
A Hybrid Multithreaded Direct Sparse Triangular Solver

Andrew M. Bradley∗

Abstract

A triangular solver is an important computational kernel

in many applications. On-node parallelism is increasingly

important. Multiple approaches underlying multithreaded

triangular solvers exist. This article introduces a hybridiza-

tion approach to combine two classes of parallel triangular

solvers, level scheduling and blocking, to efficiently solve tri-

angular systems having a much wider range of sparsity pat-

terns than either algorithm class can efficiently address on

its own. The open source software HTS implements a hybrid

multithreaded triangular solver and is available in Trilinos.

1 Introduction.

This article considers the solution of triangular systems
Tx = b, where T is an upper or lower triangular
matrix, using on-node parallelism up to approximately
two hundred hardware threads. I call an algorithm to
solve these systems and its software implementation in
a package a triangular solver. A triangular solver is
an important computational kernel in many scientific
computations, particularly as all or part of the the
preconditioner application phase of an iterative method.

1.1 Setting. This paper focuses on the following
computational setting. A sequence of systems Tixi =
bi must be solved. The sequence cannot be batched
because bj depends on at least one bi for i < j.
Hence substantial parallelism derived from batching is
not available. Ti is either the same as Tj , or the
two share the same nonzero pattern. Quite likely,
exactly the same matrix T is used for at least some
equations in sequence—a few to a few tens—and the
same nonzero pattern is used for many equations in
sequence—hundreds or more.

An example of this setting is the solution of a
nonlinear equation over a mesh with fixed topology, by
Newton’s method, with an iterative method used for the
linear equation at each nonlinear iteration. The mesh

∗ambradl@sandia.gov, Center for Computing Research, Sandia

National Laboratories, Albuquerque, New Mexico. Sandia Na-

tional Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of

Lockheed Martin Corporation, for the U.S. Department of En-

ergy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Figure 1: Left, nonzero pattern of a lower triangular
matrix. Right, nonzero pattern of this matrix with level
schedule ordering. Horizontal red lines separate levels,
and vertical red lines separate the MMP blocks from the
diagonal blocks.

Level Index i

0 5 10 15

lo
g
1
0
N

i

0

1

2

3

4

5

Figure 2: Size of level, Ni, vs. level index, i.

induces a fixed nonzero pattern for all the Ti, if pivoting
is not used in the construction of T . Each nonlinear
iteration induces particular numerical entries in Ti. An
iteration in time above the nonlinear iteration at each
time step may further increase the number of triangular
systems having the same nonzero pattern.

This setting permits a solver to use symbolic analy-
sis and numerical phases to construct and fill data struc-
tures to use in the solution phase. Phasing is a common
work reuse pattern in solvers, such as in UMFPACK
[5] and Amesos2 [3] in Trilinos [8]. The time to con-
struct data structures in the first and second phases is
amortized over subsequent solutions of equations. In

SAND2016-8033C

Figure 3: Nonzero pattern of a lower triangular matrix.

the setting I consider, the intention is to perform the
symbolic analysis phase very occasionally relative to the
numerical phase, and the numerical phase somewhat oc-
casionally relative to the solution phase.

1.2 Background and Motivation. Factorization
packages provide triangular solvers for factorization-
specific data structures, such as the elimination tree and
supernodes, and can parallelize the solution phase us-
ing these data structures. This article considers black
box triangular solvers, which have access only to the
triangular matrices in a generic input format, such as
compressed row storage (CSR).

Level scheduling (see, e.g., [14], [16], [12]) is a
common method to expose parallelism in the solution
of a very sparse triangular system. In the symbolic
analysis phase, it finds a sequence of variable sets
Ri that can be solved for simultaneously. Graph
coloring induces sets having this same property. A small
sequence of large sets is desired. If a matrix is not
very sparse, level scheduling quickly arrives at a large
serial bottleneck. Level scheduling can be effective on
triangles arising from low-fill incomplete factorizations
or in smoothers, and tends to be ineffective on matrices
arising from complete factorizations.

For not very sparse matrices, another class of
approaches is used: blocking. The triangular matrix
is blocked by one of multiple means (see, e.g., [11]).
Blocks are of one of two mathematical types: a block
to which is associated a product between a sparse
matrix and a dense vector or matrix (subsequently, an
MMP) that scatters the solution obtained so far into
the remaining right hand side (RHS), and a block to
which is associated a smaller triangular system. Blocks
must be handled in sequence, but within the first kind of

200 400 600 800 1000 1200 1400 1600

lo
g
10

N
i

0

1

2

3

4

200 400 600 800 1000 1200 1400 1600

N
−
1
∑

j
≤
i
N

j

0

0.2

0.4

0.6

0.8

1

Level Index i
200 400 600 800 1000 1200 1400 1600

n
n
z(
T
)−

1
∑

j
≤
i
n
n
z(
R

j
)

0

0.2

0.4

0.6

0.8

1

Figure 4: Top, size of level vs. level index i. Middle, cu-
mulative fraction of rows covered through level i. Bot-
tom, cumulative fraction of nonzeros covered through
level i.

block, and sometimes the second, parallelism is possible.
Blocking methods tend to be inefficient on very sparse
matrices because of poor data access locality in the right
hand side and solution, and little work in each block
over which to parallelize. In contrast, blocking methods
can be very efficient on not very sparse matrices, and
certainly on dense matrices.

