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Summary

This report presents a mathematical model for compressible, single-phase flow through
a general 1-input, 1-output (2-port) pipe junction which could have an active component

between the two pipes, as well as a general branching junction of an arbitrary number of
1-dimensional pipes.






1 Introduction

In the literature, the abundance of pipe network junction models, as well as inclusion
of dissipative losses between connected pipes with loss coefficients, has been treated us-
ing the incompressible flow assumption of constant density. This approach is fundamen-
tally, physically wrong for compressible flow with density change. This report introduces
a mathematical modeling approach for general junctions in piping network systems for
which the transient flows are compressible and single-phase. The junction could be as
simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for
which a dissipative loss is necessary, or it could include an active component, between an
inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be
limited to the former. A more general branching junction connecting an arbitrary number
of pipes with transient, 1-D compressible single-phase flows is also presented.

These models will be developed in a manner consistent with the use of a general equa-
tion of state like, for example, the recent Spline-Based Table Look-up method [1] for
incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for
properties for water and steam with RELAP-7 [3].



2 Simple, Single Input and Single Ouput Pipe Junction

Consider the simple connection of two pipes having different cross-sectional areas, as
shown in Figure 1. For both pipes we take the positive flow direction to be from left to
right.

p . A,
1 e L 3e R o4
pipe 1
A, pipe 2
I o
+ direction

Figure 1. Simple, pipe junction schematic with one inlet and one
outlet pipe and a cross-sectional area change.

For subsequent use, the pressure on the washer shaped area A, is denoted p,,. Let us
assume that the area available for flow is A; = min(A,, A3). The area of this washer
shaped face can then be written as A,, = max(As, A3) — Ay.

For compressible flow, to connect pipe 1 and pipe 2 we need six equations (closures) to
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relate the six unknowns py, ps, us, ps3, ps, us, 1.€. the fluid density, pressure, and velocity, at
nodes 2 and 3 respectively, at new time level n + 1. Because the pipe flows are compress-
ible, characteristic information must be included from each pipe for the flow immediately
adjacent to the junction. There are generally four ways in which to get this characteris-
tic information from the immediate interior of the pipe: (1) Use Riemann invariants from
characteristics in the space-time domain as in the classical method of characteristics [4],
(2) Rewrite the governing partial differential equations into characteristic form and get
the Riemann invariants at the boundary using characteristic-biased differencing |5, 6], (3)
Extrapolate appropriate information from the interior [7], and (4) Utilize partial Riemann
solvers to obtain pipe interior influence [8, 9]. Here we will utilize the last method. For a
single compressible fluid, using the approach of [8] and [9] we get the first two equations
by writing two approximate half-Riemann problems, for a left-running acoustic wave in
pipe 1 and for a right-running acoustic wave in pipe 2:

pott —pr + prler —up)(uyt™t —up) =0 (1)
patt —pr — pr(cr — up)(uy™ —ug) =0 )

and entropy wave(s)

If uytt >0 then

n+1
n p —Dp
Pyt = pp+ 2—E (3a)
L
If uy™ <0 then
n+1
n p —D
P =t (3b)
Cr

where the old-time information available from the flow in each pipe is given by

(="

Usually, either Eqn. (3a) or Eqn. (3b) will hold, but usually not both simultaneously. Thus
we have so far three equations, Eqns. (1), (2), and either (3a) or (3b). We need at least
three additional equations for mathematical closure.

By assuming negligible fluid mass in the junction (i.e. between the two pipe boundary
nodes adjacent to the junction, points 2 and 3) quasi-steady state relationships for mass
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and total energy balance can be written. For mass balance between the points 2 and 3
pg"rl Tl+1A — pn+1 +1A3 (4)

and for total energy balance between the points 2 and 3

7L+1 1 TL+1 1
pg-l-lug—HA (pn+17p2+1)_'_pn+1+2( n+1) :| _ pn+lug+lA |: (pn+l7p3+1)_|_pn+1+2( n+1)
3

By using Eqn. (4), this equation reduces to

1 1 nH 1 1 1 1 nH 1 1\2
e(ﬂn+ 7192+ )"’ pn+1 + 5 (uj 5 ) = e(ﬂn+ ,p3+ )+ pn+l + - (u ng )”. )

2 2

We still require at least one more equation to gain closure.

A couple of ways to get this last equation will be examined next. They will be referred
to as Technique I and Technique 2. From a fundamental viewpoint, both techniques are
austensibly equivalent (at least in 1-D), though from a practical viewpoint, they will not
match easily.

