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ABSTRACT

The current trend towards diversity in nodal parallel computer ar-
chitectures is seen in recent and proposed machines based upon
multicore CPUs, GPUs and the Intel Xeon Phi as well as a number
of emerging designs with large core counts per node. A class of ap-
proaches for enabling scalability of complex applications on such
a broad range of architectures is based upon Asynchronous Many
Task software architectures such as that in the Uintah computa-
tional framework used for the parallel solution of solid and fluid
mechanics problems. Uintah is structured with an application layer
with its own programming model and a separate runtime system.
While Uintah scales well today, it is necessary to address nodal
performance portability in order to continue to do so on future ar-
chitectures. The principal contribution of this work is to show how
both Uintah’s runtime system and its programming model may be
incrementally modified to use the Kokkos performance portability
layer. Results from experiments shows that in the parts of Uintah
that were refactored to conform to the Kokkos programming model,
performance improved by more than a factor of two.
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1. INTRODUCTION

A current trend in large scale computing is towards larger core
counts per compute node. Whether this is through the use of GPUs,
Xeon Phis or through standard/lightweight cores. One software
approach that helps in the scaling of complex applications codes
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on such diverse architectures is based upon an Asynchronous Many
Task (AMT) approach in which tasks are executed as soon as their
dependencies are met. A number of such approaches Charm++,
Legion and Uintah are compared by [2], but there are many other
AMT codes under development.

Uintah enforces separation between the applications’ tasks and
the runtime system which executes them. This allows applications
developers to focus on writing tasks for discretizing the partial dif-
ferential equations of solid and fluid mechanics on a local set of
block-structured, adaptive mesh patches without needing to spec-
ify how those tasks are to be executed. When the runtime system
executes the applications’ task it resolves details such as automatic
MPI message generation, management of halo information (ghost
cells) and the life cycle of data variables, and other details inherent
in large scale, heterogeneous, parallel computer systems. A key
feature of Uintah is that variables are stored in a part of the run-
time system known as the data warehouse, which is accessed by
each task to provide the data that it needs to work on. Tasks access
data from the previous timestep using the old data warehouse and
store data computed during the current timestep in the new data
warehouse.

The Uintah software is described by [3, 6,20, 22,23]. Examples
of the scalability of Uintah are given by [4] and the open-source
software itself may be obtained from [30]. Uintah currently scales
complex applications on a variety of CPU core based architectures
up to about 700K cores. However a challenge of porting over 1M
lines of highly templated C++ to either GPU or Xeon Phi architec-
tures has meant that until recently only a straightforward port has
been done [21]. Or that computationally intensive kernels, such
as the Reverse Monte Carlo Raytracing approach for thermal ra-
diation, have been bifurcated to support multiple architecture like
GPUs and Xeon Phis [11, 13].

One way to address the portability challenge for code such as
Uintah is to use a performance portability layer based upon a many-
core parallel programming model [18], such as OpenMP, OpenACC,
RAJA, Kokkos or OpenCL. A detailed comparison by [18] shows
the strengths and weaknesses of these approaches. In this work we
have chosen to use Kokkos [5,7,8] as it fits most easily with the un-
derlying code philosophy of Uintah. In using Kokkos it is necessary
to rewrite tasks into a form that allows Kokkos to map the compu-
tation and data in the most appropriate way to achieve performance
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Figure 1: Uintah Structure with Kokkos

on the target architecture. Kokkos does this mapping at compile
time through use of C++ template meta programming. The chal-
lenge in using Kokkos in Uintah is that both the user code through
modified loop structures and the data warehouse through changed
data structures must be refactored. The broad approach to chang-
ing the Uintah framework is shown in Figure 1. This figure shows
that the applications’ codes (primarily the Arches combustion code
for this paper) are required to rewrite their loops to conform to
the Kokkos programming model. The Uintah data warehouse also
needs to change to support the use of Kokkos data structures. We
note that Uintah makes extensive use of the hypre linear solver [9]
and that it too (as far as we know) is in the process of being mod-
ified to be compatible with the Kokkos programming model. The
aim of this paper is thus to show how the Uintah’s runtime sys-
tem and application programming model may both be modified to
use the Kokkos performance portability layer. Results from exper-
iments demonstrate that Uintah code rewritten to conform to the
Kokkos programming model improves in performance, with result
seen up to a factor of five.