Notation. A sequence is indexed by i. A set of
rows (equivalently, variables) is Ri. A set’s cardinality
is Ni. A matrix has N rows, and if Ri partitions the
matrix, N =

∑
i Ni. Ri covers the rows contained in

Ri and the nonzeros contained in these rows. nnz(A) is
the number of nonzeros in the nonzero pattern of A.

Figure 1 shows a sparse lower-triangular matrix
(left) and a level schedule for this matrix (right). This
matrix, as are all matrices in this article except the
one used in Figure 6, is derived from one in the
UF Sparse Matrix collection [6]. Figures 1 and 2
use AMD/G3 circuit. Nodal nested dissection using
Parmetis [10] was applied to the level-0 pattern of

Figure 5: Pattern of a lower triangular matrix with
hybrid ordering and partitioning. Red, level scheduled
part; blue, blocked part; green, MMP between these
two.

the matrix. A level schedule partitions the triangle
into rectangles corresponding to MMP and on-diagonal
triangular matrices. The triangular matrices are in fact
diagonal. Hence each of these blocks permits perfect
parallelization within a block. Figure 2 plots the size
of each set, Ni, against the set’s index, i, for the lower
triangle of the matrix. This triangle has 15 levels. In
the first five, each has Ni > 104. In the next five, each
has Ni > 102. Each of the final five is small.

Figure 3 shows the nonzero pattern of the
matrix L derived from factoring another matrix,
Schenk IBMNA/c-60, with UMFPACK [5]. (This
smaller matrix was used for greater clarity in the fig-
ures showing nonzero patterns.) The pattern shows the
typical fill toward the bottom of L. Figure 4 plots three
quantities against the level index i in a level schedule
for this triangle. There are over 103 levels. Referring
to the top plot, the largest level has over 104 variables.
But each set after the first approximately 20 levels has
fewer than 102 variables. The middle plot shows cu-
mulative fraction of rows covered by levels. Over 90%
of the rows are covered within the first approximately
10 levels. The bottom plot shows cumulative fraction of
nonzeros in those rows. Fewer than 10% of nonzeros are
covered by level sets having at least 10 variables. After
about level index 400, each set has just one row, mean-
ing the algorithm is serialized. At this index, more than
80% of the nonzeros remain uncovered. UMFPACK fac-

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Threads, KMP_AFFINITY=balanced

1 4 8 16 28 57 114
S

p
e
e
d
u
p
 w

.r
.t
.
M

K
L
 t
ri
s
o
lv

e
r

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Solve phase on Knights Corner

Elastic cube, trilinear hexes, 86490 unknowns, L from LDL, NodeND

Hybrid solver

Level scheduling only

Recursive blocking only

mkl_cspblas_dcsrtrsv

Figure 6: Scaling results on a 57-core Intel Xeon Phi
Knights Corner for solution phase of an LDL factoriza-
tion. Matrix is from discretization of a 3D elastic cube,
with nodal nested dissection from Parmetis. Trilinear
hexahedral elements were used. Speedup is relative to
MKL’s serial sparse triangular solver. Hence speedup
for that solver is always 1.

torization of matrix AMD/G3 circuit, used in Figures 1
and 2, yields a lower triangular matrix having over 104

levels, with more than 30% of nonzeros in the fully se-
rialized section.

1.3 Hybrid Triangular Solver. Between level
scheduling and blocking, we have two methods that tend
to perform well at two different ends of the sparsity spec-
trum. Level scheduling has another use in addition to
solving a triangular system: it induces a symmetric per-
mutation of the triangular system. The right triangle
in Figure 1 illustrates this reordering. This permuta-
tion tends to further sparsify part of the triangle, and
densify another part.

In this article, I exploit these observations to design
a hybrid triangular solver that uses both level scheduling
and blocking. In addition, I describe a particular
software implementation, HTS, and results produced by
this software. HTS is open source software available in
Trilinos [8].

Figure 5 shows the triangle in Figure 3 reordered
using a hybrid permutation. In the case of a lower trian-

Figure 7: Right, blocked part after hybrid level-
scheduling ordering. Left, lower-right corner of same
size from original triangle, for comparison.

gle, the hybrid permutation is a set of variable indices in
which the first part is a level schedule permutation for
part of the triangle, and the second part is the set of re-
maining variables. An upper triangle can be understood
as the transpose of a lower triangle, and subsequent dis-
cussion will be relative to lower triangles only. In Figure
5, the red part is level scheduled (LS); the blue part is
blocked; and the green part scatters the solution from
the LS part into the blocked part’s RHS.