Technique 1

Technique 1 is related to the Second Law of Thermodynamics which considers dissipa-
tive flow processes which lead to an entropy increase (or entropy production), e.g. for flow
between point 2 and point 3. Here, however, we make the key physical assumption that
the entropy increase from point 2 to point 3 is isomorphic to the decrease of stagnation
pressure of the flow between points 2 and 3.

For no losses, po2s = pos, that is, the stagnation pressure at point 2 is identical to the
stagnation pressure at point 3 [10]. Puting this into equation form p(h, s)

1 1
p(hs ™+ (g™ s(ps ™ ™)) = p(hs ™ 4 S (™) s (o5 e5T)) . (6a)

2

The system of equations is now closed (for the case of no losses between points 2 and 3).

If there are losses between points 2 and 3, then pgo # pp3 and loss coefficients &, 3 and
&3 are introduced for flow from points 2 to 3 or, respectively, for flow between point 3
and 2. For the first case, u ™' > 0, and

1
p(hgﬂ 2(“3“) S(Pn+1 H)) (1—&-3) + p(PnH §+1)5273 (6b)
= PR S (8 )
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or for the second case, u?“ < 0, and

1
p(hy™ + 5(%“‘“)2, s(pit ed ™)) (1 — &-9) + p(path ent!) &y o
C

n 1 n n n
= p(h;rl + 5(“2“)27 3(p2+17 82“))

Remark: In the limit of very low-speed, incompressible flow, these loss coefficient forms
become identical to classically used loss coefficients.

Sometimes it may be necessary to use an alternative loss coefficient to the one used
above. For example, if a large tank boundary condition is considered, no flow exists in
the tank and the static pressure is equal to the stagnation pressure. Instead it makes sense

to use an alternative form of loss coefficient, denoted &;_3 or &3_5. With use of these

alternative loss coefficients, for the first case, with ug“ >0

n 1 n n n . n 1 n n n
p(h2+1+§(u2+1)2, 5(02“7 e2“)) (1-62-3) = p(h3+1+§<u3+1)27 5(03“7 €3+1)) (6d)

while for the second case, with uj ™ < 0
1 F 1 n T n
PO S e ™) (1= ) = O™+ S (™2 5o b))
(6e)
Technique 2

An alternative to the use of Eqns. (6a), (6b), or (6¢) for closure of the governing
equation system is to employ a quasi-steady momentum flux balance between points 2
and 3 [11-14]. This again assumes negligble mass between these two points.

The quasi-steady momentum balance between the two respective pipe boundary points,
points 2 and 3, is written

Py (ug ™) Ag +py T Ag + pu(As — Ao) = p5 T (us ) A+ 5T A5 (D)

The pressure p,, on the washer shaped area A,, must be specified to achieve correct
physical characteristics, just as realistic ky_3 and k3_o were needed with Technique 1. A
somewhat realistic choice (though more sophisticated choices could be investigated) for

Pw 18
Py = pe Ay > Ajg
Y D3 A2 < A3 .
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3 General, Single Input and Single Ouput Pipe Junction

In the previous section, a simple two-pipe junction was considered with a single direction
orientation. In general, each pipe may have its own orientation (such as in RELAP-7)
which must be accounted for. In this section the procedure for connecting two pipes via a
general junction is given using Technique I from the previous section. The nomenclature
is also generalized to a more algorithmic form. Again consider two pipes of differing
cross-section, connected through an active component junction though which transient,
compressible single-phase fluid flow occurs. The nodalization is shown schematically in
Figure 2.

2* L r1 component 1¢ R o2

Ay pipe 2

Figure 2. Two pipes of differing cross-section, connected through
an active component junction through which transient, compress-
ible single-phase fluid flows.

The six unknown variables at the two pipes’ boundaries are p}*, p?/*, and u}*

for i+ = 1,2 corresponding to the solution of six independent equations, which must be
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supplied.

A half Riemann problem is used to obtain requisite flow information from each pipe
consistent with the characteristics. A simple Godunov-type solver is employed. First the
old-time pipe flow information for each pipe is defined:

_— /7?,1 + P?g

pl 2

_ Pia Tt Dl

yZi 5

_ UZ1 + UZZ

U = ——=
2

_ Ciy + iy )

¢ = ———= 1=1,2.
2

Here the first subscript index indicates the pipe, while the second subscript index indicates
the node number on that pipe. In addition, for algorithmic convenience an implicit switch
function is defined for each pipe end at the junction

unJrl 4 un+1

S; = % i=1,2
2lui | + e

where ¢ is a small parameter to avoid potential division by too small of a number in the
numerical procedures.