We begin by giving an overview of the Uintah framework in Sec-
tion 2. The Arches applications code driving a major part of our
present development is described in Section 3 and Kokkos itself is
described in Section 4 The precise details of how Uintah is modi-
fied, both at the applications and at the runtime system level with
the work done to modify data warehouse to work with Kokkos are
given in Section 5. The results from these improvements are shown
in Section 6 and the paper concludes in Section 7 with discussion
on future work.

2. UINTAH OVERVIEW

This description of the open source Uintah framework [3], [30],
follow that in [27]. Uintah is used to solve problems involving flu-
ids, solids, combined fluid-structure interaction problems, and tur-
bulent combustion on multi-core and accelerator based supercom-
puter architectures. Problems are either initially laid out on a struc-
tured grid as shown in [15] with the multi-material ICE code for
both low and high-speed compressible flows, or by using particles
on that grid as shown in [1] with the multi-material, particle-based
code MPM for structural mechanics. Uintah also provides the com-
bined fluid-structure interaction (FSI) algorithm MPM-ICE [10],
the ARCHES turbulent reacting CFD component [14] designed for
simulating turbulent reacting flows with participating media radia-
tion, and Wasatch, a general multiphysics solver for turbulent re-

acting flows. For the work described, the Arches component is of
primray interest here.

Simulation data is managed by a distributed data store known
as a Data Warehouse, an object containing metadata for simula-
tion variables. Actual variable data itself is not stored directly in a
Data Warehouse, but instead is stored in separate allocated mem-
ory managed by the Data Warehouse. The metadata indicates the
patches on which specific variable data resides, halo depth or num-
ber of ghost cell layers, a pointer to the actual data, and the data
type (node-centred, face-centered, etc.). Access to simulation data
in the Data Warehouse is through a simple ger and put interface.
During a given time step, there are generally two Data Warehouses
available to the simulation, 1.) the Old Data Warehouse contains all
data from the previous time step, and 2.) the New Data Warehouse
maintains variables to be initially computed or subsequently modi-
fied. At the end of a time step, the New Data Warehouse is moved
to the Old Data Warehouse, and another New Data Warehouse is
created.

With the availability of on-node GPUs, Data Warehouses spe-
cific to GPUs are used. Uintah task schedulers are responsible for
scheduling and executing both CPU and GPU tasks, memory man-
agement of data variables, and invoking MPI communication. Par-
allelism within Uintah is achieved in three ways. First, by using
domain decomposition to assign each MPI rank its own region of
the computational domain, e.g. a set of hexahedral patches, usu-
ally with spatial contiguity. Second, by using task level parallelism
within an MPI rank to allow each task to run independently on a
CPU (or Xeon Phi) core or available GPU, and third, by utilizing
thread level parallelism within a GPU.

Uintah maintains a clear separation between applications code
and its runtime system, and hence the details of the parallelism
Uintah provides through its runtime system are hidden from the
application developer. A developer need only supply Uintah with a
description of the task which would run serially on a single patch,
namely what variables it will compute, what variables are required
from the previous time step, and how many layers of ghost cell data
are needed for a variable. The task developer must supply entry
functions to his or her task code, and writes serial C++ code for
CPU and Xeon Phi tasks and CUDA parallel code for GPU tasks.
The present model for GPU-enabled tasks currently requires that
two versions of the task code be maintained, one for CPU code and
one for GPU code with possibly even a third version being needed
to fully exploit the new Intel Knights Landing architecture. As
outlined above, the use of Kokkos enables a move to a single code
and allows users to exploit data parallelism within all Uintah tasks.
Examples of this is shown in Section 6, where we focus on stencil
computation examples related to the Arches code [14].

3. ARCHES COMBUSTION SOLVER

The primary motivation for much of this work is to develop
and improve upon our existing Uintah computational framework
for solving emerging exoscale problems with important commer-
cial ramifications and benefits for improving coal combustion ef-
ficiency. This work has been the basis for a 2015-2016 INCITE
Award which is to use computational science to predict capabili-
ties for a commercial, 1000 MW coal fired boiler. The goals of
the project include the assessment of mixing and combustion effi-
ciency, minimize energy imbalances and predict heat flux patterns
to the furnace walls. Given this challenging application, the im-
provements to the Uintah programming model and runtime system
will be demonstrated through the Arches combustion component.