Figure 6 shows HTS’s speedup relative to Intel
MKL’s serial triangular solver mkl cspblas dcsrtrsv
on a 57-core Intel Xeon Phi Knights Corner for a par-
ticular problem. (Hardware, software environment, and
numerical experiments are described comprehensively
in §3; however, Figure 6 was created using data from
a run on an older Knights Corner than used in §3.)
Each datum corresponds to the solution of the lower
triangular system arising from the LDL factorization of
a matrix. The matrix results from the trilinear hexa-
hedral discretization of an elastic cube. It is ordered
using Parmetis’s [10] nested nodal dissection. Speedup
is shown as a function of number of hardware threads.
The thread affinity fills each core before adding another
core. mkl cspblas dcsrtrsv has a speedup factor of 1
because it is serial and its solution time is the unit of
time in these data. Level scheduling alone achieves a
parallel speedup factor of just over 5. Blocking alone
achieves a speedup factor of approximately 25. Each
of these is obtained by forcing HTS to use just one ap-
proach or the other. Finally, HTS’s black box hybrid
solver achieves a speedup factor of over 90 when the full
computer is used with two hardware threads per core.

A key observation is that even if only a small
fraction of nonzeros belong to level scheduled rows,
the hybrid reordering resulting from the level schedule
densifies the part that is recursively blocked. It is
denser because the symmetric permutation induced by
the level schedules pushes dense rows downward and
dense columns to the right (for a lower triangle), and

so into the blocked part. This explains the jump in
speedup from 25 to 90; it is not just that level scheduling
is used to good effect on part of the triangle, but also
that the remaining part is denser than in the original
ordering of the matrix. Hence level scheduling has two
roles: as a means of solving part of the system using
graph-based parallelism, and as a reordering to expose
greater parallelism in the blocked part. Figure 7 right
shows the blocked part; at left, for comparison, is the
identically sized bottom-right part of the triangle in
its original order. The dense subtriangle is preserved,
and additional dense blocks are brought into the part.
Storing large portions of this blocked triangle in dense
format is efficient.

1.4 Related Work. There are a number of ap-
proaches to developing on-node parallelized triangular
solvers. Alvarado and Schreiber [1] and Van Duin [15]
factor the inverse of the triangle into a product of ma-
trices. Each matrix corresponds to a sparse MMP. Fac-
tors have no fill. The method is applicable across the
spectrum of matrix sparsity. Stability could be a con-
cern since inverses are used, but Higham and Pothen
[9] show that the method is stable if the triangle is well
conditioned. I believe implementations of this method
on contemporary architectures should be studied.

Wolf, Heroux, and Boman [16] study level schedul-
ing with barrier synchronization between levels. They
examine performance in various multithreaded imple-
mentation approaches. Naumov [12] also studies level
scheduling with barrier, but on a GPU; each level cor-
responds to a kernel execution. Park et al. [13] use
point-to-point synchronization with edge pruning to im-
plement level scheduling without barriers. Instead, each
level is broken into tasks, and edges in the resulting task
directed acyclic graph (DAG) indicate data dependen-
cies. Pruning removes redundant edges.

All of these methods implement symbolic analysis,
numerical, and solution phases. In contrast, Chow and
Patel [4] and Antz et al. [2] solve triangular systems in
place, using a Jacobi iteration or asynchronous, non-
deterministic Gauss-Seidel-like iteration. An analysis
phase is not necessary because each iteration is essen-
tially an MMP. The Jacobi iteration has assured con-
vergence; at worst, N iterations must yield the solution.

There has been a large amount of work on blocked
solvers for both dense and sparse formats. HTS follows
an approach similar to that in [11]: the matrix is
reformatted so that each block’s data are local to the
block.

2 Algorithms.

The hybrid trisolver must act as a black box; it must
determine how to reorder and partition the triangle al-
gorithmically, without input from the user. In princi-
ple, a solver could alternate between level-scheduled and
blocked parts; in this article, at most one of each part
is permitted.

The triangular system associated with each part
can be solved using any of a number of algorithms and
variants. I have attempted to give HTS high-quality
implementations of state-of-the-art level scheduling and
blocking algorithms. While this article’s focus is the
utility of the hybrid approach, this section also describes
some of the details of these implementations.

Thread 0 Thread 1

Level 1

Level 2

Level 3

0 1

2 3

4 5

Thread 0 Thread 1

Level 1

Level 2

Level 3

0 1

2 3

4 5

Figure 8: Left, original task graph; right, pruned.

Figure 9: Nonzero pattern of a level-scheduled matrix
after permutation for data locality in each of three
threads. Color corresponds to thread. Levels within
a thread are separated by horizontal lines.

2.1 Hybrid Transition. HTS uses the following pro-
cedure to determine the partition. First, the triangle
is level scheduled following equation 18 in [14]. Asso-
ciated with the schedule is a sequence Ni of level sizes

sparse or dense

parallel or serial

serial mvp

serial trisolve

serial trisolve parallel mvp

inverse

parallel mvp

inverse

parallel mvp

Figure 10: Recursive blocking structure. Top, full
structure. Bottom, two possible implementations of on-
diagonal blocks.

with i the level index. The number of rows in the trian-
gle is N =

∑
i Ni. Second, two parameters, ngood and

fbad, are chosen. ngood is the minimum set size consid-
ered good. fbad is the fraction of bad rows in the level
schedule; a bad row is one that belongs to a set whose
size Ni < ngood. In §3 and in HTS’s default settings,
ngood = 10 and fbad = 0.01, but results are not very sen-
sitive to these parameter values. Third, Ci ≡

∑
j≤i Nj

and Cbad
i ≡

∑
j∈J Nj , J ≡ {j : j ≤ i, Nj < ngood}.

