
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

0. Installing Pyomo
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

SAND2016-8082C

Use Anaconda3 [all platforms]

 Install Anaconda3
 https://www.continuum.io/downloads

 Windows/Mac OS X/Linux

 Install the Python 3.5 version for your OS

 Includes several packages for scientific computing already

 Supports easy installation of pyomo and solvers

 Install pyomo, solvers, and other packages:
 From a terminal window, type:

Installing Pyomo 2

conda install -c https://conda.anaconda.org/conda-forge pyomo pyomo.extras

conda install glpk ipopt_bin -c cachemeorg

Install with pip [all platforms]

 Install Python
 Linux & Mac OS/X typically have Python pre-installed

 Scientific Python distributions have many utilities pre-installed
 http://www.scipy.org/install.html

 Install Pyomo
 Install in your system

 pip install Pyomo

 Install in a user directory

 pip install --user Pyomo

 Install auxiliary software
 Pyomo has conditional dependencies on various third-party packages

 pip install pyomo.extras

Installing Pyomo 3

http://www.scipy.org/install.html

Install with Download Scripts [Windows]

 Install Python
 Linux & Mac OS/X typically have Python pre-installed

 Scientific Python distributions have many utilities pre-installed
 http://www.scipy.org/install.html

 Install pip
 https://bootstrap.pypa.io/get-pip.py

 Install Pyomo: the get_pyomo.py script
 https://software.sandia.gov/trac/pyomo/downloader

 Install auxiliary software: the get_pyomo_extras.py script
 https://software.sandia.gov/trac/pyomo/downloader

Installing Pyomo 4

http://www.scipy.org/install.html
https://bootstrap.pypa.io/get-pip.py
https://software.sandia.gov/trac/pyomo/downloader
https://software.sandia.gov/trac/pyomo/export/HEAD/pyomo/trunk/scripts/get-pyomo.py

 Install Python
 Linux & Mac OS/X typically have Python pre-installed

 Scientific Python distributions have many utilities pre-installed
 http://www.scipy.org/install.htm

 Install pyomo: the pyomo_install script
 https://software.sandia.gov/trac/pyomo/downloader

 Trunk install

 pyomo_install --trunk

 Install using a bundled zip file (no network access required)

 pyomo_install --zip=pyomo-zipfile.zip

 Install into a Virtual Python Environment

 pyomo_install --venv=pyomo

 Trunk or zipfile options may be combined with virtual environments

Install Trunk / Offline [All platforms]

5Installing Pyomo

http://www.scipy.org/install.htm
https://software.sandia.gov/trac/pyomo/downloader

Install Solvers

Open Source Solvers

 COIN-OR Binary Distributions
 http://www.coin-or.org/download/binary/

 GLPK
 http://ftp.gnu.org/gnu/glpk/

 SCIP
 http://scip.zib.de/#download

Note: You need to add the solver installation to the
PATH environment variable

Installing Pyomo 6

http://www.coin-or.org/download/binary/
http://ftp.gnu.org/gnu/glpk/
http://scip.zib.de/#download

License

Pyomo released under 3-clause BSD license
 No restrictions on deployment or commercial use

Installing Pyomo 7

 Homepage:
 www.pyomo.org

 Developer site:
 https://software.sandia.gov/pyomo

 Mailing lists
 pyomo-forum@googlegroups.com

 pyomo-developers@googlegroups.com

Getting help

8Installing Pyomo

http://www.pyomo.org/
https://software.sandia.gov/pyomo

Acknowledgements

 William Hart

 Carl Laird

 John Siirola

 Jean-Paul Watson

 David Woodruff

Installing Pyomo 9

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

1. Overview of Pyomo
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

Pyomo Overview

Idea: a Pythonic framework for formulating optimization models

 Provide a natural syntax to describe mathematical models

 Formulate large models with a concise syntax

 Separate modeling and data declarations

 Enable data import and export in commonly used formats

Highlights:

 Python provides a
clean, intuitive syntax

 Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

simple.py
from pyomo.environ import *

M = ConcreteModel()
M.x1 = Var()
M.x2 = Var(bounds=(-1,1))
M.x3 = Var(bounds=(1,2))
M.o = Objective(

expr=M.x1**2 + (M.x2*M.x3)**4 + \
M.x1*M.x3 + \
M.x2*sin(M.x1+M.x3) + M.x2)

model = M

Overview of Pyomo 2

Overview

 What happened to Coopr?

 Three really good questions:
 Why another Algebraic Modeling Language (AML)?

 Why Python?

 Why open-source?

 Pyomo: Software library infrastructure

 Pyomo: Team overview and collaborators / users

 Where to find more information…

Overview of Pyomo 3

What Happened to Coopr?

 Users were installing Coopr but using Pyomo

 Pyomo modeling extensions were not distinct enough

 Researchers cited “Coopr/Pyomo”

 Users/Developers were confused by the coopr and pyomo
commands

 Developers were coding in Coopr but talking about Pyomo

We needed to provide clear branding this project!

Overview of Pyomo 4

Optimization Modeling

Goal:

 Provide a natural syntax to describe mathematical models

 Formulate large models with a concise syntax
 Separate modeling and data declarations
 Enable data import and export in commonly used formats

Impact:
 Robustly model large constraint matrices (e.g. for MILPs)

 Integrated support of automatic differentiation for complex nonlinear
models

Examples:
 AMPL, GAMS, AIMMS, …

 OptimJ, FlopCPP, PuLP, JuMP, …

Overview of Pyomo 5

 Full-Featured Library

 Language features includes functions, classes, looping, namespaces, etc

 Introspection facilitates the development of generic algorithms

 Python’s clean syntax facilitates rapid prototyping

 Open Source License

 No licensing issues w.r.t. the language itself

 Extensibility and Robustness

 Highly stable and well-supported

 Support and Documentation

 Extensive online documentation and several excellent books

 Long-term support for the language is not a factor

 Standard Library

 Includes a large number of useful modules

 Portability

 Widely available on many platforms

Why Model in Python?

6Overview of Pyomo

Why Open Source?

 Transparency and reliability

 Foster community involvement
 Extend the modeling language

 Develop new solvers / algorithms

 Interface with additional external utilities

 “Stone Soup” model

 Flexible licensing
 Pyomo released under 3-clause BSD license

 No restrictions on deployment or commercial use

Overview of Pyomo 7

Pyomo at a Glance

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling

Objects NEOS

Couenne

Core Optimization

Objects

DAKOTA

Overview of Pyomo 8

Pyomo at a Glance

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling

Objects NEOS

Couenne

Meta-Solvers
• Generalized Benders

• Progressive Hedging

• Linear bilevel

• Linear MPEC

Modeling Extensions
• Disjunctive programming

• Stochastic programming

• Bilevel programming

• Differential equations

• Equilibrium constraints

Core Optimization

Objects

Model

Transformations

DAKOTA

Overview of Pyomo 9

Survey of Python Modeling Tools

 Pyomo
 Supports concrete/abstract modeling for LP/MILP/NLP models

 Modeling extensions for stochastic programming, bilevel, MPEC, etc

 Separate model objects

 PuLP
 Supports concrete modeling for LP/MILP models

 Separate model objects

 Simple object model

 APLEpy
 Supports concrete modeling for LP/MILP models

 Single global model object

 PyMathProg, pyglpk, cplex, gurobi
 Python interfaces for specific solver tools

Overview of Pyomo 10

More than just mathematical modeling

Scripting
 Construct models using native Python data

 Iterative analysis of models leveraging Python functionality

 Data analysis and visualization of optimization results

Model transformations (a.k.a. reformulations)
 Automate generation of one model from another

 Leverage Pyomo’s object model to apply transformations sequentially

 E.g.: relax integrality, GDP -> Big M

Meta-solvers
 Integrate scripting and/or transformations into optimization solver

 Leverage Python’s introspective nature to build “generic” capabilities

 E.g.: progressive hedging, SP extensive form -> MIP

Overview of Pyomo 11

Who Uses Pyomo?

 Students
 Rose-Hulman, UC Davis, U Texas, Iowa State, NPS

 Researchers
 Government laboratories

 Sandia National Labs, Lawrence Livermore National Lab, Los Alamos
National Lab, National Energy Technology Lab, Federal Energy Regulation
Commission

 Universities

 UC Davis, TAMU, Rose-Hulman, UT, USC, GMU, Iowa State, NCSU, U
Washington, NPS, U de Santiago de Chile, U Pisa, …

 Companies

Overview of Pyomo 12

Who Uses Pyomo?

 Software Projects
 TEMOA – Energy economy optimization models

 Minpower – Power systems toolkit

 Water Security Toolkit – Planning/Response for water contamination

 SolverStudio – Excel plugin for optimization modeling

Overview of Pyomo 13

For More Information

See the Pyomo homepage
 www.pyomo.org

The Pyomo homepage
provides a portal for:

 Online documentation

 Installation instructions

 Help information

 Developer links

Coming soon:
 A gallery of simple

examples

Overview of Pyomo 14

http://www.pyomo.org

Development, Community Activity

 Pyomo Forum
 Active discussion list

 Active developer community

Overview of Pyomo 15

Acknowledgements

 Sandia National Laboratories

 William Hart

 Jean-Paul Watson

 John Siirola

 Francisco Munoz

 University of California, Davis

 Prof. David L. Woodruff

 Prof. Roger Wets

 Purdue University

 Prof. Carl D. Laird

 Oregon State University

 Gabe Hackebeil

 Carnegie Mellon University

 Bethany Nicholson

Overview of Pyomo 16

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

2. A Python Tutorial
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

Why Python?

 Interpreted language

 Intuitive syntax

 Dynamic typing

 Lots of built-in libraries and third-party extensions

 Shallow learning curve

 Integration with C/Java

 Object-oriented

 Simple, but extremely powerful

A Python Tutorial 2

Python Implementations

 Cpython

 C Python interpreter

 https://www.python.org/downloads/

 SciPy Stack

 http://www.scipy.org/install.html

 Anaconda: Linux/MacOS/MS Windows

 PyPy

 A Python interpreter written in Python

 http://pypy.org/

 Jython

 Java Python interpreter

 http://www.jython.org/

 IronPython

 .NET Python interpreter

 http://ironpython.net/

A Python Tutorial 3

Full Pyomo Support

Beta Pyomo Support

Pyomo Not Supported (yet)

https://www.python.org/downloads/
http://www.scipy.org/install.html
http://pypy.org/
http://www.jython.org/
http://ironpython.net/

Python Versions: 2.x vs 3.x

 Python 3.0 was released in 2008
 Included significant backward incompatibilities

 Adoption of Python 3.x has been slow
 Major Linux distributions are still including Python 2.x

 Major Python packages have slowly transitioned

 Some commercial packages still only have Python 2.x interfaces

 Status
 Python 2.7.11

 Very stable; patches have included package
updates to support Python 3.x compatibility

 Python 3.5.1

 Very stable

A Python Tutorial 4

We try to stick to

“universal” syntax

that will work in

both 2.x and 3.x

Overview

 interactive "shell"

 basic types: numbers, strings

 container types: lists, dictionaries, tuples

 variables

 control structures

 functions & procedures

 classes & instances

 modules

 exceptions

 files & standard library

A Python Tutorial 5

Interactive Shell

 Great for learning the language

 Great for experimenting with the library

 Great for testing your own modules

 Two variations:

 IDLE (GUI)

 python (command line)

 Type statements or expressions at prompt:
>>> print("Hello, world")

Hello, world

>>> x = 12**2

>>> x/2

72

>>> # this is a comment

A Python Tutorial 6

Python Program

 To write a program, put commands in a file

hello.py

print("Hello, world")

x = 12**2

print(x)

 Execute on the command line

python hello.py

Hello, world

144

A Python Tutorial 7

Python Variables

 No need to declare

 Need to assign (initialize)
 use of uninitialized variable raises exception

 Not typed
greeting = 34.2

if friendly:

greeting = "hello world"

else:

greeting = 12**2

print(greeting)

 Everything is a "variable":
 Even functions, classes, modules

A Python Tutorial 8

Control Structures

if condition:

statements

[elif condition:

statements] ...

else:

statements

while condition:

statements

for var in sequence:

statements

break

continue

9A Python Tutorial

Note: Spacing matters!
Control structure scope dictated by indentation

Grouping Indentation

In Python:

for i in range(20):

if i % 3 == 0:

print(i)

if i % 5 == 0:

print("Bingo!“)

print("---")

In C:

for (i = 0; i < 20; i++)

{

if (i % 3 == 0) {

printf("%d\n", i);

if (i % 5 == 0) {

printf("Bingo!\n");

}

}

printf("---\n");

}

10A Python Tutorial

Numbers

 The usual suspects
 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x), 0<x<=5

 C-style shifting & masking
 1<<16, x&0xff, x|1, ~x, x^y

 Integer division truncates
 Python 2.x

– 1/2  0, 1./2.  0.5, float(1)/2  0.5

– from __future__ import division

» 1/2  0.5

 Python 3.x

– 1/2  0.5

 Long (arbitrary precision), complex
 2L**100  1267650600228229401496703205376L

– In Python 2.2 and beyond, 2**100 does the same thing

 1j**2  (-1+0j)

A Python Tutorial 11

Strings

 "hello"+"world” "helloworld” # concatenation

 "hello"*3 "hellohellohello" # repetition

 "hello"[0] "h" # indexing

 "hello"[-1] "o" # (from end)

 "hello"[1:4] "ell" # slicing

 len("hello") 5 # size

 "hello" < "jello” True # comparison

 "e" in "hello” True # search

 "escapes: \n etc, \033 etc, \if etc"

 'single quotes' """triple quotes""" r"raw strings"

A Python Tutorial 12

Lists

 Flexible arrays, not linked lists
 a = [99, "bottles of beer", ["on", "the", "wall"]]

 Same operators as for strings
 a+b, a*3, a[0], a[-1], a[1:], len(a)

 Item and slice assignment
 a[0] = 98

 a[1:2] = ["bottles", "of", "beer"]

-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]

 del a[-1]

-> [98, "bottles", "of", "beer"]

A Python Tutorial 13

List Operations

>>> a = range(5) # [0,1,2,3,4]

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]

42

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

A Python Tutorial 14

Dictionaries

 Hash tables, "associative arrays"
 d = {"duck": "eend", "water": "water"}

 Lookup:
 d["duck"] # -> "eend"

 d["back"] # raises KeyError exception

 Delete, insert, overwrite:
 del d["water"] # {"duck": "eend", "back": "rug"}

 d["back"] = "rug" # {"duck": "eend", "back": "rug"}

 d["duck"] = "duik" # {"duck": "duik", "back": "rug"}

A Python Tutorial 15

Dictionary Operations

 Keys, values, items:
 d.keys() -> ["duck", "back"]

 d.values() -> ["duik", "rug"]

 d.items() -> [("duck","duik"), ("back","rug")]

 Presence check:
 d.has_key("duck") # -> 1; d.has_key("spam") -> 0

 Values of any type; keys almost any
 { "name": "Guido",

"age": 43,
("hello","world"): 1,
42: "yes",
"flag": ["red","white","blue"] }

A Python Tutorial 16

Note: These actually return generators, not lists.