Arches is a finite volume combustion code that has been devel-
oped over a number of years [14,28,31]. Traditional Lagrangian/RANS
approaches do not address very well the particle effects that are nec-
essary for the simulations with strong particle effects. The use of
the Large Eddy Simulation (LES) approach of Arches has potential
to be an important design and prediction tool.

The approach used in Arches is that of a structured, high order
finite-volume mass, momentum, energy conservation discretization
method for the gas and solid phase with combustion [14, 24, 25].
The modeling of the all-important soot particles in Arches is done
via DQMOM (which utilize many small linear solves) [25]. Using
the low Mach number approximation results in the formulation of
the Pressure Poisson equation that requires the solution of a ma-
trix with up to 10'? variables. The approach adopted here is to
use the hypre code with geometric multigrid preconditioning con-
jugate gradients with a red-black Gauss Seidel Smoother, which has
shown excellent scalability [29]. Momentum and species transport
is handled by a dynamic Smagorinksy closure model and accounts
for approximately 30% of the overall computational time in a typi-
cal timestep. Focusing on the scalar transport equations as an easy
adoption point for our Kokkos work since it has relatively straight-
forward data structures and loops that allowed us to characterize
and better understand the development issues for wider Kokkos
adoption. Later sections of this paper describe the challenges and
accomplishments we faced in obtaining performance for key loops
using Kokkos.

The energy balance includes the effect of radiative heat-loss/gains
in the IR spectra. Initially, the radiative intensity equations are
solved using a Discrete-Ordinates solver [16] that involved solv-
ing a linear system of equations using hypre [17]. This involves
very large and time consuming solves every 10-25 timesteps with
the hypre code requiring upwards to 50% of the runtime for the ra-
diation timestep. To mitigate these time consuming solves and to
take advantage of GPU accelerators on current petascale and future
exoscale systems, we are adopting the Reverse Monte Carlo ray
tracing-based radiation model (RMCRT) which uses both CPUs
and GPUs for the radiation calculation in lieu of the discrete or-
dinates solver [12, 13]. Both Discrete Ordinates and RMCRT are
currently being used or will be used shortly in design production
runs on the large scale coal boiler as part of ongoing work on our
INCITE Award.

4. KOKKOS AND PERFORMANCE PORTA-
BILITY

Kokkos is a C++11 library for implementing portable thread-
parallel codes on various HPC architectures [5, 7, 8]. Kokkos is
used to optimize single-node performance, since most HPC codes
already have strategies to optimize their intra-node performance.
It currently supports CPU, GPU, Intel Xeon Phi and IBM Power 8
architectures. The source code is open source and is freely available
at https://github.com/kokkos/kokkos.

Kokkos allows users’ to encapsulate their code into computa-
tional kernels, and uses template meta-programming to optimize
their kernels at compile time for the given device. Kokkos is able
to optimize users kernels because it requires them to conform to
abstractions provided by the Kokkos API. The main abstractions
within Kokkos are Parallel Patterns, Execution Space, Execution
Policy, Views, Memory Space, Memory Layout and Memory Traits.

The user can specify a kernel which only uses a subset of these
abstractions, and the others will default to optimal values for the
current device. The Parallel Pattern describe what type of kernel
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the user wishes to execute be it a parallel_for, parallel_reduce or
parallel_scan. The Execution Space informs the compiler about
where the kernel is to be run, i.e., GPU or CPU cores, and the
Execution Policy dictates how a kernel should be executed in the
given Execution Space.

Since most scientific codes store data in multi-dimensional ar-
rays, Kokkos provides Views, which are light-weight, reference
counted multi-dimensional arrays. Emerging HPC architecture have
deep memory hierarchies so Kokkos Views allow the user to spec-
ify in which Memory Space the array exists. Memory Layout dic-
tates how the array is mapped to memory (row-major, column-
major, tiled, etc), and it is critical for performance that the mem-
ory layout is suitable for the given device. For example, CUDA
prefers arrays that use a column-major layout to optimize memory
access, while most CPU code use a row-major layout to obtain a
better SIMD vectorization. Using the wrong layout can have sig-
nificant performance penalties. Memory Traits provides additional
information about how the views are allocated or used and can en-
able other compile-time optimizations. By using views, Kokkos
is able to separate the data locality and layout from the compu-
tational code. This avoids architecture-specific code implementa-
tions, since Kokkos is then able to select the best memory layout
and execution policy at compile time for the given architecture.