Fourth, the largest i is found such that Ni ≥ ngood and
Cbad

i ≤ fbadCi. Finally, all levels through i are used,
and rows corresponding to subsequent levels are blocked
in the reordered matrix.

For a hybrid algorithm that permits at most one
transition, an effective algorithm is robust to downward
and upward spikes in the plot of Ni. Examples of
ineffective algorithms are to transition at the earliest
level i such that Ni < ngood or the latest such that
Ni ≥ ngood. HTS’s algorithm is insensitive to spikes.

Level size as a function of level depends strongly on
matrix ordering. To capture nonmonotonicity of this
function, a hybrid algorithm could switch between two
methods multiple times. At present, HTS transitions just
once. Its transition method leads to useful partitions
for both noisy monotonically decreasing and concave
functions.

Figure 11: Data structures for recursively blocked part
of L factor. Blue, nonzero pattern; red, block structure;
green, data partition among threads in an MMP block.

2.2 Level Scheduling. HTS follows Park et al.’s [13]
pruned point-to-point level-scheduling algorithm for its
LS block. Their approach has two key ideas. First,
instead of using a global thread barrier between each
level, partition each level into tasks and implement
data dependencies with point-to-point synchronization.
Second, create a static task DAG in the symbolic
analysis phase, and prune it to remove redundant edges.
Each edge corresponds to a shared-memory variable on
which to spin-wait; hence pruning edges reduces the
number of variables and spin waits.

Figure 8 illustrates edge pruning. At left, each
of three levels has been split into two tasks, one per
thread, for a total of six tasks. Edges between task
nodes encode data dependencies; for example, task 4
depends on variables solved for by tasks 1 and 3. First,
every edge between tasks in the same thread can be
pruned because program execution order of the thread
assures that all variables are solved for in the correct
order. Second, one edge in a triangle of edges can be
pruned. For example, tasks 1, 3, and 4 form a triangle.
The edge between 1 and 4 can be pruned because task 1
is assuredly done when task 3 is done. Third, a triangle
can be created simply to induce a pruned edge. For
example, both tasks 3 and 5 depend on 0. 5 occurs in
program order after 3, so we can add an edge between
tasks 3 and 5. This forms a triangle, allowing us to
remove the edge between 0 and 5. Pruning can be done
on other than triangles in the graph, but Park et al. [13]

show that, in practice, pruning based on only triangles
and simpler rules handles almost all edges while saving
the cost of more analysis.

The number of edges can grow quadratically with
the number of threads because it is possible for a task
to depend on all tasks in the previous level. Symbolic
analysis can be done in parallel, but quadratic growth
in edges implies the approach is not naively scalable.
Practical details mitigate this problem. First, LS is
either applied only to problems for which it is effective
or, in a hybrid triangular solver, to only the part
of the problem for which it is effective. Hence the
quadratic-growth case tends not to occur in practice.
Second, edge pruning work can be reduced substantially
by the following procedure. Consider a task t with
dependencies on tasks d ≡ {di}; each task di is
dependent on tasks ci ≡ {ci,j}. A key step in edge
pruning is to intersect the set d against the set ci.
If a dependency is common to the two, then there
is a triangle of edges, and one edge can be removed.
An important implementation detail is to preprocess
d to produce a smaller set d′ with which to perform
intersections. First, suppose t depends on multiple tasks
owned by the same thread; then d′ contains only the
task at the latest level in the schedule. Second, if a
dependency di is only one level shallower than t, then
it cannot be pruned, and also it will not appear in any
ci, so d′ does not contain it. A final implementation
detail supports these dependency pruning rules: order
dependency lists by thread, then by level.

Another implementation detail that is important in
the solution phase is to symmetrically permute the LS
part to group all rows that belong to a thread together
[13], producing a nonzero pattern like that illustrated
in Figure 9. Each color corresponds to a thread, and
horizontal lines separate tasks, and so levels, within a
thread. The nonzeros are predominantly in diagonal
blocks, increasing data locality in access to the RHS
and solution relative to the original ordering.

2.3 Recursive Blocking. HTS uses recursive block-
ing (RB) for the blocked part. Each block stores its
data in any of a number of formats, and computes in
any of a number of ways, depending on just its data.

Figure 10 summarizes choices schematically. At
top, a triangle is blocked recursively. At each level of the
recursion, there is one MMP block and two on-diagonal
triangles. Each triangle may then be blocked. Each
MMP block contains data in sparse (CSR in HTS) or
dense (row major in HTS) format. In addition, each
block’s MMP can be computed in serial or parallel.
At Figure 10 bottom, on-diagonal triangles and MMP
blocks at the leaf level can be treated in two ways.

