Sandia
National
Laboratories

Exceptional
service

in the
national

interest

O

SAND2016- 8082C

Installing Pyomo

ENERGY @INSS4 HCCR

National Wucioar Security Administration Center for Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Use Anaconda3 [all platforms] @) .

= |nstall Anaconda3
= https://www.continuum.io/downloads
= Windows/Mac OS X/Linux
= |nstall the Python 3.5 version for your OS
= |ncludes several packages for scientific computing already
= Supports easy installation of pyomo and solvers

= |nstall pyomo, solvers, and other packages:

= From a terminal window, type:

conda install -c https://conda.anaconda.org/conda-forge pyomo pyomo.extras

conda install glpk ipopt_bin -c cachemeorg

+.CCR)"PYomMo %

Installing Pyomo P

Install with pip [all platforms]® e

= |nstall Python
* Linux & Mac OS/X typically have Python pre-installed

= Scientific Python distributions have many utilities pre-installed
= http://www.scipy.org/install.html

= |nstall Pyomo
= |nstall in your system
= pip install Pyomo
= |nstall in a user directory
= pip install --user Pyomo

= |nstall auxiliary software

= Pyomo has conditional dependencies on various third-party packages

= pip install pyomo.extras)
ot ‘ - .‘./""’ \
(:,,(;R) "PYOMO %

Installing Pyomo 3

http://www.scipy.org/install.html

Install with Download Scripts [Windows] @&

= |nstall Python
* Linux & Mac OS/X typically have Python pre-installed

= Scientific Python distributions have many utilities pre-installed
= http://www.scipy.org/install.html

= |nstall pip

= https://bootstrap.pypa.io/get-pip.py

= |nstall Pyomo: the get pyomo.py script

= https://software.sandia.gov/trac/pyomo/downloader

= |nstall auxiliary software: the get pyomo extras.py script

= https://software.sandia.gov/trac/pyomo/downloader

2 CCR Y. 7~
::r..f Computing Research ‘/ pYDMO . /
enter for Computing Researd -

Installing Pyomo 4

http://www.scipy.org/install.html
https://bootstrap.pypa.io/get-pip.py
https://software.sandia.gov/trac/pyomo/downloader
https://software.sandia.gov/trac/pyomo/export/HEAD/pyomo/trunk/scripts/get-pyomo.py

Install Trunk / Offline [All platforms] &

= |nstall Python
* Linux & Mac OS/X typically have Python pre-installed

= Scientific Python distributions have many utilities pre-installed
= http://www.scipy.org/install.htm

= |nstall pyomo: the pyomo install script

m https://software.sandia.gov/trac/pyomo/downloader

Trunk install
= pyomo_install --trunk

Install using a bundled zip file (no network access required)
= pyomo_install --zip=pyomo-zipfile.zip

Install into a Virtual Python Environment
= pyomo_install --venv=pyomo

= Trunk or zipfile options may be combined with virtual environments

Installing Pyomo 5

http://www.scipy.org/install.htm
https://software.sandia.gov/trac/pyomo/downloader

Install Solvers rh) jeiea

Open Source Solvers

= COIN-OR Binary Distributions

= http://www.coin-or.org/download/binary/

= GLPK
= http://ftp.gnu.org/gnu/glpk/

= SCIP
= http://scip.zib.de/#download

Note: You need to add the solver installation to the
PATH environment variable

Installing Pyomo 6

http://www.coin-or.org/download/binary/
http://ftp.gnu.org/gnu/glpk/
http://scip.zib.de/#download

License i) o

Pyomo released under 3-clause BSD license

= No restrictions on deployment or commercial use

#CCR Y pvomo B

Installing Pyomo 7

Getting help) e,

= Homepage:

" WWW.Ppyomo.org

= Developer site:

= https://software.sandia.gov/pyomo

= Mailing lists
= pyomo-forum@googlegroups.com
= pyomo-developers@googlegroups.com

#CCR Y pvomo B

Installing Pyomo 8

http://www.pyomo.org/
https://software.sandia.gov/pyomo

Acknowledgements) g,

= William Hart

= Carl Laird

= John Siirola

= Jean-Paul Watson
= David Woodruff

Installing Pyomo 9

Sandia
National
Laboratories

Exceptional

service

in the

.7 U.S. DEPARTMENT OF IR =l)
{@JENERGY #VISH4 #HCCR

national

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Pyomo Overview rh) teiea_

Idea: a Pythonic framework for formulating optimization models
= Provide a natural syntax to describe mathematical models
= Formulate large models with a concise syntax
= Separate modeling and data declarations
= Enable data import and export in commonly used formats

o # simple.py
Highlights: from pyomo.environ import *

= Python provides a

. - = ConcreteModel()
clean, intuitive syntax

= Var()
Var(bounds=(-1,1))
)) Var(bounds=(1,2))
= Python scripts provide Objective(
a flexible context for expr=M.x1**2 + (M.x2*M.x3)**4 + \

exploring the structure M.X1*M.x3 + \
M.x2*sin(M.x1+M.x3) + M.x2)
of Pyomo models

M
M.x1
M. x2
M.x3
M.

model = M

e A
c..r-CCR } PYOMO I\f[IR

for Computing Research

Overview of Pyomo P

Overview

= What happened to Coopr?

= Three really good questions:

= Why another Algebraic Modeling Language (AML)?
= Why Python?
= Why open-source?

= Pyomo: Software library infrastructure

= Pyomo: Team overview and collaborators / users

= Where to find more information...

0:’-?
'
®é
Center for Computing Research

Sandia
National
Laboratories

‘ - { ';:\"‘.‘
)»“pyomo (8

Overview of Pyomo 3

What Happened to Coopr?) 5.

$cooPR ™) ”pyoMO

= Users were installing Coopr but using Pyomo

= Pyomo modeling extensions were not distinct enough
= Researchers cited “Coopr/Pyomo”

= Users/Developers were confused by the coopr and pyomo
commands

= Developers were coding in Coopr but talking about Pyomo

We needed to provide clear branding this project!

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Overview of Pyomo 4

Optimization Modeling) o

Goal:

= Provide a natural syntax to describe mathematical models
= Formulate large models with a concise syntax
= Separate modeling and data declarations
= Enable data import and export in commonly used formats
Impact:
= Robustly model large constraint matrices (e.g. for MILPs)
= |ntegrated support of automatic differentiation for complex nonlinear
models
Examples:
= AMPL, GAMS, AIMMS, ...
= OptimlJ, FlopCPP, PuLP, JuMP, ...

#CCR P
)"PYOMO %

Overview of Pyomo 5

Why Model in Python?) &=,

Full-Featured Library
= Language features includes functions, classes, looping, namespaces, etc
= Introspection facilitates the development of generic algorithms
= Python’s clean syntax facilitates rapid prototyping
= (Open Source License
= No licensing issues w.r.t. the language itself
= Extensibility and Robustness
= Highly stable and well-supported
= Support and Documentation
= Extensive online documentation and several excellent books
= Long-term support for the language is not a factor
= Standard Library
= Includes a large number of useful modules
= Portability

8 = Widely available on many platforms T
“CCR ’ Y)’PYOMO %

Overview of Pyomo 6

Why Open Source? =

= Transparency and reliability

= Foster community involvement
= Extend the modeling language
= Develop new solvers / algorithms
= |nterface with additional external utilities
= “Stone Soup” model

= Flexible licensing
= Pyomo released under 3-clause BSD license
= No restrictions on deployment or commercial use

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Overview of Pyomo 7

Pyomo at a Glance

Sandia
II'] National

Laboratories

CPLEX

Gurobi

Xpress

GLPK

CBC

BARON

OpenOpt

NEOS

AMPL Solver Library

e)
A
‘/ PYOMD Solver Interfaces
Core Optimization
Objects
Core Modeling
Objects
\ /
+CCR

Ipopt

KNITRO

Bonmin

Couenne

DAKOTA

‘ “ _ \
)"PYOMO %

Overview of Pyomo 8

Pyomo at a Glance

h

Sandia
National
Laboratories

g q . A CPLEX
) PYOMO Solver Interfaces Gurobi
Xpress
Meta-Solvers i
» Generalized Benders Core Optimization GLPK
» Progressive Hedging Obiects CBC
 Linear bilevel]
» Linear MPEC BARON
Core Modeling IOt
Objects NEOS
Modeling Extensions AMPL Solver Library
 Disjunctive programming B —
- Stochastic programming Model PoP
« Bilevel programming Transformations —___KNITRO
 Differential equations — Bonmin
 Equilibrium constraints L Couenne
- / — DAKOTA
+CCR Y pyomo &

Overview of Pyomo 9

Survey of Python Modeling Tools L

= Pyomo
= Supports concrete/abstract modeling for LP/MILP/NLP models
= Modeling extensions for stochastic programming, bilevel, MPEC, etc
= Separate model objects

= PuLP

= Supports concrete modeling for LP/MILP models
= Separate model objects
= Simple object model

= APLEpy

= Supports concrete modeling for LP/MILP models
= Single global model object

= PyMathProg, pyglpk, cplex, gurobi

= Python interfaces for specific solver tools

Sandia
National
Laboratories

: } ‘ ‘./,.'-'—'—a. \
+CCR)"PYOMO %

Overview of Pyomo

10

More than just mathematical modeling @&.

Scripting
= Construct models using native Python data

= |terative analysis of models leveraging Python functionality
= Data analysis and visualization of optimization results

Model transformations (a.k.a. reformulations)
= Automate generation of one model from another

= Leverage Pyomo’s object model to apply transformations sequentially
= E.g.:relax integrality, GDP -> Big M

Meta-solvers

" |ntegrate scripting and/or transformations into optimization solver
= Leverage Python’s introspective nature to build “generic” capabilities

2 = E.g.: progressive hedging, SP extensive form -> MIP Y.
+CCR &+ PTOB &ing »“pyomo %

11

Overview of Pyomo

Who Uses Pyomo?) i

= Students
= Rose-Hulman, UC Davis, U Texas, lowa State, NPS

= Researchers

= Government laboratories

= Sandia National Labs, Lawrence Livermore National Lab, Los Alamos
National Lab, National Energy Technology Lab, Federal Energy Regulation
Commission

= Universities

= UC Davis, TAMU, Rose-Hulman, UT, USC, GMU, lowa State, NCSU, U
Washington, NPS, U de Santiago de Chile, U Pisa, ...

= Companies

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Overview of Pyomo 12

Who Uses Pyomo?) i

= Software Projects

= TEMOA — Energy economy optimization models

= Minpower — Power systems toolkit

= Water Security Toolkit — Planning/Response for water contamination
= SolverStudio — Excel plugin for optimization modeling

o ‘ =N 7 _7.\ \
“CCR)"pyomo (5

13

Overview of Pyomo

For More Information) e,

See the Pyomo homepage _

" WWW.Ppyomo.org

Flexible modehng of

The Pyomo homepage
prOVideS a portal for: What Is Pyomo? installation Docs

- . . Pyamao s a python-tases, The casicst way to install Ppoma is Documentation of core Pyama
O n I I n e d O C u l I I e ntat I O n opensource optimization madeling to use pp. Pyomo also needs modelng canablities s avaliable
language wih a diverse set of access to optimization sovers. anine.
optmization capatilities. Qeod more Reac more

= |nstallation instructions Reoa More

Latest Pyomo 40

= Help information

- D I I k Acknowledgments Getting Help Who Uses Pyomao?
p The Pyomo peoject woule not be The Pyoma Forum is an online Syomo Is used by researchess to
where It is wethout the gererous resource for users to ask questons solve compiex real-worid
contributions of numerous pecple and get help from other users. applications.
and organzations. Reac More
Read More
L]
Coming soon:
L]
Communiy Developers
] M Pyonre Forum Pyama Tiac She
A ga I Ie ry Of SI l I I p I e Ropert a SBug Jevkins Tost Ste

foguest a Now Feotwre Dewiopers and Contributon

examples

#CCR Y pvomo)

Center for Computing Research

Overview of Pyomo 14

http://www.pyomo.org

Development, Community Activity .

= Pyomo Forum 100

B Total
. . . . 75 Posts
= Active discussion list
50
25 §
0 WS ¢ S| ©) > 3 8| \
f N > < o S @
N O T e RV
Commits by time
10000
H : 8000
= Active developer community
6000
4000
Commits by month
300 2000
250
200 ¢ 1Jan 1Jan 1Jan 1Jan 1 Jan 1Jan 1Jan 1Jan 1Jan
2007 2008 2009 2010 2011 2012 2013 2014 2015
150
100
50
0
1Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

#CCR J7pyomo £

Center for Computing Research

Overview of Pyomo

Acknowledgements

Sandia National Laboratories
= William Hart
= Jean-Paul Watson
= John Siirola
= Francisco Munoz
University of California, Davis
= Prof. David L. Woodruff
= Prof. Roger Wets
Purdue University
= Prof. Carl D. Laird
Oregon State University
= Gabe Hackebeil
Carnegie Mellon University
= Bethany Nicholson

o?
'2"-
Center for Computing Research

QY. 7 N
)~ PYOMO '-'__7"_/_"‘-‘

Overview of Pyomo

Sandia
National
Laboratories

N

16

Sandia
National
Laboratories

Exceptional

service

in the

.7 U.S. DEPARTMENT OF IR =l)
{@JENERGY #VISH4 #HCCR

national

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Why Python?)

= |nterpreted language

" |ntuitive syntax

= Dynamic typing

= Lots of built-in libraries and third-party extensions
= Shallow learning curve

= Integration with C/Java

= (QObject-oriented

= Simple, but extremely powerful

A Python Tutorial P

Python Implementations) i,

= Cpython
= C Python interpreter
= https://www.python.org/downloads/

= SciPy Stack
= http://www.scipy.org/install.html|
= Anaconda: Linux/MacOS/MS Windows

> Full Pyomo Support

" PyPy =
= A Python interpreter written in Python > Beta Pyomo Support
= http://pypy.org/

= Jython <

= Java Python interpreter
= http://www.jython.org/

= IronPython > Pyomo Not Supported (yet)

= _NET Python interpreter

= http://ironpython.net/ » <
+.CCR »”pyomo 6

A Python Tutorial 3

https://www.python.org/downloads/
http://www.scipy.org/install.html
http://pypy.org/
http://www.jython.org/
http://ironpython.net/

Python Versions: 2.x vs 3.x h) =,

= Python 3.0 was released in 2008

" |ncluded significant backward incompatibilities

= Adoption of Python 3.x has been slow
= Major Linux distributions are still including Python 2.x
= Major Python packages have slowly transitioned
= Some commercial packages still only have Python 2.x interfaces

|
Status We try to stick to
" Python2.7.11 “universal” syntax
= Very stable; patches have included package that will work in
updates to support Python 3.x compatibility both 2.x and 3.x

= Python 3.5.1

o = Very stable <
+CCR)’PYOMO ©%

A Python Tutorial 4

Overview i) feio

= interactive "shell"

= basic types: numbers, strings

= container types: lists, dictionaries, tuples
= variables

= control structures

= functions & procedures

= classes & instances

= modules

= exceptions

= files & standard library

A Python Tutorial 5

Interactive Shell rh) feima

= Great for learning the language
= Great for experimenting with the library
= Great for testing your own modules
= Two variations:
= |DLE (GUI)
= python (command line)

= Type statements or expressions at prompt:
>>> print("Hello, world")
Hello, world
>>> X = 12**2
>>> x/2
72
>>> # this is a comment

/’

)

05!-? K
+.CCR Ypyomo &8

A Python Tutorial

\

(0)]

Python Program)

Laboratories

= To write a program, put commands in a file

hello.py

print("Hello, world")
X = 12%%*2

print(x)

= Execute on the command line

Cs\Users\me> python hello.py
Hello, world
144
+CCR $”pvomo

Python Variables h) =,

= No need to declare

= Need to assign (initialize)
= use of uninitialized variable raises exception

= Not typed
greeting = 34.2
if friendly:
greeting = "hello world"
else:
greeting = 12%%*2
print(greeting)

= Everything is a "variable":
= Even functions, classes, modules

/"

)

23
+.CCR $pyomo &0

A Python Tutorial

\

(00}

Control Structures

if condition:
statements
[elif condition:
statements] ...
else:
statements

Sandia
m National

Laboratories

while condition:
statements

for var in sequence:
statements

break
continue

Note: Spacing matters!

Control structure scope dictated by indentation

0:’-?
'
®é
Center for Computing Research

QY. 7 N
)-PYOMO =%

A Python Tutorial 9

Sandia

Grouping Indentation) i,
In Python: In C:
for (1 = 0; 1 < 20; i++)
for i in range(20): {
if 1% 3 == if (1 %3 ==20) {
print(i) printf("%d\n", i);
iF i %5 == if (i %5 ==20) {
intf("Bingo!\n");
| print("Bingo!‘)) printf("Bingol\n”)
pr\lnt("———") }
printf("---\n");
}
+CCR $”pvomo
10

A Python Tutorial

Sandia
m National
Laboratories

Numbers

= The usual suspects
= 12, 3.14, OxFF, 0377, (-142)*3/4**5 abs(x), ©<x<=5

= (C-style shifting & masking
= 1<<16, x&Oxff, x|1, ~x, x"y
= Integer division truncates
= Python 2.x
-1/2 > 0, 1./2. 2> 0.5, float(1)/2 = 0.5
- from _ future__ import division
» 1/2 2> 0.5
= Python 3.x
- 1/2 - 0.5

= Long (arbitrary precision), complex

= 2L**100 > 1267650600228229401496703205376L
— In Python 2.2 and beyond, 2**100 does the same thing

= 13%%2 > (-1+07)

N

o? ‘ - 7 X
+CCR }“PYOMO (0

A Python Tutorial 11

St ri n gs rlll 'l“aaé:i?lr%;ﬁes

= "hello"+"world” "helloworld” # concatenation
= "hello"*3 "hellohellohello” # repetition

= "hello"[9] "h" # indexing

= "hello"[-1] "o" # (from end)

= "hello"[1:4] "ell" # slicing

= len("hello") 5 # size

= "hello" < "jello” True # comparison

= "e" in "hello” True # search

= '"escapes: \n etc, \033 etc, \if etc"

'single quotes’ triple quotes r"raw strings"”

12

A Python Tutorial

. Sandia
Lists i) s

= Flexible arrays, not linked lists
= a = [99, "bottles of beer", ["on", "the", "wall"]]

= Same operators as for strings
= a+b, a*3, a[@], a[-1], a[l:], 1len(a)

= [tem and slice assignment
= a[@] = 98
= a[l:2] = ["bottles", "of", "beer"]
-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]
= del a[-1]
-> [98, "bottles", "of", "beer"]

2 CCR Y. 7~
::r..f Computing Research ‘/ pYDMO . /
enter for Computing Researd -

A Python Tutorial 13

List Operations =

>>> a = range(5) # [0,1,2,3,4]
>>> a.append(5) # [0,1,2,3,4,5]
>>> a.pop() # [0,1,2,3,4]
5
>>> a.insert(0, 42) # [42,0,1,2,3,4]
>>> a.pop(09) # [0,1,2,3,4]
42
>>> a.reverse() # [4,3,2,1,0]
>>> a.sort() # [0,1,2,3,4]
*CCR Y”pyomo @

A Python Tutorial 14

Dictionaries

= Hash tables, "associative arrays"
= d = {"duck": "eend", "water": "water"}

= Lookup:
= d["duck"] # -> "eend"
= d["back"] # raises KeyError exception

= Delete, insert, overwrite:

= del d["water"] # {"duck": "eend", "bacR":
= d["back"] = "rug" # {"duckR": "eend", "backR":
= d["duck"] = "duik" # {"duck": "duik", "back":

o?
'2"-
Center for Computing Research

A Python Tutorial

,'Pug "}
,'Pug "}
,'Pug "}

Sandia
National
Laboratories

15

Dictionary Operations =

= Keys, values, items:

- d.keys() _> [llduck") Ilbackll]
- d.values() _> [llduik", llr‘ugll]
= d.items() -> [("duck","duik"), ("back","rug")]

Note: These actually return generators, not lists.

= Presence check:
= d.has_key("duck") # -> 1; d.has key("spam") -> 0

= Values of any type; keys almost any
= { "name": "Guido",
"age": 43,
("hello","world"): 1,
42: "yes",
"flag": ["red","white","blue"] }

o?
'2"-
Center for Computing Research

A Python Tutorial 16

Dictionary Details h) e

= Keys must be immutable:

= numbers, strings, tuples of immutables
= these cannot be changed after creation

= keys are hashed (to ensure fast lookup)

= |ists or dictionaries cannot be used as keys
= these objects can be changed "in place"

= no restrictions on values

= Keys will be listed in arbitrary order
= key hash values are in an arbitrary order

= that numeric keys are returned sorted is an artifact of the
implementation and is not guaranteed

2 ‘ - _
ZICCR)y pYomMo ©%
Center for Computing Research -

A Python Tutorial 17

Tuples rh) teiea_

= key = (lastname, firstname)

= point = x, y, Zz # parentheses optional
" X, Yy, z = point # unpacRk
= Jastname = key[0] # 1index tuple values
= singleton = (1,) # trailing comma!!!
(1) -2 integer!
= empty = () # parentheses!