To use Kokkos a user identifies a parallelizable grain of compu-
tation and data. This grain of code is called the compute kernel. A
user can used C++11 lambdas or create function objects (functors)
to encapsulate a kernel. Kokkos then maps the computations onto
cores and the data onto memory using the execution and memory
spaces. The user is responsible for writing thread-scalable, high-
performance kernels. Carefully written kernels can obtain portable
SIMD auto vectorization, as is shown in Section 6.

S. MODIFYING UINTAH TO USE KOKKOS

While the Uintah AMT runtime system hides latency and max-
imizes network throughput, emerging architectures require lever-
aging even more on-node parallelism to exploit as much of their
performance as is realistic.
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5.1 Overview of Uintah Modifications

Uintah, like many HPC codes, has a large legacy code base with
limited support and development resources. To refactor Uintah
to fully utilize Kokkos kernels is a multi-year effort that involves
rewriting significant parts of the runtime system, and refactoring
component codes to encapsulate work within computation kernels.
Most of the work involves refactoring loops into parallel kernels
and converting existing array data types into Kokkos views. Figure
2 shows several options for refactoring loops within Uintah tasks,
and Figure 3 shows how Uintah is modified overall to use Kokkos at
both the data warehouse and user task level. It is desirable to do this
refactor incrementally without further bifurcating the Uintah code
base. Also, when refactoring Uintah component codes we have
been able to take advantage of new and experimental, but planned
future Kokkos features. For example we have used an experimen-
tal planned Kokkos parallel three-level loop for the final example
in Section 6. It is important to stress that for a large code such as
Uintah these changes must be introduced incrementally. This re-
quires significant planning to enable migration the current Uintah
APIs to a subset that will be portable between the various device
architectures.

To achieve device portability, the array data used by Uintah is
to be replaced with Kokkos views. Since the Uintah runtime sys-
tem is responsible for maintaining the data warehouses, the run-
time system needs to be extended to return Kokkos views in place
of the current Uintah array data structures. Most codes are hard
coded to specific data structures, and changing them takes signifi-
cant effort. Using the Unmanaged memory trait, the runtime sys-
tem can wrap the existing data structures with Kokkos unmanaged
views. Unmanaged views do not include reference counting, and
must be supplied a layout and memory space. Unmanaged views
allow codes to incrementally adopt Kokkos APIs without requir-
ing a massive upfront rewrite. The runtime system and component
codes can then incrementally track down instances where non-view
APIs are being used to refactor them individually to remove the as-
sumptions that make them incompatible with pure Kokkos views.
After these incompatibilities are removed the code should then be
portable to other architectures.

However, codes which use unmanaged views are not portable
to different devices, so it is necessary for the user to incrementally
verify the portability of kernels to other devices without waiting for
the entire code base to be refactored. One technique that we have
used successfully is to extract kernels into stand-alone executables
with mock inputs. The kernels can then be compiled for various

devices and optimized to run better on those devices. When doing
this for a diffusion kernel within ARCHES, we were able to obtain
good SIMD vectorization on CPUs and better caching effects on
GPUs. It is desirable that these stand-alone executables uses the
same code as the production executable.

By leveraging C++11 features like “auto”, component codes can
be written without explicitly specifying the array data types. An
example of this can be seen in Code Listing 3. This allows com-
ponents to assume that the array type conforms to a standard API
without needing to know the exact type. By using these features,
the runtime system will be able to change the array data types with-
out requiring that the component codes be updated again.

The process of converting a component task into a Kokkos com-
patible computational kernel is shown in Figure 2. For example,
Uintah tasks declares and initializes mesh patch array variables
which are then used within one or more loops throughout the ex-
ecution of the task. Using C++11 the loop bodies of the tasks are
encapsulated in lambdas, which are then invoked with the appro-
priate parallel pattern. The loop bodies could also be extracted into
a function object, and then invoked by the parallel pattern. This
entire process is extremely incremental, but allows for performance
and portability verification at each step. Furthermore, this approach
has yielded some performance improvements on existing architec-
ture for production runs. Code examples and results are shown in
Section 6.

5.2 DataWarehouse Changes

Uintah currently has two separate data warehouses which have
effectively become bifurcated, and work has commenced to unify
these back into one. Uintah uses a host memory data store known
as the On-Demand Data Warehouse [19]. A task developer simply
requests simulation variables from the data store using a get() and
put() API interface. A task developer is not involved with the un-
derlying preparation of simulation variables or halo transfer both
on-node and MPI. Recently a GPU memory data store known as
the GPU Data Warehouse [22] was created to allow task develop-
ers to write CUDA enabled tasks which could request simulation
variables from a data store while in CUDA kernel code. It followed
a similar philosophy of data management, removing the task devel-
oper from the runtime system details.