At left, each block’s computation is serial: a serial
sparse or dense triangular solution, and a serial sparse or
dense MMP. The MMP block is serial because otherwise
it would not be at the leaf level of the recursion
tree. At Figure 10 right, the on-diagonal triangles are
inverted in the numerical phase; in the solution phase,
a parallel MMP is computed. The inverse of an on-
diagonal triangular matrix is computed by substitution
independently by column, corresponding to Method 1
in [7].

Recursive partitioning depends on three values.
The first is the minimum block size. The second is
the size of the block to split; it is bisected if the third
value is not relevant and if the block is larger than the
minimum block size. The third value is a list of favorable
split points computed before recursive partitioning. A
favorable split point is one that exploits on-diagonal
separability. Figure 11 illustrates these procedures. A
triangle with small dense blocks (nonzero pattern is
blue) is recursively partitioned. Blocks are outlined in
red. Notice the first split is not an even bisection of
the triangle; at the top-right corner of the largest MMP
block, we see that the split exploits structure in the
on-diagonal values. There are at least five instances of
this behavior in Figure 11. A green rectangle outlines
the row-oriented data that belong to a thread within
an MMP block. Each thread can represent its data
in dense row-major or CSR formats. A thread owns
a block of contiguous rows. In HTS, currently density is
determined based on fraction of nonzeros in a minimal
rectangle encompassing the nonzeros in these rows;
an improved implementation would further partition
nonzeros in the column direction to find dense subblocks
within a thread’s data. In this example, the on-diagonal
triangles store dense inverses. These data are also
partitioned among threads, with load balance based on
nonzeros, but the corresponding green rectangles are
omitted in Figure 11. Both MMP and on-diagonal
triangular blocks can choose to use fewer threads than
are available, if there is not sufficient data in the block
to use all threads.

2.4 Phases. The symbolic analysis phase determines
the level schedule, the hybrid transition, the recursive
block structure, and the task DAG for the level sched-
ule. The symbolic analysis phase is parallelized. How-
ever, because it does substantial work, it requires sub-
stantially more time than the other two phases. For this
reason, HTS is best suited to problems having a sequence
of triangular systems with fixed nonzero pattern.

The numerical phase moves values from the caller’s
triangle into the internal data structures created in the
symbolic analysis phase. This is an embarrassingly

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Straightforward reference serial trisolver speedup w.r.t. MKL trisolver

c
o

p
te

r2

g
a

s
_

s
e

n
s
o

r

m
a

tr
ix

-n
e

w
_

3
a

v
4

1
0

9
2

x
e

n
o

n
2

c
-7

1

s
h

ip
s
e

c
1

x
e

n
o

n
1

g
7

ja
c
1

6
0

g
7

ja
c
1

4
0

s
c

m
a

rk
3

ja
c
1

2
0

m
a

rk
3

ja
c
1

0
0

s
c

c
t2

0
s
ti
f

v
a

n
b

o
d

y

n
c
v
x
b

q
p

1

d
a

w
s
o

n
5

v
e

n
k
a

t5
0

c
-5

9

2
D

_
5

4
0

1
9

_
h

ig
h

K
g

ri
d

g
e

n
a

e
p

b
3

to
rs

o
2

fi
n

a
n

5
1

2

tw
o

to
n

e

to
rs

io
n

1

ja
n

9
9

ja
c
1

2
0

b
o

y
d

1

c
-7

3
b

h
v
d

c
2

ra
ja

t1
6

h
c
ir
c
u

it

Ivy Bridge

KnightsCorner

Figure 12: Comparison of benchmark serial trisolvers.

parallel operation. The numerical phase is separate
from the symbolic analysis phase so that a sequence of
triangular matrices sharing the same nonzero pattern
can use just one symbolic analysis.

The solution phase solves a triangular system for
one or more right hand sides in batch, and is intended
to be called sequentially many times.

HTS’s current implementation requires that the
number of threads be the same in each phase. A useful
future improvement would be to allow more threads—
typically, twice as many—in the numerical and solution
phases than in the symbolic analysis phase. Using both
hardware threads within a conventional CPU core tends
to give a little speedup in the numerical and solution
phases over using just 1 thread per CPU core, but it
tends to slow the symbolic analysis phase substantially,
as demonstrated in §3.

2.5 Software. HTS is open source software available
in Trilinos [8]. It uses C++98 and OpenMP 3.

The caller indicates the number of threads HTS may
use, but HTS internally may throttle the number of
threads at the granularity of level set and block.

3 Results.

The Intel compiler suite version 15.0.2 was used. Two
platforms were used: an Intel Xeon Ivy Bridge, CPU
E5-2670 v2, 2.50GHz, 20 cores, 10 cores per socket,
2 hardware threads per core, 256 GB memory; and
Intel Xeon Phi Knights Corner, 1.238 GHz, 61 cores,
4 hardware threads per core, 16 GB memory.