Dictionary Details

 Keys must be immutable:
 numbers, strings, tuples of immutables

 these cannot be changed after creation

 keys are hashed (to ensure fast lookup)

 lists or dictionaries cannot be used as keys

 these objects can be changed "in place"

 no restrictions on values

 Keys will be listed in arbitrary order
 key hash values are in an arbitrary order

 that numeric keys are returned sorted is an artifact of the
implementation and is not guaranteed

A Python Tutorial 17

Tuples

 key = (lastname, firstname)

 point = x, y, z # parentheses optional

 x, y, z = point # unpack

 lastname = key[0] # index tuple values

 singleton = (1,) # trailing comma!!!

(1)  integer!

 empty = () # parentheses!

 Tuples vs. lists

 tuples immutable

 lists mutable

A Python Tutorial 18

Reference Semantics

 Assignment manipulates references
 x = y does not make a copy of y

 x = y makes x reference the object y references

 Reference values can be modified!
>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print(b)

[1, 2, 3, 4]

 Copied objects are distinct
>>> import copy

>>> c = copy.copy(a)

>>> a.pop()

>>> print(c)

[1, 2, 3, 4]

A Python Tutorial 19

Changing a Shared List

a

1 2 3

b

a

1 2 3

b

4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

A Python Tutorial 20

Changing an Integer

a

1

b

a

1b

a = 1

a = a+1

b = a

a 1

2

old reference deleted
by assignment (a=...)

new int object created
by add operator (1+1)

A Python Tutorial 21

Functions / Procedures

def name(arg1, arg2, ...):

"""documentation""" # optional doc string

statements

return expression # from function

return # from procedure (returns None)

A Python Tutorial 22

Example

def gcd(a, b):

"""greatest common divisor"""

while a != 0:

a, b = b%a, a # parallel assignment

return b

>>> gcd.__doc__

'greatest common divisor'

>>> gcd(12, 20)

4

A Python Tutorial 23

Classes

class name(object):

"""documentation"""

statements

Most, statements are method definitions:

def name(self, arg1, arg2, ...):

...

May also be class variable assignments

A Python Tutorial 24

Example

class Stack(object):

"""A well-known data structure..."""

def __init__(self): # constructor

self.items = []

def push(self, x):

self.items.append(x) # the sky is the limit

def pop(self):

x = self.items[-1] # what if it’s empty?
del self.items[-1]

return x

def empty(self):

return len(self.items) == 0 # Boolean result

A Python Tutorial 25

Example (cont’d)

 To create an instance, simply call the class object:
x = Stack() # no 'new' operator!

 To use methods of the instance, call using dot notation:
x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

 To inspect instance variables, use dot notation:
x.items # -> [1]

A Python Tutorial 26

Class/Instance Variables

class Connection(object):

verbose = 0 # class variable

def __init__(self, host):

self.host = host # instance variable

def debug(self, v):

self.verbose = v # make instance variable!

def connect(self):

if self.verbose: # class or instance variable?

print("connecting to %s" % (self.host,))

A Python Tutorial 27

Instance Variable Rules

 On use via instance (self.x), search order:
 (1) instance, (2) class, (3) base classes

 this also works for method lookup

 On assignment via instance (self.x = ...):
 always makes an instance variable

 Class variables "default" for instance variables

 But...!
 mutable class variable: one copy shared by all

 mutable instance variable: each instance its own

A Python Tutorial 28

Modules

 Collection of stuff in foo.py file
 functions, classes, variables

 Importing modules:
import re

print(re.match("[a-z]+", s))

from re import match

print(match("[a-z]+", s))

 Import with rename:
import re as regex

from re import match as m

A Python Tutorial 29

Catching Exceptions

def foo(x):

return 1/x

def bar(x):

try:

print(foo(x))

except ZeroDivisionError as message:

print("Can’t divide by zero: %s" % message)

bar(0)

A Python Tutorial 30

Try-Finally: Cleanup

f = open(file)

try:

process_file(f)

finally:

f.close() # always executed

print("OK") # executed on success only

A Python Tutorial 31

Raising Exceptions

raise IndexError

raise IndexError("k out of range")

raise IndexError, "k out of range”

this only works in Python 2.x!

try:
something

except: # catch everything
print("Oops")
raise # reraise

A Python Tutorial 32

More on Exceptions

 User-defined exceptions
 subclass Exception or any other standard exception

 Note: in older versions of Python exceptions can be strings

 Last caught exception info:
 sys.exc_info() == (exc_type, exc_value, exc_traceback)

 Printing exceptions: traceback module

A Python Tutorial 33

Major Python Packages

 SciPy

 Scientific Python for mathematics and engineering

 http://www.scipy.org

 Numpy

 Numeric array package

 http://www.numpy.org/

 Matplotlib

 2D plotting library

 http://matplotlib.org/

 Pandas

 Data structures and analysis

 http://pandas.pydata.org/

 Ipython

 Interactive Python shell

 http://ipython.org/

A Python Tutorial 36

http://www.scipy.org
http://www.numpy.org/
http://matplotlib.org/
http://pandas.pydata.org/
http://ipython.org/

Resources

 Software Carpentry
 http://software-carpentry.org/

 Python webpage
 http://www.python.org

 Books
 Python Essential Reference (4th Edition), David Beazley, 2009

 Python in a Nutshell, Alex Martelli, 2003

 Python Pocket Reference, 4th Edition, Mark Lutz, 2009

 …

A Python Tutorial 37

http://software-carpentry.org/
http://www.python.org

Acknowledgements

 William Hart

 Ted Ralphs

 John Siirola

 Dave Woodruff

 Guido van Rossum

A Python Tutorial 38

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

3. Pyomo Fundamentals
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

3. Fundamental Pyomo Components

 Pyomo is an object model for describing optimization problems

 The fundamental objects used to build models are Components

Model

Set

Set

Param

Var

Var

Constraint

domain

domain

bounds

domain

bounds

expression

bounds

…

Pyomo Fundamentals 2

Cutting to the chase: a simple Pyomo model

 rosenbrock.py:

from pyomo.environ import *

model = ConcreteModel()

model.x = Var(initialize=-1.2, bounds=(-2, 2))
model.y = Var(initialize= 1.0, bounds=(-2, 2))

model.obj = Objective(
expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,
sense= minimize)

Pyomo Fundamentals 3

Cutting to the chase: a simple Pyomo model

 Solve the model:
 The pyomo command

% pyomo solve rosenbrock.py --solver=ipopt --summary
[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.00] Creating model
[0.00] Applying solver
[0.03] Processing results

Number of solutions: 1
Solution Information
Gap: <undefined>
Status: optimal
Function Value: 2.98956421871e-17

Solver results file: results.json

===
Solution Summary
===

Model unknown

Variables:
Variable x : Size=1 Domain=Reals
Value=0.999999994543

Variable y : Size=1 Domain=Reals
Value=0.999999989052

Objectives:
Objective obj : Size=1
Value=2.98956421871e-17

Constraints:
None

[0.03] Applying Pyomo postprocessing actions
[0.03] Pyomo Finished

Pyomo Fundamentals 4

Regarding namespaces

 Pyomo objects exist within the pyomo.environ namespace:
import pyomo.environ

model = pyomo.environ.ConcreteModel()

 …but this gets verbose. To save typing, we will import the
core Pyomo classes into the main namespace:

from pyomo.environ import *

model = ConcreteModel()

 To clarify Pyomo-specific syntax in this tutorial, we will
highlight Pyomo symbols in green

Pyomo Fundamentals 5

Getting Started: the Model

from pyomo.environ import *

model = ConcreteModel()

Every Pyomo model starts
with this; it tells Python to
load the Pyomo Modeling
Environment

Create an instance of a Concrete model
• Concrete models are immediately constructed
• Data must be present at the time components

are defined

Local variable to hold the model we are about to construct
• While not required, by convention we use “model”
• If you choose to name your model something else,

you will need to tell the Pyomo script the object
name through the command line

Pyomo Fundamentals 6

Populating the Model: Variables

model.a_variable = Var(within = NonNegativeReals)

model.a_variable = Var(bounds = (0, None))

The name you assign the
object to becomes the
object’s name, and must be
unique in any given model.

“within” is optional
and sets the variable
domain (“domain” is an
alias for “within”)

Several pre-
defined domains,
e.g., “Binary”

Same as above: “domain” is assumed to be Reals if missing

Pyomo Fundamentals 7

Defining the Objective

model.x = Var(initialize=-1.2, bounds=(-2, 2))

model.y = Var(initialize= 1.0, bounds=(-2, 2))

model.obj = Objective(

expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,

sense= minimize)

If “sense” is omitted, Pyomo
assumes minimization

Note that the Objective expression
is not a relational expression

“expr” can be an expression,
or any function-like object
that returns an expression

Pyomo Fundamentals 8

Defining the Problem: Constraints

model.a = Var()
model.b = Var()
model.c = Var()
model.c1 = Constraint(

expr = model.b + 5 * model.c <= model.a)

model.c2 = Constraint(expr = (None, model.a + model.b, 1))

“expr” can be an expression,
or any function-like object
that returns an expression

“expr” can also be a tuple:
• 3-tuple specifies (LB, expr, UB)
• 2-tuple specifies an equality constraint.

Pyomo Fundamentals 9

In general, we do not
recommend this notation

Lists of Constraints

model.a = Var()

model.b = Var()

model.c = Var()

model.limits = ConstraintList()

model.limits.add(30*model.a + 15*model.b + 10*model.c <= 100)

model.limits.add(10*model.a + 25*model.b + 5*model.c <= 75)

model.limits.add(6*model.a + 11*model.b + 3*model.c <= 30)

“add” adds a single new constraint to the list.
The constraints need not be related.

Pyomo Fundamentals 10

Higher-dimensional components

 (Almost) All Pyomo components can be indexed
 All non-keyword arguments are assumed to be indices

 Individual indices may be multi-dimensional (e.g., a list of pairs)

<Type>(<IDX1>, <IDX2>, […] <keyword>=<value>, …)

 Indexed variables
model.a_vector = Var(IDX)

model.a_matrix = Var(IDX_A, IDX_B)

 ConstraintList is a special case with an implicit index

 Note: while indexed variables look like matrices, they are not.
 In particular, we do not support matrix algebra (yet…)

The indexes are any iteratable object,
e.g., list or Set

Pyomo Fundamentals 11

Manipulating indices: list comprehensions

model.IDX = range(10)

model.a = Var()

model.b = Var(model.IDX)

model.c1 = Constraint(

expr = sum(model.b[i] for i in model.IDX) <= model.a)

Pyomo Fundamentals 12

Python list comprehensions are
very common for working over
indexed variables and nicely
parallel mathematical notation:

෍

𝑖∈𝐼𝐷𝑋

𝑏𝑖 ≤ 𝑎

Concrete Modeling

Pyomo Fundamentals 13

 Determine the set of 𝑃 warehouses chosen from 𝑁
candidates that minimizes the total cost of serving all
customers 𝑀 where 𝑑𝑛,𝑚 is the cost of serving customer 𝑚
from warehouse location 𝑛.

Putting It All Together: Concrete p-Median

min ෍

𝑛∈𝑁,𝑚∈𝑀

𝑑𝑛,𝑚𝑥𝑛,𝑚 minimize total cost

𝑠. 𝑡. ෍

𝑛

𝑥𝑛,𝑚 = 1 ∀ 𝑚 ∈ 𝑀
(guarantee all

customers served)

𝑥𝑛,𝑚 ≤ 𝑦𝑛 ∀ 𝑛 ∈ 𝑁,𝑚 ∈ 𝑀
(customer 𝑛 can only be
served from warehouse 𝑚
if warehouse 𝑚 is selected)

෍

𝑛∈𝑁

𝑦𝑛 = 𝑃 select 𝑃 warehouses

0 ≤ 𝑥 ≤ 1 𝑦 ∈ 0,1 𝑁

Pyomo Fundamentals 14

Concrete p-Median (1)

from pyomo.environ import *

N = 3
M = 4
P = 3

d = {(1, 1): 1.7, (1, 2): 7.2, (1, 3): 9.0, (1, 4): 8.3,

(2, 1): 2.9, (2, 2): 6.3, (2, 3): 9.8, (2, 4): 0.7,

(3, 1): 4.5, (3, 2): 4.8, (3, 3): 4.2, (3, 4): 9.3}

model = ConcreteModel()

model.Locations = range(N)

model.Customers = range(M)

model.x = Var(model.Locations, model.Customers,
bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

Pyomo Fundamentals 15

Concrete p-Median (2)

model.obj = Objective(expr = sum(d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers))

model.single_x = ConstraintList()

for m in model.Customers:
model.single_x.add(

sum(model.x[n,m] for n in model.Locations) == 1.0)

model.bound_y = ConstraintList()

for n in model.Locations:
for m in model.Customers:

model.bound_y.add(model.x[n,m] <= model.y[n])

model.num_facilities = Constraint(
expr=sum(model.y[n] for n in model.Locations) == P)

Pyomo Fundamentals 16

Solving models: the pyomo command

 pyomo (pyomo.exe on Windows):

 Constructs model and passes it to an (external) solver

 Installed to:

 [PYTHONHOME]\Scripts [Windows; C:\Python27\Scripts]

 [PYTHONHOME]/bin [Linux; /usr/bin]

 Key options (many others; see --help)

pyomo solve <model_file> [<data_file> …] [options]

--help Get list of all options

--help-solvers Get the list of all recognized solvers

--solver=<solver_name> Set the solver that Pyomo will invoke

--solver-options=“key=value[…]” Specify options to pass to the solver as a space-

separated list of keyword-value pairs

--stream-solver Display the solver output during the solve

--summary Display a summary of the optimization result

--report-timing Report additional timing information, including

construction time for each model component

Pyomo Fundamentals 17

In Class Exercise: Concrete Knapsack

Item Weight Value

hammer 5 8

wrench 7 3

screwdriver 4 6

towel 3 11
}1,0{

..

max

max

1

1











i

N

i

ii

N

i

ii

x

Wxwts

xv

Syntax reminders:

from pyomo.environ import *

ConcreteModel()

Var([index, …], [within=domain], [bounds=(lower,upper)])

ConstraintList()

c.add(expression)

Objective(sense={maximize|minimize},

expr=expression)

Max weight: 14

Pyomo Fundamentals 18

Concrete Knapsack: Solution

from pyomo.environ import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}

w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}

W_max = 14

model = ConcreteModel()

model.ITEMS = v.keys()

model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(

expr = sum(v[i]*model.x[i] for i in model.ITEMS),

sense = maximize)

model.weight = Constraint(

expr = sum(w[i]*model.x[i] for i in model.ITEMS) <= W_max)

Pyomo Fundamentals 19

Abstract Modeling

Pyomo Fundamentals 20

Concrete vs. Abstract Models

 Concrete Models: data first, then model
 1-pass construction

 All data must be present before Python starts processing the model

 Pyomo will construct each component in order at the time it is declared

 Straightforward logical process; easy to script.