= Tuples vs. lists
= tuples immutable
= |ists mutable

18

A Python Tutorial

Reference Semantics rh) o

= Assignment manipulates references

"= X = y does not make a copy of y
"= X = y makes x reference the object y references

= Reference values can be modified!
>>> a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> print(b)
[1, 2, 3, 4]
= Copied objects are distinct

>>> import copy
>>> ¢ = copy.copy(a)

>>> a.pop()
>>> print(c)

ZCCR [1, 2, 3, 4] 7pvomo 8

19

A Python Tutorial

Changing a Shared List) e,

a = [1: 2, 3] a—|1 |2 |3
d

b = a > 1 (2 13
b
d

a.append(4) ™~ 11213 |4
p—"

+CCR Y pvomo (@

A Python Tutorial 20

Changing an Integer) i,

a =1 a ——|1
d \
b = d / 1
b new int object created
by add operator (1+1)
_—
a > 2
~
a = a+l S a— old reference deleted
Sa ‘ by assignment (a=...)
b dB!
+CCR J7evomo £

A Python Tutorial 21

Functions / Procedures) b,

def name(argl, arg2, ...):

"""documentation""" # optional doc string

statements

return expression # from function

return # from procedure (returns None)
#CCR Jopvomo O

A Python Tutorial 22

Example h) =,

def gcd(a, b):

greatest common divisor
while a I= 0:

a, b =b%a, a # parallel assignment
return b

>>> gcd. doc
'greatest common divisor'

>>> gcd(12, 20)
4

23

A Python Tutorial

Classes rh) g

class name(object):

"""documentation
statements

Most, statements are method definitions:

def name(self, argl, arg2, ...):

May also be class variable assignments

2 CCR Y. 7~
::r..f Computing Research ‘/ pYDMO . /
enter for Computing Researd -

A Python Tutorial 24

Example L

class Stack(object):
"""A well-known data structure...

def init (self): # constructor
self.items = []

def push(self, x):

self.items.append(x) # the skRy is the Limit
def pop(self):
X = self.items[-1] # what if it’s empty?
del self.items[-1]
return Xx
def empty(self):
return len(self.items) == 0 # Boolean result

A Python Tutorial

Sandia
National
Laboratories

25

Example (cont’d)) e,

= To create an instance, simply call the class object:
x = Stack() # no 'new' operator!

= To use methods of the instance, call using dot notation:

x.empty() #->1

X.push(1) # [1]

x.empty() #->0
x.push("hello") # [1, "hello"]
x.pop() # -> "hello" # [1]

= To inspect instance variables, use dot notation:
X.1items #-> [1]

ot ‘ r ' _\
+CCR »“pyomo (00

A Python Tutorial 26

Class/Instance Variables rh) s

class Connection(object):
verbose = 0 # class variable

def init (self, host):
self.host = host # instance variable

def debug(self, v):
self.verbose = v # make instance variable!

def connect(self):
if self.verbose: # class or instance variable?
print("connecting to %s" % (self.host,))

27

A Python Tutorial

Sandia

Instance Variable Rules rh) g

= On use via instance (self.Xx), search order:
= (1) instance, (2) class, (3) base classes
= this also works for method lookup

= On assignment via instance (self.x = ...):

= always makes an instance variable

= (Class variables "default" for instance variables

= But...!
= mutable class variable: one copy shared by all
= mutable instance variable: each instance its own

o? ‘ Y r-‘/.:r_ri\‘-‘.‘
“CCR)"PYOMO %
28

A Python Tutorial

M O d u I e S '11 'l“aaé:iﬁzries

= Collection of stuff in foo.py file

= functions, classes, variables

= |mporting modules:
import re
print(re.match("[a-z]+", s))
from re import match
print(match("[a-z]+", s))

= |mport with rename:
import re as regex
from re import match as m

QE!SCCR ‘ . _ |
e)-PYOMO %
enter for Computing Research -

29

A Python Tutorial

Catching Exceptions) g,

def foo(x):
return 1/x

def bar(x):
try:
print(foo(x))
except ZeroDivisionError as message:
print("Can’t divide by zero: %s" % message)

bar(9)

30

A Python Tutorial

Try-Finally: Cleanup) .

f = open(file)

try:
process_file(f)
finally:
f.close() # always executed
print("OK") # executed on success only
. CCR $pyomo &0

A Python Tutorial 31

Raising Exceptions) g,

raise IndexError
raise IndexError("k out of range")

raise IndexError, "k out of range”
this only workRs in Python 2.x!

try:
something
except: # catch everything
print("Oops")
raise # reraise _
+.CCR Y”pvomo @

A Python Tutorial 32

National

More on Exceptions) e,

= User-defined exceptions
= subclass Exception or any other standard exception

= Note: in older versions of Python exceptions can be strings

= Last caught exception info:
= sys.exc_info() == (exc_type, exc_value, exc_traceback)

= Printing exceptions: traceback module

E;:T,CC,,QR, ‘V‘pYDMO |< @

A Python Tutorial 33

Major Python Packages) o

SciPy
= Scientific Python for mathematics and engineering
= http://www.scipy.org

= Numpy

= Numeric array package

= http://www.numpy.org/
= Matplotlib

= 2D plotting library

= http://matplotlib.org/
= Pandas

= Data structures and analysis
= http://pandas.pydata.org/

= |python
= |nteractive Python shell
" http://ipython.org/

A Python Tutorial 36

http://www.scipy.org
http://www.numpy.org/
http://matplotlib.org/
http://pandas.pydata.org/
http://ipython.org/

National

Resources i) o

= Software Carpentry
= http://software-carpentry.org/

= Python webpage
= http://www.python.org

= Books
= Python Essential Reference (4th Edition), David Beazley, 2009
= Python in a Nutshell, Alex Martelli, 2003
= Python Pocket Reference, 4th Edition, Mark Lutz, 2009

2 CCR Y. 7~
%.C()’PYOMO &%
‘enter for Computing Research -

A Python Tutorial 37

http://software-carpentry.org/
http://www.python.org

Acknowledgements) s,

= William Hart

= Ted Ralphs

= John Siirola

= Dave Woodruff

= Guido van Rossum

38

A Python Tutorial

3. Pyomo Fundamentals

Sandia ‘ /‘
abortoes ‘ | pYO IVI D

Exceptional

service

in the

national : EﬁFETﬁEFY ﬁﬁi&t’%’% f;s; .ng,mcmRm

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

3. Fundamental Pyomo Components &z,

= Pyomo is an object model for describing optimization problems

* The fundamental objects used to build models are Components

------ Set
------ Set
______ Param 2— > domain
______ \ar {;- B domain
MOdEl -1 bounds
______ \ar C--------T- domain
-1 bounds
------ Constraint ----~---7-1__bounds
. - expression

: } ‘ ‘./,.'-'—'—a. \
+CCR)"PYOMO %

Pyomo Fundamentals 2

Cutting to the chase: a simple Pyomo model

= prosenbrock.py:

from pyomo.environ import *
model = ConcreteModel()

model.x = Var(initialize=-1.2, bounds=(-2, 2))
model.y = Var(initialize= 1.0, bounds=(-2, 2))

model.obj = Objective(
expr= (1l-model.x)**2 + 100*(model.y-model.x**2)**2,
sense= minimize)

05'3CCR N B R N A R YA Q.)
X)-PYOMO %

Sandia
National
Laboratories

N

Pyomo Fundamentals 3

Cutting to the chase: a simple Pyomo model).

pyomo solve rosenbrock.py --solver=ipopt --summary
0.00] Setting up Pyomo environment
0.00] Applying Pyomo preprocessing actions
0.00] Creating model
0.00] Applying solver
0.03] Processing results
Number of solutions: 1
Solution Information
Gap: <undefined>
Status: optimal
Function Value: 2.98956421871e-17
Solver results file: results.json

= Solve the model:
= The pyomo command

e 99

Model unknown

Variables:
Variable x : Size=1 Domain=Reals
Value=0.999999994543
Variable y : Size=1 Domain=Reals
Value=0.999999989052

Objectives:
Objective obj : Size=1
Value=2.98956421871e-17

4l | Constraints:
None

[0.03] Applying Pyomo postprocessing actions‘
)

] Y5 4 w05 0 05 1. . - 7 N
ZCCR SV N I | 0.03] Pyomo Finished “PYOMO L%

Center for Computing Research e

Pyomo Fundamentals 4

Regarding namespaces) g,

= Pyomo objects exist within the pyomo.environ namespace:

import pyomo.environ
model = pyomo.environ.ConcreteModel()

= _.but this gets verbose. To save typing, we will import the
core Pyomo classes into the main namespace:

from pyomo.environ import *
model = ConcreteModel()

= To clarify Pyomo-specific syntax in this tutorial, we will
highlight Pyomo symbols in green

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Pyomo Fundamentals 5

Getting Started: the Model L

Sandia
National
Laboratories

from pyomo.environ import * <— Every Pyomo model starts

with this; it tells Python to
load the Pyomo Modeling

model = ConcreteModel() Environment

I |
Create an instance of a Concrete model
e Concrete models are immediately constructed

* Data must be present at the time components
are defined

Local variable to hold the model we are about to construct
« While not required, by convention we use “mode 1”
* If you choose to name your model something else,
you will need to tell the Pyomo script the object
name through the command line

ot Y. 7N
+.CCR)’pyomo ¥

for Computing Research

Pyomo Fundamentals 6

Populating the Model: Variables) .,

model.a_variable = Var(within = NonNegativeReals)

A A A
The name you assign the “within” is optional Several pre-
object to becomes the and sets the variable defined domains,
object’s name, and must be | | domain (“domain”isan | | e.g., “B1nary”
unigue in any given model. alias for “within”)

model.a variable = Var(bounds = (@, None))
A

Same as above: “domain” is assumed to be Reals if missing

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Pyomo Fundamentals 7

Defining the Objective) &=,

Var(initialize=-1.2, bounds=(-2, 2))
Var(initialize= 1.0, bounds=(-2, 2))

model. x

model.y

model.obj = Objective(
5 expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,

sense= minimize) T
A
If “sense” is omitted, Pyomo Note that the Objective expression
assumes minimization is not a relational expression

“expr” can be an expression,
or any function-like object
that returns an expression

EN CCR ‘ LS { _\
:efr‘;imCon:plﬂringﬂe;earm ‘/ pYDMO I.l‘\:_f_u_/ﬁl‘:

Pyomo Fundamentals 8

Defining the Problem: Constraints) 5,

model.a = Var()
model.b = Var()
model.c = Var()
model.cl = Constraint(
expr = model.b + 5 * model.c <= model.a)

t

“expr” can be an expression,
or any function-like object
that returns an expression

model.c2 = Constraint(expr = (None, model.a + model.b, 1))

A
“expr” can also be a tuple:
* 3-tuple specifies (LB, expr, UB) In general, LS do no't
« 2-tuple specifies an equality constraint. recommend this notation

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Pyomo Fundamentals 9

Lists of Constraints) i

model.a = Var()
model.b = Var()
model.c = Var()
model.limits = ConstraintList()
model.limits.add(30*model.a + 15*model.b + 10*model.c <= 100)
model.limits.add(10*model.a + 25*model.b + 5*model.c <= 75)
model.limits.add(6*model.a + 1l*model.b + 3*model.c <= 30)
A
“add” adds a single new constraint to the list.
The constraints need not be related.

Pyomo Fundamentals 10

Higher-dimensional components) i

= (Almost) All Pyomo components can be indexed
= A/l non-keyword arguments are assumed to be indices

" |ndividual indices may be multi-dimensional (e.g., a list of pairs)

<Type>(<IDX1>, <IDX2>, [..] <keyword>=<value>, ..)

= |ndexed variables D

The indexes are any iteratable object,
e.g., list or Set

model.a vector = Var(IDX)

model.a matrix = Var(IDX_ A,

A

IDX_B)
A

= ConstraintList is a special case with an implicit index

= Note: while indexed variables look like matrices, they are not.
= |n particular, we do not support matrix algebra (yet...)

l:’-?
o
®é
Center for Computing Research

Pyomo Fundamentals

)"PYOmMO 0
11

. Sandia
Manipulating indices: list comprehensions @i,

model.IDX = range(10)
model.a = Var()
model.b = Var(model.IDX)
model.cl = Constraint(
expr = sum(model.b[i] for i in model.IDX) <= model.a)

Python list comprehensions are

very common for working over b <a
indexed variables and nicely L=
parallel mathematical notation: IEIDX

Pyomo Fundamentals 12

Concrete Modeling) i,

+CCR $7pyomo @

13

Pyomo Fundamentals

Sandia
I"] National
Laboratories

Putting It All Together: Concrete p-Median

= Determine the set of P warehouses chosen from N
candidates that minimizes the total cost of serving all
customers M where d,, ,,, is the cost of serving customer m

from warehouse location n.

min Z A mXnm (minimize total cost)
neN,meM
(guarantee all
S.t. Xnm = 1 VmeM
2 m customers served)

n
(customer n can only be

Xnm < Yn VneNmeM served from warehouse m
if warehouse m is selected)

Z Yn =P (select P warehouses)
nenN
0<x<1 y € {0,1}"
Vpyomo (B

0:’-?
&4
®é
Center for Computing Research

14

Pyomo Fundamentals

Concrete p-Median (1)) o

from pyomo.environ import *

3
4
3

{(1, 1): 1.7, (1, 2): 7.2, (1, 3): 9.0, (1, 4): 8.3,
(2, 1): 2.9, (2, 2): 6.3, (2, 3): 9.8, (2, 4): 0.7,
(3, 1): 4.5, (3, 2): 4.8, (3, 3): 4.2, (3, 4): 9.3}

Q V=2
Il

model = ConcreteModel()
model.Locations = range(N)
model.Customers = range(M)

model.x = Var(model.Locations, model.Customers,
bounds=(0.0,1.0))

model.y = Var(model.Locations, within=Binary)

Pyomo Fundamentals 15

Concrete p-Median (2)) o

model.obj = Objective(expr = sum(d[n,m]*model.x[n,m]
for n in model.LlLocations for m in model.Customers))

model.single x = ConstraintList()

for m in model.Customers:
model.single x.add(

sum(model.x[n,m] for n in model.Locations) == 1.0)

model.bound y = ConstraintList()

for n in model.Locations:
for m in model.Customers:
model.bound y.add(model.x[n,m] <= model.y[n])

model.num_facilities = Constraint(
expr=sum(model.y[n] for n in model.Locations) == P)

E;:T,CC,,QR, ‘V‘pYDMO |< @

Pyomo Fundamentals 16

Solving models: the pyomo command @

= pyomo (pyomo.exe on Windows):

= Constructs model and passes it to an (external) solver

pyomo solve <model file> [<data file> ..] [options]

= |pnstalled to:

= [PYTHONHOME J\Scripts [Windows; C:\Python27\Scripts]
= [PYTHONHOME]/bin [Linux; /usr/bin]

= Key options (many others; see --help)

--help Get list of all options
--help-solvers Get the list of all recognized solvers
--solver=<solver_name> Set the solver that Pyomo will invoke

--solver-options=“key=value[..]” Specify options to pass to the solver as a space-
separated list of keyword-value pairs

--stream-solver Display the solver output during the solve
- -summary Display a summary of the optimization result
--report-timing Report additional timing information, including
construction time for each model component
oo A, U
CCR)-PYOVIO @

Pyomo Fundamentals 17

In Class Exercise: Concrete Knapsack @&z,

N
maxXx Zvi Xi ltem Weight Value
i—1 hammer 5 8
N
wrench 7 3
S.L. Zwi X S\Nmax screwdriver 4 6
=1
towell 3 11
x. €{0,1}

Max weight: 14
Syntax reminders:
from pyomo.environ import *
ConcreteModel()
Var([index, ..], [within=domain], [bounds=(lower,upper)])
ConstraintList()
c.add(expression)
Objective(sense={maximize[minimize},

o expr=expression P A
+CCR P P)) "PYOMO %

18

Pyomo Fundamentals

Concrete Knapsack: Solution) i

from pyomo.environ import *

v = {"hammer':8, 'wrench':3, 'screwdriver':6, ‘'towel':11}
w = {"hammer':5, ‘'wrench':7, 'screwdriver':4, 'towel':3}
W max = 14

model = ConcreteModel()
model.ITEMS = v.keys()
model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i]*model.x[i] for i in model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i]*model.x[i] for i in model.ITEMS) <= W _max)

E;:T,CC,,QR, ‘V‘pYDMO |< @

Pyomo Fundamentals 19

Abstract Modeling) &=,

+CCR $7pyomo @

pA

Pyomo Fundamentals

Concrete vs. Abstract Models h)

= Concrete Models: data first, then model
= 1-pass construction
= All data must be present before Python starts processing the model
= Pyomo will construct each component in order at the time it is declared
= Straightforward logical process; easy to script.
= Familiar to modelers with experience with GAMS

= Abstract Models: model first, then data
= 2-pass construction
= Pyomo stores the basic model declarations, but does not construct the actual objects
= Details on how to construct the component hidden in functions, or rules

= e.g., it will declare an indexed variable “x”, but will not expand the indices or populate
any of the individual variable values.

= At “creation time”, data is applied to the abstract declaration to create a concrete instance
(components are still constructed in declaration order)

= Encourages generic modeling and model reuse
= e.g., model can be used for arbitrary-sized inputs
= Familiar to modelers with experience with AMPL

Center for Computing Research

on? q . a
+CCR »"pyomo (%

Pyomo Fundamentals 21

Generating and Managing Indices: Sets

= Anyiterable object can be an index, e.g., lists:

= IDX a = [1,2,5]

= DATA = {1: 10, 2: 21, 5:42};

IDX b = DATA.keys()

= Sets: objects for managing multidimensional indices

» model.IDX = Set(initialize
A

[1,2,5])

A

Note: capitalization matters:
Set = Pyomo class
set = native Python set

Like indices, Sets can be
initialized from any iterable

* model.IDX = Set([1,2,5])

Note: This doesn’t do what you want.
This creates a 3-member indexed set, where each set is empty.

0:’-?
&4
®é
Center for Computing Research

Sandia
National
Laboratories

)"PYOMO %

Pyomo Fundamentals

Py

Sequential Indices: RangeSet

= Sets of sequential integers are common
» model.IDX = Set(initialize=range(5))

= model.IDX = RangeSet(5) T
A
Note: RangeSet is 1-based. Note: Python range is 0-based.
Thisgives[1,2,3,4,5] This gives [0, 1, 2, 3,4]

= You can provide lower and upper bounds to RangeSet
* model.IDX = RangeSet(@, 4)

A
This gives [0, 1, 2, 3, 4]

Sandia
National
Laboratories

.9 ; :ﬁ._‘
#CCR $”pyomo D

Pyomo Fundamentals

23

Manipulating Sets) e,

= Sets support efficient higher-dimensional indices
model.IDX = Set(initialize=[1,2,5])
model.IDX2 = model.IDX * model.IDX

A A
This creates a virtual Sets also support union (&), intersection (|),
2-D “matrix” Set difference (-), symmetric difference (")

= Creating sparse sets
model.IDX = Set(initialize=[1,2,5])
def lower tri filter(model, i, j):
return j <=1
model.LTRI = Set(initialize = model.IDX * model.IDX,
filter = lower_tri filter)

A

The filter should return True if the element is in the set; False otherwise.

: } ‘ ‘./,.'-'—'—a. \
+CCR)"PYOMO %

Pyomo Fundamentals 24

Deferred construction: Rules h)

= Abstract modeling constructs the model in two passes:
= Python parses the model declaration

= creating “empty” Pyomo components in the model

= Pyomo loads and parses external data

= Components are constructed in declaration order

= The instructions for how to construct the object are provided through a
function, or rule

= Pyomo calls the rule for each component index

= Rules can be provided to virtually all Pyomo components
(even when using Concrete models)

= Naming conventions
" the component name prepended with “_” (c4 =2 _c4)
" the component name with “_rule” appended (c4 - c4_rule)
= eachruleis called “rule” (Python implicitly overrides each declaration)

o2 QY.
#CCR }“pyomo %

rfor Computing Research

Pyomo Fundamentals 25

Indexed Constraints rh) o

model.IDX = Set(initialize=range(5))
model.a = Var(model.IDX)
model.b = Var()

def c4 rule(model, 1i):
return model.a[i] + model.b <=1

model.c4 = Constraint(model.IDX, rule=c4 rule)

A
For indexed constraints, you provide a “rule” (function) that
returns an expression (or tuple) for each index.

