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Abstract

We characterize Sandia’s High Optical Access (HOA) surface trap, which boasts very good
performance including high trap frequencies, long trapping times, and low heating rates. The
scalable HOA trap is outfitted with two junctions as well as segmented inner control electrodes
with high voltage efficiency for shuttling and versatile manipulation of the potential. Through
precise characterization of single- and two-qubit gates via Gate Set Tomography (GST) [1], we
demonstrate high-fidelity QIP protocols that compete with standard electrode traps including
single-qubit gates below the fault- tolerance threshold [2].

[1] R. Blume-Kohout et al., arXiv:1310.4492 (2013).
[2] P. Aliferis et al., Phys. Rev. Lett. 98, 220502 (2007).

Microfabricated Traps at Sandia

Switchable Y Junction HOA-1 Y Junction

- Several traps have been conceived and produced at Sandia
- Just about any electrode configuration can be realized and
the traps are mechanically very stable
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DC electrodes are routed through lower metal layers allowing

for:

- simplified routingas wiring can cross in different metal layers

- More complex, islanded trap structures, such as circulators
and rings

- Trap layouts that are more true to models, since electrode
leads don’t need to be taken into account
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=Sy - NA 0.11 across surface

- NA 0.25 through slot

- High trap frequencies (up to 2.6 MHz with Yb)

- Precise control over principal axis rotation

- Transition between slotted and un-slotted regions for
2D scalability

- Shuttlingin and out of slotted area demonstrated
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Heating rates as function of
principal axes rotation
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