When various components are placed between pipes 1 and 2, the boundary conditions
at the two pipe end nodes are coupled with the particular component. To determine the
time-updated solution for these two pipe boundary nodes the following algorithm was
developed:

If ut" - 7ty > 0 (outflow from pipe 1)

n+1 =
n _ Pip — DN
L (8)
1

it =p— o — ) ('t — ag)[28) — 1] )
else u’fJ{l N1 < 0 (flow into pipe 1 from junction)
Pit =D+ pu(e — w)(ul]t — )25 — 1] (10)

end if.
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If uyt" - 71y > 0 (outflow from pipe 2)

n+l =

n _ D, P2
Pyt = o+ = (1)
€3
Pyt = D2 — pa(Ca — o) (U} — ) (255 — 1] (12)
else u3 1! - iy < 0 (flow into pipe 2 from junction)
Pyt = Pa 4 p2(C — U2) (U5} — U2)[255 — 1] 13)

end if.

Because it usually occurs that either uT' - 7, > 0 or uj 1" - A2, > 0 we have three

equations with six unkowns. Consequently, three more equations (at least) are required to
obtain mathematical closure.

By assuming negligible fluid mass between pipes 1 and 2, quasi-steady-state mass and
total energy balances may be written between these two pipe boundary nodes. Using the
quasi-steady mass balance

PET Tt A+ pp i un T finAsy =0 (14)
and from the quasi-steady total energy balance

pn+1 1

n+l, n+l » n+l , n+l 1,1 n+1\2

Pi1uty A |e(pfh piT) + =i +§(u1,1 ) }
1,1

+ Q2+ Qay —Wig — Wy

pn+1 1

n+l n+l -~ n+l _n+l 2,1 n+1\2| __

— P21 Uy g Az [G(Pu yPa 1 ) + bl "‘5(“2,1 )7 =0
2,1

If there is a pump between pipe 1 and pipe 2 then clearly there would be a work input term
in the total energy equation above. Or, if there was a turbine between pipes 1 and 2 there
would be an appropriate work output term. A similar statement can be made for devices
between pipe 1 and 2 which involve heat input or output. For our simple junction case the
heat addition (or removal) and work output (or input) terms will be taken equal to zero. In
addition, because there are only two pipes connected to the device (junction) the mass flux

16



balance above can be used to simplify and rewrite the total energy balance as

pn+1 1
‘s T 171 n
(ot ) + PR —<u1#>2]

1,1 2° "
_ _ Wi _ Wo_
+621'24_@2‘1_ %2_ ?1
m m m™m m
Pyt o1
— {e(pﬁl,péﬁl) + =7 + 5 ()’ =0
P21
where
o= pP Ay = pitus T R Ay
Or,
it o1 piit 1
1 1 , 1,2 1 1 ) 1,2
e(pTll,J'l_ 7p711,—~1_ )_l_ nt1 + 5(“711,41_ ) - [e(pgj— 7p721,41_ )+ n-+1 + 5(”3,—{ ) ] =0. (15)
1,1 2,1

At least one more equation is still needed to provide mathematical closure.

For a junction the final closure is related to the Second Law of Thermodynamics
wherein dissipative processes which undergo an entropy increase (or entropy production).
An equivalent idea, isomorphic to the principle of entropy increase, is employed here, in
which the stagnation pressure will decrease for a dissipative process. To use this idea we
first state, or define, stagnation pressure for a compressible fluid in terms of the other flow
variables (at the two pipe boundary nodes) as:

pg;,rll = p(hgzrll> SZTl)
n 1 n T n
= p(hi,_lH + 5(“11) +17 3(:01',#, @i,irl))
anrl
n 7/71 n n n
= p(ei’fl + 7t ~(uin) +1a S(Pijla ei,;rl))
Pi1 2
pn+1 1
7 7 7/71 n n n n N
= p(e(m,flmi,?l) + o5t 5(“11) +1’ S(Pijl>€(piirlapijl))) 1=1,2
i1
For no losses [10]:
Poit = Posi (16)
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Remark I: 1f the device between pipes 1 and 2 was a pump, not only would there be a
work input term in the total energy equation, but also an increase in stagnation pressure,

1.€.
pg;,ll > pglfll (for flow from pipe1to pipe 2)

or

pgfj > pg‘;ll (for flow from pipe2topipel).

In either case, an additional relationship (could be coupled) relating this change would
need to be supplied. Similarly may be said of other potential devices such as a turbine, etc.