Each dimension of each index is
a separate argument to the rule

model.IDX2 = model.IDX * model.IDX

def c5 rule(model, i, j, k): <
return model.a[i] + model.a[]j] + model.a[k] <=1

model.c5 = Constraint(model.IDX2, model.IDX, rule=c5 rule)

—

o2 AN 7
“CCR y“pPyomMo L8

for Computing Research

Pyomo Fundamentals 26

Importing Data: Parameters) .,

= Scalar numeric values
model.a_parameter = Param(initialize = 42)

1)

Provide an (initial) value of 42 for the parameter

= |ndexed numeric values
model.a param_vec = Param(IDX,
initialize = data,
> default = 0) T

“data” must be a dictionary(*) of index keys
to values because all sets are assumed to be
unordered

Providing “default” allows
the initialization data to only

specify the “unusual” values (*) — actually, it must define __getitem__ (),
but that only really matters to Python geeks
o2 QY.
+CCR }"PYOMO %

Pyomo Fundamentals 27

Data Sources rh) o

= Data can be imported from “.dat” file
= Format similar to AMPL style
= Explicit data from “param” declarations

= External data through “load” declarations:
= Excel
load ABCD.x1ls range=ABCD : Z=[A, B, C] Y=D ;

= Databases

load “DBQ=diet.mdb” using=pyodbc query=“SELECT FOOD, cost,
f min, ¥ _max from Food” : [FOOD] cost f _min f _max ;

= External data overrides “initialize="" declarations

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Pyomo Fundamentals 28

Abstract p-Median (pmedian.py, 1)) .

from pyomo.environ import *

model = AbstractModel()

model.N = Param(within=Positivelntegers)
model.P = Param(within=RangeSet(model.N))
model.M = Param(within=Positivelntegers)

model.Locations = RangeSet(model.N)
model.Customers = RangeSet(model.M)

model.d

Param(model.Locations, model.Customers)

model.x = Var(model.Locations, model.Customers, bounds=(0.0, 1.0))
model.y = Var(model.Locations, within=Binary)
o ‘ e (o |
“CCR)"pyomo_CH

Pyomo Fundamentals 29

Abstract p-Median (pmedian.py, 2)) .

def obj rule(model):
return sum(model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=obj rule)

def single x rule(model, m):
return sum(model.x[n,m] for n in model.Locations) == 1.0
model.single x = Constraint(model.Customers, rule=single x rule)

def bound y rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0

model.bound_y = Constraint(model.Locations, model.Customers,
rule=bound_y rule)

def num facilities rule(model):
return sum(model.y[n] for n in model.Locations) == model.P

model.num_facilities = Constraint(rule=num_facilities rule)

o Y 7 N
. CCR)"pPyomo %

for Computing Research

Pyomo Fundamentals 30

Abstract p-Median (pmedian.dat) .

param N := 3;
param M := 4;
param P := 2;
param d: 1 2 3 4 =

1 1.7 7.2 9.8 8.3
2.9 6.3 9.8 0.7
3 4.5 4.8 4.2 9.3 ;

31

Pyomo Fundamentals

In Class Exercise: Abstract Knapsack) .

N
maxXx Zvi Xi ltem Weight Value
i—1 hammer 5 8
N
wrench 7 3
S.L. Zwi X S\Nmax screwdriver 4 6
=1
towell 3 11
x. €{0,1}

Max weight: 14

Syntax reminders:
AbstractModel()
Set([index, ..], [initialize=Llist/function])
Param([index, ..], [within=domain], [initialize=dict/function])
Var([index, ..], [within=domain], [bounds=(lower,upper)])
Constraint([index, ..], [expr=expression/[rule=function])

Objective(sense={maximize[minimize},
o expr=expression/[rule=function) P A
“CCR }y“Pyomo 8

32

Pyomo Fundamentals

Abstract Knapsack: Solution =

from pyomo.environ import *

model
model.ITEMS
model.v
model.w

model.W_max =
model. x =

AbstractModel()

Set()

Param(model.ITEMS, within=PositiveReals)
Param(model.ITEMS, within=PositiveReals)
Param(within=PositiveReals)

Var(model.ITEMS, within=Binary)

def value rule(model):

return sum(model.v[i]*model.x[i] for i in model.ITEMS)

model.value =

Objective(rule=value rule, sense=maximize)

def weight rule(model):
return sum(model.w[i]*model.x[i] for i in model.ITEMS) \
<= model.W max

model.weight =

o?
'}‘-
Center

er for Computing Research

Constraint(rule=weight rule)

3. a
)”pyomo 8
33

Pyomo Fundamentals

Abstract Knapsack: Solution Data) .

set ITEMS := hammer wrench screwdriver towel ;

param. V W .=

hammer 8 5
wrench 37
screwdriver 6 4
towell 11 3;
param wW_max := 14;
#CCR J7pvomo £

Pyomo Fundamentals 34

4. Pyomo Idioms

Sandia ‘ /‘
abortoes ‘ | pYO IVI D

Exceptional

service

in the -

national E EﬁMEMﬁEFY /}’%’l JA’S{% ?ﬁ CCR

National Wucioar Security Administration Center for Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Pyomo and Python: Idioms and Efficiency (&,

= Being embedded in a high-level (and interpreted)
programming language can present challenges
= |nability to constrain syntax => users have many guns
= Some of approaches may be very slow

= Some of the blame can be placed on Python
= But a lot can be blamed on Pyomo

—

#CCR X -
Cefr:im Computing Research ‘ pYDMO . ‘*;-—-(4

Sandia
What are reasonable performance expectations?) feses,

= Python is a byte-compiled scripting language
= and Pyomo is pure Python
= ..so0 expectations were not high
= ..and raw speed has never been a goal!

= Early experiences bore this out... in November, 2010:
= p-median facility location

= AMPL model construction time: ~4 seconds

= Pyomo model construction time: >2000 seconds
= Logistics disruption modeling

= GAMS solution time: ~20 seconds

= Pyomo solution time: >200 seconds

= _..butthe gapis closing... in Coopr 3.2:

= p-median facility location: ~45 seconds

= Logistics disruption modeling: ~25 seconds
#CCR QY. 7 N
)-PYOMO <%

Pyomo Idioms 3

I\/Ianaging Edge CaSEeS (special sets vs rule logic)

= Linking time; consider:

T €[0.T]
X =cx_, {t|teT,t=0}

o
..:"-
Center for Computing Research

$”pyomo @

Sandia
National
Laboratories

Pyomo Idioms 4

National

Managing edge CaASEeS (special sets vs rule logic)) iz

= Linking time; consider:

T €[0T, 5]
X =cx_, {t|teT,t=0}

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T - [0]

def rulel(model, t):
return model.x[t] == model.c * model.x[t-1]

model.Tink = Constraint(model.TnotO, rule=rulel)

21 y
+CCR $pyomo &0

Pyomo Idioms 5

National

I\/Ianaging Edge CASEeS (special sets vs rule logic))

= Linking time; consider:

T €[0T, 5]
X =cx_, {t|teT,t=0}

model.T = RangeSet(0, model.Tmax)

def rule2(model, t):
if t ==
return Constraint.Skip
return model.x[t] == model.c * model.x[t-1]

model.Tink = Constraint(model.T, rule=rule2)

+CCR 7pvomo 6

Center for Computing Researc]
Pyomo Idioms 6

Managing Edge CaASEeS (special sets vs rule logic)) iz

= Linking time; consider:

T €[0T, 5]
X =cx_, {t|teT,t=0}

model.T = RangeSet(0, model.Tmax)

model.Tnot0 = model.T - [0]

def rulel(model, t):
return model.x[t] == model.c * model.x[t-1]

model.Tink = Constraint(model.TnotO, rule=rulel)

def rule2(model, t):
if t ==
return Constraint.Skip
return model.x[t] == model.c * model.x[t-1]
model.Tink = Constraint(model.T, rule=rule2)

u . a
+CCR)”pyomo 8

Center for Computing Research

Pyomo Idioms 7

National

Managing Edge CaASES (special sets vs rule logic)) .

= Linking time; consider:

T €[0T, 5]
X =cx_, {t|teT,t=0}

model.T = RangeSet(0, model.Tmax) /[Tmax = 1e5] \
model.Tnot0 = model.T - [0] ruIe1: 4.35 sec
def rulel(model, t):)
return model.x[t] == model.c * model.x[t-1] rUIez- 4.10 sec
model.link = Constraint(model.TnotO, rule=rulel) _ J
def rule2(model, t):
if t ==
return Constraint.Skip
return model.x[t] == model.c * model.x[t-1]
model.Tink = Constraint(model.T, rule=rule2)
22 7N
+CCR Ypyomo £

Pyomo Idioms 8

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:
min> »'d. X .. neLocations, me Customers
n m

Pyomo Idioms 9

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:

min> »'d. X .. neLocations, me Customers
n m

def rulel(model):
ans = 0
for n in model.Locations:
for m in model.Customers:
ans = ans + model.d[n,m]*model.x[n,m]
return ans

model.obj = Objective(rule=ruleN)
#CCR J7pyovo &

Pyomo Idioms 10

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:
min> »'d. X .. neLocations, me Customers
n m

def rule2(model):
ans = 0
for n in model.Locations:
for m in model.Customers:
ans += model.d[n,m]*model.x[n,m]
return ans

model.obj = Objective(rule=rulen)

2 CCR Y. 7~
::r..f Computing Research ‘/ pYDMO . /
enter for Computing Researd -

11

Pyomo Idioms

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:
min> »'d. X .. neLocations, me Customers
n m

def rule3(model):
return sum([model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers])

model.obj = Objective(rule=ruleN)
#CCR J7pyovo &

Pyomo Idioms 12

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:
min> »'d. X .. neLocations, me Customers
n m

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)
#CCR J7pyovo &

Pyomo Idioms 13

Managing performance (how ot to shoot yourself) 1) ke

= Expression generation; consider:

min> »'d. X .. neLocations, me Customers
n m

def rulel(model):
ans = 0
for n in model.Locations:

for m in model.Customers:
o air;s = ans + model.d[n,m]*model.x[n,m] /[n =m = 1640] \
def rule2(model): rulel: >>10000 sec
igi : ?n mc?del.Locations: rule2: 5.0 sec
ror Zn:n+r:oz§$é(l:lftsifsr?§r]‘:r;lodel.x[n,m] rUIe?’: 7.4 sec
return ans

rule4: 5.0 sec
def rule3(model): \\‘ ,//

return sum([model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers])

def rule4(model):
return sum(model.d[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

model.obj = Objective(rule=ruleN)

oo QY 7)
+CCR }"PYOMO %

Center for Computing Research

Pyomo Idioms 14

Sandia
m National
Laboratories

Ma naging pe rformance (how not to shoot yourself)

= Sparse data; consider:
> a, X, <b, VneN
meM
model.a = Param(model.N, model.M, default=0, mutable=True)

def rulel(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

/For n=1.10, m=1..1e5, 4% nonzero,

1.9 seconds to generate the constraint
1e5 terms in the constraint (dense!!)
- /

model.C = Constraint(model.N, rule=ruleN)

E;:T,CC,,QR, ‘V‘pYDMO |< @

15

Pyomo Idioms

Sandia
m National
Laboratories

Ma naging pe rformance (how not to shoot yourself)

= Sparse data; consider:
> a, X, <b, VneN
meM

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m] != @) <= model.b[n]

For n=1..10, m=1..1e5, 4% nonzero,
0.1 seconds slower, and still dense!

model.C = Constraint(model.N, rule=ruleN)

KX) q . 7 N\
+CCR)"pPyomo %
16

Pyomo Idioms

Managing performance (how ot to shoot yourself) 1) ke

= Sparse data; consider:
> a, X, <b, VneN
meM

model.a = Param(model.N, model.M, default=0, mutable=True)

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if value(model.a[n,m]) != @) <= model.b[n]

def rule4(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m].value != @) <= model.b[n]

model.C = Constraint(model.N, rule=ruleN)

2CCR Ypyomo £F

Center for Computing Research

Pyomo Idioms 17

National

Ma nagi ng pe rfO FMAaNCe (how not to shoot yourself) L la'::':ﬂ'ies

= Sparse data; consider:
> a, X, <b, VneN
meM
model.a = Param(model.N, model.M, default=0, mutable=True)

def rulel(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M

if model.a[n,m] != @) <= model.b[n] / \
[n=1.10, m=1..1e5,

def rule3(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M 4% fl”]

if value(model.a[n,m]) != @) <= model.b[n]

def rule4(model,n): rU|91: 1.9 sec

return sum(model.a[n,m] * model.x[m] for m in model.M ruleZ: 20 SeC
if model.a[n,m].value != @) <= model.b[n] ru|e3. O 9 sec
model.C = Constraint(model.N, rule=ruleN) !U|e4: 08 sec /
o1 QY. 7 N
+CCR)"PYOMO ¥

for Computing Research

18

Pyomo Idioms

Sandia
II'] National
Laboratories

Ma naging pe rformance (how not to shoot yourself)

= Mutable vs Immutable Params
= Given a promise parameter value will never change, we can optimize
= |mmutable Params are now the default!

model.a = Param(model.N, model.M, default=0, mutable=False)

def rulel(model,n):
return sum(model.a[n,m] * model.x[m] for m in model.M) <= model.b[n])

def rule2(model,n):

return sum(model.a[n,m] * model.x[m] for m in model.M
if model.a[n,m] != @) <= model.b[n]
/[n =1.10,m= 1..1e5,\

def rule3(model,n): 0 :
return sum(model.a[n,m] * model.x[m] for m in model.M 4/0 ﬁ”]
if value(model.a[n,m]) != @) <= model.b[n] rulel. 1 2 sec
def rule4(model,n): rule2: 0.5 sec
return sum(model.a[n,m] * model.x[m] for m in model.M I .
if model.a[n,m].value != @) <= model.b[n] ru 63' 05 SEC
. = I
model.C = Constraint(model.N, rule=ruleN) !U|e4. Exceptlon' /
o Qn
+.CCR)"pyomo ¥

for Computing Research

19

Pyomo Idioms

Ma nagi ng pe rformance (how not to shoot yourself)

= Sparse constraints; consider:
storage, , , = storage,_, , , + production

V t e[dStart,,dEnd,], p € Products, d € Disruptions

Sandia
National
Laboratories

#CCR Y7pyomo &0

Pyomo Idioms 20

Sandia
I'll National
Laboratories

Ma naging pe rformance (how not to shoot yourself)

= Sparse constraints; consider:
storage, , , = storage,_, , , + production

V t e[dStart,,dEnd,], p € Products, d € Disruptions

def rulel(model,t,d,p):
if t < model.dStart[d] or t > model.dEnd[d]:

return Constraint.Skip
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

model.C1l = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS, rule=rulel)

o2 QY 7 N
+CCR »’pyomo €0
21

Pyomo Idioms

Ma nagi ng pe rfO FMAaNCe (how not to shoot yourself) h) s

= Sparse constraints; consider:
storage, , , = storage,_, , , + production

V t e[dStart,,dEnd,], p € Products, d € Disruptions

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]

model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)

N

o? ‘ - 7 X
+CCR }“PYOMO (0

Py

Pyomo Idioms

- National
Managing performance (how not to shoot yourself) = e
= Sparse constraints; consider:

storage, , , = storage, , , , + production,
V t e[dStart,,dEnd,], p € Products, d € Disruptions
def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]
def filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]
model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS, filter=_filter3)
model.C3 = Constraint(model.ACTIVE_DISRUPTIONS, model.PRODUCTS, rule=rule2)
#CCR 3
)-PYOMO "

Pyomo Idioms

Sandia

23

Sandia
I"] National
Laboratories

Ma naging pe rformance (how not to shoot yourself)

= Sparse constraints; consider: /[t =d=1..250, \
storage, , , = storage,_, , , + production p =1..10,
t*d = 2% fill]
V t e[dStart,,dEnd,], p € Products, d ¢
def r‘u%el(model,t,d,p): Cl 22 SecC
T etuen Gonstraintiskp C2: 2e-4 sec

return model.storage[t,p,d] == model.storage[t-1,p,d] + model.y

model.C1 = Constraint(model.TIME, model.DISRUPTIONS, model.PRODUCTS,K C3: 2e4 SEC/

def rule2(model,t,d,p):
return model.storage[t,p,d] == model.storage[t-1,p,d] + model.production[t,p,d]

def filter2(model,t,d,p):
return t >= model.dStart[d] and t <= model.dEnd[d]
model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS * model.PRODUCTS,
filter=_filter2)

model.C2 = Constraint(model.ACTIVE_DISRUPTIONS, rule=rule2)
def _filter3(model,t,d):
return t >= model.dStart[d] and t <= model.dEnd[d]
model.ACTIVE_DISRUPTIONS = Set(within=model.TIME * model.DISRUPTIONS, filter=_filter3)
model.C3 = Constraint(model.ACTIVE DISRUPTIONS, model.PRODUCTS, rule=rule2)

on? q . a
+CCR »"pyomo (%

Center for Computing Research

24

Pyomo Idioms

Ma nagi ng pe rfO FMAaNCe (how not to shoot yourself) h) s

= Using Pyomo convenience functions
min> »'d. X .. neLocations, me Customers
n m

model.d1l = Param(model.Locations, model.Customers, mutable=True)

def rulel(model):
return sum(model.dl[n,m]*model.x[n,m] ///> ‘\\
for n in model.Locations for m in model.Customers) [n=m= 1640]
def rule2(model): rulel: 5.0 sec
return summation(model.dl, model.x) rulez. 7.9 sec

rule3: 3.5sec

model.d2 = Param(model.Locations, model.Customers, mutable=False)

ruled: 5.6 sec
def rule3(model): \ /

return sum(model.d2[n,m]*model.x[n,m]
for n in model.Locations for m in model.Customers)

def rule4(model):
return sumation(model.d2, model.x)

—

o? ‘ - 7 ¥
e CCR } PYOMO l\,%

25

Pyomo Idioms

The Performance “Elephant”: Memory

= Known issue ...
= Python uses a fairly heavy-weight object model

= “Significant” recent improvements in low-level core components
= Coopr 3.3 uses <50% of the memory of Coopr 3.0

= But...
= 640 x 640 p-median problem still consumes ~1 GB.

= Focus of efforts, with several more enhancements on the
horizon.

Sandia
National
Laboratories

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Pyomo Idioms

26

5. Nonlinear Problems

Sandia
National
Laboratories

Exceptional

service

in the

national : EﬁFETﬁEFY ﬁﬁi&t’%’% f;s; .ng,mcmRm

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

Nonlinear problems are easy... i)

Pyomo Fundamentals 2

Nonlinear problems are easy... h .

... to write in Pyomo (correct formulation and solution is another story)

#CCR Y pvomo B

Pyomo Fundamentals 3

Nonlinear problems are easy...

... to write in Pyomo (correct formulation and solution is another story)

= Agenda:

o?
'2"-
Center for Computing Research

Introduction

Rosenbrock Example

Introduction to Scripting

Introduction to IPOPT

Recommendations for Nonlinear Problems
Formulation Matters Example

Exercises

Sandia
National
Laboratories

QY. 7 N
)-PYOMO =%

Pyomo Fundamentals 4

Nonlinear: Supported expressions h s

Operation Operator Example

multiplication * expr = model.x * model.y
division / expr = model.x / model.y
exponentiation * % expr = (model.x+2.0)**model.y
in-place multiplication! *= expr *= model.x

in-place division? /= expr /= model.x

in-place exponentiation? * k= expr **= model.x

model = ConcreteModel()
model.r = Var()
model.h = Var()

def surf_area_obj_rule(m):
return 2 * pi * m.r * (m.r + m.h)
model.surf_area_obj = Objective(rule=surf_area_obj_rule)

def vol_con_rule(m):
return pi * m.h * m.r**2 == 355
model.vol_con = Constraint(rule=vol_con_rule)

o1 QY. 7 N
+.CCR)’PYOmMO %

—]

Pyomo Fundamentals 5

Nonlinear: Supported expressions h s

Operation Function Example

arccosine acos expr = acos (model.x)
hyperbolic arccosine acosh expr = acosh (model.x)
arcsine asin expr = asin (model.x)
hyperbolic arcsine asinh expr = asinh (model.x)
arctangent atan expr = atan (model.x)
hyperbolic arctangent atanh expr = atanh (model.x)
cosine cos expr = cos (model.x)
hyperbolic cosine cosh expr = cosh (model.x)
exponential exp expr = exp (model.x)
natural log log expr = log(model.x)
log base 10 logl0 expr = loglO (model.x)
sine sin expr = sin (model.x)
square root sgrt expr = sqgrt (model.x)
hyperbolic sine sinh expr = sinh (model.x)
tangent tan expr = tan (model.x)
hyperbolic tangent tanh expr = tanh (model.x)

Caution: Always use the intrinsic functions that are part of the Pyomo package.

from pyomo.environ import * # imports, e.g., pyomo versions of exp, log, etc.)
from math import * # overrides the pyomo versions with math versions

Center for Computing Research

Pyomo Fundamentals 6

e A '
'E'-.CCR } PYOMO '.l_\:-i-[J/R‘Jf

Example: Rosenbrock function

min f(x,y) = (1-22+100(y—22)° =

x,y 1000 4§ -

= Minimize the rosenbrock function
using Pyomo and IPOPT

= |nitialize at x=1.5, y=1.5

o?
'}‘-
Center for Computing Research

Sandia
National
Laboratories

3. a
)”pyomo 8

Pyomo Fundamentals 7

Example: Rosenbrock function) .

n;s}n f(XJJ’) (l—x) + 100 ()’_xz) ’ l

= Minimize the rosenbrock function
using Pyomo and IPOPT

= |nitialize at x=1.5, y=1.5

rosenbrock.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Pyomo Fundamentals 8

Example: Rosenbrock function) .

rosenbrock.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

pyomo solve --solver=ipopt --summary --stream-solver rosenbrock.py

Variables:
X : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Fixed : Stale
None: None: 1.0: None: False : False
y : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Fixed : Stale
None: None: 1.0: None: False : False

N QYo
CCR)”PYOMO %

Pyomo Fundamentals 9

Example: Rosenbrock function) .

