

Advantages to Modeling Relational Data using Hypergraphs versus Graphs

*Michael Wolf, Alicia Klinvex, and Daniel
Dunlavy*

*Exceptional
service
in the
national
interest*

IEEE HPEC
14 September, 2016

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-4418 C.

Hypergraph Models for Data Science

- Explore usage of hypergraphs for modeling complex, multiway (non-pairwise) relational data
- **Goal:** Improve data analysis – more accurate, faster
- **Questions we are trying to address**
 - Why should we use hypergraphs?
 - When are hypergraph models preferable over graph models?
 - What hypergraph model should be used?
 - How should we compute the solution to our hypergraph problems?
- **Specific problem**
 - Data clustering: Determine groupings of data objects given sets of relationships between/amongst objects

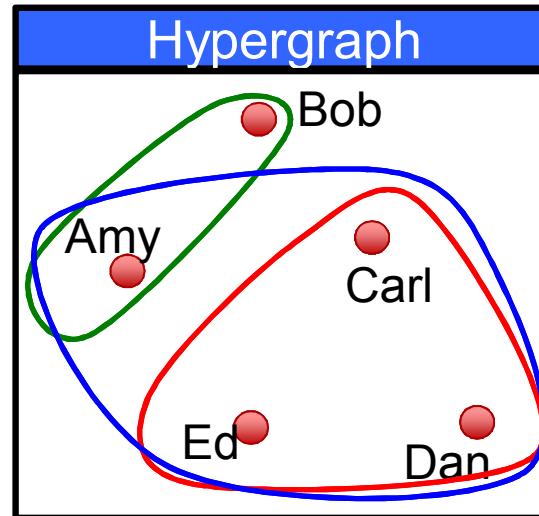
What is a hypergraph?

Hyperedges: Emails

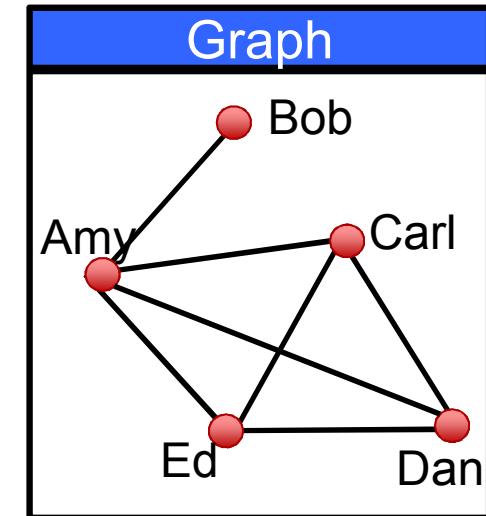
Vertices: Users

	1	2	3
Amy	1		1
Bob	1		
Carl		1	1
Dan		1	1
Ed		1	1

Relational data / hypergraph incidence matrix



Hyperedges connect 1 or more vertices



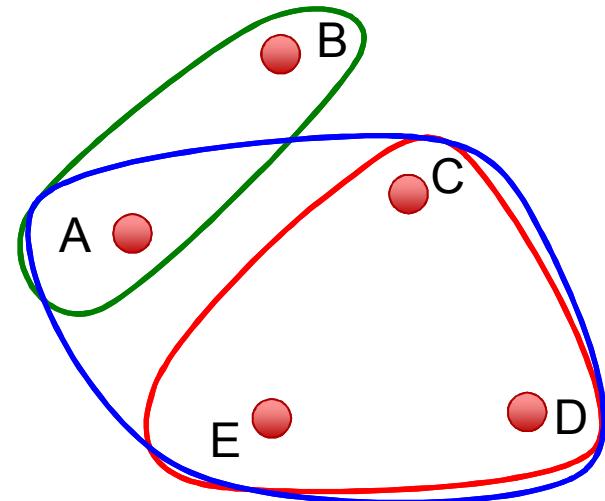
Edges connect 2 vertices

- Generalizations of graphs
 - Hyperedges represent multiway relationships between vertices
- Convenient representations of relational data
 - Each email (subset of users) can be represented by hyperedge
 - Relational data often stored as hypergraph incidence matrices (e.g., D4M* tables)

Hypergraph to Graph: Clique Expansion

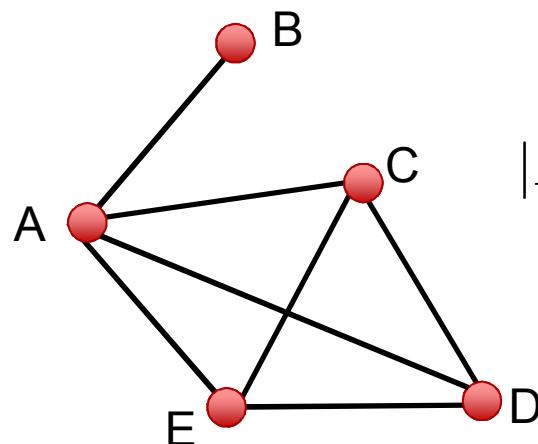
Hyperedges

	1	2	3
A	1		1
B	1		
C		1	1
D		1	1
E	1	1	1



Graph Edges

	1	2	3	4	5	6	7	8	9	10
A	1				1	1	1			
B	1									
C		1	1		1			1	1	
D		1		1		1		1		1
E			1	1			1		1	1



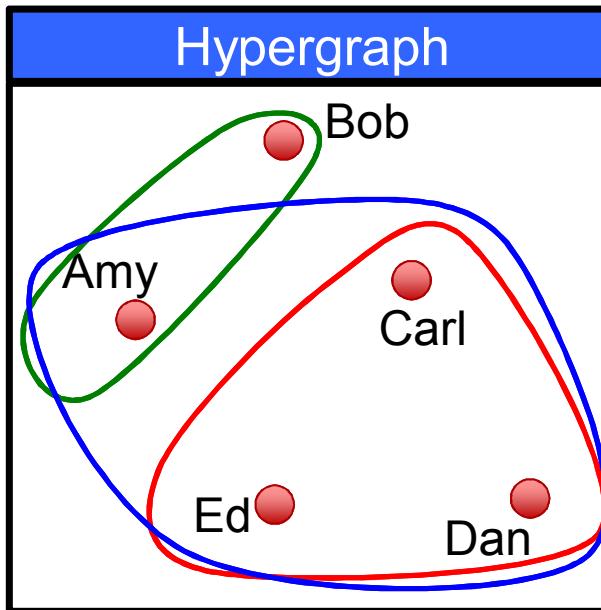
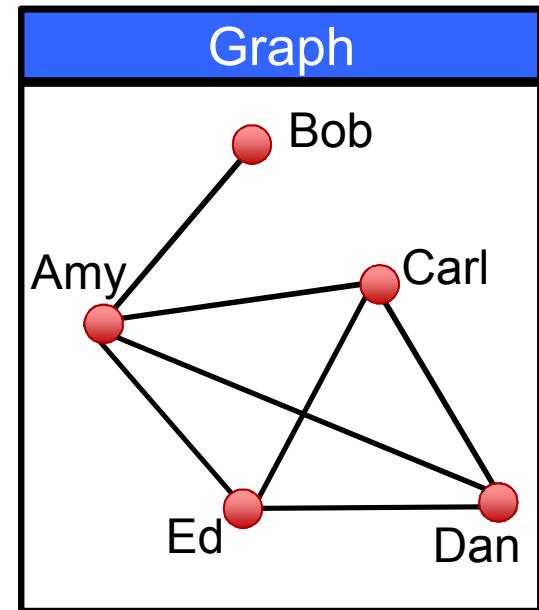
$$|E_g| = \sum_{e_h \in E_h} \binom{d(e_h)}{2}$$

hyperedge
cardinality

Graph obtained through clique expansion of hypergraph

Why hypergraphs?

	1	2	3
Amy	1		1
Bob	1		
Carl		1	1
Dan		1	1
Ed		1	1



- Typically graph models lose information
 - Were Carl, Dan, and Ed involved in same email?
 - Fix: multi-graphs + metadata, changes to algorithms

Hypergraphs represent multiway relationships unambiguously

Why hypergraphs?

1		1
1		
	1	1
	1	1
	1	1

Hypergraph incidence matrix

1				1	1	1			
1									
	1	1		1			1	1	
	1		1		1		1		1
		1	1			1		1	1

Graph Incidence matrix

$$|E_g| = \sum_{e_h \in E_h} \binom{d(e_h)}{2}$$

- Hypergraphs require significantly **less storage space** than graphs generated using clique expansion
- Hypergraph incidence matrices require **fewer operations** for matrix-vector multiplication

Hypergraphs have computational advantages

Outline

- Introduction to Hypergraphs
- ■ Spectral clustering
- Software implementation
- Spectral clustering results
- Conclusions

Motivating Problem: Clustering of Relational Data

- Determine groupings of data objects given sets of relationships amongst those objects
 - Relationships may be represented as graph or hypergraph
- Focus: **spectral clustering**
 - Compute the smallest eigenpairs of the graph or hypergraph Laplacian
 - Normalized graph Laplacian:

$$L_G = I - D_{vG}^{-1/2} (H_G H_G^T - D_{vG}) D_{vG}^{-1/2}$$

- Hypergraph Laplacian (Zhou, et al., 2006)

$$L_h = I - D_{vH}^{-1/2} H_H D_{eH}^{-1} H_H^T D_{vH}^{-1/2}$$

- Eigenvectors used to group vertices into clusters (sorting, **kmeans++**, ...)