Results were obtained for triangular systems in-
duced by the ordering and LU factorization of UMF-
PACK [5] integrated into the lu command in Mat-
lab. However, HTS does not know about the factoriza-
tion; it analyzes and solves a triangular system based
only on the nonzero pattern of the triangular matrix.
Each datum corresponds to a computation including

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Solve phase speedup w.r.t. MKL trisolver

UMFPACK LU, Ivy Bridge, 20 threads

OMP_PROC_BIND=spread OMP_PLACES=cores

c
o

p
te

r2

g
a

s
_

s
e

n
s
o

r

m
a

tr
ix

-n
e

w
_

3

a
v
4

1
0

9
2

x
e

n
o

n
2

c
-7

1

s
h

ip
s
e

c
1

x
e

n
o

n
1

g
7

ja
c
1

6
0

g
7

ja
c
1

4
0

s
c

m
a

rk
3

ja
c
1

2
0

m
a

rk
3

ja
c
1

0
0

s
c

c
t2

0
s
ti
f

v
a

n
b

o
d

y

n
c
v
x
b

q
p

1

d
a

w
s
o

n
5

v
e

n
k
a

t5
0

c
-5

9

2
D

_
5

4
0

1
9

_
h

ig
h

K

g
ri
d

g
e

n
a

e
p

b
3

to
rs

o
2

fi
n

a
n

5
1

2

tw
o

to
n

e

to
rs

io
n

1

ja
n

9
9

ja
c
1

2
0

b
o

y
d

1

c
-7

3
b

h
v
d

c
2

ra
ja

t1
6

h
c
ir
c
u

it

Level scheduling

Recursive blocking

Hybrid

Figure 13: Results on 20-core Intel Ivy Bridge. Ma-
trices are ordered by decreasing (nnz(L) + nnz(U))/N .
Recursive blocking is favored to left and level scheduling
to right; monolithic solver performance crosses at about
middle.

permutation and scaling of the RHS, solution of the
L and U systems, and permutation of the solution.
A datum is speedup of this sequence of computations
using HTS relative to that using Intel MKL’s serial
mkl cspblas dcsrtrsv. However, this speedup can be
transformed to one with respect to a straightforward se-
rial trisolver, provided by HTS for reference, by using the
comparison in Figure 12. Finally, a datum is a median
of measurements from at least five runs, with all ma-
trices run once before the next run to capture system
variability. Within each run, the solution phase is run
a few times to bring the system into steady state; then
the mean time over several tens of solutions is recorded.

Matrices are from the University of Florida Sparse
Matrix Collection [6]. For detailed analysis, 31 matrices
meeting certain criteria were randomly selected from the
set of over 800 matrices used overall. These matrices
have N ≥ 40 thousand, N < 190 thousand, with
a median of approximately 55 thousand. In figures,
they are ordered by decreasing (nnz(L) + nnz(U))/N .
Thus, in figures, recursive blocking is generally more
effective to the left, and level scheduling is generally
more effective to the right.

Figures 13 and 14 show speedup of the monolithic
LS, monolithic RB, and hybrid methods on, respec-

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Solve phase speedup w.r.t. MKL trisolver

UMFPACK LU, Knights Corner, 240 threads

KMP_AFFINITY=compact

c
o

p
te

r2

g
a

s
_

s
e

n
s
o

r

m
a

tr
ix

-n
e

w
_

3

a
v
4

1
0

9
2

x
e

n
o

n
2

c
-7

1

s
h

ip
s
e

c
1

x
e

n
o

n
1

g
7

ja
c
1

6
0

g
7

ja
c
1

4
0

s
c

m
a

rk
3

ja
c
1

2
0

m
a

rk
3

ja
c
1

0
0

s
c

c
t2

0
s
ti
f

v
a

n
b

o
d

y

n
c
v
x
b

q
p

1

d
a

w
s
o

n
5

v
e

n
k
a

t5
0

c
-5

9

2
D

_
5

4
0

1
9

_
h

ig
h

K

g
ri
d

g
e

n
a

e
p

b
3

to
rs

o
2

fi
n

a
n

5
1

2

tw
o

to
n

e

to
rs

io
n

1

ja
n

9
9

ja
c
1

2
0

b
o

y
d

1

c
-7

3
b

h
v
d

c
2

ra
ja

t1
6

h
c
ir
c
u

it

Level scheduling

Recursive blocking

Hybrid

Figure 14: Results on 61-core Intel Xeon Phi Knights
Corner.

tively, Ivy Bridge and Knights Corner. (All figures list
thread and thread affinity data.) HTS was used as the
implementation for all three solvers. The order of matri-
ces from left to right induces a crossover point in about
the middle of each plot at which the two monolithic ap-
proaches switch. The hybrid method is uniformly the
best.