 Familiar to modelers with experience with GAMS

 Abstract Models: model first, then data
 2-pass construction

 Pyomo stores the basic model declarations, but does not construct the actual objects

 Details on how to construct the component hidden in functions, or rules

 e.g., it will declare an indexed variable “x”, but will not expand the indices or populate
any of the individual variable values.

 At “creation time”, data is applied to the abstract declaration to create a concrete instance
(components are still constructed in declaration order)

 Encourages generic modeling and model reuse

 e.g., model can be used for arbitrary-sized inputs

 Familiar to modelers with experience with AMPL

Pyomo Fundamentals 21

Generating and Managing Indices: Sets

 Any iterable object can be an index, e.g., lists:

 IDX_a = [1,2,5]

 DATA = {1: 10, 2: 21, 5:42};
IDX_b = DATA.keys()

 Sets: objects for managing multidimensional indices

 model.IDX = Set(initialize = [1,2,5])

 model.IDX = Set([1,2,5])

Like indices, Sets can be
initialized from any iterable

Note: This doesn’t do what you want.
This creates a 3-member indexed set, where each set is empty.

Note: capitalization matters:
Set = Pyomo class
set = native Python set

Pyomo Fundamentals 22

Sequential Indices: RangeSet

 Sets of sequential integers are common

 model.IDX = Set(initialize=range(5))

 model.IDX = RangeSet(5)

 You can provide lower and upper bounds to RangeSet

 model.IDX = RangeSet(0, 4)

Note: RangeSet is 1-based.
This gives [1, 2, 3, 4, 5]

Note: Python range is 0-based.
This gives [0, 1, 2, 3, 4]

This gives [0, 1, 2, 3, 4]

Pyomo Fundamentals 23

Manipulating Sets

 Sets support efficient higher-dimensional indices

model.IDX = Set(initialize=[1,2,5])

model.IDX2 = model.IDX * model.IDX

 Creating sparse sets

model.IDX = Set(initialize=[1,2,5])

def lower_tri_filter(model, i, j):

return j <= i

model.LTRI = Set(initialize = model.IDX * model.IDX,

filter = lower_tri_filter)

This creates a virtual
2-D “matrix” Set

The filter should return True if the element is in the set; False otherwise.

Sets also support union (&), intersection (|),
difference (-), symmetric difference (^)

Pyomo Fundamentals 24

Deferred construction: Rules

 Abstract modeling constructs the model in two passes:

 Python parses the model declaration

 creating “empty” Pyomo components in the model

 Pyomo loads and parses external data

 Components are constructed in declaration order

 The instructions for how to construct the object are provided through a
function, or rule

 Pyomo calls the rule for each component index

 Rules can be provided to virtually all Pyomo components
(even when using Concrete models)

 Naming conventions

 the component name prepended with “_” (c4 _c4)

 the component name with “_rule” appended (c4 c4_rule)

 each rule is called “rule” (Python implicitly overrides each declaration)

Pyomo Fundamentals 25

Indexed Constraints

model.IDX = Set(initialize=range(5))
model.a = Var(model.IDX)
model.b = Var()

def c4_rule(model, i):

return model.a[i] + model.b <= 1

model.c4 = Constraint(model.IDX, rule=c4_rule)

model.IDX2 = model.IDX * model.IDX

def c5_rule(model, i, j, k):

return model.a[i] + model.a[j] + model.a[k] <= 1

model.c5 = Constraint(model.IDX2, model.IDX, rule=c5_rule)

For indexed constraints, you provide a “rule” (function) that
returns an expression (or tuple) for each index.

Each dimension of each index is
a separate argument to the rule

Pyomo Fundamentals 26

Importing Data: Parameters

 Scalar numeric values
model.a_parameter = Param(initialize = 42)

 Indexed numeric values
model.a_param_vec = Param(IDX,

initialize = data,
default = 0)

Provide an (initial) value of 42 for the parameter

“data” must be a dictionary(*) of index keys
to values because all sets are assumed to be
unordered

(*) – actually, it must define __getitem__(),
but that only really matters to Python geeks

Providing “default” allows
the initialization data to only
specify the “unusual” values

Pyomo Fundamentals 27

Data Sources

 Data can be imported from “.dat” file
 Format similar to AMPL style

 Explicit data from “param” declarations

 External data through “load” declarations:

 Excel

load ABCD.xls range=ABCD : Z=[A, B, C] Y=D ;

 Databases

load “DBQ=diet.mdb” using=pyodbc query=“SELECT FOOD, cost,
f_min, f_max from Food” : [FOOD] cost f_min f_max ;

 External data overrides “initialize=” declarations

Pyomo Fundamentals 28

Abstract p-Median (pmedian.py, 1)

from pyomo.environ import *

model = AbstractModel()

model.N = Param(within=PositiveIntegers)
model.P = Param(within=RangeSet(model.N))
model.M = Param(within=PositiveIntegers)

model.Locations = RangeSet(model.N)
model.Customers = RangeSet(model.M)

model.d = Param(model.Locations, model.Customers)

model.x = Var(model.Locations, model.Customers, bounds=(0.0, 1.0))

model.y = Var(model.Locations, within=Binary)

Pyomo Fundamentals 29

Abstract p-Median (pmedian.py, 2)

def obj_rule(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=obj_rule)

def single_x_rule(model, m):
return sum(model.x[n,m] for n in model.Locations) == 1.0

model.single_x = Constraint(model.Customers, rule=single_x_rule)

def bound_y_rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0

model.bound_y = Constraint(model.Locations, model.Customers,
rule=bound_y_rule)

def num_facilities_rule(model):
return sum(model.y[n] for n in model.Locations) == model.P

model.num_facilities = Constraint(rule=num_facilities_rule)

Pyomo Fundamentals 30

Abstract p-Median (pmedian.dat)

param N := 3;

param M := 4;

param P := 2;

param d: 1 2 3 4 :=

1 1.7 7.2 9.0 8.3

2 2.9 6.3 9.8 0.7

3 4.5 4.8 4.2 9.3 ;

Pyomo Fundamentals 31

In Class Exercise: Abstract Knapsack

Item Weight Value

hammer 5 8

wrench 7 3

screwdriver 4 6

towel 3 11
}1,0{

..

max

max

1

1











i

N

i

ii

N

i

ii

x

Wxwts

xv

Syntax reminders:

AbstractModel()

Set([index, …], [initialize=list/function])

Param([index, …], [within=domain], [initialize=dict/function])

Var([index, …], [within=domain], [bounds=(lower,upper)])

Constraint([index, …], [expr=expression|rule=function])

Objective(sense={maximize|minimize},
expr=expression|rule=function)

Max weight: 14

Pyomo Fundamentals 32

Abstract Knapsack: Solution

from pyomo.environ import *

model = AbstractModel()

model.ITEMS = Set()

model.v = Param(model.ITEMS, within=PositiveReals)

model.w = Param(model.ITEMS, within=PositiveReals)

model.W_max = Param(within=PositiveReals)

model.x = Var(model.ITEMS, within=Binary)

def value_rule(model):

return sum(model.v[i]*model.x[i] for i in model.ITEMS)

model.value = Objective(rule=value_rule, sense=maximize)

def weight_rule(model):

return sum(model.w[i]*model.x[i] for i in model.ITEMS) \

<= model.W_max

model.weight = Constraint(rule=weight_rule)

Pyomo Fundamentals 33

Abstract Knapsack: Solution Data

set ITEMS := hammer wrench screwdriver towel ;

param: v w :=

hammer 8 5

wrench 3 7

screwdriver 6 4

towel 11 3;

param W_max := 14;

Pyomo Fundamentals 34

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

4. Pyomo Idioms
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

Pyomo and Python: Idioms and Efficiency

 Being embedded in a high-level (and interpreted)
programming language can present challenges
 Inability to constrain syntax => users have many guns

 Some of approaches may be very slow

 Some of the blame can be placed on Python
 But a lot can be blamed on Pyomo

Pyomo Idioms 2

What are reasonable performance expectations?

 Python is a byte-compiled scripting language

 and Pyomo is pure Python

 …so expectations were not high

 …and raw speed has never been a goal!

 Early experiences bore this out… in November, 2010:

 p-median facility location

 AMPL model construction time: ~4 seconds

 Pyomo model construction time: >2000 seconds

 Logistics disruption modeling

 GAMS solution time: ~20 seconds

 Pyomo solution time: >200 seconds

 ...but the gap is closing… in Coopr 3.2:

 p-median facility location: ~45 seconds

 Logistics disruption modeling: ~25 seconds

Pyomo Idioms 3

Managing edge cases (special sets vs rule logic)

 Linking time; consider:

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T – [0]

def rule1(model, t):
return model.x[t] = model.c * model.x[t-1]

model.link = Constraint(model.Tnot0, rule=rule1)

def rule2(model):

if t == 0:

return Constraint.Skip
return model.x[t] = model.c * model.x[t-1]

model.link = Constraint(model.T, rule=rule2)

}0,|{

]..0[

1

max





 tTttcxx

TT

tt

Pyomo Idioms 4

Managing edge cases (special sets vs rule logic)

 Linking time; consider:

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T – [0]

def rule1(model, t):
return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.Tnot0, rule=rule1)

def rule2(model):

if t == 0:

return Constraint.Skip
return model.x[t] = model.c * model.x[t-1]

model.link = Constraint(model.T, rule=rule2)

}0,|{

]..0[

1

max





 tTttcxx

TT

tt

Pyomo Idioms 5

Managing edge cases (special sets vs rule logic)

 Linking time; consider:

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T – [0]

def rule1(model, t):
return model.x[t] = model.c * model.x[t-1]

model.link = Constraint(model.Tnot0, rule=rule1)

def rule2(model, t):

if t == 0:

return Constraint.Skip
return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.T, rule=rule2)

}0,|{

]..0[

1

max





 tTttcxx

TT

tt

Pyomo Idioms 6

 Linking time; consider:

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T – [0]

def rule1(model, t):
return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.Tnot0, rule=rule1)

def rule2(model, t):

if t == 0:

return Constraint.Skip

return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.T, rule=rule2)

Managing edge cases (special sets vs rule logic)

7Pyomo Idioms

}0,|{

]..0[

1

max





 tTttcxx

TT

tt

 Linking time; consider:

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T – [0]

def rule1(model, t):
return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.Tnot0, rule=rule1)

def rule2(model, t):

if t == 0:

return Constraint.Skip

return model.x[t] == model.c * model.x[t-1]

model.link = Constraint(model.T, rule=rule2)

Managing edge cases (special sets vs rule logic)

8Pyomo Idioms

}0,|{

]..0[

1

max





 tTttcxx

TT

tt

[Tmax = 1e5]

rule1: 4.35 sec
rule2: 4.10 sec

Managing performance (how not to shoot yourself)

 Expression generation; consider:

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Pyomo Idioms 9

Managing performance (how not to shoot yourself)

 Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Pyomo Idioms 10

Managing performance (how not to shoot yourself)

 Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Pyomo Idioms 11

Managing performance (how not to shoot yourself)

 Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Pyomo Idioms 12

Managing performance (how not to shoot yourself)

 Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

Pyomo Idioms 13

Managing performance (how not to shoot yourself)

 Expression generation; consider:

def rule1(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]

return ans

def rule2(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]

return ans

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

CustomersmLocationsnxd
n m

mnmn  ,,min .,

[n = m = 1..640]

rule1: >>10000 sec
rule2: 5.0 sec
rule3: 7.4 sec
rule4: 5.0 sec

Pyomo Idioms 14

 Sparse data; consider:

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=ruleN)

Managing performance (how not to shoot yourself)

15Pyomo Idioms

Nnbxa n

Mm

mmn 


,

For n = 1..10, m = 1..1e5, 4% nonzero,

1.9 seconds to generate the constraint

1e5 terms in the constraint (dense!!)

 Sparse data; consider:

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m] != 0) <= model.b[n]

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if value(model.a[n,m]) != 0)

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m].value != 0)

model.C = Constraint(model.N, rule=ruleN)

Managing performance (how not to shoot yourself)

16Pyomo Idioms

Nnbxa n

Mm

mmn 


,

For n = 1..10, m = 1..1e5, 4% nonzero,

0.1 seconds slower, and still dense!