Laplacians: To Form or not to Form

- Laplacians:

$$L_G = I - D_{vG}^{-1/2} (H_G H_G^T - D_{vG}) D_{vG}^{-1/2}$$

$$L_h = I - D_{vH}^{-1/2} H_H D_{eH}^{-1} H_H^T D_{vH}^{-1/2}$$

- One option: Explicitly form Laplacian
- Instead: **Define application of Laplacian as series of SpMV and vector addition operations**
 - Store incidence matrix, degree matrices
 - Reason 1: Matrix-matrix products are expensive
 - Reason 2: Dynamic graphs – easier to change incidence matrix than Laplacian

Computational advantages to not explicitly forming Laplacians

Outline

- Introduction to Hypergraphs
- Spectral clustering
- ■ Software implementation
- Spectral clustering results
- Conclusions

TriData: Trilinos for Data Analysis

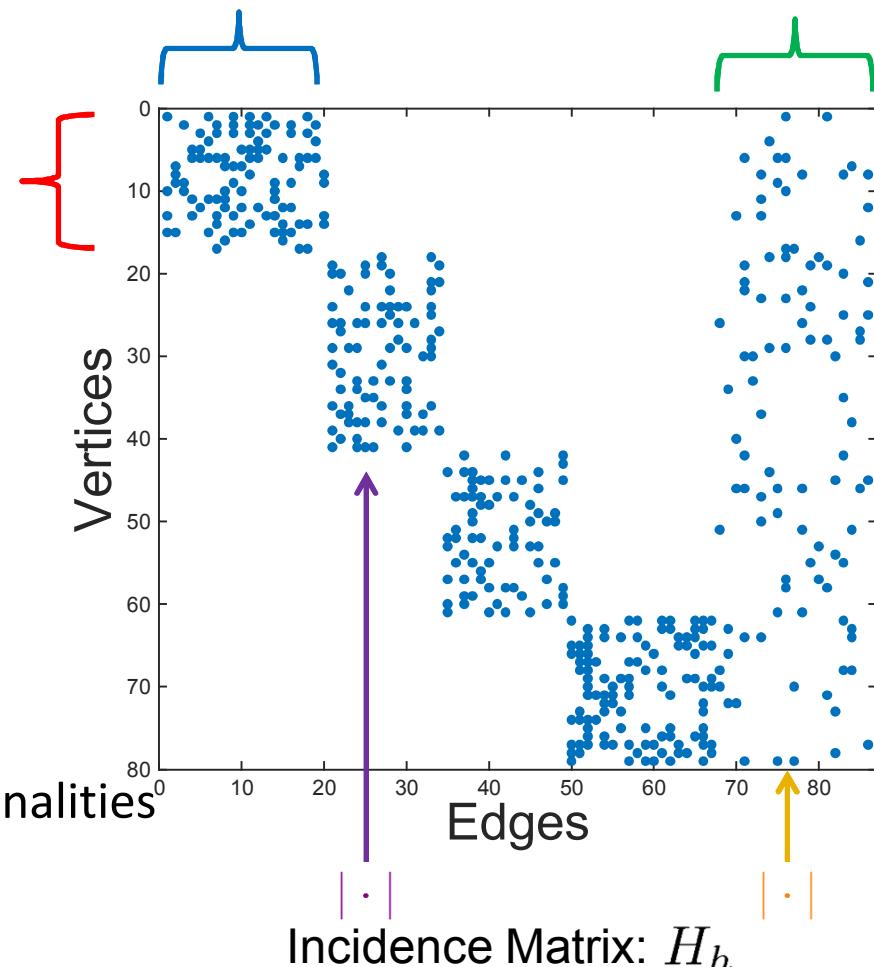
- C++ Trilinos based software for data analytics problems
 - High performance (target: billions of vertices)
 - Early focus on spectral methods
 - Hypergraphs and graphs
- Supports several eigensolvers available in Anasazi
 - LOBPCG, TraceMin-Davidson, Riemannian Trust Region, Block Krylov-Schur
 - Very fast convergence for Laplacians (especially hypergraphs)
- Trilinos/Anasazi supports modern HPC architectures
 - MPI+X
 - Where X = {multicore, GPUs, Xeon Phi...}

Hypergraph Generator

- Randomly generated hypergraphs
 - Stochastic block-like
 - Can generate multiple random instances for each parameter set

- Parameterized Generator

- Clusters
- Vertices per cluster
- # of intra/inter-cluster hyperedges
- Intra/Inter-cluster hyperedge cardinalities



- Generate real-world inspired hypergraphs at different scales
- Generates “ground truth”

Outline

- Introduction to Hypergraphs
- Spectral clustering
- Software implementation
- ➡■ Spectral clustering results
 - Clustering Quality
 - Runtimes
- Conclusions

Numerical Experiments

- Experiments conducted on workstation with 128 GB of memory using 16 cores
- Generated Hypergraphs
 - Number of clusters: 5
 - Vertices per cluster (mean): 10,000
 - Intra/inter-cluster hyperedges (mean): 20,000 / 200,000
 - Intra/inter-cluster hyperedge cardinality (mean): **3-10 / 3-10**
- “Quality” of our clustering measured using the Jaccard index
 - T = true cluster assignments – “ground truth” from generator
 - P = predicted cluster assignments
 - $J(T, P) = 1$ means matches “ground truth” exactly

$$J(T, P) = \frac{|T \cap P|}{|T \cup P|}$$

Outline

- Introduction to Hypergraphs
- Spectral clustering
- Software implementation
- Spectral clustering results