Figures 15 and 16 show results again for each archi-
tecture. For Ivy Bridge, results are shown for 10 threads
(1 thread/core, 1 socket), 20 threads (1 thread/core, 2
sockets) and 40 threads (2 threads/core, 2 sockets). For
Knights Corner, compact thread affinity is used so that
60 threads use 15 cores with 4 threads/core, 120 threads
use 30 cores, and 240 threads use 60 of the 61 cores. In
each figure, the top plot shows solution phase speedup
relative to MKL’s serial triangular solver. The middle
plot shows the numerical phase time, i.e., the amount
of time it takes to load new numbers into HTS’s data
structures. Time is expressed in terms of parallel solu-
tion time. On Ivy Bridge, it takes about 8 times longer
to load new numbers into HTS than too solve an equa-
tion; on Knights Corner, the relative time is slightly
less. The bottom plot shows the time of the symbolic
analysis phase in terms of MKL solution time. On Ivy
Bridge, using hardware threads in this phase gives poor
performance. At 20 threads, symbolic analysis takes
about 5 times longer than a serial solve. On Knights
corner, the relative time is again a little less.

0

2

4

6

8

10

12

14

(Numeric phase time) / (parallel solve time)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Solve phase speedup w.r.t. MKL trisolver

UMFPACK LU, Ivy Bridge, OMP_PROC_BIND=spread OMP_PLACES=cores

10 threads

20 threads

40 threads

0

2

4

6

8

10

(Symbolic phase time) / (serial solve time)

c
o
p
te

r2

g
a
s
_
s
e
n
s
o
r

m
a
tr

ix
-n

e
w

_
3

a
v
4
1
0
9
2

x
e
n
o
n
2

c
-7

1

s
h
ip

s
e
c
1

x
e
n
o
n
1

g
7
ja

c
1
6
0

g
7
ja

c
1
4
0
s
c

m
a
rk

3
ja

c
1
2
0

m
a
rk

3
ja

c
1
0
0
s
c

c
t2

0
s
ti
f

v
a
n
b
o
d
y

n
c
v
x
b
q
p
1

d
a
w

s
o
n
5

v
e
n
k
a
t5

0

c
-5

9

2
D

_
5
4
0
1
9
_
h
ig

h
K

g
ri
d
g
e
n
a

e
p
b
3

to
rs

o
2

fi
n
a
n
5
1
2

tw
o
to

n
e

to
rs

io
n
1

ja
n
9
9
ja

c
1
2
0

b
o
y
d
1

c
-7

3
b

h
v
d
c
2

ra
ja

t1
6

h
c
ir
c
u
it

Figure 15: Results on 20-core Intel Ivy Bridge. Hard-
ware threads are used for 40-thread results.

Figures 17 and 18 show results for over 800 matrices
from the collection. Each point corresponds to a matrix.
Speedup is plotted against size of a matrix N . Although
20 and 240 threads, respectively, were provided to HTS,
it is unlikely that they were all used on the smallest
matrices because HTS throttles thread count on small
problems. Larger matrices provide greater opportunity
for efficient parallelization. The red line at N shows the
median speedup for all matrices having at least N rows.
Hence, for Ivy Bridge, the median speedup factor for all
matrices with N ≥ 104 is approximately 9.

4 Conclusions.

Figures 13 and 14 provide substantial evidence that
a hybrid triangular solver is robust across a range of
problem types. Because the monolithic solvers are
HTS with parameters set to force monolithic solution
algorithms, we conclude that a hybrid approach yields
a triangular solver that is often substantially faster
than the fastest of the subsolvers for a given problem.
Hybridization gives each subsolver a subproblem better

0

2

4

6

8

10

(Symbolic phase time) / (serial solve time)

c
o

p
te

r2

g
a

s
_

s
e

n
s
o

r

m
a

tr
ix

-n
e

w
_

3

a
v
4

1
0

9
2

x
e

n
o

n
2

c
-7

1

s
h

ip
s
e

c
1

x
e

n
o

n
1

g
7

ja
c
1

6
0

g
7

ja
c
1

4
0

s
c

m
a

rk
3

ja
c
1

2
0

m
a

rk
3

ja
c
1

0
0

s
c

c
t2

0
s
ti
f

v
a

n
b

o
d

y

n
c
v
x
b

q
p

1

d
a

w
s
o

n
5

v
e

n
k
a

t5
0

c
-5

9

2
D

_
5

4
0

1
9

_
h

ig
h

K

g
ri
d

g
e

n
a

e
p

b
3

to
rs

o
2

fi
n

a
n

5
1

2

tw
o

to
n

e

to
rs

io
n

1

ja
n

9
9

ja
c
1

2
0

b
o

y
d

1

c
-7

3
b

h
v
d

c
2

ra
ja

t1
6

h
c
ir
c
u

it

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Solve phase speedup w.r.t. MKL trisolver

UMFPACK LU, Knights Corner, KMP_AFFINITY=compact

60 threads

120 threads

240 threads

0

2

4

6

8

10

12

14

(Numeric phase time) / (parallel solve time)

Figure 16: Results on 61-core Intel Knights Corner.
Affinity setting fills all four threads of one core before
using another core. Hence 60 threads use 15 cores.

suited to it than the full problem.
There are at least four broad areas for further in-

vestigation. First, a hybrid triangular solver could be
designed to transition between two or more subsolvers
multiple times. Second, other algorithms for the deter-
mination of transition points can be explored. Third,
various subsolvers could be plugged into a hybrid trian-
gular solver rather than the fixed two in HTS. Fourth,
hybridization is independent of architecture or compu-
tation model; for example, two triangular solvers with
GPU implementations could be combined to create a
GPU triangular solver that is effective across a broader
range of matrices than each subsolver separately.