 Sparse data; consider:

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n]

if model.a[n,m] != 0)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if value(model.a[n,m]) != 0) <= model.b[n]

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m].value != 0) <= model.b[n]

model.C = Constraint(model.N, rule=ruleN)

Managing performance (how not to shoot yourself)

17Pyomo Idioms

Nnbxa n

Mm

mmn 


,

 Sparse data; consider:

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m] != 0) <= model.b[n]

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if value(model.a[n,m]) != 0) <= model.b[n]

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m].value != 0) <= model.b[n]

model.C = Constraint(model.N, rule=ruleN)

Managing performance (how not to shoot yourself)

18Pyomo Idioms

Nnbxa n

Mm

mmn 


,

[n = 1..10, m = 1..1e5,

4% fill]

rule1: 1.9 sec

rule2: 2.0 sec

rule3: 0.9 sec

rule4: 0.8 sec

 Mutable vs Immutable Params
 Given a promise parameter value will never change, we can optimize

 Immutable Params are now the default!

model.a = Param(model.N, model.M, default=0, mutable=False)

def rule1(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m] != 0) <= model.b[n]

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if value(model.a[n,m]) != 0) <= model.b[n]

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m].value != 0) <= model.b[n]

model.C = Constraint(model.N, rule=ruleN)

Managing performance (how not to shoot yourself)

19Pyomo Idioms

[n = 1..10, m = 1..1e5,

4% fill]

rule1: 1.2 sec

rule2: 0.5 sec

rule3: 0.5 sec

rule4: Exception!

 Sparse constraints; consider:

Managing performance (how not to shoot yourself)

20Pyomo Idioms

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

 Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

Managing performance (how not to shoot yourself)

21Pyomo Idioms

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

 Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

Managing performance (how not to shoot yourself)

22Pyomo Idioms

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

 Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

Managing performance (how not to shoot yourself)

23Pyomo Idioms

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

 Sparse constraints; consider:

def rule1(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rule1)

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def _filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS, filter=_filter3)

model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)

Managing performance (how not to shoot yourself)

24Pyomo Idioms

sDisruptiondProductspdEnddStartt

productionstoragestorage

dd

dptdptdpt



 

,],,[

,,,,1,,

[t = d = 1..250,
p =1..10,
t*d = 2% fill]

C1: 2.2 sec
C2: 2e-4 sec
C3: 2e-4 sec

 Using Pyomo convenience functions

model.d1 = Param(model.Locations, model.Customers, mutable=True)

def rule1(model):
return sum(model.d1[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

def rule2(model):
return summation(model.d1, model.x)

model.d2 = Param(model.Locations, model.Customers, mutable=False)

def rule3(model):
return sum(model.d2[n,m]*model.x[n,m]

for n in model.Locations for m in model.Customers)

def rule4(model):
return sumation(model.d2, model.x)

Managing performance (how not to shoot yourself)

25Pyomo Idioms

[n = m = 1..640]

rule1: 5.0 sec
rule2: 7.9 sec
rule3: 3.5 sec
rule4: 5.6 sec

CustomersmLocationsnxd
n m

mnmn  ,,min .,

The Performance “Elephant”: Memory

 Known issue …
 Python uses a fairly heavy-weight object model

 “Significant” recent improvements in low-level core components

 Coopr 3.3 uses <50% of the memory of Coopr 3.0

 But…

 640 x 640 p-median problem still consumes ~1 GB.

 Focus of efforts, with several more enhancements on the
horizon.

Pyomo Idioms 26

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

5. Nonlinear Problems
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

Nonlinear problems are easy…

2Pyomo Fundamentals

Nonlinear problems are easy…

3Pyomo Fundamentals

… to write in Pyomo (correct formulation and solution is another story)

Nonlinear problems are easy…

4Pyomo Fundamentals

… to write in Pyomo (correct formulation and solution is another story)

 Agenda:
 Introduction

 Rosenbrock Example

 Introduction to Scripting

 Introduction to IPOPT

 Recommendations for Nonlinear Problems

 Formulation Matters Example

 Exercises

Nonlinear: Supported expressions

5Pyomo Fundamentals

model = ConcreteModel()

model.r = Var()

model.h = Var()

def surf_area_obj_rule(m):

return 2 * pi * m.r * (m.r + m.h)

model.surf_area_obj = Objective(rule=surf_area_obj_rule)

def vol_con_rule(m):

return pi * m.h * m.r**2 == 355

model.vol_con = Constraint(rule=vol_con_rule)

Nonlinear: Supported expressions

6Pyomo Fundamentals

Caution: Always use the intrinsic functions that are part of the Pyomo package.

from pyomo.environ import * # imports, e.g., pyomo versions of exp, log, etc.)

from math import * # overrides the pyomo versions with math versions

Example: Rosenbrock function

7Pyomo Fundamentals

 Minimize the rosenbrock function
using Pyomo and IPOPT

 Initialize at x=1.5, y=1.5

Example: Rosenbrock function

8Pyomo Fundamentals

 Minimize the rosenbrock function
using Pyomo and IPOPT

 Initialize at x=1.5, y=1.5

rosenbrock.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

Example: Rosenbrock function

9Pyomo Fundamentals

pyomo solve --solver=ipopt --summary --stream-solver rosenbrock.py

rosenbrock.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

…

Variables:

x : Size=1, Index=None, Domain=Reals

Key : Lower : Value : Upper : Fixed : Stale

None : None : 1.0 : None : False : False

y : Size=1, Index=None, Domain=Reals

Key : Lower : Value : Upper : Fixed : Stale

None : None : 1.0 : None : False : False

…

Example: Rosenbrock function

10Pyomo Fundamentals

…

Variables:

x : Size=1, Index=None, Domain=Reals

Key : Lower : Value : Upper : Fixed : Stale

None : None : 1.0 : None : False : False

y : Size=1, Index=None, Domain=Reals

Key : Lower : Value : Upper : Fixed : Stale

None : None : 1.0 : None : False : False

…

 How do I generate nicely formatted output?

 What if I want to solve this problem repeatedly with different initialization?

 What if I have data processing to do before hand?

 How can I use the power of Python to build optimization solutions?

 Write a Python script instead of using the “pyomo” command

Scripting brings the power of Python to Pyomo

Example: Scripting (Rosenbrock)

11Pyomo Fundamentals

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

Example: Scripting (Rosenbrock)

12Pyomo Fundamentals

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

Example: Scripting (Rosenbrock)

13Pyomo Fundamentals

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

Example: Scripting (Rosenbrock)

14Pyomo Fundamentals

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

Example: Scripting (Rosenbrock)

15Pyomo Fundamentals

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

python rosenbrock_script.py

 Modify rosenbrock_script.py to solve the rosenbrock problem
for different initial values and a table of output that shows
the initial values and the solution for both x and y. (I.e.,
complete the following table)

Exercise: Scripting (looping over initial value)

16Pyomo Fundamentals

x_init, y_init, x_soln, y_soln

2.00 5.00 ---- ----

3.00 5.00 ---- ----

4.00 5.00 ---- ----

5.00 5.00 ---- ----

Example: Scripting (loop over initial value)

17Pyomo Fundamentals

rosenbrock_script_loop.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

print('x_init, y_init, x_soln, y_soln')

y_init = 5.0

for x_init in range(2, 6):

model.x = x_init

model.y = 5.0

solver = SolverFactory('ipopt')

solver.solve(model)

print("{0:6.2f} {1:6.2f} {2:6.2f} {3:6.2f}".format(x_init, \

y_init, value(model.x), value(model.y)))

Introduction to IPOPT

18Pyomo Fundamentals

Objective Function

Equality Constraints

Inequality Constraints

Variable Bounds

 f(x), c(x), d(x)

 general nonlinear functions (non-

convex?)

 Smooth (C2)

 The x variables are continuous

 x(x-1)=0 for discrete conditions

really doesn’t work

Introduction to IPOPT

19Pyomo Fundamentals

Cost/Profit, Measure of fit

Physics of the system

Physical, Performance,

Safety Constraints

 f(x), c(x), d(x)

 general nonlinear functions (non-

convex?)

 Smooth (C2)

 The x variables are continuous

 x(x-1)=0 for discrete conditions

really doesn’t work

20/67

Large Scale Optimization

 Gradient Based Solution Techniques

Newton Step

Active-set Strategy

21/67

Interior Point Methods

Fiacco & McCormick (1968)

Original NLP

Barrier NLP

 Initialize

 Solve Barrier NLP for

 Decrease the barrier parameter

 Increase

Effect of Barrier Term

22Pyomo Fundamentals

Effect of Barrier Term

23Pyomo Fundamentals

Effect of Barrier Term

24Pyomo Fundamentals

Effect of Barrier Term

25Pyomo Fundamentals

Effect of Barrier Term

26Pyomo Fundamentals

Interior Point Methods

Fiacco & McCormick (1968)

Original NLP

Barrier NLP

 Initialize

 Solve Barrier NLP for

 Decrease the barrier parameter

 Increase

Solve Barrier NLP?

Barrier parameter update?

Globalization?

 KNITRO (Byrd, Nocedal, Hribar, Waltz)

 LOQO (Benson, Vanderbei, Shanno

 IPOPT (Waechter, Biegler)

Interior Point Methods

28Pyomo Fundamentals

 Regularization:
 If certain convexity criteria are not satisfied at a current point, IPOPT

may need to regularize. (This can be seen in the output.)

 We do NOT want to see regularization at the final iteration (solution).

 Can be an indicator of poor conditioning.

 Globalization:
 IPOPT uses a filter-based line-search approach

 Accepts the step if sufficient reduction is seen in objective or
constraint violation

 Restoration Phase:
 Minimize constraint violation

 Regularized with distance from current point

 Similar structure to original problem (reuse symbolic factorization)

IPOPT: Other Considerations

29Pyomo Fundamentals

IPOPT Algorithm Flowsheet

30Pyomo Fundamentals

YES
Done

NO

NO

Initialize

Original NLP
Converged?

Barrier NLP
Converged?

YES
Reduce µ

Calculate Step
Direction

Filter
Line Search

Find Acceptable

Step Length?

YES Restoration
Phase

Calculate Step

Factor LS

Inertia OK? Backsolve

Adjust
Iterative

Refinement

YES

NO

IPOPT Output

31Pyomo Fundamentals

IPOPT Output

32Pyomo Fundamentals

 iter: iterations (codes)

 objective: objective

 Inf_pr: primal infeasibility (constraints
satisfied? current constraint violation)

 Inf_du: dual infeasibility (am I optimal?)

 lg(mu): log of the barrier parameter, mu

 ||d||: length of the current stepsize

 lg(rg): log of the regularization
parameter

 alpha_du: stepsize for dual variables

 alpha_pr: stepsize for primal variables

 ls: number of line-search steps

 Successful Exit

 Successful Exit with regularization at solution

 Infeasible

 Unbounded

Exit Conditions

33Pyomo Fundamentals

Exit Conditions: Successful

34Pyomo Fundamentals

x2

x1

Decreasing

objective

Initialize at (x1=0.5, x2=0.5)

Exit Conditions: Successful

35Pyomo Fundamentals

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 5.0000000e-01 2.50e-01 5.00e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 2.4298076e-01 2.33e-01 7.67e-01 -1.0 5.20e-01 - 7.73e-01 9.52e-01h 1

2 2.6898113e-02 7.23e-05 4.09e-04 -1.7 2.16e-01 - 1.00e+00 1.00e+00h 1

3 1.8655807e-04 1.83e-04 7.86e-05 -3.8 2.68e-02 - 1.00e+00 9.97e-01f 1

4 1.8250072e-06 1.23e-12 2.22e-16 -5.7 1.85e-04 - 1.00e+00 1.00e+00h 1

5 -1.7494097e-08 8.48e-13 0.00e+00 -8.6 1.84e-06 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 5

(scaled) (unscaled)

Objective...............: -1.7494096510367012e-08 -1.7494096510367012e-08

Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00

Constraint violation....: 8.4843243541854463e-13 8.4843243541854463e-13

Complementarity.........: 2.5050549017950606e-09 2.5050549017950606e-09

Overall NLP error.......: 2.5050549017950606e-09 2.5050549017950606e-09

. . .

EXIT: Optimal Solution Found.

Ipopt 3.11.1: Optimal Solution Found

*** soln

x1 = 1.0

x2 = -1.7494096510367012e-08

Exit Conditions: Successful w/ Regularization

36Pyomo Fundamentals

x2

x1

Decreasing

objective

Initialize at (x1=0.0, x2=2.0)

Exit Conditions: Successful w/ Regularization

37Pyomo Fundamentals

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 2.0000000e+00 1.00e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 1.0000000e+00 0.00e+00 1.00e-04 -1.7 1.00e+00 -4.0 1.00e+00 1.00e+00h 1

2 1.0000000e+00 0.00e+00 0.00e+00 -3.8 0.00e+00 0.9 1.00e+00 1.00e+00 0

3 1.0000000e+00 0.00e+00 0.00e+00 -5.7 0.00e+00 0.5 1.00e+00 1.00e+00T 0

4 1.0000000e+00 0.00e+00 0.00e+00 -8.6 0.00e+00 0.9 1.00e+00 1.00e+00T 0

Number of Iterations....: 4

(scaled) (unscaled)

Objective...............: 1.0000000000000000e+00 1.0000000000000000e+00

Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00

Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00

Complementarity.........: 2.5059035596800808e-09 2.5059035596800808e-09

Overall NLP error.......: 2.5059035596800808e-09 2.5059035596800808e-09

. . .

EXIT: Optimal Solution Found.

Ipopt 3.11.1: Optimal Solution Found

*** soln

x1 = 0.0

x2 = 1.0

Exit Conditions: Infeasible

38Pyomo Fundamentals

x2

x1

Decreasing

objective

Exit Conditions: Infeasible

39Pyomo Fundamentals

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

. . .

5 2.0000016e+00 1.00e+00 4.74e+03 -1.0 3.47e+01 - 2.79e-02 4.16e-04h 7

6r 2.0000016e+00 1.00e+00 1.00e+03 0.0 0.00e+00 - 0.00e+00 4.44e-07R 3

7r 2.0010000e+00 1.01e+00 1.74e+02 0.0 8.73e-02 - 1.00e+00 1.00e+00f 1

8r 2.0010010e+00 1.00e+00 1.32e-03 0.0 8.73e-02 - 1.00e+00 1.00e+00f 1

9r 2.0000080e+00 1.00e+00 5.18e-03 -2.1 6.12e-03 - 9.94e-01 9.99e-01h 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

10r 2.0000000e+00 1.00e+00 3.73e-06 -4.7 7.99e-06 - 1.00e+00 1.00e+00f 1

11r 2.0000000e+00 1.00e+00 1.79e-07 -7.1 2.85e-08 - 1.00e+00 1.00e+00f 1

Number of Iterations....: 11

(scaled) (unscaled)

Objective...............: 1.9999999800009090e+00 1.9999999800009090e+00

Dual infeasibility......: 1.0000000002321485e+00 1.0000000002321485e+00

Constraint violation....: 9.9999998000090895e-01 9.9999998000090895e-01

Complementarity.........: 9.0909091652062654e-10 9.0909091652062654e-10

Overall NLP error.......: 9.9999998000090895e-01 1.0000000002321485e+00

. . .