Variables:
X : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Fixed : Stale
None: None: 1.0: None : False : False
y : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Fixed : Stale
None : None: 1.0: None : False : False

= How do | generate nicely formatted output?

= What if | want to solve this problem repeatedly with different initialization?
= Whatif | have data processing to do before hand?

= How can | use the power of Python to build optimization solutions?

= Write a Python script instead of using the “pyomo” command

Scripting brings the power of Python to Pyomo

Pyomo Fundamentals 10

Example: Scripting (Rosenbrock)

Sandia
I'll National
Laboratories

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')
solver.solve(model, tee=True)

print()

print("*** Solution *** :")
print('x:', value(model.x))
print('y:', value(model.y))

o?
'}‘-
Center for Com Research

Pyomo Fundamentals

3. a
)”pyomo 8
11

Example: Scripting (Rosenbrock)

Sandia
II'] National

Laboratories

rosenbrock script.ov: A Pvomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')
solver.solve(model, tee=True)

print()

print("*** Solution *** :")
print('x:', value(model.x))
print('y:', value(model.y))

Pyomo Fundamentals

‘ “ _ \
)"PYOMO %
12

Example: Scripting (Rosenbrock)

Sandia
m National

Laboratories

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory(‘ipopt’)
solver.solve(model, tee=True)

print()

print("*** Solution *** :")
print('x:', value(model.x))
print('y:', value(model.y))

o?
'2"-
Center for Com Research

Pyomo Fundamentals

N

QY. 7 N
)~ PYOMO '-'__7"_/_"‘-‘
13

Example: Scripting (Rosenbrock)

Sandia
m National

Laboratories

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')
solver.solve(model, tee=True)

print()

print("*** Solution ***:")
print('x:', value(model.x))
print('y:', value(model.y))

0:’-?
'
®é
Center for Computing Research

Pyomo Fundamentals

N

QY. 7 N
)~ PYOMO '-'__7"_/_“‘-‘
14

Example: Scripting (Rosenbrock)

Sandia
m National

Laboratories

rosenbrock_script.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')
solver.solve(model, tee=True)

print()

print("*** Solution *** :")
print('x:', value(model.x))
print('y:', value(model.y))

python rosenbrock_script.py

o?
'2"-
Center

er for Computing Research

Pyomo Fundamentals

N

QY. 7 N
)~ PYOMO '-'__7"_/_"‘-‘
15

. . . . o o o Sandia
Exercise: Scripting (looping over initial value) &&=,

= Modify rosenbrock_script.py to solve the rosenbrock problem
for different initial values and a table of output that shows
the initial values and the solution for both x and y. (l.e.,
complete the following table)

X_init, y_init, x_soln, y_soln
200 500 --- --—--
3.00 500 --- ---
400 500 - ---
500 500 --- ---

#CCR T,
)"PYOMO %

Pyomo Fundamentals 16

Example: Scripting (loop over initial value)

Sandia
I'll National

Laboratories

rosenbrock_script_loop.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

print('x_init, y_init, x_soln,y soln")
y_init=5.0
for x_init in range(2, 6):

model.x = x_init

model.y = 5.0

solver = SolverFactory('ipopt")
solver.solve(model)

print("{0:6.2f} {1:6.2f} {2:6.2f} {3:6.2f}".format(x_init, \
y_init, value(model.x), value(model.y)))

o?
'2"-
Center

er for Computing Research

Pyomo Fundamentals

- -
»’pyomo 8

17

Introduction to IPOPT

Sandia
II'] National

Laboratories

min f(x) -

Objective Function

Equality Constraints

st. c¢lx)=0 -

dl < d(z) < dY
wL§w§$U<

Inequality Constraints

Variable Bounds

r e R

f(z) R"— R

c(z) : R" — R

d(z) : R — RP)

m f(x), c(x), d(x)

o general nonlinear functions (non-
convex?)

o Smooth (C?)

The x variables are continuous

o X(x-1)=0 for discrete conditions
really doesn’ t work

0:’-?
&4
®é
Center for Computing Research

Pyomo Fundamentals

Yo 7 \
J’pYomo (%
18

Sandia

Introduction to IPOPT rh) st

mwl N f(.:U) « Cost/Profit, Measure of fit
S t. c(a:*) — (0 - Physics of the system
L U,
d” <d(z) <d” - Physical, Performance,

:UL <z < .SUU . Safety Constraints

<«

m f(x), c(x), d(x)

n o general nonlinear functions (non-
z €N convex?)
f(z) : R"— R 2 Smooth (C?)
c(z) : R" — R

m [he x variables are continuous

o X(x-1)=0 for discrete conditions
really doesn’ t work

d(z) : R" — RP

#CCR X,
)"PYOMO %

Pyomo Fundamentals 19

Sandia

Large Scale Optimization rh) i

= Gradient Based Solution Techniques
Vi(z) + Ve(z)! -)\O =0

mﬂjin f(x) _
s.t. c(x) =0 > %
Newton Step
Wi Velag) | Az _ | Vi(zp) + Velzp) Ty,
Vc(:ck)T 0 A\ o C(I’k)

(Wi = Vi £ = Vi, f(z1) + Vige(mp)A)

I Active-set Strategy I

#CCR 3
% il)
;:r; for Computing Research ‘/ pYD M 0 \:_7_ (’t !

Interior Point Methods

—— Original NLP
min f(x)
s.t. ¢c(x)=0
>0

|

—— Barrier NLP
min f(@) - Y in()
)
s.t. c¢(x) =0
as =z — 0, In(z)—
as u—0, z*(p) — "

Fiacco & McCormick (1968)

o?
'2"-
Center for Computing Research

Sandia
m National

Laboratories

Initialize
zog >0, puop >0, Set [« 0

Solve Barrier NLP for #i

Decrease the barrier parameter
Hi+1 < M

Increase 1 —1+4+1

QY. 7 N
)-PYOMO =%

Effect of Barrier Term rh) ot

Barrier parameter = 1.0

= Obj.

Py

Pyomo Fundamentals

Effect of Barrier Term) i,

Barrier parameter = 1.0

10
— Obj.
-- B.L
ol -- B.U
6

— ===
e e

4 [
\ /
\ /
\ /
\ /
N /7
N 7’
2 S e . _’
>—< _ - -~
0.0 0.2 0.4 0.6 0.8 1.0
.;;CCR ’/‘ .-' N
:efr:‘rfmﬂomput{ngﬂesear(h pYDMO l - /

Pyomo Fundamentals 23

Effect of Barrier Term

Sandia
National
Laboratories

10 Barrier parameter = 1.0
- QObj
-- B.L
sl -- B.U .
- B. Obj.
1
I
I
I
I
I
,_
/
/ \ /
N—r -
I
7
//
0 ___________ e
0.0 0.2 0.4 0.6 0.8 1.0

o?
'2"-
Center for Computing Research

Pyomo Fundamentals

$”pyomo

24

Effect of Barrier Term

Sandia
National
Laboratories

Barrier parameter = 0.5

10
— Obj
-- B.L
ol -- B.U
- B. Obj.
6
4&/ N
| S
\ I
21 N/ /]
\ /
\\ ,/
0 I el |-_-__‘-__:_| _______ [= = =
0.0 0.2 0.4 0.6 0.8 1.0

o?
'2"-
Center for Computing Research

$”pyomo

Pyomo Fundamentals

25

Effect of Barrier Term

Sandia
rl'l National
Laboratories

Barrier parameter = 0.5

= Obj.

o
..:"-
Center for Computing Research

1.0

$”pyomo @

Pyomo Fundamentals

26

Interior Point Methods rh) deim

—— Original NLP
min f(x) = [nitialize
> 0, >0, Set [0
s.t. c¢(x)=0 "o Ho
x>0 = Solve Barrier NLP for Hi
s Decrease the barrier parameter
l Hi+1 < M
— Barrier NLP m Increase [—1+1

min eu(@)= 1) = p- 3 in()

Solve Barrier NLP?

st. ce(z)=0 Barrier parameter update?
Globalization?

as r — Oa l?’L(CIJ‘) — 00 KNITRO (Byrd, Nocedal, Hribar, Waltz)
LOQO (Benson, Vanderbei, Shanno

* *
as p—0, = (FL) — X IPOPT (Waechter, Biegler)

Fiacco & McCormick (1968)

Interior Point Methods

4 ™ r

Sandia
National
Laboratories

min f() min f(z ‘”’Z In(z;)
s.t ¢(x)=0 g
>0 s.t c(x)=0
. J L
Vf(z)+ Ve(z)T’_Z—D . Vf(z)+ Ve(x)TA—puXte=0
c(z) =0 z=pX""e c(z) =0
Xz = pe < (z > 0)
(z > 0,z > 0)
')
Wi + X + 0,1 VC(:Ek) Az _ V’l,bp,(:rk) + Vc(mk)T)\k
Ve(zy)T —d.1 AX | T c(zy)
(Wi=V2,L, S = ZpX; ")
A vy
o2 QR /;-,-\
“CCR }"pyomo (9

Pyomo Fundamentals

28

Sandia

IPOPT: Other Considerations) .,

= Regularization:

= |f certain convexity criteria are not satisfied at a current point, IPOPT
may need to regularize. (This can be seen in the output.)

= We do NOT want to see regularization at the final iteration (solution).
= Can be anindicator of poor conditioning.

= Globalization:
= |POPT uses a filter-based line-search approach

= Accepts the step if sufficient reduction is seen in objective or
constraint violation

= Restoration Phase:
= Minimize constraint violation
= Regularized with distance from current point
= Similar structure to original problem (reuse symbolic factorization)

+.CCR »”pyomo (8

Pyomo Fundamentals 29

IPOPT Algorithm Flowsheet) .

— | Calculate Step ——

U=
e

2 |
YES Find Acceptable
Step Length?
. 1 -
+.CCR e

Pyomo Fundamentals 2

IPOPT Output) .

sk ok sk kK ok ok ok ok ok sk sk sk ok Sk sk sk ok ok ok sk k sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok k ok

This program contains Ipopt, a library for large-scale nonlinear optimization.

Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt

skokskokskokok skok sk ok sk skok sk sksk skok sk kok sk ok sk sk ok sksk sk skoksksksk skok sk sk ok skk sk skok sksk sk skok skok sk skok sk ok sk sk sk sk ok skoksksk ok skok sk sk sk sk sk ok sk ok

This is Ipopt version 3.11.7, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...: 2
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian HesSiaN..:s:ssasssass 1
Total number of variableS....icvevinenenenenennsnnnsnnns 2
variables with only lower bounds: 0

variables with lower and upper bounds: 1

variables with only upper bounds: 0

Total number of equality constraintS..scvesessnnnsnsss 1
Total number of inequality constraints.....icveunausas 9
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 9

iter objective inf_pr inf_du lg(mu) |[|d|| 1lg(rg) alpha_du alpha_pr 1s
""8C 5 AAAAAAAa—-RAT D KRAa—-NA1 K ARa—-NA1 =1 0O A ARa+AR - D ARasR ,Q pnn.a.mm 7]

@2
)-PYOMO 7
Center for Computing Research

Pyomo Fundamentals 31

IPOPT Output) .

iter objective inf_pr inf_du lg(mu) ||d]] lg(rg) alpha_du alpha_pr 1s

@ 5.0000000e-01 2.50e-01 5.00e-01 -1.0 0.00e+00 0.00e+00 0.00e+00 (7]
1 2.4298076e-01 2.33e-01 7.67e-01 -1.0 5.20e-01 - 7.73e-01 9.52e-01h 1
2 2.6898113e-02 7.23e-05 4.09%9e-04 -1.7 2.16e-01 - 1.00e+00 1.00e+00h 1
3 1.8655807e-04 1.83e-04 7.86e-05 -3.8 2.68e-02 - 1.00e+00 9.97e-01f 1
4 1.8250072e-06 1.23e-12 2.22e-16 -5.7 1.85e-04 - 1.00e+00 1.00e+00h 1
5 -1.7494097e-08 8.48e-13 0.00e+00 -8.6 1.84e-06 - 1.00e+00 1.00e+00h 1
Number of Iterations....: 5
(scaled) (unscaled)
Objective.ivvivvernenwan: =1.7494096510394117e-08 -1.7494096510394117e-08
Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation....: 8.4843243541854463e-13 8.4843243541854463e-13
Complementarity.ecueuauas 2.5050549017950606e-09 2.5050549017950606e-09
Overall NLP error.v.euau.: 2.5050549017950006e-09 2.50505490179500606e-09
n iter: ite_zration§ (CQdeS) = ||d||: length of the current stepsize
= objective: objective = lg(rg): log of the regularization
= Inf_pr: primal infeasibility (constraints parameter
satisfied? current constraint V|0Iat|on) n a|pha_du: Stepsize for dual variables
= Inf_du: dual infeasibility (am | optimal?) = alpha_pr: stepsize for primal variables
= lg(mu): log of the barrier parameter, mu = Is: number of line-search steps
A .
“.CCR)"PYOMO ¥

Center for Computing Research

Pyomo Fundamentals 32

Exit Conditions rh) ot

= Successful Exit

= Successful Exit with regularization at solution
= |nfeasible

= Unbounded

33

Pyomo Fundamentals

Exit Conditions: Successful

min o

—3322213%—1

X2

Sandia
rl'l National
Laboratories

Decreasing

objective

x1

—1§$1§1

Initialize at (x1=0.5, x2=0.5) /

o?
'2"-
Center for Computing Research

Y”pyomo

Pyomo Fundamentals 34

Exit Conditions: Successful rh) ot

iter objective inf_pr inf_dulg(mu) ||d|| lg(rg) alpha_du alpha_pr Is
0 5.0000000e-01 2.50e-01 5.00e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 O
1 2.4298076e-01 2.33e-01 7.67e-01 -1.0 5.20e-01 - 7.73e-01 9.52e-01h 1
2 2.6898113e-02 7.23e-05 4.09e-04 -1.7 2.16e-01 - 1.00e+00 1.00e+00h 1
3 1.8655807e-04 1.83e-04 7.86e-05 -3.8 2.68e-02 - 1.00e+00 9.97e-01f 1
4 1.8250072e-06 1.23e-12 2.22e-16 -5.7 1.85e-04 - 1.00e+00 1.00e+00h 1
5-1.7494097e-08 8.48e-13 0.00e+00 -8.6 1.84e-06 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 5

(scaled) (unscaled)
Objective................ -1.7494096510367012e-08 -1.7494096510367012e-08
Dual infeasibility....... 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation..... 8.4843243541854463e-13 8.4843243541854463e-13
Complementarity......... . 2.5050549017950606e-09 2.5050549017950606e-09
Overall NLP error.......: 2.5050549017950606e-09 2.5050549017950606e-09

EXIT: Optimal Solution Found.
Ipopt 3.11.1: Optimal Solution Found
*** soln

x1=1.0
X2 = -1.7494096510367012e-08

Center for Computing Research N

-
Pyomo Fundamentals 35

1 T o 1 1 Sa?igir?a
Exit Conditions: Successful w/ Regularization [.
X2
. Decreasing
min x 9 objective
— 2
2=yl AN
—1 < L1 < 1
Initialize at (x1=0.0, x2=2.0) / \
“CCR Ypvomo £H
Pyomo Fundamentals 36

. o, . R Sandia
Exit Conditions: Successful w/ Regularization [.

iter objective inf_pr inf_dulg(mu) ||d|| Ig(rg) alpha_du alpha_pr Is
0 2.0000000e+00 1.00e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 O
1 1.0000000e+00 0.00e+00 1.00e-04 -1.7 1.00e+00 -4.0 1.00e+00 1.00e+00h 1
2 1.0000000e+00 0.00e+00 0.00e+00 -3.8 0.00e+00 0.9 1.00e+00 1.00e+00 O
3 1.0000000e+00 0.00e+00 0.00e+00 -5.7 0.00e+00 0.5 1.00e+00 1.00e+00T O
4 1.0000000e+00 0.00e+00 0.00e+00 -8.6 0.00e+00 0.9 1.00e+00 1.00e+00T 0O

Number of Iterations....: 4

(scaled) (unscaled)
Objective................ 1.0000000000000000e+00 1.0000000000000000e+00
Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.......... 2.5059035596800808e-09 2.5059035596800808e-09
Overall NLP error........ 2.5059035596800808e-09 2.5059035596800808e-09

EXIT: Optimal Solution Found.
Ipopt 3.11.1: Optimal Solution Found
*** s0ln

x1 =0.0
x2=1.0

K QY
+.CCR)~ PYOMO "R

Center for Computing Research

Pyomo Fundamentals 37

Exit Conditions: Infeasible rh) ot

Decreasing

2
S.T. —X2 = I 1 objective
— 1 S 1 S 1

é §

38

Pyomo Fundamentals

Exit Conditions: Infeasible) .

iter objective inf_pr inf_dulg(mu) ||d|| lg(rg) alpha_du alpha_pr Is

5 2.0000016e+00 1.00e+00 4.74e+03 -1.0 3.47e+01 - 2.79e-02 4.16e-04h 7
6r 2.0000016e+00 1.00e+00 1.00e+03 0.0 0.00e+00 - 0.00e+00 4.44e-07R 3
7r 2.0010000e+00 1.01e+00 1.74e+02 0.0 8.73e-02 - 1.00e+00 1.00e+00f 1
8r 2.0010010e+00 1.00e+00 1.32e-03 0.0 8.73e-02 - 1.00e+00 1.00e+00f 1
9r 2.0000080e+00 1.00e+00 5.18e-03 -2.1 6.12e-03 - 9.94e-01 9.99e-01h 1
iter objective inf_pr inf_dulg(mu) ||d|| Ig(rg) alpha_du alpha_pr Is

10r 2.0000000e+00 1.00e+00 3.73e-06 -4.7 7.99e-06 - 1.00e+00 1.00e+00f 1
11r 2.0000000e+00 1.00e+00 1.79e-07 -7.1 2.85e-08 - 1.00e+00 1.00e+00f 1

Number of Iterations....: 11

(scaled) (unscaled)
Objective................ 1.9999999800009090e+00 1.9999999800009090e+00
Dual infeasibility....... 1.0000000002321485e+00 1.0000000002321485e+00
Constraint violation....: 9.9999998000090895e-01 9.9999998000090895e-01
Complementarity.......... 9.0909091652062654e-10 9.0909091652062654e-10
Overall NLP error........ 9.9999998000090895e-01 1.0000000002321485e+00

EXIT: Converged to a point of local infeasibility. Problem may be infeasible.

Ipopt 3.11.1: Converged to a locally infeasible point. Problem may be infeasible.
WARNING - Loading a SolverResults object with a warning status into model=unknown; message from solver=Ipopt 3.11.1\x3a Converged
to a locally infeasible point. Problem may be infeasible.