Acknowledgments. I thank Erik Boman, Joshua
Booth, Eric Cyr, Clark Dohrmann, William Held, Mark
Hoemmen, Kyungjoo Kim, Stephen Olivier, Aftab Pa-
tel, Andrey Prokopenko, and Siva Rajamanickam for
many helpful discussions, and three anonymous review-

N

10 3 10 4 10 5 10 6

S
o
lv

e
 p

h
a
s
e
 s

p
e
e
d
u
p
 w

.r
.t
.
M

K
L
 t
ri
s
o
lv

e
r

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

UMFPACK LU, Ivy Bridge

20 threads, 822 UF matrices

OMP_PROC_BIND=spread OMP_PLACES=cores

Median for ≥ N

Figure 17: Results on 20-core Ivy Bridge for solve phase
of 822 UF matrices. Ordinate is speedup relative to
MKL serial trisolver, obtained as maximum speedup
over all thread trials. Coordinate is number of rows
N . A dot corresponds to one matrix. Red line at N is
median speedup for all matrices having at least N rows.

ers for their helpful comments.

References

[1] F. L. Alvarado and R. Schreiber, Optimal parallel
solution of sparse triangular systems, SIAM J. Sci.
Comput., 14 (1993), pp. 446–460.

[2] H. Anzt, E. Chow, and J. Dongarra, Iterative sparse
triangular solves for preconditioning, Euro-Par 2015:
Parallel Processing, Springer Berlin Heidelberg, 2015,
pp. 650–661.

[3] E. Bavier, M. Hoemmen, S. Rajamanickam, and H.
Thornquist, Amesos2 and Belos: Direct and iterative
solvers for large sparse linear systems, Scientific Pro-
gramming, 20 (2012), pp. 241–255.

[4] E. Chow and A. Patel, Fine-grained parallel incomplete
LU factorization, SIAM J. Sci. Comput., 37 (2015),
pp. 169–193.

[5] T. A. Davis, Algorithm 832: UMFPACK V4.3—
an unsymmetric-pattern multifrontal method, ACM
TOMS, 30 (2004), pp. 196–199.

[6] T. A. Davis and Y. Hu, The University of Florida
Sparse Matrix Collection, ACM TOMS, 38 (2011),
pp. 1–25.

[7] J. J. Du Croz and N. J. Higham, Stability of methods
for matrix inversion, IMA J. Num. Ana., 12 (1992),
pp. 1–19.

N

10 3 10 4 10 5 10 6

S
o
lv

e
 p

h
a
s
e
 s

p
e
e
d
u
p
 w

.r
.t
.
M

K
L
 t
ri
s
o
lv

e
r

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

UMFPACK LU, Knights Corner

240 threads, 824 UF matrices

KMP_AFFINITY=compact

Median for ≥ N

Figure 18: Results on 61-core Intel Knights Corner. See
Fig. 17 for explanation.

[8] M. A. Heroux, et al, An overview of the Trilinos project,
ACM TOMS, 31 (2005), pp. 397–423.

[9] N. J. Higham and A. Pothen, Stability of the partitioned
inverse method for parallel solution of sparse triangular
systems, SIAM J. Sci. Comput., 15 (1994), pp. 139–148.

[10] G. Karypis and V. Kumar, A fast and high quality mul-
tilevel scheme for partitioning irregular graphs, SIAM
J. Sci. Comput., 20 (1999), pp. 359–392.

[11] M. Martone, S. Filippone, S. Tucci, M. Paprzy-
cki, and M. Ganzha, Utilizing recursive storage in
sparse matrix-vector multiplication—preliminary con-
siderations, in CATA, (2010), pp. 300–305.

[12] M. Naumov, Parallel solution of sparse triangular
linear systems in the preconditioned iterative methods
on the GPU, Tech. Report NVR-2011-001, NVIDIA,
2011.

[13] J. Park, M. Smelyanskiy, N. Sundaram, and
P. Dubey, Sparsifying synchronizations for high-
performance shared-memory sparse triangular solver,
ISC, 2014.

[14] Y. Saad, Krylov subspace methods on supercomputers,
SIAM J. Sci. and Stat. Comput., 10 (1989), pp. 1200–
1232.

[15] A. C. N. Van Duin, Scalable parallel preconditioning
with the sparse approximate inverse of triangular ma-
trices, SIAM J. Matrix Ana. and App., 20 (1999),
pp. 987–1006.

[16] M. Wolf, M. Heroux, and E. Boman, Factors impacting
performance of multithreaded sparse triangular solve,
in High Performance Computing for Computational
Science, VECPAR 2010, Lec. Notes in Comp. Sci.,
Springer Berlin Heidelberg, 6449, 2011, pp. 32–44.