The GPU Data Warehouse was initially created only to provide
limited features as a proof of concept supporting only a handful
of simulations. In the past two years the capabilities of the GPU
Data Warehouse have significantly increased to support a wide va-
riety of simulation problems and simulation variables on both host
and GPU memory. As a result, overhead wall clock times have
been significantly reduced [26]. The result of these changes in-
creased the GPU Data Warehouse’s codebase and API to the point
where its concepts have become similar to that as the On-Demand
Data Warehouse. Despite surface similarities between the two data
stores, the underlying code utilizes distinctly different designs. Now
when new API features are requested, we often must implement the
functionality twice, once for each data store, with each one needing
a platform-specific implementation. This is not sustainable.

Fortunately this bifurcation of the data stores has allowed us to
identify good design patterns and to use these insights to begin im-
plementing a Unified Data Warehouse, which seeks to be a single
data store for not only host and GPU memory but also other mem-
ory hierarchies such as NVRAM. This approach additionally al-
lows multiple options for memory layouts, storage locations, and
padding configurations. The remainder of this section outlines how
this new data store is implemented, and what influenced these de-
sign decisions.



The Unified Data Warehouse opts for an internally simpler de-
sign, using a simple array of metadata, and a single atomic bitset
per variable to track a variable’s status. While Uintah has many
sections of code which still utilize mutex protected data structures,
their frequency of usage has become problematic. It is often diffi-
cult to extend the code without carefully analyzing how the locks
are used. In regions where we have removed mutex locks and
replaced them with data structures allowing for atomic reads and
compare-and-swap writes, we generally experience fewer issues in
development, and code refactoring proceeds more quickly. For this
reason, the Unified Data Warehouse is designed to not require any
mutex locks. Associative arrays are dropped in favor of regular ar-
rays. Instead of multiple booleans or multiple bitsets, the Unified
Data Warehouse uses a single bitset per simulation variable to track
the variable’s status.

At present, the On-Demand Data Warehouse stores a collection
of polymorphic objects instead of a collection of meta data. Succes-
sive developers over the years felt it natural to extend these objects
to perform multiple duties. From an Object-Oriented Programming
perspective, these concepts seem sensible. For example, instead of
having the Uintah runtime system perform MPI sends for simula-
tion variables, the objects themselves perform all the logic instead.
A challenge in moving away from this design is that Uintah’s auto-
mated MPI halo transfer engine is deeply intertwined with these
polymorphic simulation variable objects, where each simulation
variable creates a buffer and deep copies halos into it. This is then
sent to the On Demand Data Warehouse in host memory. With our
Unified Data Warehouse approach, no deep copies to a buffer are
made and the Uintah runtime system manages MPI completely, not
the variable objects. These changes enable the implementation of
CUDA-Aware MPI.

With the original data store approach, halo cells are gathered
into the simulation variable on the CPU which happens on the fly
as part of get() API call. Larger variables are then created and
the deep copies, with halo information, commence. With the GPU
data store, the Uintah task scheduler initiates halo gathering prior
to task execution and the task developer needs to pre-size variable
to ensure it has room. With our Unified data store approach, Uintah
automatically accounts for padding to prepare for the halo data.

The Unified Data Warehouse allows for easier transition to Kokkos
parallel code. Instead of writing a CPU task and also a similar GPU
task, now a developer can write only one task containing Kokkos
code. In contrast to requesting data from the On-Demand Data
Warehouse or the GPU Data Warehouse, the developer need only
to request data from the Unified Data Warehouse using a get() in-
terface, which retrieves objects containing Kokkos Views, as shown
in Figure 3. From here the task developer can proceed in writing
Kokkos parallel code with a minimal need to know about where
that code will be executed. Uintah will know the execution space
requested for that task, and prior to task execution Uintah will pre-
pare the Kokkos Views in those simulation variables to have the
necessary data in the desired memory spaces. Thus a task devel-
oper can simply request that task to run on CPU cores, or on Nvidia
GPUgs, or on Intel Xeon Phis, etc., and Uintah manages the remain-
ing details.

