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Hypergraph Models for Data Science ) i,

= Explore usage of hypergraphs for modeling complex,
multiway (non-pairwise) relational data

= Goal: Improve data analysis — more accurate, faster

= Questions we are trying to address

= Why should we use hypergraphs?

= When are hypergraph models preferable over graph models?

= What hypergraph model should be used?

= How should we compute the solution to our hypergraph problems?
= Specific problem

= Data clustering: Determine groupings of data objects given sets of
relationships between/amongst objects



What is a hypergraph?

Hyperedges: Emails

Vertices: Users

Relational data / hypergraph
incidence matrix
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Bob
Am Carl
E Dan
Hyperedges connect Edges connect
1 or more vertices 2 vertices

= Generalizations of graphs

= Hyperedges represent multiway relationships between vertices

= Convenient representations of relational data

= Each email (subset of users) can be represented by hyperedge

= Relational data often stored as hypergraph incidence matrices (e.g.,

D4AM* tables
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Hypergraph to Graph: Clique Expansion @

Hyperedges Graph Edges

Vertices
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(f(%))
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Graph obtained through clique expansion of hypergraph




Why hypergraphs? h) .

Bob

Carl

Dan

= Typically graph models lose information
= Were Carl, Dan, and Ed involved in same email?
= Fix: multi-graphs + metadata, changes to algorithms

Hypergraphs represent multiway relationships unambiguously




Why hypergraphs? ) .,
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= Hypergraphs require significantly less storage space than
graphs generated using cliqgue expansion

= Hypergraph incidence matrices require fewer operations for
matrix-vector multiplication

Hypergraphs have computational advantages
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" |ntroduction to Hypergraphs
=) = Spectral clustering

= Software implementation

= Spectral clustering results

= Conclusions
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Motivating Problem: Clustering of Relational Data (™ =

= Determine groupings of data objects given sets of relationships
amongst those objects

= Relationships may be represented as graph or hypergraph

= Focus: spectral clustering
= Compute the smallest eigenpairs of the graph or hypergraph Laplacian
= Normalized graph Laplacian:

Le=1-D*(HeHE — Dyg)D.2?
» Hypergraph Laplacian (Zhou, et al., 2006)
Ln=1-D}*HyD ‘HED, /?

= Eigenvectors used to group vertices into clusters (sorting, kmeans++, ...)

(hyper)graph . : vertex
incidence (hyper)graph eigenvectors to cluster
matrix Laplacian: L of L:V find clusters assignments




Sandia
Laplacians: To Form or not to Form )l

= Laplacians:
Le=1-D*(HeHE — Dyg)D.2?
Ln=1-D, 1/2HHD SHED 2

= One option: Explicitly form Laplacian
= |nstead: Define application of Laplacian as series of SpMV
and vector addition operations
= Store incidence matrix, degree matrices
= Reason 1: Matrix-matrix products are expensive

= Reason 2: Dynamic graphs — easier to change incidence matrix than
Laplacian

Computational advantages to not explicitly forming Laplacians
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" |ntroduction to Hypergraphs
= Spectral clustering

m) = Software implementation
= Spectral clustering results

= Conclusions
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TriData: Trilinos for Data Analysis @

= C++ Trilinos based software for data analytics problems
= High performance (target: billions of vertices)
= Early focus on spectral methods
= Hypergraphs and graphs

= Supports several eigensolvers available in Anasazi

= LOBPCG, TraceMin-Davidson, Riemannian Trust Region, Block Krylov-
Schur

= Very fast convergence for Laplacians (especially hypergraphs)
= Trilinos/Anasazi supports modern HPC architectures

= MPI+X

= Where X = {multicore, GPUs, Xeon Phi...}




Hypergraph Generator ) i

Ooo'o o

aibrs .
= Randomly generated hypergraphs { m:!.:;f’:!}‘“: "
= Stochastic block-like ol i et % ey
= Can generate multiple random 2| ".:'.'.,; ]
instances for each parameter set é ) 4:;:.. )
= Parameterized Generator E’so 0 ::5!5-:;':'5 "o
= Clusters | .'E:s::..f:" ' |
= Vertices per cluster S 1;:":3 ,f
= # of intra/inter-cluster hyperedges : o :l',:!:.s&.:'. . |
= Intra/ -cluster hyperedge cardinalities’ *© = [ * Eggesé A

Incidence Matrix: Hy,

 Generate real-world inspired hypergraphs at different scales
 Generates “ground truth”
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" |ntroduction to Hypergraphs
= Spectral clustering
= Software implementation

m) = Spectral clustering results
= Clustering Quality

= Runtimes
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Numerical Experiments .