EXIT: Converged to a point of local infeasibility. Problem may be infeasible.

Ipopt 3.11.1: Converged to a locally infeasible point. Problem may be infeasible.

WARNING - Loading a SolverResults object with a warning status into model=unknown; message from solver=Ipopt 3.11.1\x3a Converged

to a locally infeasible point. Problem may be infeasible.

*** soln

x1 = -6.353194883662875e-12

x2 = 2.0

Exit Conditions: Unbounded

40Pyomo Fundamentals

x1

Decreasing

objective

Initialize at (x1=0.5, x2=0.5)

Exit Conditions: Unbounded

41Pyomo Fundamentals

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

. . .

45 -2.2420218e+11 1.00e+04 1.00e+00 -1.7 1.25e+19 -19.1 3.55e-08 7.11e-15f 48

46 -2.2420225e+11 1.00e+04 1.00e+00 -1.7 3.75e+19 -19.6 1.20e-08 1.78e-15f 50

47 -2.2420229e+11 1.00e+04 1.00e+00 -1.7 1.25e+19 -19.1 1.00e+00 3.55e-15f 49

48 -3.7503956e+19 1.57e+27 8.36e+09 -1.7 3.75e+19 -19.6 1.18e-08 1.00e+00w 1

49 -1.3750923e+20 3.92e+26 2.09e+09 -1.7 1.00e+20 -20.0 1.00e+00 1.00e+00w 1

Number of Iterations....: 49

(scaled) (unscaled)

Objective...............: -1.3750923074037683e+20 -1.3750923074037683e+20

Dual infeasibility......: 2.0888873315629249e+09 2.0888873315629249e+09

Constraint violation....: 3.9209747283936173e+26 3.9209747283936173e+26

Complementarity.........: 3.1115099971882619e+03 3.1115099971882619e+03

Overall NLP error.......: 3.9209747283936173e+26 3.9209747283936173e+26

EXIT: Iterates diverging; problem might be unbounded.

Ipopt 3.11.1: Iterates diverging; problem might be unbounded.

WARNING - Loading a SolverResults object with a warning status into model=unknown; message from solver=Ipopt

3.11.1\x3a Iterates diverging; problem might be unbounded.

*** soln

x1 = 0.5

x2 = 0.5

 Solver options can be set through scripts (and the pyomo command line)

 print_options_documentation yes

 Outputs the complete set of IPOPT options (with documentation and their defaults)

 mu_init

 Sets the initial value of the barrier parameter

 Can be helpful to make this smaller when initial guesses are known to be good

 bounds_push

 By default, IPOPT pushes the bounds a little further out.

 This can be set to remove this behavior

 E.g., sqrt(x), x>= 0

 linear_solver

 Set the linear solver that will be used for the KKT system

 Significantly better performance with HSL (MA27) over default MUMPS

 print_user_options
 Print options set and whether or not they were used

 Helpful to detect mismatched options

IPOPT Options

42Pyomo Fundamentals

IPOPT Options

43Pyomo Fundamentals

rosenbrock_options.py: A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var()

model.y = Var()

def rosenbrock(m):

return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')

solver.options['mu_init'] = 1e-4

solver.options['print_user_options'] = 'yes'

solver.options['ma27_pivtol'] = 1e-4

solver.solve(model, tee=True)

print()

print('*** Solution *** :')

print('x:', value(model.x))

print('y:', value(model.y))

IPOPT Options

44Pyomo Fundamentals

ma27_pivtol=0.0001

print_user_options=yes

mu_init=0.0001

ma27_pivtol=0.0001

print_user_options=yes

mu_init=0.0001

List of user-set options:

Name Value used

ma27_pivtol = 0.0001 no

mu_init = 0.0001 yes

print_user_options = yes yes

**

This program contains Ipopt, a library for large-scale nonlinear optimization.

Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt

**

NOTE: You are using Ipopt by default with the MUMPS linear solver.

Other linear solvers might be more efficient (see Ipopt documentation).

This is Ipopt version 3.11.1, running with linear solver mumps.

 Variable Initialization

 Proper initialization of nonlinear problems can be critical for effective
solution.

 Strategies include:

 Using understood physics or past successful solutions

 Solving simpler problem(s) first, progressing to more difficult

 Undefined Evaluations

 Many mathematical functions have a valid domain, and evaluation outside
that domain causes errors

 Add appropriate bounds to variables to keep them inside valid domain

 Note that solvers use first and second derivatives. While sqrt(x) is valid at x=0,
1/sqrt(x) is not

 Problem Scaling

 Scale model to avoid variables, constraints, derivatives with different scales.

 Formulation Matters!

Modeling Tips

45Pyomo Fundamentals

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

6. Structured Modeling &
Transformations

John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

Is this an optimization model?

n

T

x

bAxts

xc



..

min

Structured Modeling & Transformations 2

Models are for Modelers

 I would argue this is an optimization problem!

 So, what’s a model?
 A general representation of a class of problems

 Data (instance) independent

 Represents the modeler’s understanding of the class of problems

 Explicitly annotates and conveys the class structure

 Incorporates assumptions and simplifications

 Is both tractable and valid

 (although these are often contradictory goals)

n

T

x

bAxts

xc



..

min

Structured Modeling & Transformations 3

Models are for Modelers

 I would argue this is an optimization problem!

 So, what’s a model?
 A general representation of a class of problems

 Data (instance) independent

 Represents the modeler’s understanding of the class of problems

 Explicitly annotates and conveys the class structure

 Incorporates assumptions and simplifications

 Is both tractable and valid

 (although these are often contradictory goals)

n

T

x

bAxts

xc



..

min

Structured Modeling & Transformations 4

Optimization problems: Model instances

 We seldom have a single problem to solve
 Rather we would like to write a single model for a class of problems

 Key design feature of many AMLs (e.g. strongly encouraged by AMPL)

 Why?

 Test small, deploy big

 Tomorrow’s problem is different from today’s

 Data may be

– Huge

– Machine-generated

– Stored externally (loaded from external tools, e.g. databases)

Model Data Problem+ 

Structured Modeling & Transformations 5

Models are for Modelers

 I would argue this is an optimization problem!

 So, what’s a model?
 A general representation of a class of problems

 Data (instance) independent

 Represents the modeler’s understanding of the class of problems

 Explicitly annotates and conveys the class structure

 Incorporates assumptions and simplifications

 Is both tractable and valid

 (although these are often contradictory goals)

n

T

x

bAxts

xc



..

min

Structured Modeling & Transformations 6

What is model structure?

 Unlike a solver, modelers don’t think in terms of “A”
 Rather, I think in terms of repeated (indexed) units

 Sets (1-, 2-, n- dimensional)

 Vectors or matrices of variables

 Groups of related constraints (blocks)

 The model may not be “flat”
 Block diagonal (e.g., scenarios in stochastic programming)

 Graph-based (e.g., network flow)

 Hierarchically defined (e.g., a model composed of sub-models)

n

T

x

bAxts

xc



..

min

Ax

Structured Modeling & Transformations 7

Models are for Modelers

 I would argue this is an optimization problem!

 So, what’s a model?
 A general representation of a class of problems

 Data (instance) independent

 Represents the modeler’s understanding of the class of problems

 Explicitly annotates and conveys the class structure

 Incorporates assumptions and simplifications

 Is both tractable and valid

 (although these are often contradictory goals)

n

T

x

bAxts

xc



..

min

Structured Modeling & Transformations 8

Tractability / validity: The optimization tug-of-war

 The “highest fidelity” model of a system is rarely tractable
 Delicate balance between the model we want to solve and the solver

we want to use

 What can we do?

 Simplify (reduce the model scope)

 Approximate (relax or recast constraints)

 Iterate (solve a series of related problems to develop the
solution to the original problem)

 Optimization 101 ingrains this tension into us; consider:

[...]..

)3(max

ts

xabs 

Structured Modeling & Transformations 9

“Modeling” absolute value

 This probably makes you cringe:
 “Experienced modelers would never write abs()!”

 Instead, we write:

[...]..

)3(max

ts

xabs 

[...]

}1,0{

0,0

3

)1(

..

max













y

negXposX

negXposXX

yMposX

MynegX

posXnegXabsXts

absX

Structured Modeling & Transformations 10

“Modeling” absolute value

 This probably makes you cringe:
 “Experienced modelers would never write abs()!”

 Instead, we write:

 But what if “[…]” is a
nonlinear model? Then,

 Does any of this really encode our
understanding of the class of problems?
 …or is this a reflection of our understanding of the solver?

[...]..

)3(max

ts

xabs 

[...]

}1,0{

0,0

3

)1(

..

max













y

negXposX

negXposXX

yMposX

MynegX

posXnegXabsXts

absX

x
e

x
absX

xabsX

hx







 /

2

1

2



Structured Modeling & Transformations 11

Transformations: Projecting problems to problems

 Model Transformations
 Project from one problem space to another

 Standardize common reformulations or approximations

 Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

+Model Data Compile Problem

Solve

Transform

Structured Modeling & Transformations 12

Transformations are not entirely new

 LINGO’s automatic linearization:

 Generates the “usual” Big-M integer linear model:

MODEL:
MAX = @ABS(X-3);
X <= 2;

END

MAX _C3
SUBJECT TO
X <= 2
- _C1 - _C2 + _C3 = 0
_C1 – 100000 _C4 <= 0
_C2 + 100000 _C4 <= 100000
X - _C1 + _C2 = 3

END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in

Mathematical Optimization, Josef Kallrath ed. Springer, 2004.

Structured Modeling & Transformations 13

Why are we interested in transformations?

 Separate model expression from how we intend to solve it
 Defer decisions that improve tractability until solution time

 Explore alternative reformulations or representations

 Support solver-specific model customizations (e.g., abs())

 Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

 Support “higher level” or non-algebraic modeling constructs
 Express models that are closer to reality, e.g.:

 Piecewise expressions

 Disjunctive models (switching decisions & logic models)

 Differential-algebraic models (dynamic models)

 Bilevel models (game theory models)

 Reduce “mechanical” errors due to manual transformation

Structured Modeling & Transformations 14

 Disjunctions: selectively enforce sets of constraints
 Sequencing decisions: x ends before y or y ends before x

 Switching decisions: a process unit is built or not

 Alternative selection: selecting from a set of pricing policies

 Implementation: leverage Pyomo “blocks”
 Disjunct:

 Block of Pyomo components

– (Var, Param, Constraint, etc.)

 Boolean (binary) indicator variable determines
if block is enforced

 Disjunction:

 Enforces logical XOR across a set of Disjunct indicator variables

 (Logic constraints on indicator variables)

Structural transformations: Disjunctive programs

Structured Modeling & Transformations

 

  trueY

c

oxh

Y

ikk

ik

ik

Di k




















 
V

15

Example: Task sequencing

 Prevent tasks colliding on a single piece of equipment
 Derived from Raman & Grossmann (1994)

 Given:

 Tasks I processed on a sequence of machines (with no waiting)

 Task i starts processing at time ti with duration tim on machine m

 J(i) is the set of machines used by task i

 Cik is the set of machines used by both tasks i and j

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kmk

ki

jm
kJm

kmk

jm
iJm

imi

ik





































 












,,,

)()()()(

tttt

Structured Modeling & Transformations 16

Example: Task sequencing in Pyomo

from pyomo.dae import *

def _NoCollision(disjunct, i, k, j, ik):

model = disjunct.model()

lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)

if ik:

disjunct.c = Constraint(expr= lhs + model.tau[i,j] <= rhs)

else:

disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)

model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)

def _setSequence(model, i, k, j):

return [model.NoCollision[i,k,j,ik] for ik in [0,1]]

model.setSequence = Disjunction(model.L, rule=_setSequence)

kiIkiCj

tt

Y

tt

Y

ik

jm
iJm

imi

jm
kJm

kjkmk

ki

jm
kJm

kmkij

jm
iJm

imi

ik





































 












,,,

)()()()(

tttttt

Structured Modeling & Transformations 17

Solving disjunctive models

 Few solvers “understand” disjunctive models
 Transform model into standard math program

 Big-M relaxation:

 Convert logic variables to binary

 Split equality constraints in disjuncts into pairs of inequality constraints

 Relax all constraints in the disjuncts with “appropriate” M values

pyomo solve --solver cbc --transform=gdp.bigm jobshop.py jobshop.dat

Structured Modeling & Transformations 18

Why is the transformation interesting?

 Model preserves explicit disjunctive structure

 Automated transformation reduces errors

 Automatically identifies appropriate M values (for bounded linear)

Structured Modeling & Transformations 19

Why is the transformation interesting?

 Model preserves explicit disjunctive structure

 Automated transformation reduces errors

 Automatically identifies appropriate M values (for bounded linear)

 Big-M is not the only way to relax a disjunction!

 Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

 Algorithmic approaches

 e.g., Trespalacios and Grossmann (submitted 2013)

 Prematurely choosing one relaxation makes trying others difficult

pyomo solve --solver cbc --transform=gdp.chull jobshop.py jobshop.dat

Structured Modeling & Transformations 20

Expression transformations: MPEC

 Mathematical Programming with Equilibrium Constraints
(MPEC)
 Engineering design, economic equilibrium, multilevel games

 Feasible region may be nonconvex and disconnected

 Equilibrium Constraints
 Variational inequalities

 Complementarity conditions

 Optimality conditions (for bilevel problems)

Structured Modeling & Transformations 21

MPEC formulations

 General MPEC models can be expressed as

 The last set of constraints are generalized mixed
complementarity conditions (Ferris, Fourer, and Gay, ‘06),
which have the form

Structured Modeling & Transformations 22

Modeling languages support MPECs

 AMPL

 The complements keyword is used to denote complementarity between two
constraints, expressions or variables

 GAMS

 The complements keyword is used to denote complementarity between two
constraints, expressions or variables

 AIMMS

 Express mixed complementarity conditions by declaring complementarity
variables along with associated constraints

 YALMIP

 The complements function declares a constraint that reflects a mixed
complementarity condition.