6. RESULTS

Three examples are used to test the performance of the runtime
system using Kokkos on key Uintah algorithms. The first example
is a simple Laplace’s equation example while the second is that of
a nonlinear advection scheme and finally the third is a 3D loop in

the Arches code [14].

6.1 Laplace’s Equation Example

Using experimental features from the Kokkos pthread execution
space we were able to utilize data parallelism within asynchronous
Uintah tasks. A simple Laplace equation with a seven point finite
difference stencil example showed speedups around a factor of two
as seen in Table 1. The conversion of this code was extremely sim-
ple, and only required encapsulating the loop body within a lambda
and calling a modified version of the Kokkos parallel_for which it-
erates over multiple indices. Promising results such as these have
encouraged us to extend our use of Kokkos into the full Arches
code.

Domain size | 128> 256° 5123
Original(ns) | 1.521 | 1.978 | 1.651
Kokkos (ns) | 0.723 | 0.840 | 0.833

Table 1: Kokkos timings on Laplace’s equation

6.2 Arches Advection Example

The Arches code is the computational component of the large
scale DOE coal boiler simulation that is a primary driver for mov-
ing Uintah beyond petascale. In Arches 30-40% of the code is
spent on model evaluation, discretization of transport and other
flow components. Kokkos is a natural fit for Arches because it is
possible to achieve lamda/functorization of existing code with rel-
atively little work. Fast initial adoption is very helpful for our en-
gineering developers. This process is illustrated by the discretiza-
tion of the simple advection component corresponding to transport
of a simple scaler. In experiments we looked at many different,
but standard, approaches such as upwinding and flux limiting. In
this case speed-up measured for a standard upwinding discretiza-
tion from existing baseline code against the Kokkos code, using
unmanaged views. The speedup for different patch sizes are shown
in Table 2. The upwind and the van Leer flux limiter show signf-
icant speedups over the original Uintah implementation. The van
Leer result speedup is not as large as the upwind result due to the
number of branches (1 versus 5) in the computational kernel. The
very significant speedups that are shown are a result of two comple-
mentary changes, the first being the use of the Kokkos parallel_for
and the improved way in which Kokkos iterates through the mem-
ory space as compared to the original Uintah implementation. And
the second significant reason is the reimplementation of the com-
putational kernel to be more performant. This example suggests
that careful rewrites of key computational kernels in conjunction
with Kokkos can offer significant performance improvements. Pro-
filing and understanding data layouts are significant factors towards
improving performance in computationally intense routines.

Patch size 8 | 16 | 32° | 64° | 1283

Upwind Kokkos Speedup 4.6 | 100 | 10.7 | 129 | 12.7

van Leer Kokkos Speedup | 2.76 | 4.05 | 4.04 | 5.01 | 6.37

Table 2: Kokkos speedup on Arches advection

6.3 Arches 3D Stencil Example

In testing parts of the Uintah code we note that the conversion
would need to be entirely completed for all the code in a physics



component before Uintah could run those tasks on other HPC ar-
chitectures like a GPU. Developing a simple mock runtime system
which allows individual tasks to be tested independently is vital
for ensuring that the compute kernels are portable to other devices,
without waiting for a full code refactor.

Using the technique of creating a simple mock runtime system,
we were able to verify that the diffusion kernel in Arches is portable
between GPU, CPU, and Xeon Phi devices. With minor modifica-
tions to the kernel we were able to optimize it in the mock sys-
tem to ensure that it leverage SIMD vectorization. With a slight
change to our build system we could have done that optimization
on the production code, so that we can test portability for each ker-
nel independently, while ensuring that it still runs in the production
environment.

The loop used is a simple diffusion kernel which amounts to the
convolution of 1D stencils for 3 face centered variables X, Y, Z
with 3D stencils of 2 cell centered variables D, phi. The initial
Uintah code for this loop uses Uintah arrays and iterators. Uintah
arrays are indexed with an IntVector representing an (%, j, k) tuple.
Uintah Iterators are initialized with low and high IntVectors and
will iterate over the indicated range in a column-major order. The
initial Uintah code is show in Code Listing 1. The Uintah frame-
work used the concept of a single loop iteration with IntVectors as
an aid to the development of the computational algorithms for the
application developers. These techniques were optimized to assist
in the development and debugging of application algorithms. The
indirection and pointer hops that occur in the IntVector and loop
traversal are non-ideal from a performance standpoint, but offer sig-
nificant benefits to initial algorithm development. With the advent
and incorporation of the Kokkos library, the transition from easy
development using Uintah loop iteration and IntVectors is ongoing.
While the benefits of the Uintah constructs are numerous from an
algorithm development point of view, the drawbacks to raw perfor-
mance are reflected in Table 3 and show that rewriting the kernels
with the Kokkos constructs and using techniques to promote SIMD
vectorization can offer significant performance improvements.