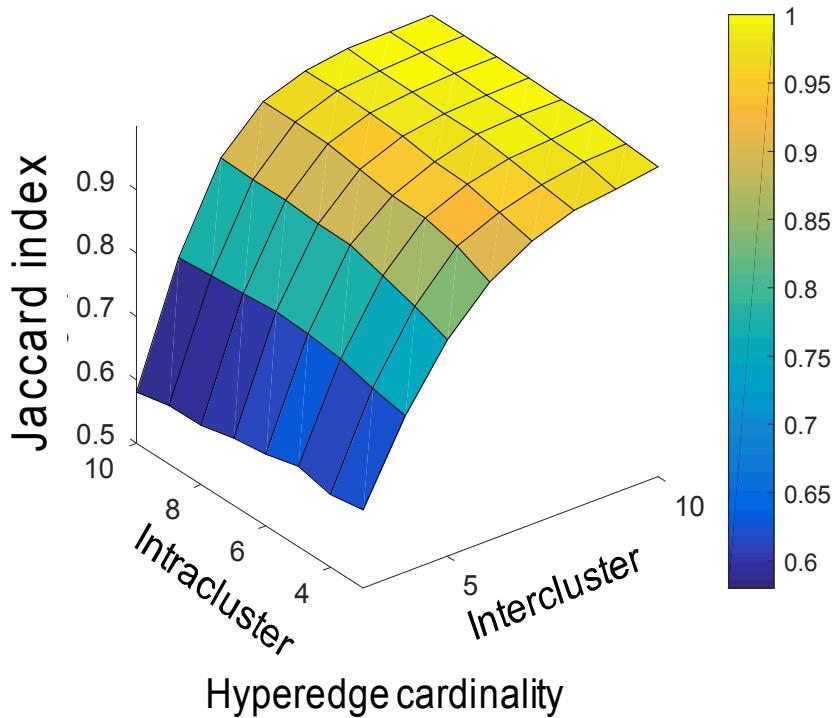
→

- Clustering Quality
- Runtimes

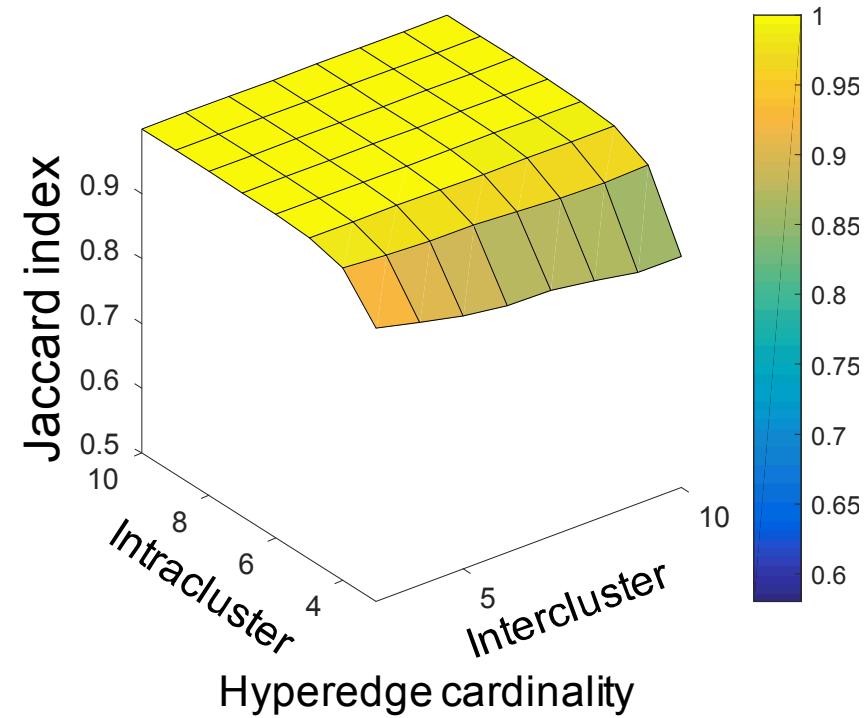
- Conclusions

Clustering Quality: Hyperedge Cardinality

Graph Model



Hypergraph Model



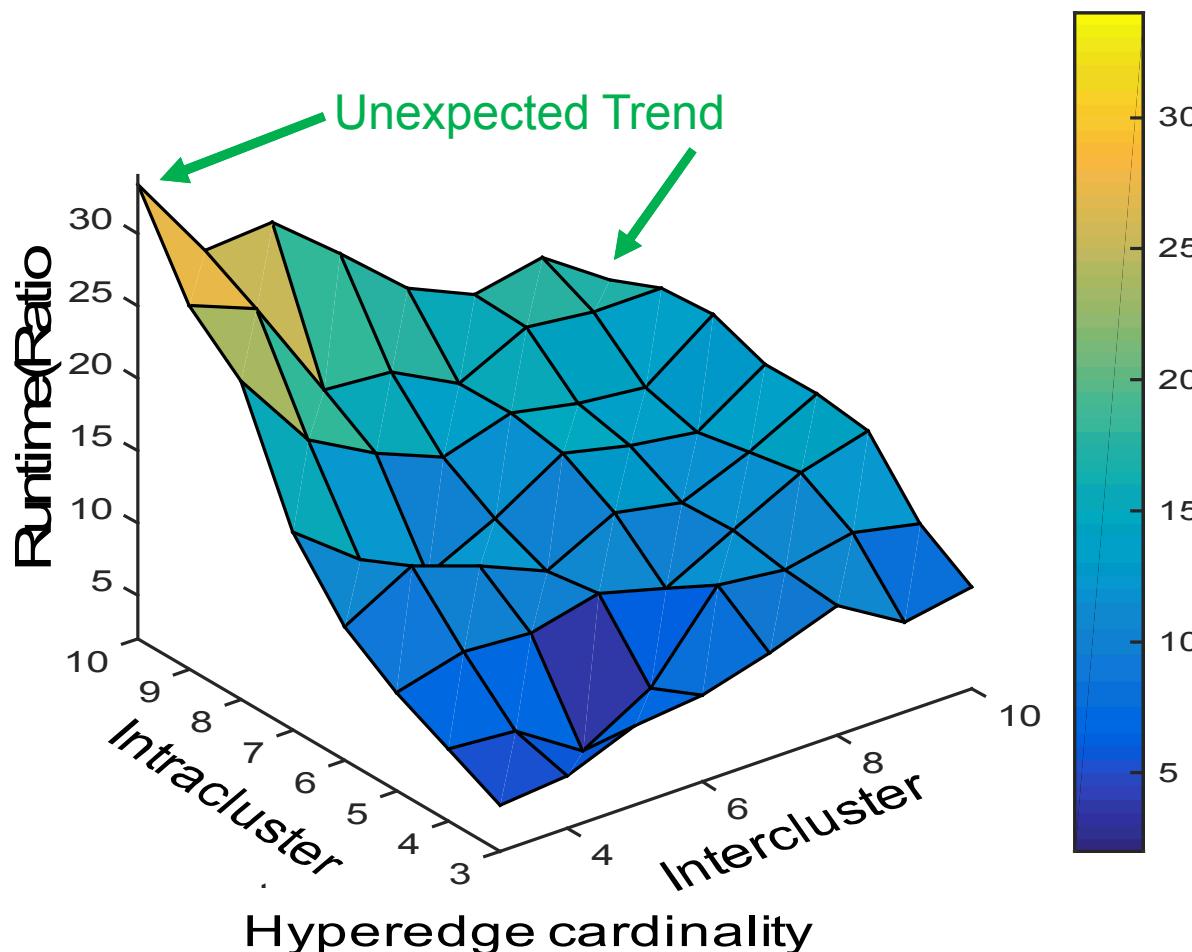
Jaccard Index=1 means clusters match "ground truth" exactly

General trend: hypergraph based clusters more similar to "ground truth" clusters than graph based clusters

Outline

- Introduction to Hypergraphs
- Spectral clustering
- Software implementation
- Spectral clustering results
 - Clustering Quality
 - Runtimes
- Conclusions

Runtimes: Hyperedge Cardinality

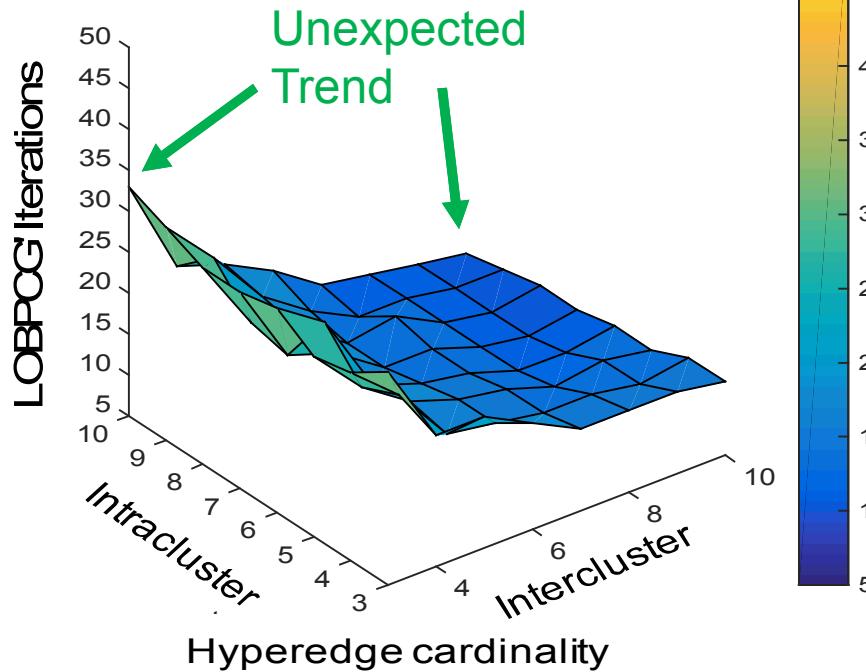


Runtime ratio = graph runtime / hypergraph runtime

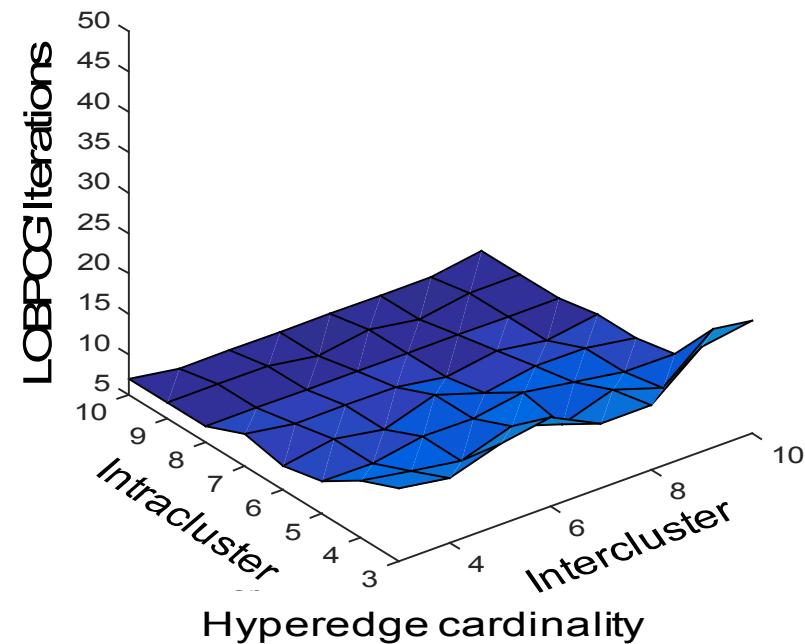
Hypergraph models up to 30x faster than graph models