For the case of a simple junction with losses:

If u't! - 2, > 0 (outflow from pipe 1)

(1= &_o)ppit + &i—optt" — Pl = 0. (17)

A

If uyt! - 7y > 0 (outflow from pipe 2)

(1= &o1)pit + &oapht! —poit = 0. (18)

Here, &5 and &_; are loss coefficients for compressible flow from pipe 1 to pipe 2, or
from pipe 2 to pipe 1, respectively.

Remark 2: In the limit of low speed or incompressible flow the form used for these loss
coefficients becomes identical to those used classically.
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4 Junction Connecting Arbitrary Number of Pipes

A junction connecting an arbitrary number pipes is now examined. Consider a fixed num-
ber k£ of 1-D pipes connecting to this junction. At a given instant in time there are r pipes
with flow info this junction and s pipes with flow from this junction. Both r and s can (and
generally will) change with time during a transient, but their sum is time-invariant, so

r+s==%k

and at each instant in time (and iteration) the number of pipes r flowing into the junction
and pipes s flowing from the junction must be determined or identified. The nodal labeling
for a representative five-pipe junction, junction .J, is shown schematically in Figure 3.

pipe 3
pipe 1
2 1 /
1
\.
P, S-S
® I pipe 4
1 J
1
2 e
\ )
ipe 2
PIP pipe 5

Figure 3. Instantaneous flow state for a representative five-pipe,
compressible flow junction J.
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So, obviously, £ = 5 for the example illustrated in this Figure. At the instant shown
there are r = 2 pipes flowing into junction .J (pipes 1 and 2) and there are s = 3 pipes
flowing from junction J (pipes 3, 4, and 5). For this model, a ficticious junction point,
J, is placed at the junction flow centroid where we imagine a (time dependent) stagnation
pressure po;(t) exists. This is merely a useful mathematical artifice, employed for ease of
conception and mathematical codification of equations. This junction stagnation pressure
pos 1s added to the list of unknown variables to be solved for, so an additional equation
must also be supplied to facilitate this solution.

The unknowns are now the boundary node values at each pipe end connecting to the
junction, plus pgy, i.e.

n+1 n+1 n+1 n+1 i = 1, X

Pits i s DI Pog -,k (where subscript i denotes pipe #)

For this five-pipe junction example there are (3 x 5) + 1 = 16 unknowns, so there must be
16 independent equations specified for the system to allow for their solution.

We begin by defining the time-level n information available from the flow variables in
each pipe (these variables carry the flow characteristic information consistent with the half
Riemann solution for each pipe):

_ Piat Pl
p’L 2
_ _p:ﬁ +Pz7‘22
Di 5
_ Uiy + Uy
U; = ——=
2
cy ]
E’L:M /L:l,"',k
2

An implicit switch function is also defined for each pipe boundary node at the junction
i A i
SRl =1Lk
2|U’i,1 | +¢
where ¢ is a small parameter used, for numerical purposes, to avoid division by zero.

We next begin building the requisite closure equations by first building the half Rie-
mann problem equations from the available flow variables:

For each pipei (i =1, - -, k)

20



if uffl -n; = 0 (outflow from pipe 1 into junction)
n+1 —
n - pi, — Di
Pijl =pit IT (19)
iyt = pi— pile — ) (up ™ — :)[28; — 1 (20)
else u?fl -Nn; < 0 (flow into pipe i1 from junction)
Pyt =it pile — w)(uff! - @) (28 — 1] 21)
end if
End for

By assuming negligible mass in the junction, quasi-steady mass and total energy bal-
ance relations can be used at any instant to obtain two more closure relations. For quasi-
steady mass balance

k
Z pZTlu;T ;A =0 22)
i=1

and for quasi-steady total energy balance

- i) 1
sziﬂuﬁrl .ﬁiAM [e(PZT17PZIL1) + Z’;l+1 + E(uffl)Z -0, (23)
i=1 i1

For closure of the junction equations we also utilize the Second Law of Thermody-
namics for dissipative processes. However, we conjecture an isomorphic alternative to
that of entropy production (or increase) for dissipative processes, namely that dissipative
processes result in a decrease of stagnation pressure for the flow.