 Common challenge: lack of control over how the complementarity
constraints are exposed to the solver

Structured Modeling & Transformations 23

Complementarity conditions in Pyomo

from pyomo.environ import *
from pyomo.mpec import Complementarity

M = ConcreteModel()
M.x = Var(bounds=(-1,2))
M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))

• The Complementarity component declares a
complementarity condition

• The tuple argument specifies the two constraints,
expressions, or variables in the complementarity condition.

This model definition is solver agnostic!

Structured Modeling & Transformations 24

A simple nonlinear reformulation

 NOTE: There are serious difficulties with solving this
formulation as standard stability assumptions are not met.
 But other nonlinear transformations exist!

min 𝑓 𝑥

s.t. ℎ 𝑥 = 0

𝑎𝑖 ≤ 𝜔𝑖 ≤ 𝑏𝑖 𝑖 = 1 …𝑚

𝜔𝑖 = 𝑤𝑖 𝑥 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑎𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚

 𝜔𝑖 − 𝑏𝑖 𝑣𝑖 𝑥 ≤ 0 𝑖 = 1 …𝑚

Structured Modeling & Transformations 25

A simple disjunctive reformulation

min 𝑓 𝑥

s.t. ℎ 𝑥 = 0

𝑦1,𝑖

𝑤𝑖 𝑥 = 𝑎𝑖

𝑣𝑖 𝑥 ≥ 0
 ∨

𝑦2,𝑖

𝑤𝑖 𝑥 = 𝑏𝑖

𝑣𝑖 𝑥 ≤ 0
 ∨

𝑦3,𝑖

𝑎𝑖 < 𝑤𝑖 𝑥 < 𝑏𝑖

𝑣𝑖 𝑥 = 0
 𝑖 = 1 …𝑚

𝑦1,𝑖 + 𝑦2,𝑖 + 𝑦3,𝑖 = 1 𝑖 = 1 …𝑚

𝑦1,𝑖 , 𝑦2,𝑖 , 𝑦3,𝑖 ∈ 0,1 𝑖 = 1 …𝑚

Structured Modeling & Transformations 26

model = ConcreteModel()

[…]

TransformFactory(“abs.complements”).apply_to(model)

TransformFactory(“mpec.simple_disjunction”).apply_to(model)

TransformFactory(“gdp.bigm”).apply_to(model)

Back to our original example: ABS(x)

 Chaining transformations

0,0

)1(

0,0

0000

)(













































































xx

yMx

Myx

xxx

xxf

xx

x

Y

x

Y
xxx

xxf

xx

xxx

xxf

xabsf

Structured Modeling & Transformations 27

Notional transformation chain:

(Pyomo) Transformations for other domains

 Stochastic programming

 Bilevel models

 DAE models

Deterministic
Model

Scenario DataScenario DataScenario DataScenario DataScenario DataScenario DataScenario DataScenario Data
+ 

Stochastic
Model

Upper-level Model

Lower-level Model


Standard Math
Programming Model

DAE Model 
Discretized

Algebraic Model

Structured Modeling & Transformations 28

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

7. Dynamic Systems
John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

<VENUE>
<DATE>

 What about models that are not strictly math programs?
 Dynamic systems

 Optimization of dynamic systems is hard.
 In OR, think “multi-stage” problems

 In “engineered systems”, think differential equations

 High fidelity simulation is difficult and expensive (e.g., HPC)

 How to optimize?

Extending the Pyomo environment

2Dynamic Systems

 Parameter Estimation

 Nonlinear model predictive control

 Batch process operation

 Reactor design

Examples of Dynamic Optimization

3Dynamic Systems

x: State (differential) variables
u: Control (input) variables
y: Algebraic variables

DAE

model

m

n

n

tu

ty

tx

pttutytxg

pttutytxftx

tutytx













)(

)(

)(

),),(),(),((0

),),(),(),(()(

))(),(),((min



Solution Approaches

4Dynamic Systems

+ Handles instabilities – Large NLPs

Sullivan (1977)

+ Small NLPs – Cannot handle instabilities

Discretize
controls

Efficient for
constrained problems

Discretize all
variables

Pontryagin(1962)

- Inefficient for large, constrained problems

Bock, Plitt (1984)

[Figure from L.T. Biegler (2007)]

 Single Shooting Method

Sequential Approach

5Dynamic Systems

[Figure from B. Chachuat (2009)]

[Figure from M. Diehl]

Simultaneous Approach

6Dynamic Systems

 Multiple Shooting
 Discretize controls and initial

conditions for each finite element
 Embeds DAE Solvers/Sensitivity

 Can solve unstable systems

 Good for problems with long time
horizons and few dynamic state

X Dense sensitivity blocks

X Difficult to enforce path constraints

 Full Discretization
 Discretize all variables
 Can solve unstable systems

 Good for problems with many dynamic
states and degrees of freedom

 Sparse NLP

X Large-scale NLP

[Figure from L.T. Biegler (2007)]

 Finite Difference Methods

 Collocation over finite elements

Full Discretization

7Dynamic Systems

𝑑𝑓

𝑑𝑡
(𝑡) = lim

ℎ→0

𝑓 𝑡 + ℎ − 𝑓(𝑡)

ℎ

𝑑𝑓

𝑑𝑡
(𝑡) =

𝑓 𝑡 + ℎ − 𝑓(𝑡)

ℎ

𝑑𝑓

𝑑𝑡
(𝑡) =

𝑓 𝑡 − 𝑓(𝑡 − ℎ)

ℎ

Forward Difference

Backward Difference

Simple Example

8Dynamic Systems

𝑑𝑧

𝑑𝑡
= 𝑧2 − 2𝑧 + 1, 𝑧 0 = −3

 Exercise: Solve the differential equation using a backward
finite difference scheme over the time interval 𝑡 ∈ [0,1]

 Exercise: Plot the solution against the analytic solution

𝑑𝑓

𝑑𝑡
(𝑡) =

𝑓 𝑡 − 𝑓(𝑡 − ℎ)

ℎ
Backward Difference

Analytic solution 𝑧 𝑡 = (4𝑡 − 3)/(4𝑡 + 1)

 Solve the differential equation using a backward finite
difference scheme

Simple Example – Exercise Solution

9Dynamic Systems

from pyomo.environ import *

numpoints = 10
model = m = ConcreteModel()
m.points = RangeSet(0,numpoints)
m.h = Param(initialize=1.0/numpoints)

m.z = Var(m.points)
m.dzdt = Var(m.points)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, i):
return m.dzdt[i] == m.z[i]**2 - 2*m.z[i] + 1

m.zdot = Constraint(m.points, rule=_zdot)

def _back_diff(m,i):
if i == 0:

return Constraint.Skip
return m.dzdt[i] == (m.z[i]-m.z[i-1])/m.h

m.back_diff = Constraint(m.points, rule=_back_diff)

def _init_con(m):
return m.z[0] == -3

m.init_con = Constraint(rule=_init_con)

Collocation over finite elements

10Dynamic Systems

z(t) = ik (
k=0

K

å t)zik

element n

k = 1

k = 2

y(t) = ik (t)yik
k=1

K

å

Differential variables

Continuous

Algebraic and

Control variables

Discontinuous

u(t) = ik (t)uik
k=1

K

å

xx
x x

x
x x x x x x

x

Collocation over finite elements

11Dynamic Systems

Given:

Approximate z by Lagrange interpolation polynomials (order K+1)
with interpolation points, tk

Collocation
Equations

Known Collocation Points

Continuity
Equations

Evaluated at t not τ
Collocation Coefficients to be solved for

Evaluated at the element boundary

Collocation points

12Dynamic Systems

Simple Example - Collocation

13Dynamic Systems

Simple Example - Collocation

14Dynamic Systems

ℓ0 τ =
(τ − 𝜏1)(𝜏 − 𝜏2)(𝜏 − 𝜏3)

(𝜏0 − 𝜏1)(𝜏0 − 𝜏2)(𝜏0 − 𝜏3)
= 𝑎3𝜏

3 + 𝑎2𝜏
2 + 𝑎1𝜏 + 𝑎0

ℓ0 𝜏 = −10𝜏3 + 18𝜏2 − 9𝜏 + 1

ሶℓ0 𝜏 = −30𝜏2 + 36𝜏 − 9

Other Lagrange polynomials found similarly

Simple Example - Collocation

15Dynamic Systems

Collocation Matrix

16Dynamic Systems

 𝑎𝑑𝑜𝑡 𝑘, 𝑘 =

ሶℓ0(𝜏0) ⋯ ሶℓ0(𝜏𝑘)
⋮ ⋱ ⋮

ሶℓ𝑘(𝜏0) ⋯ ሶℓ𝑘(𝜏𝑘)

Constant

Python code for generating collocation matrix

17Dynamic Systems

import numpy
Specify collocation points
cp = [0, 0.155051, 0.644949, 1]

a = []
for i in range(len(cp)):

ptmp = []
tmp = 0
for j in range(len(cp)):

if j != i:
row = []
row.insert(0,1/(cp[i]-cp[j]))
row.insert(1,-cp[j]/(cp[i]-cp[j]))
ptmp.insert(tmp,row)
tmp += 1

p=[1]
for j in range(len(cp)-1):

p = numpy.convolve(p,ptmp[j])
pder = numpy.polyder(p,1)
arow = []
for j in range(len(cp)):

arow.append(numpy.polyval(pder,cp[j]))
a.append(arow)
print(arow)

Simple Example - Collocation

18Dynamic Systems

𝑑𝑧

𝑑𝑡
= 𝑧2 − 2𝑧 + 1, 𝑧 0 = −3

 Exercise: Solve the differential equation using collocation over
a single finite element with 𝑡 ∈ [0,1]

 Exercise: Plot the solution against the analytic solution

Analytic solution 𝑧 𝑡 = (4𝑡 − 3)/(4𝑡 + 1)

Collocation
Equations

 Common theme: significant effort to rework formulation

 Time: first ~6 months of a grad student’s research

 Error prone: many ways to make subtle mistakes

 Inflexible: formulation specific to selected solution approach

 Difficult to know apriori the best solution approach for a
particular model

Implementation is challenging!

19Dynamic Systems

 Model dynamical systems in a natural form
 Systems of Differential Algebraic Equations (DAE)

 Extend the Pyomo component model

 ContinuousSet: A virtual set over which you can take a derivative

 DerivativeVar: The derivative of a Var with respect to a ContinuousSet

Expressing dynamical systems

20

DAE

model

m

n

n

tu

ty

tx

pttutytxg

pttutytxftx

tutytx













)(

)(

)(

),),(),(),((0

),),(),(),(()(

))(),(),((min



[with J. Siirola, V. Zavala]

Dynamic Systems

Simple Example – pyomo.dae

21Dynamic Systems

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))

m.z = Var(m.t)
m.dzdt = DerivativeVar(m.z, wrt=m.t)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1

m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):
return m.z[0] == -3

m.init_con = Constraint(rule=_init_con)

 Given that we have a DAE model in Pyomo… now what?
 How to optimize?

 Simulation-based / Multiple shooting methods / Simultaneous

 Common theme: significant effort to rework formulation

 Time / Error prone / Inflexible

 Our approach: separate the declaration of dynamical models from the
solution approach using (nearly) automatic transformations

Solving dynamical systems

22

DAE

model

m

n

n

tu

ty

tx

pttutytxg

pttutytxftx

tutytx













)(

)(

)(

),),(),(),((0

),),(),(),(()(

))(),(),((min



Domain

splitting

Discretization NLP

Multiple

Shooting

Single

Shooting

Dynamic Systems

Simple Example – pyomo.dae

23Dynamic Systems

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))

m.z = Var(m.t)
m.dzdt = DerivativeVar(m.z, wrt=m.t)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1

m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):
return m.z[0] == -3

m.init_con = Constraint(rule=_init_con)

Discretize model using radau collocation
discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(m,nfe=1,ncp=3,scheme='LAGRANGE-RADAU')

Discretize model using backward finite difference
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m,nfe=10,scheme=‘BACKWARD')

Small example: optimal control (1/8)

[Jacobson and Lele (1969)]

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

24Dynamic Systems

Small example: optimal control (2/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

from pyomo.environ import *
from pyomo.dae import *

[Jacobson and Lele (1969)]

25Dynamic Systems

Small example: optimal control (3/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

[Jacobson and Lele (1969)]

26Dynamic Systems

[Jacobson and Lele (1969)]

Small example: optimal control (4/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

27Dynamic Systems

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

Small example: optimal control (5/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

m.obj = Objective(expr=m.x3[m.tf])

[Jacobson and Lele (1969)]

28Dynamic Systems

Small example: optimal control (6/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

[Jacobson and Lele (1969)]

29Dynamic Systems

Small example: optimal control (7/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

def _con(m,t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

[Jacobson and Lele (1969)]

30Dynamic Systems

Small example: optimal control (8/8)
from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _x1dot(m, t):
return m.dx1dt[t] == m.x2[t]

m.x1dot = Constraint(m.t, rule=_x1dot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \

m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(rule=_init)

[Jacobson and Lele (1969)]

31Dynamic Systems

from pyomo.environ import *
Import dynamic model
from optimalControl import m

Discretize model using radau collocation
TransformationFactory('dae.collocation').apply_to(

m, nfe=7, ncp=6, scheme='LAGRANGE-RADAU')

Solve algebraic model
results = SolverFactory('ipopt').solve(m)

def plotter(subplot, x, *series, **kwds):
plt.subplot(subplot)
for i,y in enumerate(series):

plt.plot(x, [value(y[t]) for t in x], 'brgcmk'[i%6]+kwds.get('points','')
plt.title(kwds.get('title',''))
plt.legend(tuple(y.cname() for y in series))
plt.xlabel(x.cname())

import matplotlib.pyplot as plt
plotter(121, m.t, m.x1, m.x2, title='Differential Variables')
plotter(122, m.t, m.u, title='Control Variable', points='o')
plt.show()

Optimal Control Example - Script

32Dynamic Systems

Optimal Control Example - Results

Dynamic Systems 33

from pyomo.environ import *
Import dynamic model
from optimalControl import m

Discretize model using radau collocation
discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(m, nfe=7, ncp=6, scheme='LAGRANGE-RADAU')

Control variable u made constant over each finite element
discretizer.reduce_collocation_points(var=m.u, ncp=1, contset=m.t)