Eigensolver Iterations: Hyperedge Cardinality

Graph Model



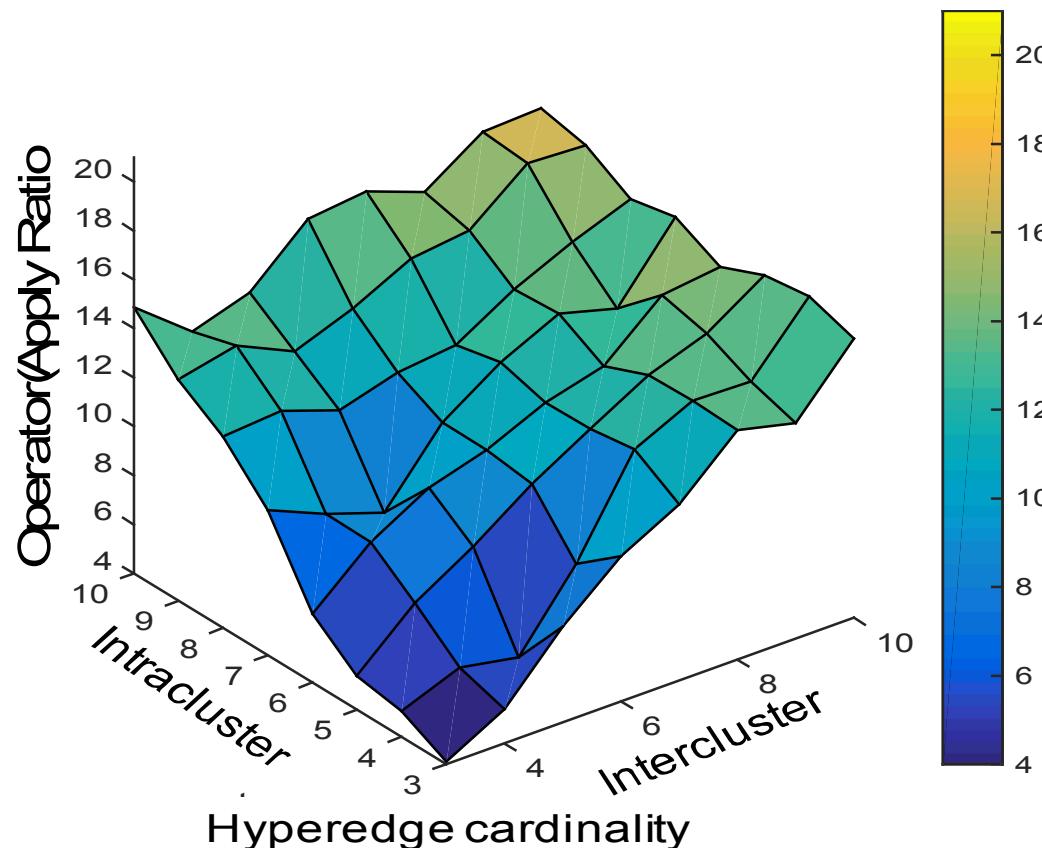
Hypergraph Model



- Hypergraph required fewer LOBPCG iterations than graph
 - Better separation of eigenvalues in hypergraph Laplacian

Hypergraph models converged faster (up to 6x) than graph models

Operator Apply Time: Hyperedge Cardinality



Laplacian operator apply more efficient for hypergraph model than graph model (up to 17x faster)

Outline

- Introduction to Hypergraphs
- Spectral clustering
- Software implementation
- Spectral clustering results
- ➡ ■ Conclusions

Summary/Conclusions

- Explored hypergraphs for modeling relational data
 - TriData software for Linear Algebra Based Data Analytics
 - Built on Trilinos framework (target: billions of vertices)
- Compelling advantages for computing on incidence matrices
 - Avoid forming Laplacians, adjacency matrices when possible
- Hypergraphs **extremely** promising for data analytics
 - Better model than graphs for multiway relational data (spectral analysis)
 - **Improvements in quality**
 - **Significant improvements in runtime** (30x)

Future Work

- Target larger problems
 - Currently solving problems of $O(100k)$ vertices
 - Eventual target: $O(1$ billion) vertices
- Performance improvements to software
 - 2D partitioning – important for scalability beyond $O(10k)$ processors
 - Improved efficiency of parallel hypergraph generator
- **Promising problems for hypergraphs:** community and anomaly detection; centrality analysis; information propagation; directed hypergraphs for complex, causal relationships

Acknowledgements/References

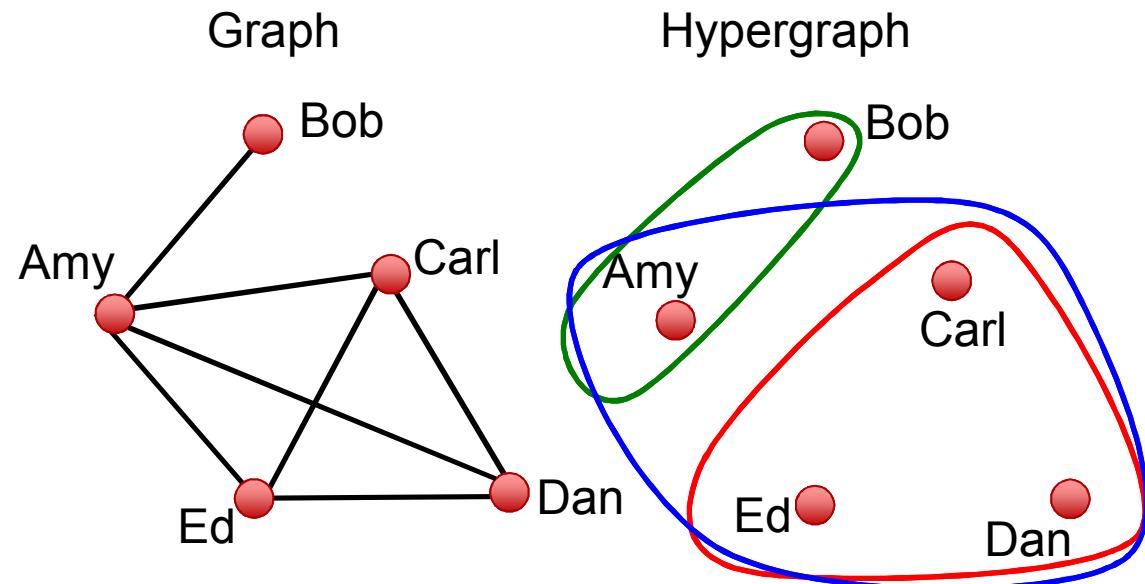
- Thanks
 - Jon Berry, Rich Lehoucq
- Spectral Clustering
 - Ng, Andrew Y., Michael I. Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm." *Advances in neural information processing systems* 2 (2002): 849-856.
- Hypergraph Laplacian
 - Zhou, Dengyong, Jiayuan Huang, and Bernhard Schölkopf. "Learning with hypergraphs: Clustering, classification, and embedding." *Advances in neural information processing systems*. 2006.
- Related Hypergraph Work
 - Bonacich, Phillip, Annie Cody Holdren, and Michael Johnston. "Hyper-edges and multidimensional centrality." *Social networks* 26.3 (2004): 189-203.
 - Tsuda, Koji. "Propagating distributions on a hypergraph by dual information regularization." *Proc. of 22nd Int. Conf. on Machine learning*. ACM, 2005.
 - Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." *PLoS Comput Biol* 5.5 (2009): e1000385.

Extra

What is a hypergraph?

