)

3. A. Billionnet, M.-C. Costa and A. Sutter, "An efficient algorithm for a task allocation problem,"

Journal of the ACM, 39, no. 3, pp.502-518 (1992)

4. B. P. Gerkey and M. J. Mataric, “Multi-robot task allocation: Analyzing the complexity and

optimality of key architectures,” IEEE International Conference on Robotics and Automation, vol. 3,

pp. 3862-3868. IEEE (2003).

5. M. J. Krieger, J. B. Billeter and L. Keller, “Ant-like task allocation and recruitment in cooperative

robots,” Nature 406, no. 6799, pp.992-995 (2000).

6. F. A. Kuipers, S. Yang, S. Trajanovski and A. Orda, “Constrained Maximum Flow in Stochastic

Networks,” IEEE 22nd Intl Conference on Network Protocols, Raleigh, NC, pp.397-408 (2014)

7. Ding, Sibo, “Uncertain minimum cost flow problem,” Soft Computing 18.11. pp.2201-2207 (2014).

8. Boyles, Stephen D., and S. Travis Waller. “A mean‐variance model for the minimum cost flow

problem with stochastic arc costs.” Networks 56.3. pp. 215-227 (2010).

9. Bellman, Richard, The theory of dynamic programming, No. RAND-P-550. RAND CORP SANTA

MONICA CA (1954).

	INL-CON-17-41438 Cover
	INL-CON-17-41438

