

The INL is a U.S. Department of Energy National
Laboratory operated by Battelle Energy Alliance

INL/EXT-16-41982

NEAMS-IPL MOOSE
Midyear Framework
Activities

Cody Permann
Brian Alger
John Peterson
Andrew Slaughter
David Andrš
Richard Martineau

May 2017

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

 1

INL/EXT-16-41982

NEAMS-IPL MOOSE
Midyear Framework Activities

Cody Permann
Brian Alger

John Peterson
Andrew Slaughter

David Andrš
Richard Martineau

May 2017

Idaho National Laboratory
Modeling and Simulation Department

Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

ABSTRACT

The MOOSE Framework is a modular pluggable framework for building complex simula-
tions. The ability to add new objects with custom syntax is a core capability that makes MOOSE
a powerful platform for coupling multiple applications together within a single environment. The
creation of a new, more standardized JSON syntax output improves the external interfaces for
generating graphical components or for validating input file syntax automatically without the
need for explicit developer interaction. The design of this interface and the requirements it
satisfies are covered in this short report.

ii

ACRONYMS

GUI Graphical User Interface
JSON JavaScript Object Notation
MOOSE Multiphysics Object Oriented Simulation Environment
NEAMS Nuclear Engineering Advanced Modeling and Simulation
YAML Yet Another Markup Langague

iii

1 Workbench Integration

The Multiphysics Object Oriented Simulation Environment (MOOSE) is designed to be a modular
pluggable framework for building complex simulations. The core of this design relies on a commonly
used object-oriented paradigm called the factory pattern. MOOSE defines a set of basic interfaces
which may be extended by developers to provide new capabilities and enable new simulations. Each
user-developed object inherits from a common base class and must supply a corresponding template
specialization of a free function which describes the names, types and several other attributes of
every parameter which is used by the object at construction time. These syntax registration
functions (validParams) collectively make up the available syntax for an application and can be
used for dynamically generating GUI components or validating input. The data from these methods
form the basis for integration within the NEAMS Workbench suite.

Each objects validParams function allows for fine-grained control over the attributes of every
parameter an object expects to receive. These attributes include whether or not parameters are
required, have default values, or have restricted valid ranges for numeric parameter types, among
several other properties. These functions provide a rigorous interface which is used by MOOSE to
validate the parameters passed through input files or the programmatic creation of objects within
a simulation prior to the creation of each registered MOOSE object. This enables the framework
to perform the tedious parameter validation checks in a single location without having the need for
involving the developers of physics modules to replicate these checks in each object that is built
individually.

As part of the 2017 NEAMS work package, a new JavaScript Object Notation (JSON) syn-
tax tree formatter was created to simplify the integration of MOOSE-based applications into the
NEAMS Workbench. JSON is a standardized data-interchange format, which is easy for both
machines and humans to read and write. Modules for handling the input and output of JSON
formatting files are widely available in many different programming languages. Figure 1 shows a
small portion of the MOOSE syntax tree as built by the Parser and Action system. Tree formatters
are given a reference to this tree to produce data in various formats. Prior to performing the work
under this scope, MOOSE supported two syntax output formats: GetPot, a block structured format
which mirrors the input file syntax, and YAML a machine-friendly data serialization language. The
GetPot format is not well-suited for machine parsing and the YAML format is not as commonly
used and is more difficult for humans to read. Hence, the JSON format was developed to better
support external applications and to simplify internal maintenance. Additionally, the amount of
meta-data output in the JSON format was increased substantially to remove the number of the
assumptions made in recreating valid input syntax or validation rules.

As part of the JSON format development, several issues identified by the Workbench teams
independent input file parser were identified and addressed. Several improvements to the meta-data
in all of the formats were enhanced to remove ambiguities, unspecified behaviors and assumptions.
Several input files in multiple applications were updated as a result of the Workbench teams findings.
Additionally, some application behaviors have been modified to conform more to the valid syntax
they produce (e.g. not allowing private or hidden parameters to be set from the input file).

Currently, the Workbench team uses a parser which has been published as a separate module but
is not available publicly. The MOOSE maintainers have expressed interest in utilizing this module
but its not practical to use a module which cannot be obtained publicly as open-source software.
While we do have the ability to download and test against this parser to prevent regressions that
may cause validation issues but otherwise allow simulations to run properly, the onus would fall
onto the MOOSE maintainers to fix errors uncovered by the module with limited availability.
The MOOSE maintainers propose having the Workbench developers consider open-sourcing the

1

Figure 1: MOOSE syntax tree representing the valid syntax paths with InputParameter objects
suitable for creating arbitrary meta-data dumps.

workbench software to enable a common parsing platform for modern tool development.

2

2 Conclusion

The new JSON syntax output greatly simplifies the automatic generation of GUI components and
input file validation. In addition, undocumented assumptions and special case syntax handling has
been removed from all GUI side development in an effort to assure that the information required
for the validation of inputs is in the syntax information dump. The Workbench integration and
MOOSE specific GUI generation is currently being handled with a single meta-data output format.
This simplifies maintainability while creating a common platform capable of serving the needs of
multiple disparate projects. The MOOSE team plans to continue supporting and expanding the
capabilities of the Workbench validator as the framework development is advanced.

3