	1	2	3
Users			
Amy	x		x
Bob	x		
Carl		x	x
Dan		x	x
Ed	x		x

Relational Data



- Convenient representation of relational data
 - Each email can be represented by hyperedge
 - Emails/hyperedges consist of subsets of users

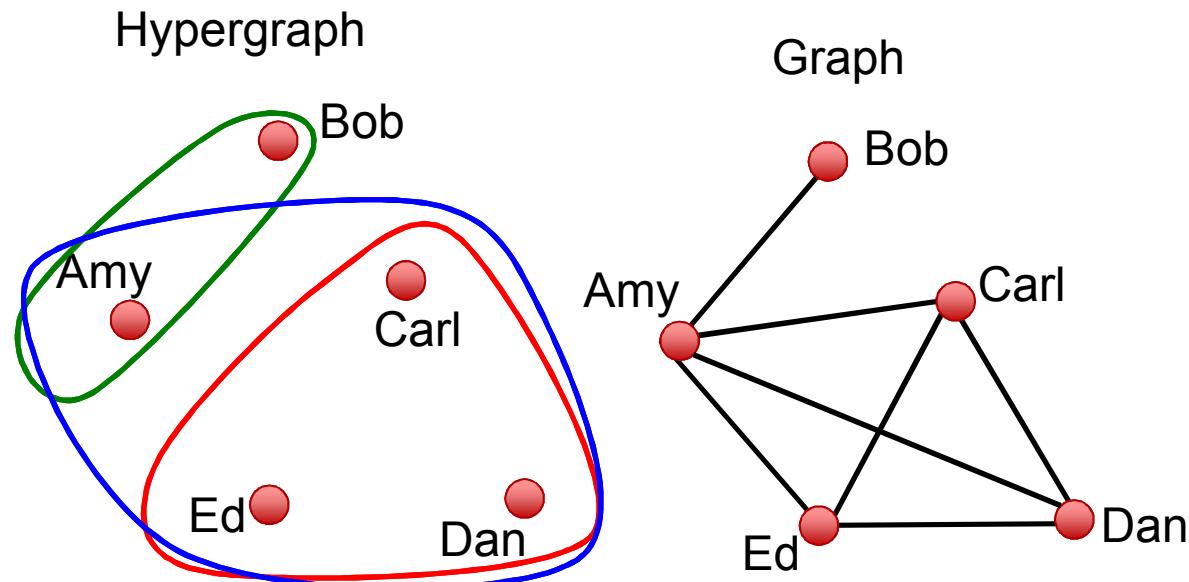
What is a hypergraph?

Hyperedges: Emails

	1	2	3
Amy	1		1
Bob	1		
Carl		1	1
Dan		1	1
Ed		1	1

Vertices: Users

Hypergraph incidence matrix

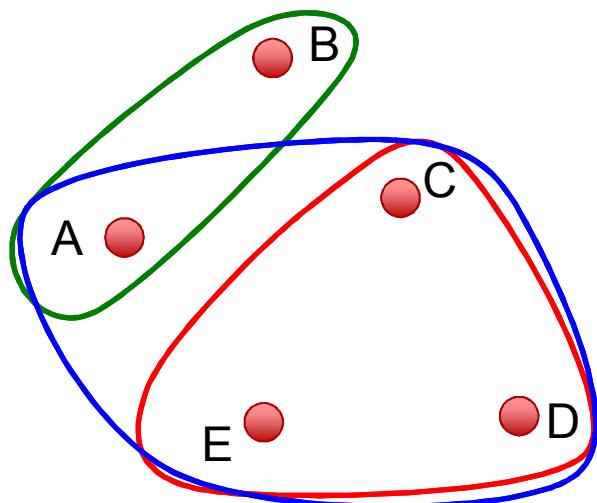
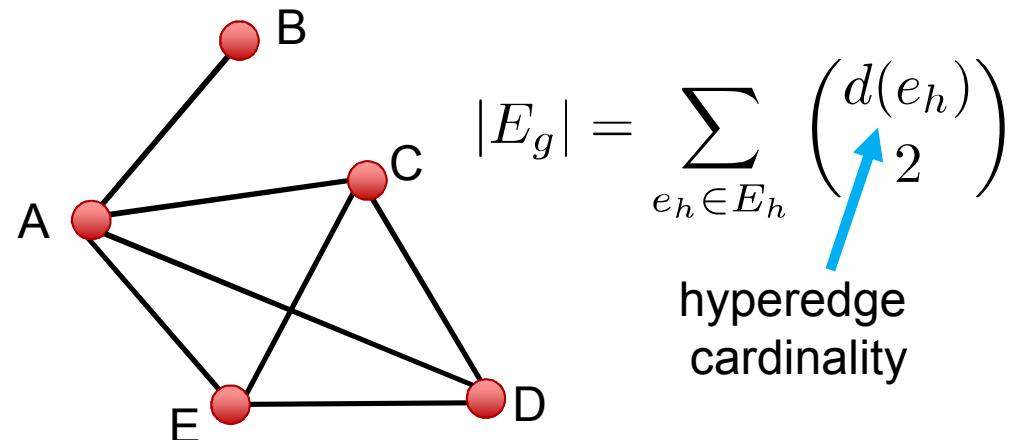


- Relational data is often stored as hypergraph incidence matrix
 - E.g., D4M* tables
- Graph obtained through clique expansion of hypergraph

Hypergraph clique expansion

	1	2	3
A	1		1
B	1		
C		1	1
D		1	1
E	1		1

	1	2	3	4	5	6	7	8	9	10
A	1				1	1	1			
B	1									
C		1	1		1			1	1	
D		1		1		1		1		1
E			1	1			1		1	1



Weighted hypergraph clique expansion

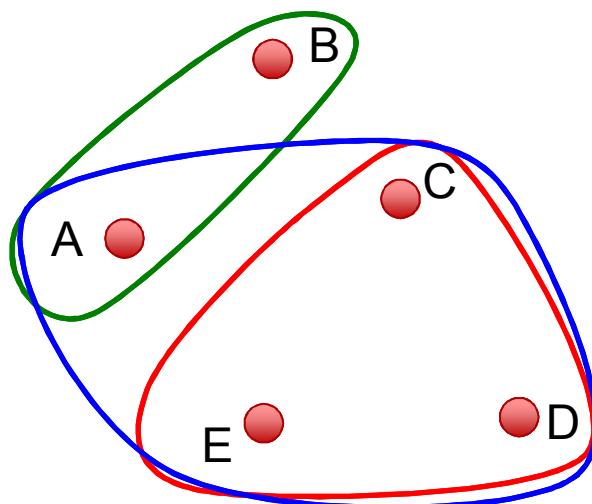
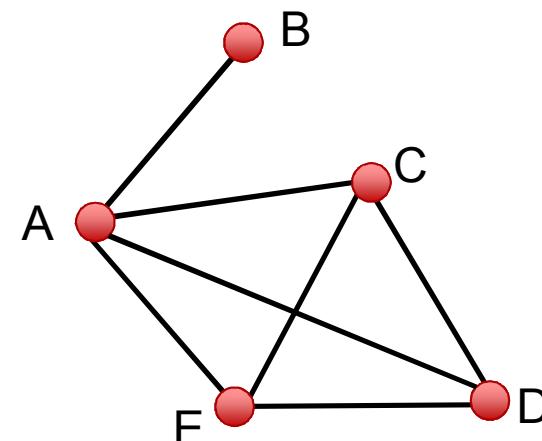
Hyperedges

	1	2	3
A	1		1
B	1		
C		1	1
D		1	1
E		1	1

Vertices

Graph Edges

	1	2	3	4	5	6	7	8	9	10
A	1				$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$			
B	1									
C		$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{3}$			$\frac{1}{3}$	$\frac{1}{3}$	
D		$\frac{1}{2}$		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$
E			$\frac{1}{2}$	$\frac{1}{2}$			$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$



$$w(e_g) = \frac{1}{d(e_h) - 1}$$

hyperedge
cardinality

Motivating Problem: Clustering Relational Data

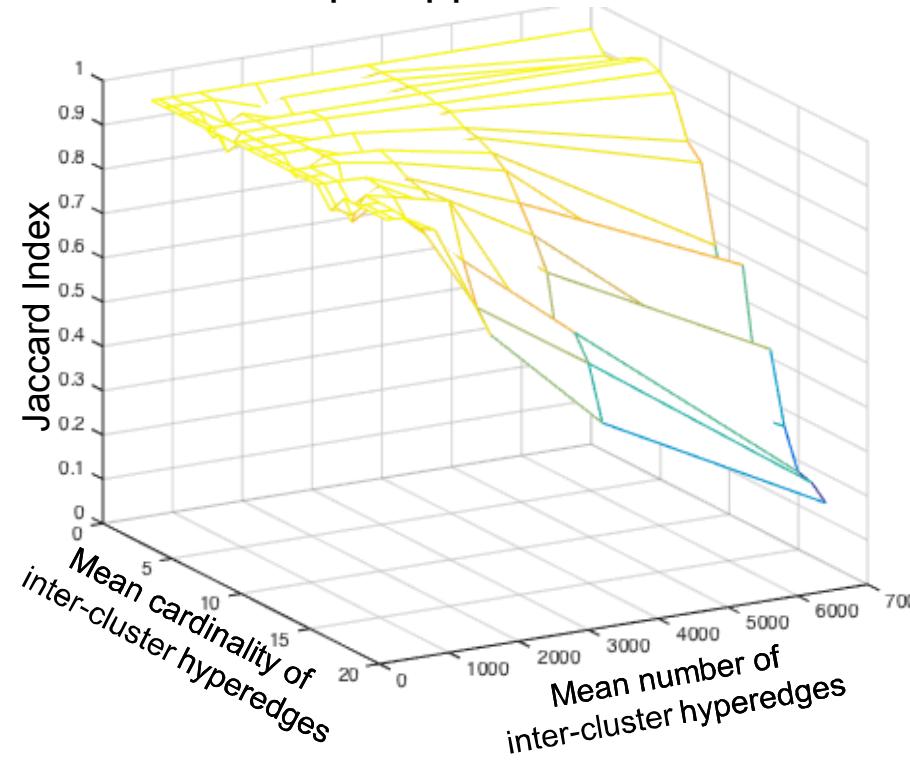
- Determine groupings of data objects given sets of relationships amongst those objects
- Relationships may be represented as graph or hypergraph
 - Graphs represent pairwise relationships
 - Hypergraphs represent relationships among groups of things
- Applications
 - Finding emerging research trends from documents (Jung et al., 2014)
 - Clustering categorical data (Gibson et al., 2000)
 - Image segmentation (Agarwal et al., 2005)
 - Metabolic networks (Guimera et al., 2004)