*** g0ln
x1 =-6.353194883662875e-12
x2=2.0

K QY
+.CCR)~ PYOMO "R

Center for Computing Research

Pyomo Fundamentals 39

Exit Conditions: Unbounded) &=,

Decreasing

min —_ x 2 objective

S.t. —X9 = LE% — 1 /\ x1
R
Initialize at (x1=0.5, x2=0.5)

o?
'2"-
Center for Computing Research

Pyomo Fundamentals 40

Exit Conditions: Unbounded

Sandia
National
Laboratories

iter objective inf_pr inf_dulg(mu) ||d|| Ig(rg) alpha_du alpha_pr Is

45 -2.2420218e+11 1.00e+04 1.00e+00 -1.7 1.25e+19-19.1 3.55e-08 7.11e-15f 48
46 -2.2420225e+11 1.00e+04 1.00e+00 -1.7 3.75e+19-19.6 1.20e-08 1.78e-15f 50
47 -2.2420229e+11 1.00e+04 1.00e+00 -1.7 1.25e+19-19.1 1.00e+00 3.55e-15f 49
48 -3.7503956e+19 1.57e+27 8.36e+09 -1.7 3.75e+19-19.6 1.18e-08 1.00e+00w 1
49 -1.3750923e+20 3.92e+26 2.09e+09 -1.7 1.00e+20 -20.0 1.00e+00 1.00e+00w 1

Number of Iterations....: 49

(scaled) (unscaled)
Objective................ -1.3750923074037683e+20 -1.3750923074037683e+20
Dual infeasibility....... 2.0888873315629249e+09 2.0888873315629249e+09
Constraint violation....: 3.9209747283936173e+26 3.9209747283936173e+26
Complementarity.......... 3.1115099971882619e+03 3.1115099971882619e+03
Overall NLP error.......: 3.9209747283936173e+26 3.9209747283936173e+26

EXIT: Iterates diverging; problem might be unbounded.

Ipopt 3.11.1: Iterates diverging; problem might be unbounded.

WARNING - Loading a SolverResults object with a warning status into model=unknown; message from solver=Ipopt

3.11.1\x3a Iterates diverging; problem might be unbounded.

*** g0ln
x1 =05
x2=05

FCCR

Center for Computing Research

Pyomo Fundamentals

)"PYomMo %

41

IPOPT Options) i
= Solver options can be set through scripts (and the pyomo command line)
= print_options_documentation yes
= Qutputs the complete set of IPOPT options (with documentation and their defaults)
" mu_init
= Sets the initial value of the barrier parameter
= Can be helpful to make this smaller when initial guesses are known to be good
= bounds_push
= By default, IPOPT pushes the bounds a little further out.
= This can be set to remove this behavior
= E.g.,sgrt(x), x>=0
= linear_solver
= Set the linear solver that will be used for the KKT system
= Significantly better performance with HSL (MA27) over default MUMPS
= print_user_options
= Print options set and whether or not they were used
= Helpful to detect mismatched options

Pyomo Fundamentals

Sandia

42

IPOPT Options).

rosenbrock_options.py: A Pyomo model for the Rosenbrock problem
from pyomo.environ import *

model = ConcreteModel()
model.x = Var()
model.y = Var()

def rosenbrock(m):
return (1.0-m.x)**2 + 100.0*(m.y - m.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

solver = SolverFactory('ipopt')
solver.options['mu_init'] = 1e-4
solver.options['print_user_options'] ='yes'
solver.options['ma27_pivtol'] = 1le-4
solver.solve(model, tee=True)

print()

print("*** Solution *** :")
print('x:", value(model.x))
print('y:', value(model.y))

u . a
+CCR)”pyomo 8

Center for Computing Research

Pyomo Fundamentals 43

IPOPT Options) 5,

ma27_pivtol=0.0001
print_user_options=yes
mu_init=0.0001
ma27_pivtol=0.0001
print_user_options=yes
mu_init=0.0001

List of user-set options:

Name Value used
ma27_pivtol = 0.0001 no

mu_init = 0.0001 yes
print_user_options = yes yes

kkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkkkkk

This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt

kkhkkkkkkkkkkkkkkkkkkkk

NOTE: You are using Ipopt by default with the MUMPS linear solver.
Other linear solvers might be more efficient (see Ipopt documentation).

This is Ipopt version 3.11.1, running with linear solver mumps. X
Ceé-r:;ﬁfmCon:purr‘ngﬂesearrh i pYGW
e
Pyomo Fundamentals 44

Modeling Tips) e,

= Variable Initialization

= Proper initialization of nonlinear problems can be critical for effective
solution.

= Strategies include:
= Using understood physics or past successful solutions
= Solving simpler problem(s) first, progressing to more difficult
= Undefined Evaluations

= Many mathematical functions have a valid domain, and evaluation outside
that domain causes errors

= Add appropriate bounds to variables to keep them inside valid domain
= Note that solvers use first and second derivatives. While sqrt(x) is valid at x=0,
1/sqrt(x) is not
= Problem Scaling
= Scale model to avoid variables, constraints, derivatives with different scales.

= Formulation Matters!

K QY
CCR)~ PYOMO "R

for Computing Research

Pyomo Fundamentals 45

6. Structured Modeling &
Transformations

Sandia ‘ /‘
abortoes ‘ | pYO IVI D

Exceptional

service

in the

national : EﬁFETﬁEFY ﬁﬁi&t’%’% f;s; .ng,mcmRm

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
if‘l terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

s this an optimization model?) .,

min c¢'Xx
st. Ax<bh
XeR"

#CCR Y7pyomo &

Structured Modeling & Transformations P

Models are for Modelers rh) o

min c¢'Xx
st. Ax<bh
XeR"

= | would argue this is an optimization problem!
= So, what’s a model?

= A general representation of a class of problems
= Data (instance) independent

= Represents the modeler’s understanding of the class of problems
= Explicitly annotates and conveys the class structure

= |ncorporates assumptions and simplifications

= |s both tractable and valid
= (although these are often contradictory goals)

: } ‘ ‘./,.'-'—'—a. \
+CCR)"PYOMO %

Structured Modeling & Transformations

Models are for Modelers

min c¢'Xx
st. Ax<bh
XeR"

= | would argue this is an optimization problem!
= So, what’s a model?

=l A general representation of a class of problems
= Data (instance) independent

= Represents the modeler’s understanding of the class of problems
= Explicitly annotates and conveys the class structure

= |ncorporates assumptions and simplifications
= |s both tractable and valid
= (although these are often contradictory goals)

Sandia
National
Laboratories

+.CCR)"PYomMo %

Structured Modeling & Transformations 4

. . . . Sandia
Optimization problems: Model instances) .,

o o

= We seldom have a single problem to solve
= Rather we would like to write a single model for a class of problems

= Key design feature of many AMLs (e.g. strongly encouraged by AMPL)
= Why?

= Test small, deploy big

= Tomorrow’s problem is different from today’s

= Data may be
— Huge
— Machine-generated
— Stored externally (loaded from external tools, e.g. databases)

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Structured Modeling & Transformations

Models are for Modelers

min c¢'Xx
st. Ax<bh
XeR"

= | would argue this is an optimization problem!
= So, what’s a model?

= A general representation of a class of problems
= Data (instance) independent

Sandia

=| Represents the modeler’s understanding of the class of problems
= Explicitly annotates and conveys the class structure

= |ncorporates assumptions and simplifications
= |s both tractable and valid

= (although these are often contradictory goals)

0:’-?
&4
®é
Center for Computing Research

National
Laboratories

)"PYomMo %

Structured Modeling & Transformations 6

What is model structure? rh) i

min c'X
st. Ax<b
XeR"

= Unlike a solver, modelers don’t think in terms of “A”
= Rather, | think in terms of repeated (indexed) units
= Sets (1-, 2-, n- dimensional)
= Vectors or matrices of variables
= Groups of related constraints (blocks)
= The model may not be “flat”
= Block diagonal (e.g., scenarios in stochastic programming)
= Graph-based (e.g., network flow)
= Hierarchically defined (e.g., a model composed of sub-models)

#CCR > &
0%, |)
Ce:r; for Computing Research ‘ pYD M 0 - _,_f‘ .

Structured Modeling & Transformations

Models are for Modelers

min c¢'Xx
st. Ax<bh
XeR"

= | would argue this is an optimization problem!

= So, what’s a model?
= A general representation of a class of problems
= Data (instance) independent

= Represents the modeler’s understanding of the class of problems
= Explicitly annotates and conveys the class structure

Sandia

=| |[ncorporates assumptions and simplifications
= |s both tractable and valid

= (although these are often contradictory goals)

l:’-?
o
®é
Center for Computing Research

Structured Modeling & Transformations

National
Laboratories

)"PYOmMO 0

Sandia
II'] National
Laboratories

Tractability / validity: The optimization tug-of-war

= The “highest fidelity” model of a system is rarely tractable

= Delicate balance between the model we want to solve and the solver
we want to use

= \What can we do?

= Simplify (reduce the model scope)
= Approximate (relax or recast constraints)
" |terate (solve a series of related problems to develop the

solution to the original problem)

= Optimization 101 ingrains this tension into us; consider:

max abs(x —3)

s.t. [...]

#CCR P
)"PYOMO %

Structured Modeling & Transformations

Sandia

“Modeling” absolute value)

= This probably makes you cringe: max abs(x—3)
= “Experienced modelers would never write abs ()!” < -]
" |nstead, we write:
max absX
st. absX =negX + posX
negX < My

posX <M(1-vy)
X —3 = posX —negX
posX >0,negX >0
y €{0.1}
[...]

0:’-?
4
®é
Center for Computing Research

‘ - '=/:7.\‘=.‘
)“PYOMO &0

Structured Modeling & Transformations

Sandia

“Modeling” absolute value L

= This probably makes you cringe: max abs(x —3)
= “Experienced modelers would never write abs () !” S ...
= |nstead, we write:
max absX
= Butwhat if “[...]" is a st. absX =negX + posX
nonlinear model? Then negx < My
orinEd mogerr e posX <M (1-y)
absX =vx*+¢ X —3= posX —negX
2X posX >0,negX >0
absX = Lo y {01}
[...]

= Does any of this really encode our
understanding of the class of problems?
= _.oris this a reflection of our understanding of the solver?

4] q =
CCR) PYOMO @

Structured Modeling & Transformations 11

National

Transformations: Projecting problems to problems @ o

= Model Transformations
= Project from one problem space to another
= Standardize common reformulations or approximations
= Convert “unoptimizable” modeling constructs into equivalent

optimizable forms
l_[Transform J

Model |+ | Data {Compile > Problem

{ Solve J

#CCR 3
o, 1 N
Ce:r; for Computing Research ‘/ pYDMO \:_7_ (’t !

Structured Modeling & Transformations

Transformations are not entirely new Wz,

= LINGOQO’s automatic linearization:

MODEL :
MAX = @ABS(X-3);
X <= 2;

END

IH

= Generates the “usual” Big-M integer linear model:

MAX C3
SUBJECT TO
X <= 2
- Cl- C2+ C3=290
_C1 - 100000 C4 <= ©
_C2 + 100000 C4 <= 100000
X - Cl+ C2=3
END
INTE _C4

Cunningham and Schrage, “The LINGO Algebraic Modeling Language.” In Modeling Languages in -
ZCCR Mathematical Optimization, Josef Kallrath ed. Springer, 2004.)" PYOMO | ol

Structured Modeling & Transformations

. . . Sandia
Why are we interested in transformations? @&,

= Separate model expression from how we intend to solve it
= Defer decisions that improve tractability until solution time
= Explore alternative reformulations or representations
= Support solver-specific model customizations (e.g., abs())
= Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)
= Support “higher level” or non-algebraic modeling constructs

= Express models that are closer to reality, e.g.:
= Piecewise expressions
= Disjunctive models (switching decisions & logic models)
= Differential-algebraic models (dynamic models)
= Bilevel models (game theory models)

= Reduce “mechanical” errors due to manual transformation

2 ‘ —— N
+.CCR »’pyomo

Structured Modeling & Transformations

Sandia
Structural transformations: Disjunctive programs (@) =,

= Disjunctions: selectively enforce sets of constraints

= Sequencing decisions: x ends before y or y ends before x
= Switching decisions: a process unit is built or not
= Alternative selection: selecting from a set of pricing policies

= |mplementation: leverage Pyomo “blocks”

= Disjunct: Y,
= Block of Pyomo components V h, (X) <0
— (Var, Param, Constraint, etc.) D | ¢ —
" Boolean (binary) indicator variable determines | YT ik
if block is enforced Q(Y) =1{rue

» Disjunction:
= Enforces logical XOR across a set of Disjunct indicator variables

= (Logic constraints on indicator variables)
o2 A N _
+CCR }"PYOMO %

Structured Modeling & Transformations

Example: Task sequencing

= Prevent tasks colliding on a single piece of equipment
= Derived from Raman & Grossmann (1994)

= Gjven:

= Tasks | processed on a sequence of machines (with no waiting)

= Task i starts processing at time t; with duration 7, on machine m

= J(i) is the set of machines used by task i

= C,;, is the set of machines used by both tasks i and |

Yik Yki
t. + Zrimﬁtk+ kam t, + ZrkmﬁtiJr Zrim
med (i) meJd (k) meJd (k) med (i)
m<j m< j 1 L m<j m<j

Sandia
National
Laboratories

VjeC,,Vikel, i<k

0:’-?
&4
®é
Center for Computing Research

‘ “ _ \
)"PYOMO %

Structured Modeling & Transformations

Example: Task sequencing in Pyomo [

from pyomo.dae import *
def NoCollision(disjunct, i, k, j, ik):
model = disjunct.model()
lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

if ik:
disjunct.c

Constraint(expr= lhs + odels€auli;j] <= rhs)
Constraint(expr= [rhs| + MOdeIS€au[k;F] <= lhs)

model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)

else:

disjunct.c

def setSequence(model, i, k, j):
return [model.NoCollision[i,k,j,ik] for ik in [0,1]]
model.setSequence = Disjunction(model.L, rule=_setSequence)

Y&i

vV l <t + Zrim
meJ (i)
m<j

VjeC, Vikel,i<k Vevomo @

Structured Modeling & Transformations

Solving disjunctive models) .,

= Few solvers “understand” disjunctive models
= Transform model into standard math program

= Big-M relaxation:
= Convert logic variables to binary
= Split equality constraints in disjuncts into pairs of inequality constraints
= Relax all constraints in the disjuncts with “appropriate” M values

—

[pyomo solve --solver cbc --transform=gdp.bigm jobshop.py jobshop.dat]

#CCR I
'S, | |
;:r; for Computing Research ‘ pYDMO __7_(11.

Structured Modeling & Transformations

Why is the transformation interesting? [@&:.

= Model preserves explicit disjunctive structure
= Automated transformation reduces errors
= Automatically identifies appropriate M values (for bounded linear)

2 CCR D 3 YOMO "
s, | |
:e:r;fmCon:put{ngﬂesearm ‘/ p - .

Structured Modeling & Transformations

Why is the transformation interesting? [@&:.

= Model preserves explicit disjunctive structure
= Automated transformation reduces errors
= Automatically identifies appropriate M values (for bounded linear)

= Big-M is not the only way to relax a disjunction!
= Convex hull transformation (Balas, 1985; Lee and Grossmann, 2000)

—)

[pyomo solve --solver cbc --transform=gdp.chull jobshop.py jobshop.dat]

= Algorithmic approaches
= e.g., Trespalacios and Grossmann (submitted 2013)

" Prematurely choosing one relaxation makes trying others difficult <
f‘::,ggR V‘pYDMO li,u/m

Structured Modeling & Transformations

Expression transformations: MPEC) S,

= Mathematical Programming with Equilibrium Constraints
(MPEC)
= Engineering design, economic equilibrium, multilevel games
= Feasible region may be nonconvex and disconnected

= Equilibrium Constraints
= Variational inequalities
= Complementarity conditions
= Optimality conditions (for bilevel problems)

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Structured Modeling & Transformations 21

MPEC formulations

= General MPEC models can be expressed as

minyegn f(x)
S.t. h(x) =0
a; < WL(X) < bi 1 Ui(x) i=1..m

= The last set of constraints are generalized mixed

complementarity conditions (Ferris, Fourer, and Gay, ‘06),

which have the form

eitherw;(x) = a; and v;(x) =0
or w;(x) = b; and v;(x) <0
or a; <w;(x) <b; and v;(x) =0

Sandia
National
Laboratories

. CCR Y pvomo 6
Ce:r; for Computing Research N\, :_7_(" .

Structured Modeling & Transformations

Py

Modeling languages support MPECs ([

AMPL

= The complements keyword is used to denote complementarity between two
constraints, expressions or variables

GAMS
= The complements keyword is used to denote complementarity between two
constraints, expressions or variables
AIMMS
= Express mixed complementarity conditions by declaring complementarity
variables along with associated constraints
YALMIP

= The complements function declares a constraint that reflects a mixed
complementarity condition.

» Common challenge: lack of control over how the complementarity
constraints are exposed to the solver

Y R P
+CCR)"pyomo (8

Structured Modeling & Transformations

Complementarity conditions in Pyomo [@JE=.

from pyomo.environ import *
from pyomo.mpec import Complementarity

M = ConcreteModel()
M.x = Var(bounds=(-1,2))
M.y = Var()

M.c3 = Complementarity(expr=(M.y - M.x**2 + 1 >= 0, M.y >= 0))

/'

e The Complementarity component declares a
complementarity condition

 The tuple argument specifies the two constraints,
expressions, or variables in the complementarity condition.

This model definition is solver agnostic!
o ‘ - r-‘/.:r_ri\‘-‘.‘
CCR)’PYOMO %
24

Structured Modeling & Transformations

A simple nonlinear reformulation) iz

min f(x)

s.t. h(x) =0
a;, < w; < b; i=1..m
w; = w;(x) i=1..m

(w; —a)v;(x) <0 i=1..m
((l)i — bi)vi(X) <0 i=1..m

= NOTE: There are serious difficulties with solving this
formulation as standard stability assumptions are not met.

= But other nonlinear transformations exist!

.
\

#CCR D
i, | |
Ce:r; for Computing Research ‘ pYDMO __7_(11.

Structured Modeling & Transformations

A simple disjunctive reformulation) .,

min f(x)
s.t. h(x) =0
Yi,i Y2, V3,
[Wi(x)=ailv Wi(x)=bi]V a<wx)<b| i=1..m
v;(x) =20 v;i(x) <0 v;(x) =0
yl,i ~+ yZ,i + y3,i =1 i=1..m
Vi Y2 Y3 €10,1} i=1..m
#CCR Ypyomo 8

Structured Modeling & Transformations 26

Back to our original example: ABS(x) @,

= Chaining transformations

f
f=x"+x X=X"—x" X=X —X"
f=abs(x) => x=x"-x =] Y y =Y | = X <My
x">01Lx >0 X~ X" =0

Notional transformation chain:

model = ConcreteModel()

[.]

TransformFactory(“abs.complements”).apply to(model)
TransformFactory(“mpec.simple_disjunction”).apply to(model)
TransformFactory(“gdp.bigm”).apply_to(model)

#CCR <
:eir:;im Computing Research “/ pYD M 0 ! I‘.\ : 7_(," /

Structured Modeling & Transformations

. . Sandia
(Pyomo) Transformations for other domains @k,

= Stochastic programming

N\
N\

Deterministic =N Stochastic
{ Model } + . > { Model }
Scenario Data

= Bilevel models

[Upper-level Model] N { Standard Math }
Lower-level Model] Programming Model
= DAE models
Discretized
{ DAE Mode| } 2> { Algebraic Model }

Structured Modeling & Transformations

Sandia
National
Laboratories

Exceptional
service

in the
national

interest

-

Dynamic Systems

ENERGY @INSS4 HCCR

National Wucioar Security Administration Center for Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Extending the Pyomo environment) i

= What about models that are not strictly math programs?
= Dynamic systems

= Optimization of dynamic systems is hard.
= |n OR, think “multi-stage” problems

" |n “engineered systems”, think differential equations
= High fidelity simulation is difficult and expensive (e.g., HPC)
= How to optimize?

2 CCR QYr -~
:efr:;fm(on:puringResearm ‘/ pYDMO \ l‘\\._i_u./.m’

Dynamic Systems P

Examples of Dynamic Optimization) .

= Parameter Estimation

= Nonlinear model predictive control
= Batch process operation

= Reactor design

e min W (x(t), y(t),ut)
x(t) = T(x(t), y(t),u(t).t, p)
DAE 0=g(x(t), y(t),u(t).t, p)
model x(t) e R"
y(t) e R"

_ u(t)eR" J

x: State (differential) variables
u: Control (input) variables

CCR y: Algebraic variables “ *PYOMO UR

Dynamic Systems 3

Solution Approaches) e,

[Figure from L.T. Biegler (2007)]

Pontryagin(1962)

DAE Optimization Problem Indirect/Variational

- Inefficient for large, constrained problems

Efficient for

constrained problems :
Discretize Sullivan (1977)

controls

Apply NLP Solver Sequential Approach

_) + Small NLPs - Cannot handle instabilities
Discretize all

variables

Bock, Plitt (1984)

Multiple Shooting

Simultaneous Approach

+ Handles instabilities] - Large NLPs

Full Discretization

o? | " ~
C CR)y pYoMo

Dynamic Systems 4

Sequential Approach) g,

[Figure from M. Diehl]

= Single Shooting Method 1

states x(t;

......

H
----1 ' R

qq L, qn—1 |
I . I Cost &
Gradients Constraints
V Sensitivity Variables OR Adjoint Variables State Variables
Xp(t At x(t
NLP Solver o(?) () ()
UV
v [——— t t
Control Variables ? Ii‘
U(t,w)

[Figure from B. Chachuat (2009)]
ntegration .