= Experiments conducted on workstation with 128 GB of
memory using 16 cores

= Generated Hypergraphs
= Number of clusters: 5
= Vertices per cluster (mean): 10,000
" Intra/inter-cluster hyperedges (mean): 20,000 / 200,000
" |ntra/inter-cluster hyperedge cardinality (mean): 3-10 / 3-10

= “Quality” of our clustering measured using the Jaccard index
= T =true cluster assignments —”ground truth” from generator

= P =predicted cluster assignments
= J(T,P)=1 means matches “ground truth” exactly

_|rnp
- |TUP

J(T, P)
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= Spectral clustering
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) = Clustering Quality
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Clustering Quality: Hyperedge Cardinality @&z,

Graph Model
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Jaccard Index=1 means clusters match "ground truth” exactly

General trend: hypergraph based clusters more similar to
“ground truth” clusters than graph based clusters
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= Spectral clustering
= Software implementation

= Spectral clustering results

= Clustering Quality
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Runtimes: Hyperedge Cardinality
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Hyperedge cardinality

Runtime ratio = graph runtime / hypergraph runtime

Hypergraph models up to 30x faster than graph models
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Eigensolver Iterations: Hyperedge Cardinality ().
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Hyperedge cardinality Hyperedge cardinality

= Hypergraph required fewer LOBPCG iterations than graph

= Better separation of eigenvalues in hypergraph Laplacian

Hypergraph models converged faster (up to 6x) than graph models




Operator Apply Time: Hyperedge Cardinality ™ e
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Laplacian operator apply more efficient for hypergraph
model than graph model (up to 17x faster)
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Summary/Conclusions ) .

= Explored hypergraphs for modeling relational data
= TriData software for Linear Algebra Based Data Analytics
= Built on Trilinos framework (target: billions of vertices)
= Compelling advantages for computing on incidence matrices

= Avoid forming Laplacians, adjacency matrices when possible

= Hypergraphs extremely promising for data analytics

= Better model than graphs for multiway relational data (spectral
analysis)

= |mprovements in quality

= Significant improvements in runtime (30x)




Future Work ) &

= Target larger problems
= Currently solving problems of O(100k) vertices
= Eventual target: O(1 billion) vertices
= Performance improvements to software
= 2D partitioning — important for scalability beyond O(10k) processors
= |mproved efficiency of parallel hypergraph generator

= Promising problems for hypergraphs: community and
anomaly detection; centrality analysis; information
propagation; directed hypergraphs for complex, causal
relationships
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What is a hypergraph? .

Graph Hypergraph
Bob

Emails

G Bob

Users

Ed

Relational Data

= Convenient representation of relational data
= Each email can be represented by hyperedge
* Emails/hyperedges consist of subsets of users




What is a hypergraph? ) .

Hyperedges: Emails Hypergraph

Graph
Bob

Carl

Vertices: Users

Dan

Hypergraph incidence >~ = Ed
matrix

= Relational data is often stored as hypergraph incidence matrix
= E.g.,, DAM* tables

= Graph obtained through clique expansion of hypergraph
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Hypergraph clique expansion ) s,

Hyperedges Graph Edges
A B
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Weighted hypergraph clique expansion @JE:.

Hyperedges Graph Edges
A
B
C Yo | Va Vs Vs | VA
» Ya Ya Vs Y Y
E Yo | Va Vs Va | Vs
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A /
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Motivating Problem: Clustering Relational Data ) i,

= Determine groupings of data objects given sets of
relationships amongst those objects

= Relationships may be represented as graph or hypergraph
= Graphs represent pairwise relationships
= Hypergraphs represent relationships among groups of things

= Applications
" Finding emerging research trends from documents (Jung et al., 2014)

= Clustering categorical data (Gibson et al., 2000)
" |mage segmentation (Agarwal et al., 2005)

= Metabolic networks (Guimera et al., 2004)




Related Hypergraph Work ) .

= Data partitioning (Computational science & engineering)

= Circuit layout, parallel processing, ...
= Hypergraph eigencentrality (Bonacich, et al., 2004)

= Analysis of attacks on Caribbean settlements

= Semi-supervised Learning (Tsuda, 2005)

= |nformation propagation across hypergraph, prior knowledge

= Biological networks (Klamt, et al., 2009)

= Biochemical reactions, finding related proteins (functional groups)

= Caveat emptor — hypergraphs
= Representations may increase complexity of algorithms (e.g., MST)

= Avoid such problems




Unweighted graph vs hypergraph
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Graph Approach
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Hypergraph Approach
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Mean intra-cluster cardinality = 3
Number of clusters 4, mean size 100
Mean number of inter-cluster edges: 800




Weighted graph vs hypergraph

. () e,
clustering

Graph Approach Hypergraph Approach
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Number of clusters = 4
Mean number of vertices = 100
Number of eigenvectors = 5
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Plot of eigenvalues
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Formulation of the eigenvalue
problem
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= Computing the smallest eigenpairs of

Lg=1-D,2*(HgHE — Dyo)D,t* L =1-D, *HyDAHE D M?

is equivalent to computing the largest eigenpairs of the
shifted Laplacians

Se =D M (HGHE — Dyo)DY? Sy =D, \HyD AHED }/?