Solve algebraic model
results = SolverFactory('ipopt').solve(m)

def plotter(subplot, x, *series, **kwds):
plt.subplot(subplot)
for i,y in enumerate(series):

plt.plot(x, [value(y[t]) for t in x], 'brgcmk'[i%6]+kwds.get('points','')
plt.title(kwds.get('title',''))
plt.legend(tuple(y.cname() for y in series))
plt.xlabel(x.cname())

import matplotlib.pyplot as plt
plotter(121, m.t, m.x1, m.x2, title='Differential Variables')
plotter(122, m.t, m.u, title='Control Variable', points='o')
plt.show()

Optimal Control Example - Script

34Dynamic Systems

Optimal Control Example - Results 2

Dynamic Systems 35

Parameter Estimation Example 1

36Dynamic Systems

min෍

𝑡𝑖

𝑥1 𝑡𝑖 − 𝑥1𝑚𝑒𝑎𝑠 𝑡𝑖
2

𝑠. 𝑡.
𝑑𝑥1
𝑑𝑡

= 𝑥2

𝑑𝑥2
𝑑𝑡

= 1 − 2𝑥2 − 𝑥1

−1.5 ≤ 𝑝1, 𝑝2 ≤ 1.5

𝑥1 0 = 𝑝1, 𝑥2 0 = 𝑝2

Time 1 2 3 5

𝑥1𝑚𝑒𝑎𝑠 0.264 0.594 0.801 0.959

Parameter Estimation Example 1

37Dynamic Systems

set t := 0 1 2 3 5 6 ;
set MEAS_t := 1 2 3 5 ;
param x1_meas :=
1 0.264
2 0.594
3 0.801
5 0.959
;

data file

Parameter Estimation Example 2

38Dynamic Systems

𝐴 →
𝑘1
𝐵→

𝑘2
𝐶

𝑑𝐴

𝑑𝑡
= −𝑘1𝐴

𝑑𝐵

𝑑𝑡
= 𝑘1𝐴 − 𝑘2𝐵

𝐴 0 = 1, 𝐵 0 = 0

Time 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A 0.606 0.368 0.223 0.135 0.082 0.050 0.030 0.018 0.011 0.007

B 0.373 0.564 0.647 0.669 0.656 0.624 0.583 0.539 0.494 0.451

 Exercise: Solve for 𝑘1and 𝑘2 given the concentration
measurements in the table

 Parameter estimation of a S-I-R disease transmission model[*]

Disease Transmission Example

39

[*] Word, Cummings, Burke, Iamsirithaworn, and Laird,

Journal of the Royal Society Interface, 2012, pp. 1983-1997.

Discretized problem:
- 3 differential equations
- 520 finite elements
- 3 collocation points
~ 10,500 variables
~ 10,000 constraints

Dynamic Systems

 Comparing the automated discretization to a manually
discretized model implemented (and tuned) by a person

 The bulk of the added model creation time is the model
transformation that implements the discretization

 The solve time difference likely due to a more sophisticated
initialization scheme in the manual discretization model

Performance impact

Manual

Discretization

Using pyomo.dae

(Radau Collocation)

Model Creation Time

(CPU secs)
1.79 5.29

Solve Time

(CPU secs)
1.35 0.86

IPOPT Iterations 27 26

Objective (x10-5) 1.4716 1.4716

40Dynamic Systems

Distillation Example

41Dynamic Systems

def _diffeq(m,n,t):
if t == 1:

return Constraint.Skip
if n == 1:

return m.dx[n,t] == 1/m.acond*m.V[t]*(m.y[n+1,t]-m.x[n,t])
elif n in m.S_RECTIFICATION:

return m.dx[n,t] == 1/m.atray*(m.L[t]*(m.x[n-1,t]-m.x[n,t])-m.V[t]*(m.y[n,t]-m.y[n+1,t]))
elif n == 17:

return m.dx[n,t] == 1/m.atray*(m.Feed*m.x_Feed+m.L[t]*m.x[n-1,t]-m.FL[t]*m.x[n,t]- \
m.V[t]*(m.y[n,t]-m.y[n+1,t]))

elif n in m.S_STRIPPING:
return m.dx[n,t] == 1/m.atray*(m.FL[t]*(m.x[n-1,t]-m.x[n,t])-m.V[t]*(m.y[n,t]-m.y[n+1,t]))

else :
return m.dx[n,t] == 1/m.areb*(m.FL[t]*m.x[n-1,t]-(m.Feed-m.D)*m.x[n,t]-m.V[t]*m.y[n,t])

model.diffeq = Constraint(model.S_TRAYS, model.t, rule=_diffeq)

model.S_TRAYS = Set()
model.S_RECTIFICATION = Set(within = model.S_TRAYS)
model.S_STRIPPING = Set(within = model.S_TRAYS)

model.t = ContinuousSet(initialize=range(1,52))
model.x = Var(model.S_TRAYS, model.t, initialize=x_init_rule)
model.dx = DerivativeVar(model.x)

PDE Example

42Dynamic Systems

 Illustrative example[1]

 PDE

 Initial Condition

 Boundary Conditions

[1] Example 1 from http://www.mathworks.com/help/matlab/ref/pdepe.html

𝜋2
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2

𝑢 𝑥, 0 = sin(𝜋𝑥)

𝑢 0, 𝑡 = 0

𝜋𝑒−𝑡 +
𝜕𝑢

𝜕𝑥
1, 𝑡 = 0

PDE Example

43

𝜋2
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
𝑢 0, 𝑡 = 0 𝜋𝑒−𝑡 +

𝜕𝑢

𝜕𝑥
1, 𝑡 = 0𝑢 𝑥, 0 = sin(𝜋𝑥)

Dynamic Systems

PDE Example

44

𝜋2
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝑢 0, 𝑡 = 0

𝜋𝑒−𝑡 +
𝜕𝑢

𝜕𝑥
1, 𝑡 = 0

𝑢 𝑥, 0 = sin(𝜋𝑥)

Dynamic Systems

PDE Example

45Dynamic Systems

 Interface to integrator/DAE solver for:
 Model simulation

 Model initialization

 Implementation of multiple shooting

 Interpolation tools for:
 Model initialization

Upcoming Features

46Dynamic Systems

 Nonlinear model predictive control

 Reaction kinetics

Building Expert Frameworks with pyomo.dae

47Dynamic Systems

Nonlinear Model Predictive Control

[Control frameworks developed by Federico Lozano Santamaría Universidad de los Andes, Bogotá, Colombia]

Dynamic Systems

 Chemical reaction kinetics:

 Reaction rate:

 Stoichiometry

Reaction Kinetics

2𝐴→
𝑘1
𝐵; 𝐵 →

𝑘2
𝐶

𝑟1 = 𝑘1𝑐𝐴
2

𝑑𝑐𝐴
𝑑𝑥

= −2𝑟1𝑘1

𝑑𝑐𝐶
𝑑𝑥

= 𝑟2𝑘2

𝑑𝑐𝐵
𝑑𝑥

= 𝑟1𝑘1 − 𝑟2𝑘2

𝑘1 = 𝐴1𝑒
𝐸𝑎
𝑅⋅𝑇

𝑟2 = 𝑘2𝑐𝐵 𝑘2 = 𝐴2𝑒
𝐸𝑎
𝑅⋅𝑇

Example from: http://www.comsol.com/blogs/general-introduction-chemical-kinetics-arrhenius-law/

49Dynamic Systems

http://www.comsol.com/blogs/general-introduction-chemical-kinetics-arrhenius-law/

def create_kinetic_model(rxnNet, time):

model = ConcreteModel()

model.SPECIES = Set(initialize=rxnNet.species())

model.REACTIONS = Set(initialize=rxnNet.reactions.keys())

model.TIME = ContinuousSet(bounds=(0,max(time)), initialize=time)

model.c = Var(model.TIME, model.SPECIES, bounds=(0,None))

model.dcdt = DerivativeVar(model.c, wrt=model.TIME)

model.k = Var(model.REACTIONS, bounds=(0,None))

model.rate = Var(model.TIME, model.REACTIONS)

def reaction_rate(m, t, r):

rhs = m.k[r]

for s, coef in iteritems(m.rxnNetwork.reactions[r].reactants):

rhs *= m.c[t,s]**coef

return m.rate[t,r] == rhs

model.reaction_rate = Constraint(model.TIME, model.REACTIONS, rule=reaction_rate)

def stoichiometry(m, t, s):

rhs = 0

for r in m.REACTIONS:

if s in m.rxnNetwork.reactions[r].reactants:

rhs -= m.rate[t,r] * m.rxnNetwork.reactions[r].reactants[s]

if s in m.rxnNetwork.reactions[r].products:

rhs += m.rate[t,r] * m.rxnNetwork.reactions[r].products[s]

return m.dcdt[t,s] == rhs

model.stoichiometry = Constraint(model.TIME, model.SPECIES, rule=stoichiometry)

return model

General purpose kinetic model

50Dynamic Systems

fdiff = TransformationFactory("dae.finite_difference")

rxns = ReactionNetwork()

rxns.add(Reaction("AtoB", reactants=['2*A'], products=['B']))

rxns.add(Reaction("BtoC", reactants=['B'], products=['C']))

model = create_kinetic_model(rxns, 60*60)

A1 = 1.32e19 # L / mol*s

A2 = 1.09e13 # 1/s

Ea1 = 140000 # J/mol

Ea2 = 100000 # J/mol

R = 8.314 # J / K*mol

T = 330 # K

model.k['AtoB'].fix(A1 * exp(-Ea1 / (R*T)))

model.k['BtoC'].fix(A2 * exp(-Ea2 / (R*T)))

model.c[0, 'A'].fix(1)

model.c[0, 'B'].fix(0)

model.c[0, 'C'].fix(0)

fdiff.apply_to(model, nfe=100)

solver.solve(model)

plot_results(model)

Step 1: simulation

def plot_results(model):
if plt is not None:

_tmp = sorted(iteritems(model.c))
for _i, _x in enumerate('ABC'):

plt.plot([x[0][0] for x in _tmp if x[0][1] == _x],
[value(x[1]) for x in _tmp if x[0][1] == _x],
'bgr'[_i]+'*‘, label=_x)

plt.legend()
plt.show()

51Dynamic Systems

Step 1: results

52Dynamic Systems

fdiff = TransformationFactory("dae.finite_difference")

rxns = ReactionNetwork()

rxns.add(Reaction("AtoB", reactants=['2*A'], products=['B']))

rxns.add(Reaction("BtoC", reactants=['B'], products=['C']))

model = create_kinetic_model(rxns, 60*60)

A1 = 1.32e19 # L / mol*s

A2 = 1.09e13 # 1/s

Ea1 = 140000 # J/mol

Ea2 = 100000 # J/mol

R = 8.314 # J / K*mol

model.T = Var(bounds=(0,None), initialize=330) # K

def compute_k(m):

yield m.k['AtoB'] == A1 * exp(-Ea1 / (R*m.T))

yield m.k['BtoC'] == A2 * exp(-Ea2 / (R*m.T))

model.compute_k = ConstraintList(rule=compute_k)

model.c[0, 'A'].fix(1)

model.c[0, 'B'].fix(0)

model.c[0, 'C'].fix(0)

fdiff.apply_to(model, nfe=100)

model.obj = Objective(sense=maximize, expr=model.c[max(model.TIME), 'B'])

solver.solve(model)

plot_results(model)

Step 2: maximize the production of “B”

53Dynamic Systems

Step 2: maximize the production of “B”

54Dynamic Systems

 (Assumed) Chemical reaction kinetics:

 Given experimental data, estimate the reaction rate constants

Kinetic parameter regression

TG +MeOH ՞
𝑘1

DG + FAME

DG +MeOH ՞
𝑘2

MG + FAME

MG +MeOH ՞
𝑘3

Glycerol + FAME

Example from: http://www.doiserbia.nb.rs/img/doi/0367-598X/2014/0367-598X1300037A.pdf

55Dynamic Systems

http://www.doiserbia.nb.rs/img/doi/0367-598X/2014/0367-598X1300037A.pdf

def create_regression_model(b, t):

rxns = ReactionNetwork()

rxns.add_reversible(

Reaction("k_1", reactants=['TG','MeOH'], products=['DG','FAME']))

rxns.add_reversible(

Reaction("k_2", reactants=['DG','MeOH'], products=['MG','FAME']))

rxns.add_reversible(

Reaction("k_3", reactants=['MG','MeOH'], products=['Glycerol','FAME']))

data = b.model().data[t]

key = b.model().key

model = create_kinetic_model(rxns, data.keys())

model.error = Var(bounds=(0,None))

model.compute_error = Constraint(

expr= model.error == sum(

((model.c[t,key[i]] - x) / max(data[_t][i] for _t in data))**2

for t in data for i,x in enumerate(data[t])))

return model

Generate (sub)model for each experiment…

56Dynamic Systems

model = ConcreteModel()

model.key = key = ('MeOH','TG','DG','MG','FAME','Glycerol')

model.data = data = { 150: { 0: (2.833,6.84E-02,0.00,0.00,0.00,0.00,),

256: (2.807,4.75E-02,1.51E-02,3.71E-03,2.60E-02,8.18E-04,), # ...

} 210: { # ...

} }

model.experiment = Block(data.keys(), rule=create_regression_model)

model.obj = Objective(sense=minimize,

expr=sum(b.error for b in model.experiment[:]))

initializations from the paper

for exp in model.experiment[:]:

exp.k['k_1'] = 7.58e-7

exp.k['k_1_r'] = 0

exp.k['k_2'] = 2.20e-7

exp.k['k_2_r'] = 0

exp.k['k_3'] = 2.15e-7

exp.k['k_3_r'] = 0

colloc.apply_to(model, nfe=100, ncp=3)

solver.solve(model, tee=True)

plot_regression_results(model)

Assemble the regression model and solve

57Dynamic Systems

 10850 variables, 10826 constraints

 Total time: 6.4 seconds
 2.8 seconds for model generation and processing

 3.6 seconds in solver (ipopt)

Regression results
T=150 T=210

58Dynamic Systems

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

8. Solving Stochastic
Programs

Progressive Hedging Algorithm

Idea: use scenario-based

decomposition

Solving Stochastic Programs with Pyomo.PySP

)(xxww xx  

?|)(|  xx

)(xxwx  

PH Iteration 0:

Solve Individual

Scenario MIPs

Initialize Ws

Update Ws

Fix Variables That

Have Converged

PH Iteration i:

Solve Weighted

Scenario MIPs

Global Convergence

Criterion Achieved?