typedef IntVector IV;
for( Iterator itr(low,high); !itr.done(); ++itr)
{
IV c=xitr;
IV xp=c+IV(1,0,0), xm=c+IV(—1,0,0);
IV yp=c+IV(0,1,0), ym=c+IV(0,—1,0);
IV zp=c+IV(0,0,1), zm=c+IV(0,0,—1);
rhs[c] +=
ax*(X[xp]*(D[xp]+D[c]) =*(phi[xp]l—phi[c])
—X[c] *(D[c] +D[xm]) *(phi[c] —phi[xm]))
+ay #(Y[yp]*(D[yp]+D[c]) #(phi[ypl—philc])
—Y[c] *(D[c] +D[ym])*(phi[c] —phi[ym]))
+az*(Z[zp]*(D[zp]+D[c]) *(phi[zp]—-phi[c])
—Z[c] *(D[c] +D[zm]) *(phi[c]—phi[zm]));

Code Listing 1: Uintah 3D Stencil Kernel

There are three step to naively convert a Uintah kernel to Kokkos.
First, the iterators loops are replaced with a parallel algorithms over
the same range. Second, IntVector indexing is replaced with direct
i, 7, k lookups. Lastly, Uintah arrays are wrapped and replaced with
unmanaged Kokkos views. Using unmanaged views allow for an
incremental transition to Kokkos, though to achieve performance
portability these views will need to become managed Kokkos views
in the future. The naive Kokkos loop is shown in Code Listing 2.

parallel_for( range ,[=](int i,int j,int k) {
rhs(i,j,.k) +=
ax *(X(i+1,j.,k)

*(D(i+1,j,k)+D(i,j,k))
«(phi(i+1,j,k)—phi(i,j.k))
—X(i,j,k)
*(D(i,j,k)+D(i—1,j,k))
x*(phi(i,j,k)—phi(i—1,j,k)))
+ay*(Y(i,j+1,k)
*(D(i,j+1,k)+D(i,j,k))
x(phi(i,j+1,k)—phi(i,j,.k))
=Y(i,j,k)
*(D(i,j,k)+D(i,j—1,k))
*(phi(i,j,k)—phi(i,j—1,k)))
+az*x(Z(i,j, k+1)
*(D(i,j,k+1)+D(i,j,k))
#(phi(i,j,.k+1)—phi(i,j,k))
—Z(i,j.k)
*(D(i,j,k)+D(i,j,k—1))
*(phi(i,j,k)—phi(i,j,k=1)));

Code Listing 2: Naive Kokkos 3D Stencil Kernel

parallel_for( range, [=](int i, int j, pair<int,
int> k_range) {

auto r=subview (rhs ,i,j ,ALL());
auto xO=subview (X,i,j,ALL());

auto xp=subview (X,i+1,j,ALL());
auto yO=subview (Y,i,j ,ALL());

auto yp=subview (Y,i,j+1,ALL());
auto z=subview (Z,i,j ,ALL());

auto dOO=subview (D,i,j ,ALL());
auto dmO=subview (D,i—1,j ,ALL());
auto dpO=subview(D,i+1,j ,ALL());
auto dOm=subview (D,i,j—1,ALL());
auto dOp=subview(D,i,j+1,ALL());
auto pOO=subview (phi,i,j ,ALL());
auto pmO=subview (phi,i—1,j ,ALL());
auto ppO=subview (phi,i+1,j,ALL());
auto pOm=subview (phi,i,j—1,ALL());
auto pOp=subview (phi,i,j+1,ALL());

parallel_for ( krange, [&](int k) {
r(k) +=
ax*(xp (k) *(dp0(k)+d00(k)) *(pp0(k)—p00(k))
— x0(k)*(d00 (k)+dmO(k) ) *(p00(k)—pmO(k)))
+ay x(yp (k) x(d0p (k)+d00 (k) ) =(pOp (k)—p00(k))
— y0 (k) *(d00 (k)+dOm (k) ) *(p00(k)—pOm(k)))
+az*x(z(k+1)=*(d00(k+1)+d00(k)) «(p00(k+1)—p00(k))
— z(k)*(d00 (k)+d00(k—1)) x(p00(k)—p00(k—1)));
1)
s