= Computing the largest eigenpairs tends to be cheaper
= Laplacians are singular (but null space is known)

L., L, and S, are symmetric positive definite, but S, is not
= S, can be shifted even more to make it positive definite



Comparison of eigensolvers ) .
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What tolerance should we use? ) o,
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Intra/Inter-cluster 5
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How many eigenvectors should we
calculate?
1
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How many eigenvectors should we
calculate?
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number of eigenvectors

Less noisy data: P1 Number of clusters 10
Nodes per cluster 10,000

Intra/Inter-cluster 40,000

hyperedges 50,000
Intra/Inter-cluster 5
h-edge cardinality 5



How many eigenvectors should we
calculate?
1
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Runtimes: Eigensolver vs. K-means
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Should we compute the eigenpairs o@
the Laplacian or the shifted Laplacian?

P3
20
215 :
1
€10 -
€ W eigensolver
2 5 -
B k-means
0 -
graph shifted  hypergraph  shifted
Laplacian graph Laplacian hypergraph
Laplacian Laplacian
Number of clusters 10
Nodes per cluster 10,000
- Shifted graph | Hypergraph Shifted hypergraph Intra/Inter-cluster 20.000
Laplacian L, | Laplacian S, Laplacian L; Laplacian S, hyperedges 200,000
LOBPCG iterations 15.6 15.6 i e elusier 5
K-means iterations  56.9 79.4 31.8 28.1 h-edge cardinality 5




Should we compute the eigenpairs o@
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the Laplacian or the shifted Laplacian?

P3
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graph shifted graph hypergraph shifted
Laplacian Laplacian Laplacian hypergraph
Laplacian
Number of clusters 10
Nodes per cluster 10,000
1 1 hyperedges 200,000
LOBPCG iterations 15.6 15.6 i e elusier 5
K-means iterations  56.9 79.4 31.8 28.1 h-edge cardinality 5




Should the null space be provided ..
to k-means?

k
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5 10 15 5 10 15
# of eigenvectors used in k-means (withbof exgéspectrs used in k-means (with null-space)

= nClusters: 10

= nVerts: 10,000

= nEdges in cluster: 40,000

= nEdges between clusters: 50,000




Data Sets

Hyperedge
Cardlnallty

Number of clusters
Vertices per cluster®
Intra-cluster hyperedges®

Inter-cluster hyperedges®

Intra-cluster hyperedge cardinality*

Inter-cluster hyperedge cardinality*

= Generate hypergraph incidence matrices

10,000
40,000
50,000
5
5

= 4 different sets of parameters

= Different levels of difficulties
= 10 randomly generated hypergraphs for each parameter set

* Designates mean value

10,000
20,000
200,000
10

3

10,000
20,000
200,000
5

5
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10,000
20,000
200,000
3-10
3-10
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Clustering Quality: P1, P2, P3 ) .

0.9 -

M graph

0.7 -

B hypergraph

Jaccard Index

0.5 -

P1 P2 P3

Hypergraph based clusters more similar to “ground truth”
clusters than graph based clusters



Runtimes: P1, P2, P3 ) .
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Hypergraph models significantly more computationally
efficient than graph models (up to 30x faster)



lterations: P1, P2, P3 ) .
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= Hypergraph required fewer LOBPCG iterations than graph

= Better separation of eigenvalues in hypergraph Laplacian

= Hypergraph required fewer k-means iterations

Hypergraph models converged faster than graph models




Laplacian Operator Apply: P1, P2, P3 (@i

M graph

M hypergraph
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Time to apply Laplcian
Operator (s)

o
]

Laplacian operator apply more efficient for hypergraph
model than graph model (up to 12x faster)



Real Data — Hypergraph, 7 Clusters ) .
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= UCI ML Repository Zoo Data Set*
= Animals with 16 attributes (# legs, eggs, ...) + category

= Hypergraph Clustering vs. ground truth for 7 clusters
= Jaccard index: 0.815 (Graph model 0.743)
= Merged reptiles/amphibians, new category: sea mammals




Real Data — Graph, 7 Clusters ) .

Ground Truth Graph Clustering
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= Graph Clustering vs. ground truth for 7 clusters
= Jaccard index: 0.743
= Data harder for kmeans to separate

= Insects, birds, mammals, other invertebrates, ?




Real Data — Hypergraph, 3 Clusters

Ground Truth
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= UCI ML Repository Zoo Data Set*

= Merged into 3 clusters: mammals/reptiles/fish/amphibians, birds,

invertebrates
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Hypergraph Clustering
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= Hypergraph Clustering vs. ground truth for 3 clusters

= Jaccard index: 1.000 (Graph model 0.865)




Real Data — Graph, 3 Clusters ) .

Ground Truth Graph Clustering
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= Graph Clustering vs. ground truth for 3 clusters
= Jaccard index: 0.865