#CCR f Jpyomo O

ey)"PYOMO %

Computing Research

Dynamic Systems 5

National

Simultaneous Approach =

[Figure from L.T. Biegler (2007)]

u T N P
* g S G |
y E— \
o « + ¢
' = B M ; B !
a" S " -
o XX X X
tj-1 4
| | \ \ / \ \ /
Finite clement, i Collocation points Element Boundary
= Multiple Shooting = Full Discretization
= Discretize controls and initial = Discretize all variables
conditions for each finite element v" Can solve unstable systems
v" Embeds DAE Solvers/Sensitivity v Good for problems with many dynamic

states and degrees of freedom

v" Good for problems with long time v' Sparse NLP
horizons and few dynamic state X Large-scale NLP

X Dense sensitivity blocks

X Difficult to enforce path constraints

Dynamic Systems 6

v Can solve unstable systems

Full Discretization rh) ot

= Finite Difference Methods
Forward Difference df ft+h)—f(t)

df o fE+h) = F(O) > wWT T h

—(t) = lim

dt h—0 h Backward Differe)n’ce df ft)—f(t—h
77O = N

= Collocation over finite elements

Polynomials
- v o~
& = "9~ - - & - '-..-'
‘\ - R - -..

~_ 7)
to ti Collocation points f
|) | h, -

) - . M h . t
Finite element, i esh points

[] _g {
+.CCR $7pyomo 9

7

Dynamic Systems

Simple Example h) i,

dz
E=Z2—2Z+1, z(0) = -3

= Exercise: Solve the differential equation using a backward
finite difference scheme over the time interval t € [0,1]

Backward Difference ﬂ(t) — fO-—ft—h
dt h

= Exercise: Plot the solution against the analytic solution

Analytic solution z(t) = (4t —3)/(4t + 1)

.9 ; :ﬁ._‘
#CCR $”pyomo D

Dynamic Systems 8

Simple Example — Exercise Solution) .

= Solve the differential equation using a backward finite
difference scheme

from pyomo.environ import *

numpoints = 10

model = m = ConcreteModel()

m.points = RangeSet(@,numpoints)

m.h = Param(initialize=1.0/numpoints)
m.z = Var(m.points)

m.dzdt = Var(m.points)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, i):
return m.dzdt[i] == m.z[i]**2 - 2*m.z[i] + 1
m.zdot = Constraint(m.points, rule=_zdot)

def _back diff(m,i):
if i == 0:
return Constraint.Skip
return m.dzdt[i] == (m.z[i]-m.z[i-1])/m.h
m.back_diff = Constraint(m.points, rule=_back_diff)

def _init_con(m):
return m.z[@] == -3
m.init_con = Constraint(rule=_init_con) N

o3 . 7 N
+CCR)"PYOMO %

Center for Computing Research

Dynamic Systems 9

Collocation over finite elements) fom,

Polynomials
& - T~ / ‘—'\ © .--.-.'-—
‘.“.. L —o ."--.-.
- ~ ’_._—
'\.__.__
—————%—x x &
t

to Collocatlon poly N €
|

Mesh points
Finite element 1 P

nu)X 0°°° %o,
element n K . ---x--""x")F.,..x n.*

t""w"x' BT TO - \\ \\
\ N V()= A L, (s 0=t

0 k=1
Z(t)zagik(l‘)zik k=1

k=0

Algebraic and
Differential variables Control variables

Continuous Discontinuous R PN

Collocation over finite elements) Eon,

Given: dz

- = 1.0, 2(0) =z,

Approximate z by Lagrange interpolation polynomials (order K+1)
with interpolation points, t,

t:ti—1+hita K
K (T — %)
K ot e[tiog,ti], tel0,1], ¢i(r)= —
z (z):Z;:Ej(r)zij, 1 / k:lo_,Lj (tj — ™)
]:

—— Collocation Coefficients to be solved for

K / Evaluated att not t
Collocation J
—> 1 = Nn; - =1,...
2ij s M(zm k=1...K.
J=0 Known Collocation Points
K Evaluated at the element boundary
Continuity : _ ¢ @ . =1 N —1
— — E , | — . o
Equations +1.0 e ’ ’
ot :0 . P
CCR / 1/ PYOMO C Em

Dynamic Systems 11

Collocation points

Degree K | Legendre Roots | Radau Roots
1 0.500000 1.000000
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051
0.500000 0.644949
0.887298 1.000000
4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000
5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000

Sandia
National
Laboratories

Table 10.1. Shifted Gauss-Legendre and Radaw roots as collocation points.

0:’-?
'
®é
Center for Computing Research

Dynamic Systems

QY. 7 N
)~ PYOMO '-'__7"_/_“‘-‘

N

12

Simple Example - Collocation L

Example 10.2 (Demonstration of Orthogonal Collocation)

Consider a single differential equation:

dz

=222 +1, 2(0) = —3. (10.16)
dt
with ¢ € [0, 1]. This equation has an analytic solution given by z(t) = (4t — 3)/(4t +
1). Using Lagrange interpolation and applying the collocation and continuity equa-
tions (10.7) and (10.14), respectively, with K = 3 collocation points, N elements
and h = 1/N leads to:

= h(z3 — 2z +1), k=1,....3,i=1,...,N

o?
'2"-
Center for Computing Research

Sandia
National
Laboratories

Dynamic Systems

13

Simple Example - Collocation) .

3
zHl’D:ZEj(l)zﬁ-j} E:]_:,:,N—]_
j=0
K
2f = ij(l)Eij 21,0 = —3.
j=0

Using Radau collocation, we have 79 = 0, 71 = 0.155051, 79 = 0.644949 and 74 = 1.

T—1)(T—-1)(r—1
£o(1) = (1)(2)() _ ast3 + a,t + a 7T + ag

(To — T1)(To — 72)(To — T3) B

£o(t) = —107t3 + 18712 - 97+ 1
2o(1) = =302 +367—9

Other Lagrange polynomials found similarly
CCR J7pyomo

Dynamic Systems 14

Simple Example - Collocation

For N = 1, and zy = —3 the collocation equations are given by:
3
dl; (T
ZZJ -:i(’a")—(ZE—QZk—i—l),k:l,...}?)}

which can be written out as:

20(=3077 + 367, — 9) + 21 (46.742377 — 51.25927;, + 10.0488)
2 5 16 1
+ 22(—26.74237; + 20.59257, — 1.38214) + 23(107 — =7 + 5)

= (2 =22, +1), k=1,....,3.

Solving these three equations gives z; = —1.65701, 2o = 0.032053, 23 = 0.207272

o?
..:"-
Center for Computing Research

Sandia
National
Laboratories

$7pyomo @

Dynamic Systems

15

Collocation Matrix rh) i

= (2} =22+ 1), k=1,...,3.

f.o (.To) f.o (.Tk)

= adot(k, k) = o T
Cr(To) - Tr(Tk)

ot ‘ - / o \
+CCR »“pyomo (0
Dynamic Systems 16

National

Sandia
Python code for generating collocation matrix)t

import numpy
Specify collocation points
cp = [0, ©.155051, 0.644949, 1]

a =[]
for i in range(len(cp)):
ptmp = []
tmp = O
for j in range(len(cp)):
if j 1= 1i:
row = []
row.insert(0,1/(cp[i]-cp[j]))
row.insert(1,-cp[j]/(cp[i]-cp[i]))
ptmp.insert(tmp,row)
tmp += 1
p=[1]

for j in range(len(cp)-1):
p = numpy.convolve(p,ptmp[j])

pder = numpy.polyder(p,1)

arow = []

for j in range(len(cp)):
arow.append(numpy.polyval(pder,cp[j]))

a.append(arow)
print(arow) -
KL QYo 7 N
+.CCR)"PYOMO %
Dynamic Systems 17

Simple Example - Collocation) g,

dz
E=ZZ—ZZ+1, z(0) = =3

= Exercise: Solve the differential equation using collocation over
a single finite element with t € [0,1]

t=ti_1+h, ©
K (T — 1)
Ko\ _ . gtelti—ngl, Ttel0,1], fi(n)= :
Z (r)—ZEJ(r)ZU, k:lo_,L‘(rf_Tk)
J=0
K
| dt;(tx)
Collocation) 1. o .
Equations - ZZU d‘[- h! f(Z!kerk)s k — 19“ °9K9
J=0

= Exercise: Plot the solution against the analytic solution

Analytic solution z(t) = (4t —3)/(4t+ 1)

Dynamic Systems 18

Implementation is challenging!) i,

= Common theme: significant effort to rework formulation
= Time: first ¥6 months of a grad student’s research
= Error prone: many ways to make subtle mistakes
= |nflexible: formulation specific to selected solution approach

= Difficult to know apriori the best solution approach for a
particular model

#CCR 7pvomo (D
Center for Computing Research -

Dynamic Systems 19

Expressing dynamical systems i
[with J. Siirola, V. Zavala]

= Model dynamical systems in a natural form
= Systems of Differential Algebraic Equations (DAE)

= Extend the Pyomo component model
= ContinuousSet: A virtual set over which you can take a derivative
= DerivativeVar: The derivative of a Var with respect to a ContinuousSet

a min W(x(t), y(t),u(t)) "\
x(t) = T(x(t), y(t),u(t).t, p)
DAE 0=g(x(t), y(t),u(t).t, p)
model x(t) e R"
y(t) e R"

L u(t) e R™ -

+CCR)"PYOmMO 0

Dynamic Systems 20

Simple Example — pyomo.dae) i

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()

m.t = ContinuousSet(bounds=(0, 1))
m.z = Var(m.t)

m.dzdt = DerivativeVar(m.z, wrt=m.t)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1
m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):

return m.z[@] == -3
m.init_con = Constraint(rule=_init con)

+.CCR $”pyomo ﬁ)
21

Dynamic Systems

Sandia

Solving dynamical systems)

= Given that we have a DAE model in Pyomo... now what?
= How to optimize?

= Simulation-based / Multiple shooting methods / Simultaneous

= Common theme: significant effort to rework formulation

= Time / Error prone / Inflexible

= Qur approach: separate the declaration of dynamical models from the
solution approach using (nearly) automatic transformations

/

DAE
model

min®(x@®), y),u®)))
X(t) = f(x(), y(®),u(t),t, p)

0=g(x(t), y(t),u(t),t, p)
X(t) e R"

Single
Shooting

y(t) e R"

u(t) e R" -

l:’-?
o
*ee
Center for Computing Research

Discretization

Domain Multiple
splitting Shooting
]—>[NLP I

Dynamic Systems

Py

Simple Example — pyomo.dae) i

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()

m.t = ContinuousSet(bounds=(0, 1))
m.z = Var(m.t)
m.dzdt = Derivativevar(m.z, wrt=m.t)

m.obj = Objective(expr=1) # Dummy Objective

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1
m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):
return m.z[@] == -3
m.init_con = Constraint(rule=_init_con)

Discretize model using backward finite difference
discretizer = TransformationFactory('dae.finite_difference"')
discretizer.apply_to(m,nfe=10,scheme= BACKWARD")

Discretize model using radau collocation
discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(m,nfe=1,ncp=3,scheme="LAGRANGE-RADAU")

#CCR Ypvomo &

Center for Computing Research

Dynamic Systems 23

Small example: optimal control

min x3 (tf)
s.t. X1 = X
:fz = —X +u

X3 = x2 + x5 + 0.005 * u?
x,— 8% (t—0.5)>4+05<0
x1(0)=0
x5(0) = -1

(1/8) ()&,

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()

m.tf = Param(initialize = 1)

m.t = ContinuousSet(bounds=(0, m.tf))
m.u = Var(m.t, initialize=0)

m.x1 = Var(m.t)

m.x2 = Var(m.t)

m.x3 = Var(m.t)

m.dx1dt = Derivativevar(m.x1, wrt=m.t)
m.dx2dt = Derivativevar(m.x2, wrt=m.t)
m.dx3dt = Derivativevar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])

def _xidot(m, t):
return m.dxddt[t] == m.x2[t]
m.x1ldot = Constraint(m.t, rule=_xldot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]
m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \
m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init(m):

yield m.x1[0] == ©
yield m.x2[0] == -1
. yield m.x3[0] == © Y
ZCCR m.init_conditions = ConstraintList(ru g:F}?ijhncJ {/29
c.r.f Computing Research _-7 v
Dynamic Systems 24

Small example: optimal control ~ (2/8) @JE.

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))

= Var(m. t, initialize=0)
m.._xl— Var(m.t)

min x;(¢f) from pyomo.environ import *
from pyomo.dae import *

s.t. X1 = X

9(,:2 = —X3 +u m.obj = Objective(expr=m.x3[m.tf])
P A2 2 2
= * def ldot(m, t):
X3 =X{ X3+ 0.005 *u © F:tugn(m.dx%d'g[t] == m.x2lt]
_ 8 * (t _ 05)2 + 05 S 0 m.x1ldot = Constraint(m.t, rule=_xldot)
def _x2dot(m, t):
= t Jdx2dt[t] == -m.x2[t Ju[t
xl (0) 0 m.nggtu:ncgns)t(raigt%m.t, ?u){e£_;|(2;o$)U[]
X2 (0) = -1 def _XBdOt(det:-)h:jt . 102 5\
t . == m.x1 *k
X3 (0) =0 "~ ulrr‘l?xg[ta(**z[+]6.00';*:n(.ll.:l[%]**2+
_]- m.x3dot = Constraint(m.t, rule=_x3dot)
tf _ def _con(m, t

return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)
[Jacobson and Lele (1969)]
def _init(m):

yield m.x1[0]

yield m.x2[0] == -1
ve yield m.x3[0] == © -
ET(:(:’? m.init_conditions = ConstraintList(ru g:F}?ijhncJ {com| |
Ce:r; for Computing Research \:_7_ (’t !

Dynamic Systems 25

Small example: optimal control ~ (3/8) @&

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf Param(initialize = 1)
m.t ContinuousSet(bounds=(0, m.tf))

Var(m.t, initialize=0)
Var(m.t)

m.x1

a

' model = m = ConcreteModel()
s.tl m.tf = Param(initialize = 1)
X, m.t ContinuousSet(bounds=(0, m.tf))

s 2 Z Z
= def d R :
X3 = x7 + x5 + 0.005 x u of Jxddot(m, t)iiit] oo moxa[t]

Xy — 8 * (t —_ 05)2 + 0.5 < 0 m.xldot = Constraint(m.t, rule= xldot)
def _x2dot(m, t):

xl (0) = 0 return m.dx2dt[t] == -m.x2[t] + m.u[t]

m.x2dot = Constraint(m.t, rule=_x2dot)

x2 (0) - 1 def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \
X3 (0) = m.x2[t]**2 + ©.005%m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init(m):

yield m.x1[@] == @

yield m.x2[0] == -1
(X) yield m.x3[@0] == 0 —
%. m.init_conditions = ConstraintList(rd!F‘ i) (R
SCCR =g D

Dynamic Systems 26

Small example: optimal control (4/8)

from pyomo.environ import *
from pyomo.dae import *

Sandia
National
Laboratories

model = m = ConcreteModel()

m.tf = Param(initialize = 1)

m.t = ContinuousSet(bounds=(0, m.tf))
m.u = Var(m.t, initialize=0)

m.x1 = Var(m.t

m.x2 = Var(m.t

m.x3 = Var(m.t)

m.dx1dt = DerivativeVar(m.x1, wrt=m.t)
m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
m.dx3dt = DerivativeVar(m.x3, wrt=m.t)

m.obj = Objective(expr=m.x3[m.tf])
def _xidot(m, t):

roturnn m dvid+l+1 —— m vIl+1

min x3(qJ
S.t. Jfl = X7
sz = —X,t+Uu
X3|= xf 4+ x% 4+ 0.005 * u?
X =8*(t—| oy
x1(| m.x1 =
x,(0 mM.x2 =
m.x3
3&3(
tf m.dxidt
m.dx2dt =
[Jacobsonal m.dx3dt

= DerivativeVar(m.x1,

= DerivativeVar(m.x3,

= Var(m.t, initialize=0)

Var(m.t)
Var(m.t)

= Var(m.t)

DerivativeVar(m.x2,

= =
-

~+ Tr ~+

=

~+ + ~+

NN

l:’-?
&4
®é
Center for Com Research

yield m.x2[0] -1

yield m.x3[0]

0 p—
m.init_conditions = ConstraintList(rd!g:;}?ishnc) {com }

Dynamic Systems

27

Small example: optimal control ~ (5/8) @JE.

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.tf = Param(initialize = 1)
m.t = ContinuousSet(bounds=(0, m.tf))
m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
min x (t) m.x3 = Var(m.t)
? f’ m.dxldt = DerivativeVar(m.x1, wrt=m.t)
- m.dx2dt = Derivativevar(m.x2, wrt=m.t)
s. L. X1 X2 m.dx3dt = Der‘ivativeVar'(m.x3: wrt=m.t)
Xy = —X3 +u m.obj = Objective(expr=m.x3[m.tf])
X3 = x2 + x2 + 0.005 * u? def xidot(m, t):

return m.dx1dt[t] == m.x2[t]

x, — 8% (t —0.5)?

MORX: (oCl) B ELEEERTE(G T (ot)

X2 (0) = -1 def _XBdOt(det:-)h:jt) TN
t . == m.x1 *k
x3(0) = 0 et BOGH1] = L)z

]_ m.x3dot = Constraint(m.t, rule=_x3dot)
cf def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)
[Jacobson and Lele (1969)]
def _init(m):
yield m.x1[0]

yield m.x2[0] == -1
ve yield m.x3[0] == © -
ET(:(:’? m.init_conditions = ConstraintList(ru g:F}?ijhncJ {com| |
Ce:r; for Computing Research \:_7_ (’t !