Related Hypergraph Work

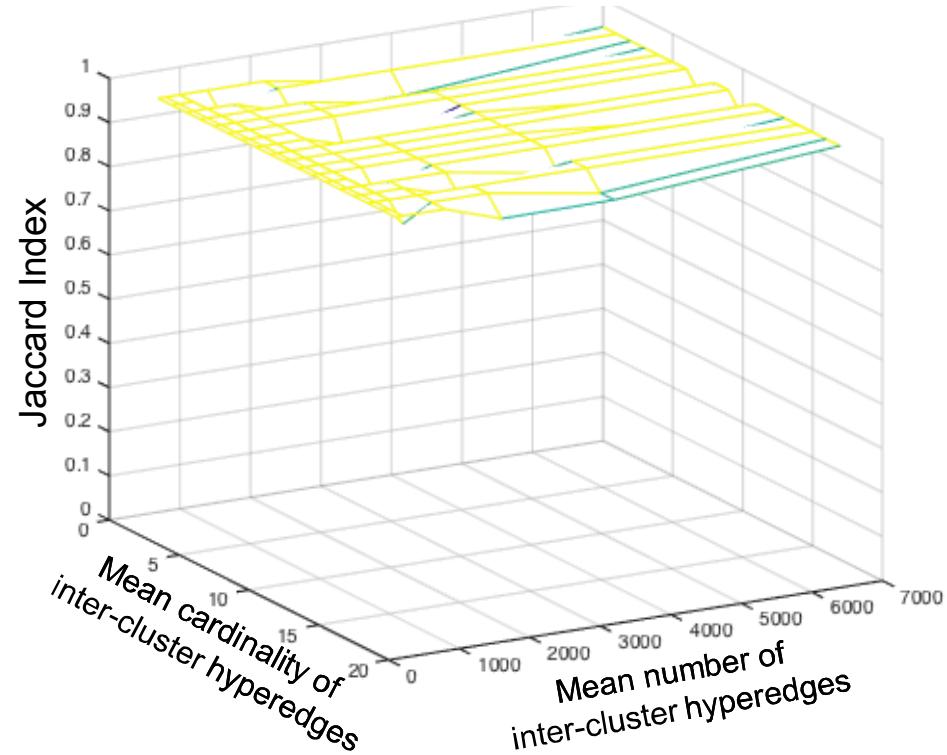
- Data partitioning (Computational science & engineering)
 - Circuit layout, parallel processing, ...
- Hypergraph eigencentrality (Bonacich, et al., 2004)
 - Analysis of attacks on Caribbean settlements
- Semi-supervised Learning (Tsuda, 2005)
 - Information propagation across hypergraph, prior knowledge
- Biological networks (Klamt, et al., 2009)
 - Biochemical reactions, finding related proteins (functional groups)
- Caveat emptor – hypergraphs
 - Representations may increase complexity of algorithms (e.g., MST)
 - Avoid such problems

Unweighted graph vs hypergraph clustering

Graph Approach



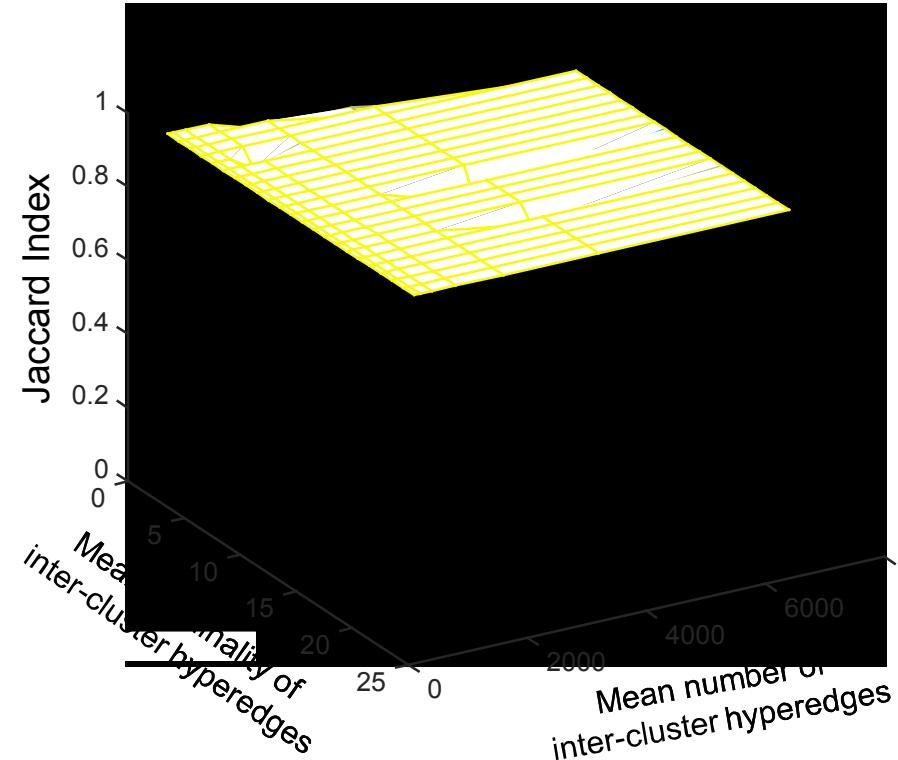
Hypergraph Approach



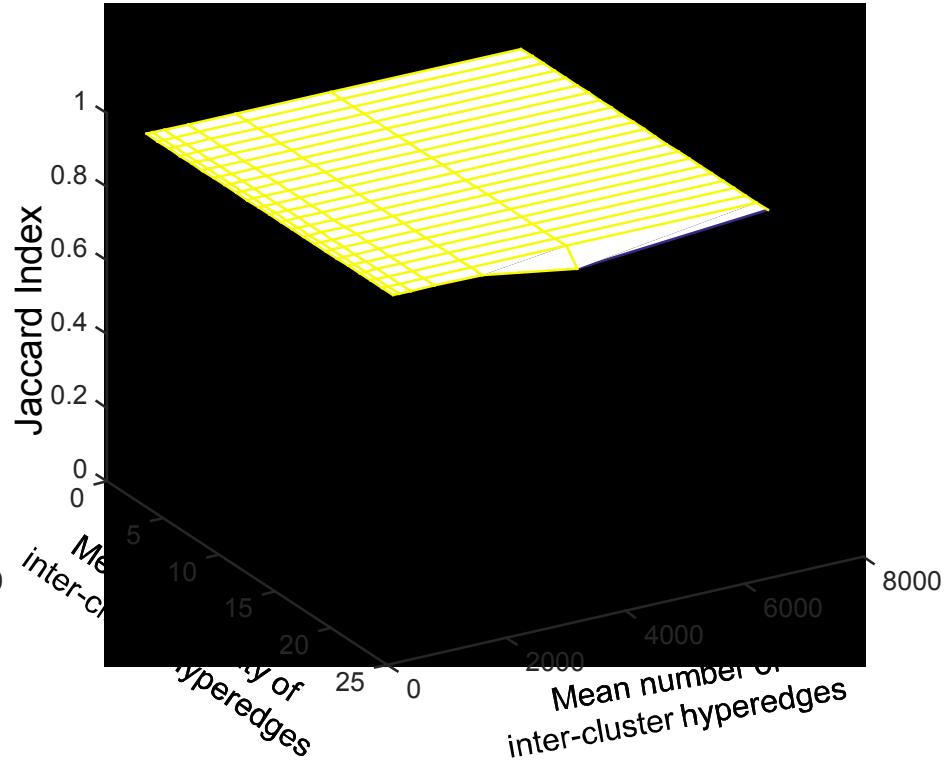
Mean intra-cluster cardinality = 3
Number of clusters 4, mean size 100
Mean number of inter-cluster edges: 800