Code Listing 3: SIMD Kokkos 3D Stencil Kernel

Optimizing this kernel to allow SIMD auto vectorization requires
extracting 1D subviews from the 3D arrays views. The Kokkos
subview function creates a new view from an existing view given
ranges of indices, similar to subview operations on Matlab arrays.
Using C++11 auto we are able to represent these subviews with-
out needing to know the exact type of view that Kokkos returns,
this allows Kokkos to optimize the resulting view for the given
context. It is important to extract these 1D subviews so that the
compiler knows that we are using a stride-one memory access pat-
tern on the CPU in the inner loop so that it can correctly iden-
tify the loop as a candidate for vectorization (assuming that the
arrays are laid out in row-major order on the CPU). The inner ar-
ray is then implemented with another parallel_for loop which only
depends on the k:;, index. The user is responsible for verifying
that there are no loop carry dependencies in the inner loop. The
speedups of the SIMD kernel over the initial Uintah kernel can be
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Figure 4: Results on 3D stencil Example. Kokkos kernels with
given number of CPU Threads

323 643 1283
ms X ms X ms X
Serial Uintah 1.063 1.0 | 8.041 1.0 | 64.86 1.0
Kokkos Naive | 0.649 1.6 [ 430 1.9 36.06 1.8
Serial SIMD | 0.313 34 | 247 3.3 2021 3.2
Kokkos Naive | 0.166 6.4 | 1.165 6.9 | 8.943 7.3
4 Threads SIMD | 0.081 13| 0.583 14 | 5.275 12
Kokkos Naive | 0.068 16 | 0.545 15 | 4.508 14
16 Threads SIMD | 0.044 24 | 0.313 26 | 2.542 25
Kokkos Naive | 0.037 29 | 0.279 29 | 3.517 18
32 Threads SIMD | 0.025 43 | 0.163 49 | 3.421 19
Kokkos Naive | 0.090 12 [ 0.210 38 [ 0.614 105
CUDA SIMD | 0.090 12 | 0.210 38 | 0.628 103

Table 3: Results on 3D stencil Example. Albion: 2 numa/16
cores/32 threads, avx, Intel Xeon CPU E5-2660 0 @ 2.20GHz
32 GB Main Memory GeForce GTX TITAN X capability 5.2,
Total Global Memory: 12 GB

seen in Table 3. These experiments were run on an Intel Xeon
with a SIMD vector length of 2 yielding an ideal speedup of 2X
of the Kokkos SIMD kernel over the Kokkos naive kernel. The
results in Table 3 demonstrate that with careful rewrites of com-
putational kernels with techniques that promote vectorization, it is
possible to achieve the ideal speedup of 2X (1.8X- 2.3X) for suf-
ficient workloads. We believe that the caching effects contributed
to the speedup of 2.3X. The CUDA results shown in the table are
present to show that the changes required to the diffusion kernel to
get SIMD vectorization do not negatively impact the vectorization
that CUDA already achieves.

Since this kernel is relatively light in computation compared to
the number of memory load it requires, it is limited by memory
bandwidth. Once the memory bandwidth is saturated, the time to
solution of the SIMD kernel converges to the naive kernel as seen
in Figure 4. So the naive and SIMD kernels converge to the same
solution time as number of threads increase.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how it is possible to introduce the
Kokkos performance portability layer into a sophisticated AMT
runtime in the Uintah software. The introduction of Kokkos not
only involved rethinking the design of the Uintah nodal data ware-
house but also of changing loops in the applications model, albeit in
a straightforward way. While this process is still ongoing the initial
experiments conducted show the promise of Kokkos as a means of
providing present and future performance portability for the Uin-
tah software. We have shown that with a naive incorporation of
Kokkos on a standard cpu core offers anywhere from 2X speedups,
but with careful rewrites of key computational kernels combined
with Kokkos can yield upwards to 12X speedups. We have also
shown that the portability features of Kokos enable speedups of up
30x to 50x using multiple cores and threads or GPUs. The process
of adopting Kokkos into the Uintah framework offers an iterative
path forward for improved performance that begins with an adop-
tion of various Kokkos constructs initially with an ongoing process
of rewriting key Arches computational kernels in a more perfor-
mant manner to achieve the significant performance improvements
that we have seen thus far.
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