Dynamic Systems 28

Small example: optimal control (6/8) @&

from pyomo.environ import *

def x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \
m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule= x3dot)

ITIIIII A [&
3_\ 17 m.dx1dt

st %=1 s

DerivativeVar(m.x1, wrt=m.t)
DerivativeVar(m.x2, wrt=m.t)
DerivativeVar(m.x3, wrt=m.t)

952 = —x2 +Uu m.obj = Objective(expr=m.x3[m.tf])

SRy 2 2 def _xid :
X3 =x7 +x3 +0.005*u o XLdotm,) 1] e moxalt]

Xy — 8 (t — 05)2 +05<0 m.x1ldot = Constraint(m.t, rule=_xldot)
def _x2dot(m, t):

= t Jdx2dt[t] == -m.x2[t Ju[t
:xl-(()) () m.nggtu:ncgnsiraigt(m.t, ?u§e£_i2;o$)U[]
X2 (0) = -1 def _x3dot(m, t):

t .dx3dt[t] == m.x1[t]**2
X3 0)=0 - ur:?xg[ta(**z[ﬂe.eeg*ﬁ.l[;[']c]**2+ \
tf =1

m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):

return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)
[Jacobson and Lele (1969)]
def _init(m):

yield m.x1[0] == ©

yield m.x2[0] == -1
. yield m.x3[@0] == 0 e
%:(:(:’? m.init_conditions = ConstraintList(rd19=¥}?ijhnc3 {con|)

Dynamic Systems 29

Small example: optimal control

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteMadel ()

def con(m,t):

(7/8) @

Sandia
National
Laboratories

return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)

N m.dxldt = DerivativeVar(m.x1, wrt=m.t)
= m.dx2dt = DerivativeVar(m.x2, wrt=m.t)
s. L. X1 X2 m.dx3dt = Der‘ivativeVar'(m.x3: wrt=m.t)

:fz = —X +u
X3 = x2 + x5 + 0.005 * u?

x,— 8% (t—0.5)2+05<0

x1(0)=0

x5(0) = -1

x3(0) =0
tf —]_

[Jacobson and Lele (1969)]

m.obj = Objective(expr=m.x3[m.tf])

def _xidot(m, t):
return m.dxddt[t] == m.x2[t]
m.x1ldot = Constraint(m.t, rule=_xldot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]
m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \
m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <=0
m.con = Constraint(m.t, rule=_con)

Dynamic Systems

def _init(m):
yield m.x1[0]
yield m.x2[0]
yield m.x3[0]

-1
0

m.init_conditions = ConstraintList(rd!@#i}?ishn(J J/(;@

30

Small example: optimal control (8/8) &

from pyomo.environ import *
from pyomo.dae import *

madal m CoancnntaMadanll\

def _init(m):

yield m.x1[0] == ©
yield m.x2[0] == -1
yield m.x3[0] == ©

m.init_conditions = ConstraintlList(rule=_init)

X, = =X, T U
X3 = x2 + x5 + 0.005 * u?
x,— 8% (t—0.5)>4+05<0
x1(0)=0
x,(0) = -1
x3(0) =0
(=1

[Jacobson and Lele (1969)]

m.obj = Objective(expr=m.x3[m.tf])

def _xidot(m, t):
return m.dxddt[t] == m.x2[t]
m.x1ldot = Constraint(m.t, rule=_xldot)

def _x2dot(m, t):
return m.dx2dt[t] == -m.x2[t] + m.u[t]
m.x2dot = Constraint(m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3dt[t] == m.x1[t]**2 + \
m.x2[t]**2 + 0.005*m.u[t]**2
m.x3dot = Constraint(m.t, rule=_x3dot)

def _con(m, t):
return m.x2[t] - 8*(t-0.5)**2 + 0.5 <= 0
m.con = Constraint(m.t, rule=_con)

Sandia
National
Laboratories

def _init(m):
yield m.x1[0]
yield m.x2[0] -1
yield m.x3[0] ()

m.init_conditions = ConstraintList(rule=_init)

()

Dynamic Systems

31

Optimal Control Example - Script

from pyomo.environ import *
Import dynamic model
from optimalControl import m

Discretize model using radau collocation
TransformationFactory('dae.collocation').apply_to(
m, nfe=7, ncp=6, scheme='LAGRANGE-RADAU')

Solve algebraic model
results = SolverFactory('ipopt').solve(m)

def plotter(subplot, x, *series, **kwds):
plt.subplot(subplot)
for i,y in enumerate(series):

Sandia
II'] National

Laboratories

plt.plot(x, [value(y[t]) for t in x], 'brgcmk'[i%6]+kwds.get('points','")

plt.title(kwds.get('title’,""))
plt.legend(tuple(y.cname() for y in series))
plt.xlabel(x.cname())

import matplotlib.pyplot as plt

plotter(121, m.t, m.x1, m.x2, title='Differential Variables')
plotter(122, m.t, m.u, title='Control Variable', points='o')
plt.show()

Dynamic Systems

‘ “ _ \
)"PYOMO %
32

Optimal Control Example - Results i

Differential VVariables Control Variables

C'. 2 T T 14 T
— x1
— X2
0.0 =

-1.0 I I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

o?
'2"-
Center for Computing Research

Dynamic Systems 33

Optimal Control Example - Script h .

from pyomo.environ import *
Import dynamic model
from optimalControl import m

Discretize model using radau collocation
discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(m, nfe=7, ncp=6, scheme='LAGRANGE-RADAU')

Control variable u made constant over each finite element
discretizer.reduce_collocation_points(var=m.u, ncp=1, contset=m.t)

Solve algebraic model
results = SolverFactory('ipopt').solve(m)

def plotter(subplot, x, *series, **kwds):
plt.subplot(subplot)
for i,y in enumerate(series):
plt.plot(x, [value(y[t]) for t in x], 'brgcmk'[i%6]+kwds.get('points’',"")
plt.title(kwds.get('title’',"'"))
plt.legend(tuple(y.cname() for y in series))
plt.xlabel(x.cname())

import matplotlib.pyplot as plt

plotter(121, m.t, m.x1, m.x2, title='Differential Variables')
plotter(122, m.t, m.u, title='Control Variable', points='o0"')
plt.show()

K QY. 7 N
'E-.CCR } PYOMO '.l_\?i_l]./.R}.u

Center for Computing Research

Dynamic Systems 34

Optimal Control Example - Results 2

Differential VVariables Control Variables

Sandia
rl'l National

Laboratories

02 T T 8 T T
— u
pro-—o0 8
6l n
4t i
2F n
0.6 : 0
j
-0.8} 1 21 1
-1.0 1 1 1 I -4 1 1 I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t

o?
'2"-
Center for Computing Research

Dynamic Systems

35

Parameter Estimation Example 1 h s

min Y (x106) = X1 e (t))

ti
. dxq
s.t. —=x
dt 2
dx, 1
—=1-2x, — x
dt 2 1

—15< D1, P2 < 1.5
x1(0) = py, x2(0) = p,

0.264 0.594 0.801 0.959

X1meas

—

“CCR Y,
:efr‘;imCon:plﬂringﬂe;earm ‘/ pYDMO I.l‘\:_f_u_/ﬁl‘:

Dynamic Systems 36

Parameter Estimation Example 1) .

Dynamic Parameter Estimation Using Collocation

data file 1.0 -
sett :=012356 ; 084
set MEAS_t (=12 3 5 ;
param x1_meas := -
1 0.264
2 0.594 L
3 0.801 '
5 0.959
. 0.2

0.0
0 1 2 é 4 5 6
t
+CCR

Dynamic Systems 37

Parameter Estimation Example 2 h s

ki k>
A->B-C
e _

at =~ !

dB
E - klA - sz

A0 =1, B(0)=0

mmm
0.606 0.368 0.223 0.135 0.082 0.050 0.030 0.018 0.011 0.007
B 0373 0.564 0.647 0.669 0.656 0.624 0.583 0.539 0.494 0.451

= Exercise: Solve for k;and k, given the concentration
measurements in the table

+.CCR »”pyomo (8

Dynamic Systems 38

Sandia

Disease Transmission Example) i

= Parameter estimation of a S-I-R disease transmission modell”]

min - wy Z (III(SM_E.))Q + wg Z (SQk)z

F =
s.t. ‘31? = _B(y(j\)])‘;(t)f(t) ceum(t) + B(t).
a4 BO)SOH Discretized problem:
T (O R - 3 differential equations
9. B(i‘f(?\),ft(;” D (1), - 520 finite elements
RY — 1(Qur — Quir) ~ 00, - 3 collocation points
> S ~ 10,500 variables
S= o ~ 10,000 constraints
Y

0< I(1), S(t) < N(#)
and 0 < Bly(). 1),

#CCR [*] Word, Cummings, Burke, lamsirithaworn, and Laird, QR
%% 0% Journal of the Royal Society Interface, 2012, pp. 1983-1997.)-PYOMO %

Dynamic Systems

39

Performance impact

= Comparing the automated discretization to a manually
discretized model implemented (and tuned) by a person

Manual
Discretization

Using pyomo.dae
(Radau Collocation)

Model Creation Time

(CPU secs) 1.79 5.29

Solve Time

(CPU secs) 1.35 0.86
IPOPT lIterations 27 26
Objective (x10-°) 1.4716 1.4716

= The bulk of the added model creation time is the model
transformation that implements the discretization

= The solve time difference likely due to a more sophisticated

initialization scheme in the manual discretization mod‘el
)"PYOMO ¥

l:’-?
o
*ee
Center for Computing Research

Dynamic Systems

Sandia
National
Laboratories

40

Distillation Example) &=,

model.S_TRAYS = Set()
model.S_RECTIFICATION = Set(within = model.S_TRAYS)
model.S_STRIPPING = Set(within = model.S_TRAYS)

model.t = ContinuousSet(initialize=range(1,52))
model.x = Var(model.S_TRAYS, model.t, initialize=x_init_rule)
model.dx = DerivativeVar(model.x)

def _diffeq(m,n,t):
if t == 1:
return Constraint.Skip
if n ==
return m.dx[n,t] == 1/m.acond*m.V[t]*(m.y[n+1,t]-m.x[n,t])
elif n in m.S_RECTIFICATION:
return m.dx[n,t] == 1/m.atray*(m.L[t]*(m.x[n-1,t]-m.x[n,t])-m.V[t]*(m.y[n,t]-m.y[n+1,t]))
elif n == 17:
return m.dx[n,t] == 1/m.atray*(m.Feed*m.x_Feed+m.L[t]*m.x[n-1,t]-m.FL[t]*m.x[n,t]- \
m.V[t]*(m.y[n,t]-m.y[n+1,t]))
elif n in m.S_STRIPPING:
return m.dx[n,t] == 1/m.atray*(m.FL[t]*(m.x[n-1,t]-m.x[n,t])-m.V[t]*(m.y[n,t]-m.y[n+1,t]))
else :
return m.dx[n,t] == 1/m.areb*(m.FL[t]*m.x[n-1,t]-(m.Feed-m.D)*m.x[n,t]-m.V[t]*m.y[n,t])
model.diffeq = Constraint(model.S_TRAYS, model.t, rule=_diffeq)

-

o2t QY. 7 N
+.CCR)’PYOmMO %

et

Dynamic Systems 41

PDE Example

= ||lustrative examplelll

= PDE

ou 0°%u
M2 —= —

ot dx?

= |nitial Condition

u(x,0) = sin(mx)

= Boundary Conditions
u(0,t) =0

ou
re t+—(1,t) =0
ax

Sandia
II'] National

Laboratories

5T S

E::‘:HCPQR [1] Example 1 from http://www.mathworks.com/help/matlab/ref/pdepe.html ‘y‘pYOMO UR

Dynamic Systems 42

Sandia
rl'l National
Laboratories

PDE Example

from pyomo.environ import *
from pyomo.dae import *

ConcreteModel ()
1 = Param(initialize=3.1416)

= ContinuousSet (bounds=(0,2))
= ContinuousSet (bounds=(0,1))
= Var(m.x,m.t)

3 3 3 3 3
c W o

Declare derivatives in the model
.dudx = DerivativeVar (m.u,wrt=m.x)
.dudx2 = DerivativeVar(m.u,wrt:(m.x,m.x)ﬂ
.dudt = DerivativeVar (m.u,wrt=m.t)

qdul | o i —t 1t)_0
13 Fl 322 u(x, 0) = sin(mx) u(0,t) = 0 e —[1,6) =

#CCR Y7pyomo &0

Dynamic Systems 43

PDE Example rh 'l“aaé:i?lr%;ries

def pde(m,1i,]):

ou 0 [ou if 1 == 0 or 1 == 1 or j =
<O_> % return Constraint.Skip
X return m.pi**2*m.dudt [1,7] == m.dudx2[i,7]

m.pde = Constraint(m.x,m.t,rule=_pde)

= 0
mt— =

at ox

def initcon(m,1):
if 1 == 0 or 1 == 1:
u(x,0) = sin(mx) % return Constraint.Skip
return m.uf[i,0] == sin(m.pi*i)
m.initcon = Constraint (m.x,rule=_ initcon)

def lowerbound(m,j):

u(O,t)=O % return m.ul[0,]j] == 0

m.lowerbound = Constraint (m.t,rule= lowerbound)

def upperbound(m,]):

ou - _ - 1 ==
T[e_t+—(1,t) —0 % return m.pi*exp (j)l+m.dudx[l,j] == 0
dx m.upperbound = Constraint (m.t,rule= upperbound)

u . a
+CCR)”pyomo 8

Center for Computing Research

Dynamic Systems 44

Sandia
|I'| National
Laboratories

PDE Example

Discretize using Finite Difference Method

discretizer = TransformationFactory('dae.finite difference')
discretizer.apply to(m,nfe=25,wrt=m.x, scheme='BACKWARD')
discretizer.apply to(m,nfe=20,wrt=m.t, scheme="'BACKWARD'")

solver = SolverFactory('ipopt')
results = solver.solve(m, tee=True)

Tirre: 4 Cis{ance x

Dynamic Systems

Upcoming Features

= |nterface to integrator/DAE solver for:

= Model simulation
= Model initialization
= |Implementation of multiple shooting

= |nterpolation tools for:
= Model initialization

o?
'2"-
Center for Computing Research

Sandia
National
Laboratories

Y pvomo

Dynamic Systems

46

Building Expert Frameworks with pyomo.dae @) .

= Nonlinear model predictive control
= Reaction kinetics

Ly}

Dynamic Systems

Nonlinear Model Predictive Control) i,

NMPC
from iNMPC import *
CONTROLLER = IdealNMPC(model=m, model time=m.t, prediction horizon=50,
control horizon=25, simulation periods=50, default discretization=True)
#CONTROLLER.discretize model (discretization type='OrthogonalCollocation',
ncp=5, wrt=m.t, scheme='LAGRANGE-LEGENDRE')
CONTROLLER.solve ('ipopt', options=[('linear solver', 'ma57')],
file name='testl', dynamic plot=True)

asNMPC
from asNMPC import *
CONTROLLER = AdvancedStepNMPC(model=m, model time=m.t, prediction horizon=50,
control horizon=25, simulation periods=50, default discretization=True)
CONTROLLER.solve('ipopt sens', options=[('linear solver', 'mat7'),
('run sens','yes')], file name='testl', real plant = plant,
dynamic plot=True)

[Control frameworks developed by Federico Lozano Santamaria Universidad de los Andes, Bogota, Colombia]

. CCR $7pyomo

Computing Research

Dynamic Systems

Sandia
I'll National
Laboratories

Reaction Kinetics

k4 k.,
2A->B; B - C

= Chemical reaction kinetics:

= Reaction rate:

= Stoichiometry dcy

— = —2nk
171

dx
dcg
—— =nk; — 12k,

dx

dCC — ok

— 1272
dx
“q(;RExampIe from: http://www.comsol.com/blogs/general-introduction-chemical-kinetics-arrhenius-law/ 2-PYOMO @

49

Dynamic Systems

http://www.comsol.com/blogs/general-introduction-chemical-kinetics-arrhenius-law/

General purpose kinetic model) g,

def create_kinetic_model(rxnNet, time):
model = ConcreteModel()

model.SPECIES = Set(initialize=rxnNet.species())
model.REACTIONS = Set(initialize=rxnNet.reactions.keys())
model.TIME = ContinuousSet(bounds=(0,max(time)), initialize=time)
model.c = Var(model.TIME, model.SPECIES, bounds=(9,None))
model.dcdt = DerivativeVar(model.c, wrt=model.TIME)
model.k = Var(model.REACTIONS, bounds=(@,None))
model.rate = Var(model.TIME, model.REACTIONS)
def reaction_rate(m, t, r):
rhs = m.k[r]

for s, coef in iteritems(m.rxnNetwork.reactions[r].reactants):
rhs *= m.c[t,s]**coef
return m.rate[t,r] == rhs
model.reaction_rate = Constraint(model.TIME, model.REACTIONS, rule=reaction_rate)
def stoichiometry(m, t, s):
rhs = @
for r in m.REACTIONS:
if s in m.rxnNetwork.reactions[r].reactants:
rhs -= m.rate[t,r] * m.rxnNetwork.reactions[r].reactants[s]
if s in m.rxnNetwork.reactions[r].products:
rhs += m.rate[t,r] * m.rxnNetwork.reactions[r].products[s]
return m.dcdt[t,s] == rhs
model.stoichiometry = Constraint(model.TIME, model.SPECIES, rule= st01ch10@stry) ;\
2 CCR return model)y PYOMO %

crch ing Rese:

Dynamic Systems 50

Step 1: simulation) Eon,

fdiff = TransformationFactory("dae.finite_difference")

rxns = ReactionNetwork()

rxns.add(Reaction("AtoB", reactants=['2*A'], products=['B']))
rxns.add(Reaction("BtoC", reactants=['B'], products=['C']))

model

create_kinetic_model(rxns, 60*60)

Al = 1.32e19 # L / mol*s
A2 = 1.09el13 # 1/s

Eal = 140000 # J/mol

Ea2 = 100000 # J/mol

R = 8.314 # J / K*mol
T = 330 # K

model.k["'AtoB'].fix(Al * exp(-Eal / (R*T)))
model.k['BtoC'].fix(A2 * exp(-Ea2 / (R*T)))

model.c[@, 'A'].fix(1) def plot results(model):

model.c[@, 'B'].fix(0) if plt is not Nogt(ﬂ (model. <))
PN . _tmp = sorted(iteritems(model.c

model.cf@, "C'].fix(6) for _i, _x in enumerate('ABC'):

. plt.plot([x[@][0] for x in _tmp if x[@][1] == _x],
fdiff.apply_to(model, nfe=100) [value(x[1]) for x in _tmp if x[@][1] == x],
solver.solve(model) 'bgr'[_i]+"'*, label=_x)

._élot results(model) plt.legend() 3 P
+.CCR pLt - shon) J"PYOMO L0
Dynamic Systems 51

Step 1: results) on

1.0 T T T T T T T
- * o« A
* + « B
L W
0.8} Cll

*
*
*
*
*
*
*
*
0.6 * i
-
*
"
"
**
W

*
0.4 _ .

0.2} o |

**
* i
L
0

0.0 500 1000 1500 2000 2500 3000 3500 4000

. g l. -
+CCR Ypyomo &8

Dynamic Systems 52

Step 2: maximize the production of “B” @&

fdiff = TransformationFactory("dae.finite difference")

rxns = ReactionNetwork()

rxns.add(Reaction("AtoB", reactants=['2*A'], products=['B']))
rxns.add(Reaction("BtoC", reactants=['B'], products=['C']))

model = create_kinetic_model(rxns, 60*60)

Al = 1.32e19 # L / mol*s

A2 = 1.09el3 # 1/s

Eal = 140000 # J/mol

Ea2 = 100000 # J/mol

R = 8.314 # J / K*mol

model. T = Var(bounds=(0,None), initialize=330) # K

def compute_k(m):
yield m.k['AtoB'] == Al * exp(-Eal / (R*m.T))
yield m.k['BtoC'] == A2 * exp(-Ea2 / (R*m.T))
model.compute_k = ConstraintList(rule=compute_k)

model.c[0, 'A'].fix(1)
model.c[@, 'B'].fix(@)
model.c[@, 'C'].fix(@)

fdiff.apply_to(model, nfe=100)

model.obj = Objective(sense=maximize, expr=model.c[max(model.TIME), 'B'])

solver.solve(model)

) Cﬁ‘eSUItS (model) ‘ [
. } " PYOMO | & 7@

Center for Computing Research

Dynamic Systems 53

Step 2: maximize the production of “B” @&

10 I I I I I I I
* * A
+ « B
* w
0.8 €l
0.6 §
0.4} .
0.2 .
D'UD 500 1000 1500 2000 2500 3000 3500 4000
o2 ‘ r (- |
SCCR »"pvomo 9

Dynamic Systems 54

Kinetic parameter regression =

= (Assumed) Chemical reaction kinetics:

TG + MeOH > DG + FAME
DG + MeOH <—> MG + FAME
MG + MeOH Glycerol + FAME

= Given experimental data, estimate the reaction rate constants

g -
\

o2 AN 7
"prCan Example from: http://www.doiserbia.nb.rs/img/doi/0367-598X/2014/0367-598X1300037A.pdf #~PYOMO '\&¥

Dynamic Systems 55

http://www.doiserbia.nb.rs/img/doi/0367-598X/2014/0367-598X1300037A.pdf

. Sandia
Generate (sub)model for each experiment... @i

def create regression _model(b, t):
rxns = ReactionNetwork()
rxns.add _reversible(
Reaction("k_1", reactants=['TG', 'MeOH'], products=['DG','FAME']))
rxns.add _reversible(
Reaction("k _2", reactants=['DG', 'MeOH'], products=['MG','FAME']))
rxns.add _reversible(
Reaction("k_3", reactants=['MG', 'MeOH'], products=["'Glycerol','FAME']))

data = b.model().data[t]
key = b.model().key

model = create_kinetic_model(rxns, data.keys())
model.error = Var(bounds=(0,None))

model.compute_error = Constraint(
expr= model.error == sum(
((model.c[t,key[i]] - x) / max(data[_t][i] for _t in data))**2
for t in data for i,x in enumerate(data[t])))

return model -
TN

o? ‘ - / X
+.CCR y”pyomo (5

Dynamic Systems 56

. Sandia
Assemble the regression model and solve @i,

model = ConcreteModel()
model.key = key = ('MeOH','TG','DG', '"MG', 'FAME', 'Glycerol"')
model.data = data = { 150: { 0: (2.833,6.84E-02,0.00,0.00,0.00,0.00,),
256: (2.807,4.75E-02,1.51E-02,3.71E-03,2.60E-02,8.18E-04,), #
} 210: { # ...

}}

model.experiment = Block(data.keys(), rule=create_regression_model)
model.obj = Objective(sense=minimize,
expr=sum(b.error for b in model.experiment[:]))

initializations from the paper
for exp in model.experiment[:]:

exp.k['k 1"] = 7.58e-7
exp.k['k 1 r'] =0
exp.k['k_2"] = 2.20e-7
exp.k['k 2 r'] =90
exp.k['k 3"] = 2.15e-7

exp.k['k 3 r'] =0

colloc.apply to(model, nfe=100, ncp=3)
solver.solve(model, tee=True)
plot_regression_results(model)

:;: CCR ‘/ PYOMO ' (um

Center for Computing Research

Dynamic Systems 57

Regression results

T=150
0.25 T T T T T T T 2.85
0.20 412.80
0.15F 12.75
0.10F 12.70
0.05F 12.65
0'0{)(} 160 260 ;60 480 500 660 760 80660

Sandia
I'll National
Laboratories

T=210

0.20 2.85

12.80

0.15F

12.75

0.10

12.70

0.05
12.65

0.00 &=

dbﬁo

Il Il I v
4000 5000 6000 7000 8000 90

= 10850 variables, 10826 constraints

= Total time: 6.4 seconds

= 2.8 seconds for model generation and processing

= 3.6 seconds in solver (ipopt)

o?
'}‘-
Center

er for Computing Research

Dynamic Systems

3. a
)”pyomo 8
58

Sandia
National
Laboratories

Exceptional
service

in the
national

interest

- O
“¥ FPYOMO

o0

Solving Stochastic
Programs

U.S. DEPARTMENT OF ' WA ¥ =
{C)ENERGY INITSH

National Nuclear Security Adwinistration

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Progressive Hedging Algorithm

Idea: use scenario-based
decomposition

<+—— Standard MIP Solves

Wx :IO(X_)_()

|(x=X)[< &?