Weighted graph vs hypergraph clustering

Graph Approach



Hypergraph Approach



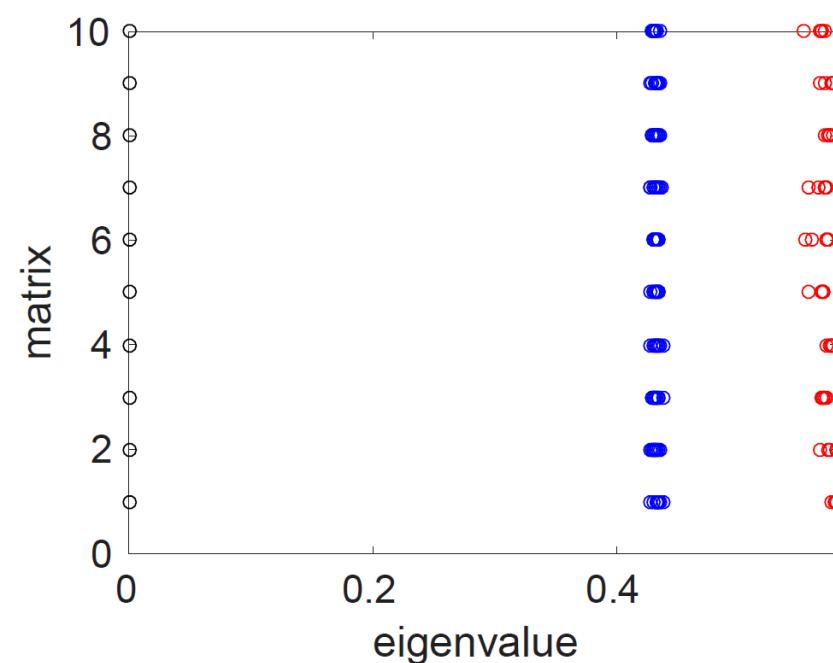
Number of clusters = 4

Mean number of vertices = 100

Number of eigenvectors = 5

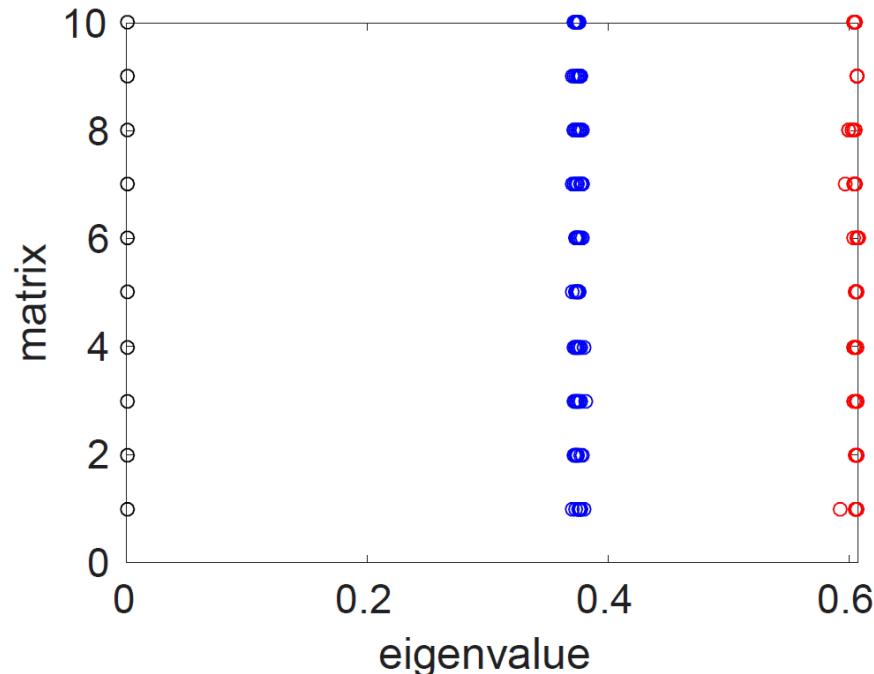
Plot of eigenvalues

graph



P3

hypergraph



Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	5 5

Formulation of the eigenvalue problem

- Computing the smallest eigenpairs of

$$L_G = I - D_{vG}^{-1/2} (H_G H_G^T - D_{vG}) D_{vG}^{-1/2} \quad L_h = I - D_{vH}^{-1/2} H_H D_{eH}^{-1} H_H^T D_{vH}^{-1/2}$$

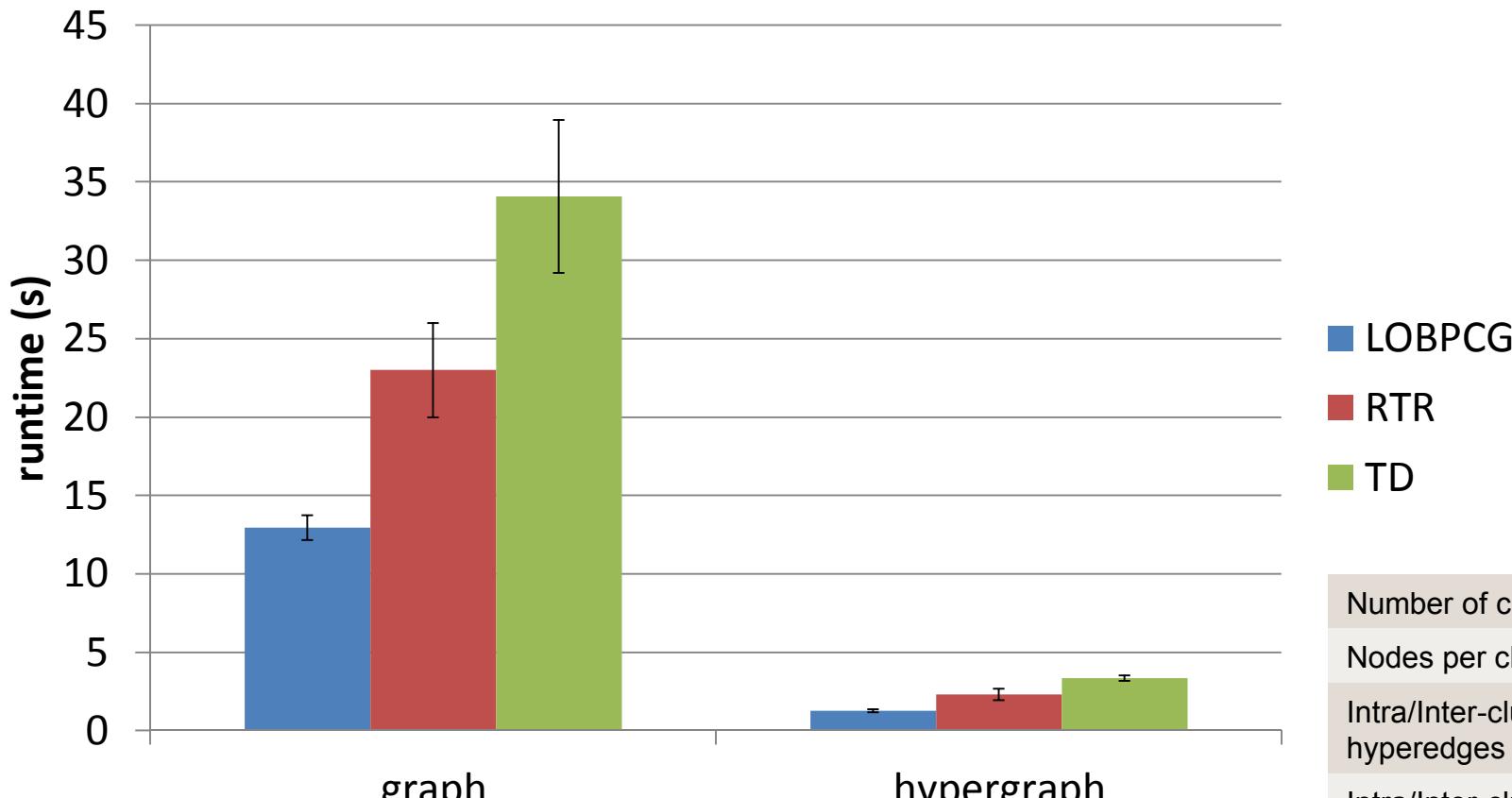
is equivalent to computing the largest eigenpairs of the shifted Laplacians

$$S_G = D_{vG}^{-1/2} (H_G H_G^T - D_{vG}) D_{vG}^{-1/2} \quad S_h = D_{vH}^{-1/2} H_H D_{eH}^{-1} H_H^T D_{vH}^{-1/2}$$

- Computing the largest eigenpairs tends to be cheaper
- Laplacians are singular (but null space is known)
- L_g , L_h , and S_h are symmetric positive definite, but S_g is not
- S_g can be shifted even more to make it positive definite