“Done”

Standard MIP Solves

2||||2/)(min xxxwxf x  

8/18/2016 2

Using PySP

1. Formulate the deterministic model

2. Specify the deterministic model data

3. Specify the scenario tree

4. Specify the scenario instance data

Solving Stochastic Programs with Pyomo.PySP8/18/2016 3

Example: Production Planning

Example from Alexander Shapiro and Andy Philpott, 2007

A company has decided to order a quantity x of a product to satisfy demand

d. The per-unit cost of ordering is c, and if demand d is greater than x, then

the back-order penalty is b per unit.

The objective is to minimize the total cost: max{ (c-b)x+bd, (c+h)x-hd}

For example: c=1, b=1.5, h=0.1, d=50

Solving Stochastic Programs with Pyomo.PySP8/18/2016 4

Deterministic Formulation

In general, the ordering decision is made before a realization of the demand

is known.

The deterministic formulation corresponds to a single scenario taken with

probability one.

We can formulate a two-stage stochastic program where the first stage has

zero cost and the second stage has cost t.

Solving Stochastic Programs with Pyomo.PySP8/18/2016 5

Pyomo Deterministic Formulation (1)

from pyomo.environ import *

c, b, h = 1.0, 1.5, 0.1

model = AbstractModel()

model.d = Param()

model.t = Var()

model.x = Var(within=NonNegativeReals, bounds=(0,100))

def c1_rule(model):

return model.t >= (c-b)*model.x + b*model.d

model.c1 = Constraint(rule=c1_rule)

def c2_rule(model):

return model.t >= (c+h)*model.x - h*model.d

model.c2 = Constraint(rule=c2_rule)

Solving Stochastic Programs with Pyomo.PySP8/18/2016 6

Pyomo Deterministic Formulation (2)

model.FirstStageCost = Var()

model.SecondStageCost = Var()

model.o = Objective(expr=model.FirstStageCost +

model.SecondStageCost)

0*model.x

model.stage1 = Constraint(expr=model.FirstStageCost==0)

model.stage2 = Constraint(expr=model.SecondStageCost==model.t)

Solving Stochastic Programs with Pyomo.PySP8/18/2016 7

Deterministic Model Data

There is no deterministic model data for this example!

We used native Python data for the values of c, b and h.

Solving Stochastic Programs with Pyomo.PySP8/18/2016 8

Scenario Specification

The scenario specification is a Pyomo

data file that provides meta-data about

1. The deterministic model

2. The scenario tree

3. The scenario data files

Solving Stochastic Programs with Pyomo.PySP8/18/2016 9

Scenario Data

Two methods are available to specify scenario-specific data

 Scenario-based

 Node-based

In the scenario-based approach, a single and complete .dat file is specified

for each individual scenario

 Redundant, but straightforward if computer-generated

In the node-based approach, a single .dat file is specified for each node in

the scenario tree

 Maximally compact, but requires some book-keeping

This example uses scenario-based data, with data files that simply define d.

Solving Stochastic Programs with Pyomo.PySP8/18/2016 10

Writing and Solving the Extensive Form (1)

In PySP, the runef script is provided to both write and solve the extensive

form of a stochastic programming model

The basic command-line:

 runef -m models -i scenarios --solve --solver=glpk

NOTE: even commercial solvers often have difficulty solving EFs

Solving Stochastic Programs with Pyomo.PySP8/18/2016 11

Writing and Solving the Extensive Form (2)

After the solution, you get

information about the tree

Solving Stochastic Programs with Pyomo.PySP8/18/2016 12

Progressive Hedging (1)

The execution of PH requires the specification of the penalty parameter (rho)

The global rho value can be easily specified:

 runph -m models -i scenarios --default-rho=0.05

The quadratic penalty term in PH is computationally problematic

 Quadratic MIP solvers can be 10x or slower than MIP solvers

 Open-source quadratic solvers are (almost) non-existent

PySP provides automatic, generic linearization mechanisms

 Requires specification of variable lower and upper bounds

 Specify number of breakpoints, distribution strategy

 runph -m models -i scenarios --solver=glpk --default-

rho=0.05 --linearize-nonbinary-penalty-terms=100

Solving Stochastic Programs with Pyomo.PySP8/18/2016 13

Progressive Hedging (2)

• In the presence of integers, PH is no longer guaranteed to converge

 Cycling behavior

 Stagnation behavior

• To facilitate PH convergence for mixed-integer stochastic programs, PySP

provides various configurable mechanisms

 “Watson-Woodruff” Extensions

 Computational Management Science (2009)

 Implemented via a generic plug-in callback framework

• Capabilities include:

 Variable fixing

 Cycle detection

 Cycle breaking

 Slamming

Solving Stochastic Programs with Pyomo.PySP8/18/2016 14

The End

Questions?

Solving Stochastic Programs with Pyomo.PySP8/18/2016 15

Example: Stochastic Unit Commitment

Solving Stochastic Programs with Pyomo.PySP

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Hour of day

G
e
n
e
ra

to
r

N
u
m

b
e
r

… Scenario NScenario 2Scenario 1

First stage variables:

• Unit On / Off

Second stage variables

(per time period):

• Generation levels

• Power flows

• Voltage angles

• …

Nature resolves uncertainty

• Load

• Renewables output

• Forced outages

p2
p1 pN…

Objective: Minimize expected cost

8/18/2016 16

Solving with the Stochastic Extensive Form

• Reliability Unit Commitment (RUC) Test Instance: WECC-240++

• J.E. Price, Reduced Network Modeling of WECC as a Market Design

Prototype, 2011 IEEE PES General Meeting

• Changes necessary to create viable RUC test case

 Addition of realistic ramping rates and min up/down time constraints

• Results

Solving Stochastic Programs with Pyomo.PySP8/18/2016 17

Parallelization and Bundling

• Progressive Hedging is, at least conceptually, easily parallelized

 Scenario sub-problem solves are clearly independent

 Advantage over Benders, in that “bloat” is distributed

 Critical in low-memory-per-node cluster environments

 Parallel efficiency drops rapidly as the number of processors increases

 But: Relaxing barrier synchronization does not impact PH

convergence

 Bundling scenarios might help with parallel scaling

 May increase number of iterations required

• PH can provide bounds!

 Now comes with (rather tight) lower bounds

 See “Obtaining Lower Bounds from the Progressive Hedging Algorithm

for Stochastic Mixed-Integer Programs” (Under review)

Solving Stochastic Programs with Pyomo.PySP8/18/2016 18

PH Results: Workstation and RedSky (HPC)

Solving Stochastic Programs with Pyomo.PySP8/18/2016 19

Acknowledgements

• Jean-Paul Watson

• Roger Wets

• David Woodruff

8/18/2016 20Solving Stochastic Programs with Pyomo.PySP

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

9. Solving Bilevel Problems

A bilevel program is a mathematical program in which a subset of decision

variables is constrained to take values associated with an optimal solution of

a distinct, “lower” level mathematical program.

General formulation:

where

Overview of Bilevel Programming

Solving Bilevel Programs with Pyomo.Bilevel

Upper-level problem

Lower-level problem

8/18/2016 2

Example: Modeling Security Problems

Extremely complex

• Impossible to enumerate the set of all states in the game

Stackelberg games – bilevel programs

Solving Bilevel Programs with Pyomo.Bilevel

• Opponents must anticipate each
other’s moves

• Strategy should account for how
opponent (best) responds

8/18/2016 3

Example: Smuggling Interdiction

Interdictor minimizes the

potential for a smuggler to evade

detection

• Interdictor installs defenses (x)

to minimize smuggler’s evasion

probability

• Smuggler traverses path (y)

that maximizes the probability

of evasion

Origin-destination nodes maybe

unknown

Solving Bilevel Programs with Pyomo.Bilevel

• F(x,y) – evasion probability

• X – interdictor’s constraints (e.g.
resource, budget)

• P(x) – feasible paths given x

8/18/2016 4

Modeling Bilevel Programs

No algebraic modeling language currently provides an intuitive syntax for

expressing the structure of bilevel programs!

MPEC formulations are supported in several AMLs

 AMPL, AIMMS, GAMS, …

 MacMPEC includes bilevel programs that are reformulated as single-

level programs using optimality conditions

Bilevel problems can be expressed in several modeling languages:

 GAMS, YALMIP

 Explicitly pass variables and constraints to a bilevel solver

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 5

A Simple Bilevel Example

Practical Bilevel Optimization: Algorithms and Applications

Jonathan Bard

Example 5.1.1

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 6

Modeling Example 5.1.1 with YALMIP

sdpvar x, y;

OO = x – 4y;

CO = [x] >= 0;

OI = y;

CI = [[y] >= 0,

-x - y <= -3,

-2x + y <= 0,

2x + y <= 12,

-3x + 2y <= -4];

solvebilevel(CO,OO,CI,OI,[y])

Solving Bilevel Programs with Pyomo.Bilevel

Note: This example adapted from the YALMIP bilevel documentation.

• Solve a bilevel problem using a

simple branching strategy.
• Upper level problem defined by CO

and OO

• Lower level problem defined by CI

and OI, with decision variable y.

8/18/2016 7

Modeling Example 5.1.1 with GAMS

positive variables x,y; variables objout,objin;

equations defout,defin,e1,e2,e3,e4;

defout.. objout =e= x - 4*y;

defin.. objin =e= y;

e1.. - x - y =l= -3;

e2.. -2*x + y =l= 0;

e3.. 2*x + y =l= 12;

e4.. 3*x - 2*y =l= 4;

model bard / all /;

$echo bilevel x min objin * defin e1 e2 e3 e4 > "%emp.info%"

solve bard us emp min objout;

Solving Bilevel Programs with Pyomo.Bilevel

Writes an “empinfo” file that tells

the solver that this is a bilevel

problem with a lower level

problem that minimizes objective
objin with variables y subject to

the constraints (defin), e1, e2,

e3 and e4.

8/18/2016 8

Modeling Example 5.1.1 with Pyomo

from pyomo.environ import *

from pyomo.bilevel import *

M = ConcreteModel()

M.x = Var(bounds=(0,None))

M.y = Var(bounds=(0,None))

M.o = Objective(expr=M.x - 4*M.y)

M.sub = SubModel(fixed=M.x)

M.sub.o = Objective(expr=M.y)

M.sub.c1 = Constraint(expr=- M.x - M.y <= -3)

M.sub.c2 = Constraint(expr=-2*M.x + M.y <= 0)

M.sub.c3 = Constraint(expr= 2*M.x + M.y <= 12)

M.sub.c4 = Constraint(expr=-3*M.x + 2*M.y <= -4)

Solving Bilevel Programs with Pyomo.Bilevel

• Lower level problem is declared
with a SubModel component.

• The var argument indicates the

lower level variables.

• Objectives, variables and

constraints for the lower level

problem are declared within this

component.

8/18/2016 9

Pyomo Extensions for Bilevel Programs

Modeling extensions

 Modeling components (pyomo.bilevel)

Model transformations

 Can be applied automatically

Custom solvers

 Solvers tailored for specific classes of bilevel problems

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 10

Solving Bilevel Problems

Goal: Enable solution of bilevel problems with standard solvers

Process:

• Model problem with SubModel components

• Transform the problem to a standard form

 LP, MIP, etc

• Apply a suitable solver

Reformulations for linear bilevel programming (BLP)

A. BLP with continuous variables

B. Quadratic minimax with continuous lower-level variables

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 11

(A) BLP with Continuous Variables

Problem:

Reformulation: Replace lower-level problem with corresponding optimality

conditions

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 12

(A) BLP with Continuous Variables (cont’d)

Idea: Analyze the MPEC reformulation

Example:

 Use a custom solver that considers complementarity conditions

(Bard, 1998)

Example:

 Chain reformulations: BLP -> MPEC -> GDP -> MIP

 Provide “BigM” values for unbounded variables

 Apply standard MIP solver

(Fortuny-Amat and McCarl, 1981)

Example:

 Reformulate the complementarity conditions with nonlinear

constraints

(Ferris and Dirkse, 2005)

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 13

(B) Quadratic Min/Max

Problem:

 Upper level constraints do not constrain y

 The upper decision variables may binary

Reformulation: Replace lower-level problem with the linear dual

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 14

(B) Quadratic Min/Max (cont’d)

Case 1:



 The reformulation is a simple LP (or a MIP if x are binary)

Case 2:

 The upper-level decision variables x are binary

 Reformulate the bilinear objective terms as disjunctions:

 Reformulate this GDP -> MIP using “BigM” values

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 15

Solving Bilevel Programs in Pyomo

Python Script:

 Formulate the model

 Apply desired model reformulations

 Apply a suitable optimizer

OR

 Directly analyze the model within Python

 (e.g. using Pyomo’s algebraic structure)

Pyomo Command:

 Execute a command that executes a Pyomo meta-solvers

 Performs suitable reformulations

 Applies a suitable optimizer

 Maps the solution to the original problem

Solving Bilevel Programs with Pyomo.Bilevel

pyomo solve --solver=bilevel_ld model.py

8/18/2016 16

Pyomo Capabilities

Relevant Pyomo Transformations

 core.linear_dual

 bilevel.linear_dual

 bilevel.linear_mpec

 gdp.bigm

 gdp.bilinear

 gdp.chull

 mpec.simple_disjunction

 mpec.simple_nonlinear

Relevant Pyomo Meta-Solvers

 bilevel_ld

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 17

Ongoing Work …

• Generalization and maturation of transformations

 E.g. Working with general BLP models

• Automatic recognition of bilevel structure

 Can we automate the application of reformulations?

• Parameterizing transformations

 How can we flexibly specify transformation options?

 E.g. Specifying big-M values for specific complementarity conditions

• Additional meta-solvers

 E.g. bilevel_blp

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 18

Acknowledgements

• Richard L. Chen

• William E. Hart

• John D. Siirola

• Jean-Paul Watson

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 19

(A) BLP with Continuous Variables

Problem:

Reformulation: This is the MPEC model that eliminates the v variable in the

reformulation on the earlier slide.

Solving Bilevel Programs with Pyomo.Bilevel8/18/2016 20