For no losses [10]
pgi—j_ll:pgjl =1,k
that is

n+1l __ n+1 _n+1
Pos = p<h0i71 851 )

n 1 n s n
= p<hi,1+1 + _(Uz‘,#)Zy 5(/%‘,1“7 61‘,1“))

2
pn+1 1
VL n i’l n n n n .
= p@(ﬂi,i—lapijl) + pn+1 + 5(“1,?1){ s(pijl, e(pi,i—lapijl))) i=1,--k
i1

(24)
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For flow with losses

For each pipei (i =1, - -, k)

if uffl -7; > 0 (outflow from pipe 1)

(1= &-p)ppi + &t —pt =0 (25)

else uﬁ“l -n; < 0 (flow into pipe i from junction)

~

pit + (&= D)pht =0 (26)
end if
End for

where

n+l __ n+1l n+1
Poi1 _p(h()iJ?Si,l )

n 1 n 7 n
= p<hi,fl + 5(“@?1)27 S(Pijl» ei,Tl))
n—+1
V23 V23 p1/71 1 n T T 3 .
= P(e(Pi,Tlapi,#) T g T 5(%‘,1“)27 8(pi,1+17 e(Pijl’pijl))) =1,k
5,1

Remark 1: For uﬁl -f; = 0 (flow from pipe 1 to junction) we have defined the loss

coefficients by

n+1 n+1
& = Poixi — Pog
i—=J — “hnt1 n+1
Poix — DPia

and for uffl -n; < 0 (flow from junction to pipe i) we have defined the loss coefficients

by
n+1 n+1
é _ Pos — Poia
J—i = n+1
Pog

Remark 2: Alternatively, applying losses only on outflows from pipe i into the junction
gives:

For each pipei (i = 1, - -, k)
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if uffl -7; > 0 (outflow from pipe 1)

(1= &) + &t —pt =0

else uﬁrl -n; < 0 (flow into pipe i from junction)

n—+1 n+l __
Poix —Poy =0

end if

End for

And in a similar manner, losses could be applied only to the pipes i with inflow from the
junction (using k;_;), i.e.

For each pipei (i = 1, - -, k)

if u?fl -7; > 0 (outflow from pipe 1)

n+1 n+l
Poin — Doy = 0

else uffl -n; < 0 (flow into pipe i from junction)

~

pg;,rll + (& —Dppt =0
end if
End for

Alas, the mathematical system for the junction is not yet closed. We do not know how
the flow energy partitions amongst the pipes with flow from the junction into the pipe.
Because we do not know this, we assume the stagnation specific enthalpy is identical for
each of the s pipes for which the flow is from the junction J into the pipe i [15]. For this
example (at the instant shown) this means that pipes 3, 4, and 5 receiving flow from the
juncion will be assumed to have the same stagnation specific enthalpy, i.e.

n+l _ 1n+l _ pn+l
h03,1 - h04,1 - h05,1 (27)

where
pn+1 1
n+l _ n+l , ntl 1,1 n+1\2
hoit = e(pii o) + =5 "‘5(%‘,1 )
il
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For this example this yielded two new equation; more generally, it yields s — 1 new equa-
tions such that
hoit = heiil Vi e{sy i, (28)

The system of equations is now mathematically closed: 16 equations for the 16 unknowns.

Remark 3: If the energy partitioning amongst the pipes receiving flow from the junction
was known, based on some physical knowlege, additional relationships could be con-
structed to reflect this additional knowledge.
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5 Final Note

The technique described in this report to represent the flow of single-phase compressible
flow in a junction can be extended to the compressible two-phase, 7-equation model em-
ployed in RELAP-7. Roughly speaking, the number of implicit unknowns to be solved
for at each junction (and, consequently, the number of equations necessary to relate those
unknowns) will approximately double from that of the single-phase case. The five-pipe
junction example of the previous section will have at least 32 implicit unknowns with an
equal number of equations linking those values at the pipe boundaries adjacent to the junc-
tion. The extension of this methodology to the 7-equation two-phase model of RELAP-7
will be detailed at a later date.

In addition to the compressible junction method described in this report, it is noted
that there is another technique available, possibly more efficient, to treat a pipe network
junction. We refer to this technique here as the finite junction volume method. Using this
approach, a junction is assigned a realistic volume; the multidimensional, time-dependent
balance equations are then written for this junction volume. The transient equations for
this volume are then solved to yield updated physical quantities that evolve with time.
Though the pipes which connect to this junction are treated one-dimensionally, because
of their three-dimensional orientation relative to the junction, their one-dimensional fluxes
map to multidimensional fluxes for the junction volume. Similarly, the time-updated mul-
tidimensional momentum solution is projected appropriately to the direction of each pipe
for interactive coupling. This technique is very conducive to solution by the numerical
finite volume method, and is described in [11, 12, 16-18]. This method was considered
early in the RELAP-7 development effort [11, 12], but was abandoned at that time, due
to limitations of the underlying software-development framework capablilities. Because
of recent enhancements to the underlying framework capabilites, and for other reasons
which (for brevity) are not detail here, this finite junction volume method may warrant
future revisitation.
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