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> Average (Bulk) Behavior i) faom

conservation of
mass: p (Us - u,) = p, U,
momentum: o, = p, Usu,

energy: E-E=0.50, (V,-V)
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Rankine-Hugoniot relations apply for steady waves. Are
waves in granular materials steady?

Describe average behavior of sample, but distributions of
states exist.

Tails of distributions can be important (e.g. energetics)
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Occurs in Some Porous Ceramics — ™"
Some porous material can reach higher densities than the fully-dense form
shocked to the same pressure
Grady et al. proposed that void collapse can cause phase transformations to
occur at lower pressure due to enhanced shear stresses. Pressures that are
locally higher could also be responsible.
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;,.'High Porosity Silicon Displays Porosity
Enhanced Densification
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Classical MD simulations of porous silicon

demonstrate phenomenon, though interpretation

remains difficult

50% porosity: (I) cut voids, (r) polycrystal spheres
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ases that are not expected

at a given average state? May be possible at DCS for low Z

materials; MaRIE would allow extension to higher density

materials (e.g. Ta,0O;).
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:“,’Direct Density Measurements for ) i,

U
P = Do >
Us-u,

For solids at moderate compressions (e.g. 25%), 2% uncertainties in Us
and up give density uncertainties of 0.009p, (0.007p)

Very distended solids (e.g. 75% porous) can have high compression
ratios at modest pressures. Density uncertainties are 0.34p, (0.085p)

Rigg et al. (PRB, 2008) reported density errors of order 1% for shock
compression of aluminum and copper at pRad. This should be relatively
independent of compression ratio.

Cu was near limit for pRad at 40 mm
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# Additional Thoughts on MaRIE i) et

For optimum usage, MaRIE should provide
* reliable, well-characterized launch system
« synchronization of launch system and diagnostics

Some Static Applications

« static characterize mixture of powders when densities
are comparable

* in-situ monitoring of compaction process to >1 GPa

Some Dynamic Applications

 porosity-assisted densification

+ direct measurement of density in shock loading
 detection of localized melting during shock loading
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