Global Convergence
‘ Criterion Achieved?

—— min f(X)+w,x+p/2| x—x|]?

Wx =Wx+p(X—X_)

8/18/2016 Solving Stochastic Programs with Pyomo.PySP @ $”pyomo 2
-

Sandia
m National
Lahoratories

Using PySP

1. Formulate the deterministic model
2. Specify the deterministic model data
3. Specify the scenario tree
4. Specify the scenario instance data
8/18/2016 Solving Stochastic Programs with Pyomo.PySP ‘/_Jﬂ’)-PYOMO 3

Sandia
m National
Lahoratories

Example: Production Planning

Example from Alexander Shapiro and Andy Philpott, 2007

A company has decided to order a quantity x of a product to satisfy demand
d. The per-unit cost of ordering is ¢, and if demand d is greater than x, then

the back-order penalty is b per unit.

The objective is to minimize the total cost: max{ (c-b)x+bd, (c+h)x-hd}

For example: c=1, b=1.5, h=0.1, d=50 100

60
20
0 20 40 X 60 80 100
;'/‘-77-\.\“. ‘ w
8/18/2016 Solving Stochastic Programs with Pyomo.PySP ©% J)=~PYOMO 4

Sandia
m National
Lahoratories

Deterministic Formulation

In general, the ordering decision is made before a realization of the demand
is known.

The deterministic formulation corresponds to a single scenario taken with
probability one.
mitn t
st. t> (¢ — b)x + bd,
t > (c+ h)x — hd,
z > 0.

We can formulate a two-stage stochastic program where the first stage has
zero cost and the second stage has cost t.

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % }~PYOMO 5

Sandia
m National
Lahoratories

Pyomo Deterministic Formulation (1)

from pyomo.environ import *
c, b, h=1.0, 1.5, 0.1

model = AbstractModel ()
model.d
model.t = Var ()

x = Var (within=NonNegativeReals, bounds=(0,100))

= Param/()

model.

def cl rule (model) :
return model.t >= (c-b)*model.x + b*model.d

model.cl = Constraint (rule=cl rule)

def c2 rule (model) :
return model.t >= (c+h)*model.x - h*model.d

model.c2 = Constraint (rule=c2 rule)

y/

OR|

_

=

- \ ‘ w
8/18/2016 Solving Stochastic Programs with Pyomo.PySP ()-PYOMO 6

Sandia
m National
Lahoratories

Pyomo Deterministic Formulation (2)

model .FirstStageCost = Var()
model.SecondStageCost = Var ()

model.o = Objective (expr=model.FirstStageCost +
model .SecondStageCost)

O*model.x
model.stagel = Constraint (expr=model.FirstStageCost==0)

model.stage?2 = Constraint (expr=model.SecondStageCost==model.t)
: : : (ol I
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % }~PYOMO 7

Sandia
m National
Lahoratories

Deterministic Model Data

There is no deterministic model data for this example!

We used native Python data for the values of ¢, b and h.

ol)y

8/18/2016 Solving Stochastic Programs with Pyomo.PySP ©% J”“pYomMO 8

Sandia
m National

Lahoratories

Scenario Specification

set Stages := FirstStage SecondStage ;

The scenario specification is a Pyomo

set Nodes := RootNode

data file that provides meta-data about d1 d2 d3 d4 ds ;

1. The deterministic model AT USRS [o S8 B e
SecondStage

2. The scenario tree Secondstage

SecondStage

3. The scenario data files

set Children[RootNode] := d1 d2 d3 d4 d5 ;

param ConditionalProbability := RootNode

set Scenarios := sl s2 s3 s4 s5 ;

param ScenariolLeafNode :=
s1 dfl
s2 d2
s3 d3
s4 d4
s5 d5
H

set StageVariables[FirstStage]l := x;

set StageVariables[SecondStage] := t;

param StageCostVariable := FirstStage FirstStageCost
SecondStage SecondStageCost ;

N ‘ a
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % J}~PYOMO 9

Sandia
m National
Lahoratories

Scenario Data

Two methods are available to specify scenario-specific data
= Scenario-based
= Node-based

In the scenario-based approach, a single and complete .dat file is specified
for each individual scenario

= Redundant, but straightforward if computer-generated

In the node-based approach, a single .dat file is specified for each node in
the scenario tree

= Maximally compact, but requires some book-keeping

This example uses scenario-based data, with data files that simply define d.

N T
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % }~PYOMO 10

Sandia
m National
Lahoratories

Writing and Solving the Extensive Form (1)

In PySP, the runef script is provided to both write and solve the extensive
form of a stochastic programming model

The basic command-line:

"= runef -m models -1 scenarios —--solve --solver=glpk

NOTE: even commercial solvers often have difficulty solving EFs

/7\ ‘ s
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % }~PYOMO 11

Sandia
ﬂ" National

Lahoratories

Writing and Solving the Extensive Form (2)

Tree Nodes:
After the solution, you get Name=RootNode
. . Stage=FirstStage
information about the tree porontNone.

Conditional probability=1.0000

Children:
di
dz2
d3
d4
d5

Scenarios:
sl
s2
s3
s4
s5

Expected cost of (sub)tree rooted at node= 76.5000

Name=d1
Stage=SecondStage
Parent=RootNode
Conditional probability=0.2000
Children:
None
Scenarios:
sl
Expected cost of (sub)tree rooted at node= 64.5000

Name=d2
Stage=SecondStage
Parent=RootNode
Conditional probability=0.2000
Children:

None

7 D l' .
8/18/2016 Solving Stochastic Programs with Pyomo.PySP “:% J}~PYOMO 12

Sandia
m National
Lahoratories

Progressive Hedging (1)

The execution of PH requires the specification of the penalty parameter (rho)

The global rho value can be easily specified:
" runph -m models -1 scenarios —--default-rho=0.05

The quadratic penalty term in PH is computationally problematic
= Quadratic MIP solvers can be 10x or slower than MIP solvers
= Open-source quadratic solvers are (almost) non-existent

PySP provides automatic, generic linearization mechanisms
= Requires specification of variable lower and upper bounds
= Specify number of breakpoints, distribution strategy

" runph -m models -1 scenarios —--solver=glpk --default-
rho=0.05 --linearize-nonbinary-penalty-terms=100
7) T
8/18/2016 Solving Stochastic Programs with Pyomo.PySP ©% }~PYOMO 13

Sandia
m National
Lahoratories

Progressive Hedging (2)

* In the presence of integers, PH is no longer guaranteed to converge
= Cycling behavior
= Stagnation behavior

- To facilitate PH convergence for mixed-integer stochastic programs, PySP
provides various configurable mechanisms

= “Watson-Woodruff” Extensions
= Computational Management Science (2009)

= Implemented via a generic plug-in callback framework
« Capabilities include:

= Variable fixing

= (Cycle detection

= Cycle breaking

= Slamming

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % }~PYOMO 14

Sandia
m National
Lahoratories

The End

Questions?

8/18/2016 Solving Stochastic Programs with Pyomo.PySP @ ‘/‘PYOMO 15

Sandia
m National
Lahoratories

Example: Stochastic Unit Commitment

Obijective: Minimize expected cost

T

L LA First stage variables:

4: .:...:0: .0:.:' ® Uniton/Oﬂ

SR AR Nature resolves uncertainty
l4<o::.:o ooto .to. :;o.. | ° Load

: . T * Renewables output

» Forced outages

¥

Second stage variables
(per time period):

« Generation levels

» Power flows

Scenario 1 Scenario 2 ... ScenarioN °* Voltage angles

8/18/2016 Solving Stochastic Programs with Pyomo.PySP %

n
=

Q.
»-PYOMO 16

Sandia
m National
Lahoratories

Solving with the Stochastic Extensive Form

« Reliability Unit Commitment (RUC) Test Instance: WECC-240++

« J.E. Price, Reduced Network Modeling of WECC as a Market Design
Prototype, 2011 IEEE PES General Meeting

« Changes necessary to create viable RUC test case
= Addition of realistic ramping rates and min up/down time constraints
* Results

Table 3 Solution quality statistics for the extensive form of the WECC-2/0-r1 instance, given
4 hours of run time.

Scenarios Objective Value MIP Lower Bound Gap % Run Time (s)

3 64278.20 63797.72 0.75 14491

5 62740.67 62180.86 0.89 14723

10 61563.10 60835.45 1.18 14630

25 61455.55 59963.78 2.36 14960

50 61911.74 59540.87 3.83 15480

100 62388.85 59548.23 4.51 16562
8/18/2016 Solving Stochastic Programs with Pyomo.PySP % ‘V‘ PYOMO 17

Sandia
m National
Lahoratories

Parallelization and Bundling

« Progressive Hedging is, at least conceptually, easily parallelized
= Scenario sub-problem solves are clearly independent
= Advantage over Benders, in that “bloat” is distributed
= Critical in low-memory-per-node cluster environments
= Parallel efficiency drops rapidly as the number of processors increases

= But: Relaxing barrier synchronization does not impact PH
convergence

= Bundling scenarios might help with parallel scaling
= May increase number of iterations required

* PH can provide bounds!
= Now comes with (rather tight) lower bounds

= See “Obtaining Lower Bounds from the Progressive Hedging Algorithm
for Stochastic Mixed-Integer Programs” (Under review)

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Stochastic Programs with Pyomo.PySP ©% }~PYOMO 18

PH Results: Workstation and RedSky (HPC)

Sandia
m National
Lahoratories

Table 4 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a = 1.0, u = 3, and v = 0.03

Scenarios Convergence Metric Obj. Value PH L.B. # Vars Fx. Time
64-Core Workstation Results
3 0.0 (in 23 iters) 64727.714 63188.709 4080 155
5 0.0 (in 26 iters) 62911.104 61609.576 4080 163
10 0.0 (in 26 iters) 61493.375 60347.220 4080 227
25 0.0 (in 27 iters) 60990.111 59875.661 4080 364
50 0.0 (in 17 iters) 60721.319 59527.252 4076 584
100 0.0 (in 23 iters) 61156.832 59880.559 4080 1218
Red Sky Results
50 0.0 (in 29 iters) 60676.383 59670.142 4062 514
100 0.0 (in 33 iters) 61122.781 60148.285 4073 672

8/18/2016

Solving Stochastic Programs with Pyomo.PySP

N ‘ -
«% »-PYOMO 19

Sandia
m National
Lahoratories

Acknowledgements

 Jean-Paul Watson
* Roger Wets
e David Woodruff

8/18/2016 Solving Stochastic Programs with Pyomo.PySP ‘/‘PYOMO 20

Sandia
National
Laboratories

Exceptional
service

in the
national

interest

- O
“¥ FPYOMO

9. Solving Bilevel Problems

U.S. DEPARTMENT OF ' WA ¥ =
{C)ENERGY INITSH

National Nuclear Security Adwinistration

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia
m National
Lahoratories

Overview of Bilevel Programming

A bilevel program is a mathematical program in which a subset of decision
variables is constrained to take values associated with an optimal solution of
a distinct, “lower” level mathematical program.

General formulation:

mingey F(x,y) Upper-level problem
s.t. G(x,y) <0
y € P(x)
where

P(x = argmin X,

(x) gminyey f(x,y) Lower-level problem

s.t. g(x,y) <0
7) A | -
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel “%)"pyomo 2

Sandia
m National

Lahoratories

Example: Modeling Security Problems

e Opponents must anticipate each
other’s moves

e Strategy should account for how
opponent (best) responds

Extremely complex
« Impossible to enumerate the set of all states in the game

Stackelberg games - bilevel programs

W
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel Y »-PYOMO 3

Sandia
m National
Lahoratories

Example: Smuggling Interdiction

Interdictor minimizes the T - W—]
potential for a smuggler to evade P e
detection

* Interdictor installs defenses (x)
to minimize smuggler’s evasion
probability

* Smuggler traverses path (y)
that maximizes the probability
of evasion

* F(x,y)— evasion probability

Origin-destination nodes maybe e X —interdictor’s constraints (e.g.
unknown resource, budget)

e P(x) —feasible paths given x

- Q.
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% J}~PYOMO 4

Sandia
m National
Lahoratories

Modeling Bilevel Programs

No algebraic modeling language currently provides an intuitive syntax for
expressing the structure of bilevel programs!

MPEC formulations are supported in several AMLs
= AMPL, AIMMS, GAMS, ...

= MacMPEC includes bilevel programs that are reformulated as single-
level programs using optimality conditions

Bilevel problems can be expressed in several modeling languages:
= GAMS, YALMIP
= Explicitly pass variables and constraints to a bilevel solver

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel % }~PYOMO 5

Sandia
m National

Lahoratories

A Simple Bilevel Example

Practical Bilevel Optimization: Algorithms and Applications
Jonathan Bard

Example 5.1.1

min,., x —4y

s.t. ming., ¥y
s.t. —x—y < -3
—2x+y <0
2x +y <12
—3x +2y < —4
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel C”R’ Ypvomo s

Sandia
m National
Lahoratories

Modeling Example 5.1.1 with YALMIP

sdpvar x, Vs

» Solve a bilevel problem using a
00 = x - 4dy; simple branching strategy.
CO = [x] >= 0y » Upper level problem defined by co
. and 00
Ol = y; » Lower level problem defined by CI
CI = [[y] >= 0, and OI, with decision variable y.
-x - y <= -3,
-2x + y <= 0,
2x + y <= 12,
-3x + 2y <= -4];

solvebilevel (CO,00,CI,0I, [v])

Note: This example adapted from the YALMIP bilevel documentation.

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel % }~PYOMO 7

Modeling Example 5.1.1 with GAMS

Sandia
National
Lahoratories

positive variables x,y; variables objout,objin;

equations defout,defin,el,e2,e3,e4d;

defout.. objout =e= x - 4*y; Writes an “empinfo” file that tells
defin.. objin =e= y; the solver that this is a bilevel
problem with a lower level

el.. - x - y =1= problem that minimizes objective
e2.. —2%x + y =1= objin with variables y subject to

e3. . 2%x + y =l= the constraints (defin), el, e2,

ed.. 3%x - 2%y == e3and ed.

model bard / all /;

Secho bilevel x min objin * defin el e2 e3 e4 > "Semp.info%"

solve bard us emp min objout;

7 N\ ‘ “
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel % }~PYOMO

8

Sandia
m National
Lahoratories

Modeling Example 5.1.1 with Pyomo

from pyomo.environ import *

from pyomo.bilevel import * Lower level problem is declared
with a SubModel component.

M = ConcreteModel () » The var argument indicates the

M.x = Var (bounds=(0,None)) lower level variables.

M.y = Var (bounds=(0,None)) » Objectives, variables and

M.o = Objective (expr=M.x - 4%M.y) constraints for the lower level
problem are declared within this

M.sub = SubModel (fixed=M.x) / component.

M.sub.o = Objective (expr=M.y)

M.sub.cl = Constraint (expr=- M.x - M.y <= =3)

M.sub.c2 = Constraint (expr=-2*M.x + M.y <= 0)

M.sub.c3 = Constraint (expr= 2*M.x + M.y <= 12)

M.sub.c4 = Constraint (expr=-3*M.x + 2*M.y <= -4)

8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel "“ ‘V‘PYOMO 9

Sandia
m National
Lahoratories

Pyomo Extensions for Bilevel Programs

Modeling extensions
= Modeling components (pyomo.bilevel)

Model transformations
= Can be applied automatically

Custom solvers
= Solvers tailored for specific classes of bilevel problems

- 3,
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% }~PYOMO 10

Sandia
m National
Lahoratories

Solving Bilevel Problems

Goal: Enable solution of bilevel problems with standard solvers

Process:

* Model problem with SubModel components

« Transform the problem to a standard form
= P, MIP, etc

« Apply a suitable solver

Reformulations for linear bilevel programming (BLP)
A. BLP with continuous variables
B. Quadratic minimax with continuous lower-level variables

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% J}JPYOMO 11

Sandia
m National
Lahoratories

(A) BLP with Continuous Variables

Problem:
min,., cix+dly
s.t. Aix + Byy < b
minyso c;x+diy
A, x + By < by

Reformulation: Replace lower-level problem with corresponding optimality
conditions
min c{x+diy
st. Ayx+Byy<b
d,+Blu—v=0
b, —A,x—B,y=0L1Lu=0
y=20Lv=0
x=0,y=0

.\‘I .

8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ~ ©% }”pyomo 12

Sandia
m National
Lahoratories

(A) BLP with Continuous Variables (cont’d)

|dea: Analyze the MPEC reformulation

Example:
= Use a custom solver that considers complementarity conditions
(Bard, 1998)
Example:
= Chain reformulations: BLP -> MPEC -> GDP -> MIP
= Provide “BigM” values for unbounded variables

= Apply standard MIP solver
(Fortuny-Amat and McCarl, 1981)

Example:

= Reformulate the complementarity conditions with nonlinear

constraints
(Ferris and Dirkse, 2005)

o3

8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel \)" “PYOMO 13

Sandia
m National
Lahoratories

(B) Quadratic Min/Max

Problem:
= Upper level constraints do not constrain y

Xz{X|A1X < bl,x > O}

= The upper decision variables may binary

MiNyey MaXyxg clTx + d{y + xTQy
s.t. A, x + B,y < b,

Reformulation: Replace lower-level problem with the linear dual
min cix + (b, — A,x)Tv
st. Blv>d;+Q"x
Aix < by
x=>0,v=20

R
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% }~PYOMO 14

Sandia
m National
Lahoratories

(B) Quadratic Min/Max (cont’d)

Case 1:
= A, =0
= The reformulation is a simple LP (or a MIP if x are binary)

Case 2:
= The upper-level decision variables x are binary
= Reformulate the bilinear objective terms as disjunctions:

min c¢]x+blv—1"z
st. Blv>d;+0Q"«x

xi=O xi=1

_ A T (s
zi =0 z; = Ay (i,x)v
x€eEX,v=>20

= Reformulate this GDP -> MIP using “BigM” values

R
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel % }J~PYOMO 15

Sandia
m National
Lahoratories

Solving Bilevel Programs in Pyomo

Python Script:
= Formulate the model
= Apply desired model reformulations

= Apply a suitable optimizer
OR

= Directly analyze the model within Python
= (e.g. using Pyomo’s algebraic structure)

Pyomo Command:
= Execute a command that executes a Pyomo meta-solvers
= Performs suitable reformulations
= Applies a suitable optimizer
= Maps the solution to the original problem

pyomo solve --solver=bilevel 1d model.py

R
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% }~PYOMO 16

Pyomo Capabilities

Sandia
m National
Lahoratories

Relevant Pyomo Transformations

core.linear_dual
bilevel.linear_dual
bilevel.linear_mpec
gdp.bigm

gdp.bilinear

gdp.chull
mpec.simple_disjunction
mpec.simple_nonlinear

Relevant Pyomo Meta-Solvers

8/18/2016

bilevel ld

Solving Bilevel Programs with Pyomo.Bilevel

LCOIN|/:

-, .
\ »-PYOMO 17

T‘—"./

Sandia
m National
Lahoratories

Ongoing Work ...

Generalization and maturation of transformations
= E.g. Working with general BLP models

Automatic recognition of bilevel structure
= Can we automate the application of reformulations?

Parameterizing transformations
= How can we flexibly specify transformation options?
= E.g. Specifying big-M values for specific complementarity conditions

Additional meta-solvers
= E.g. bilevel_blp

R
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% }~PYOMO 18

Sandia
m National
Lahoratories

Acknowledgements

* Richard L. Chen

« William E. Hart

« John D. Siirola

« Jean-Paul Watson

P
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel 4 yPYOMO 19

Sandia
m National
Lahoratories

(A) BLP with Continuous Variables

Problem:
min,., cix+dly
s.t. Aix + Byy < b
minyso c;x+diy
A, x + By < by

Reformulation: This is the MPEC model that eliminates the v variable in the
reformulation on the earlier slide.

min c¢{x+dly

st. Aix+ By < by
b, —A,x—B,y=0LlLu=0
y=>0L1ld,+Blu=>0
x=0,y=0

‘-’/-rr-\.\“. ‘ w
8/18/2016 Solving Bilevel Programs with Pyomo.Bilevel ©% J}~PYOMO 20