Comparison of eigensolvers

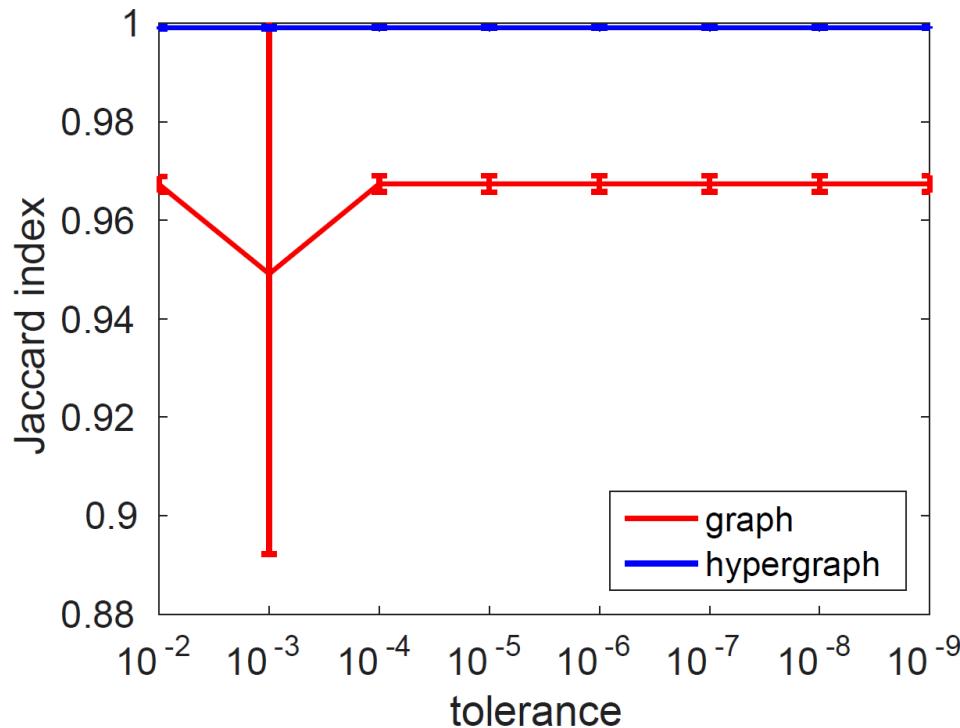
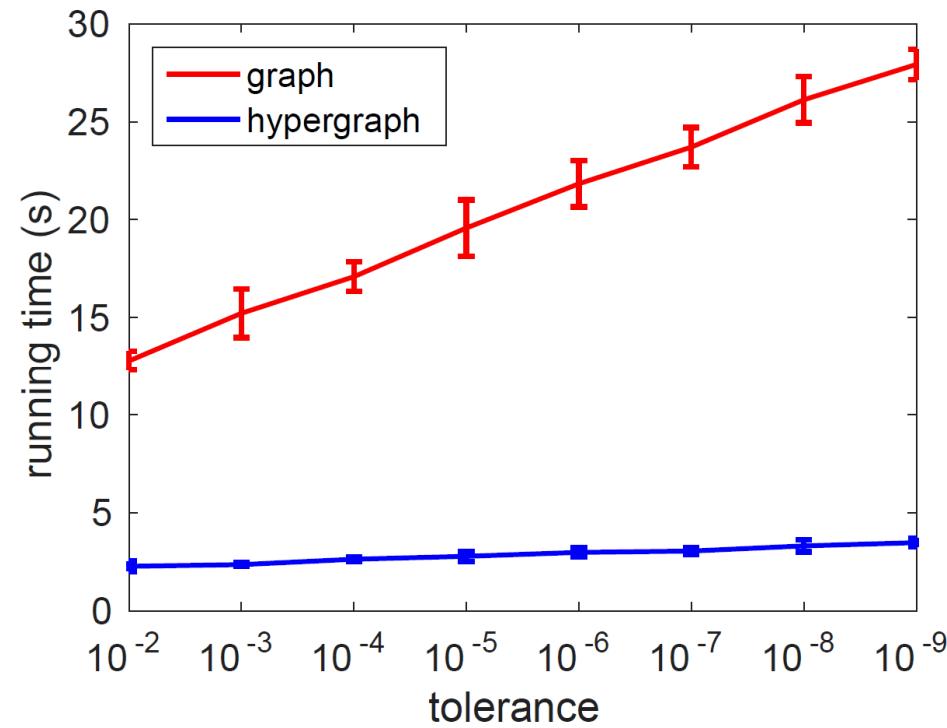
P3



Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	200,000

Number of clusters	5
Intra/Inter-cluster h-edge cardinality	5

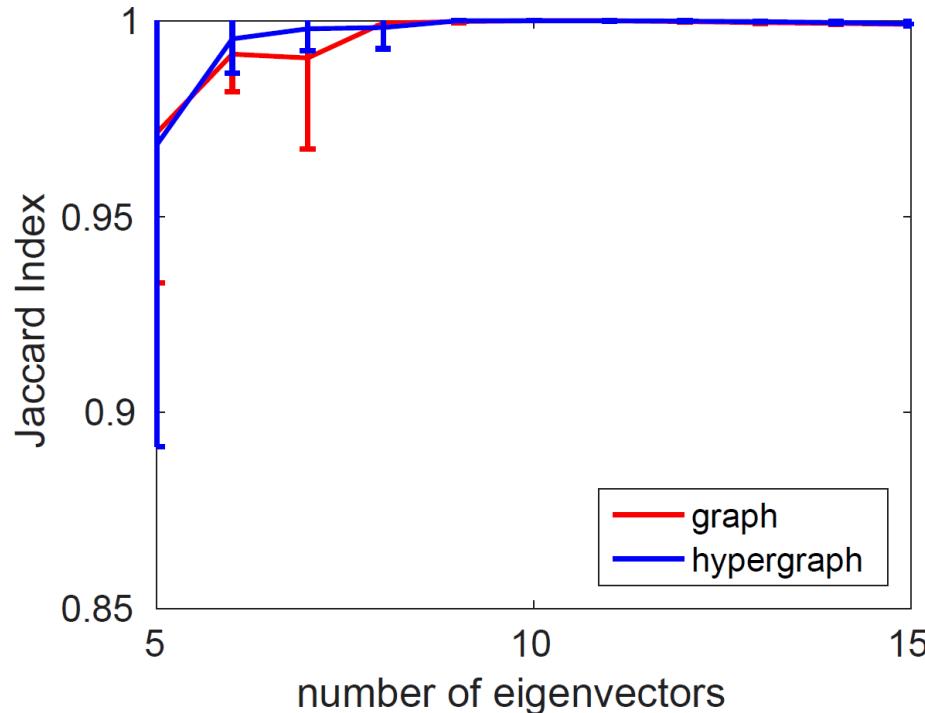
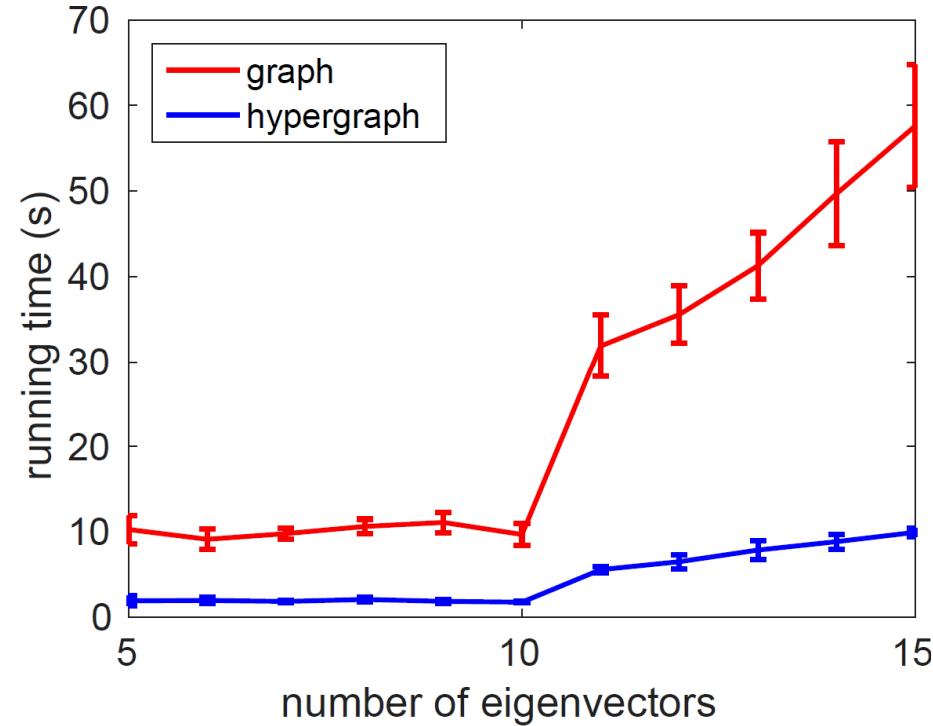
What tolerance should we use?



P3

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	200,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

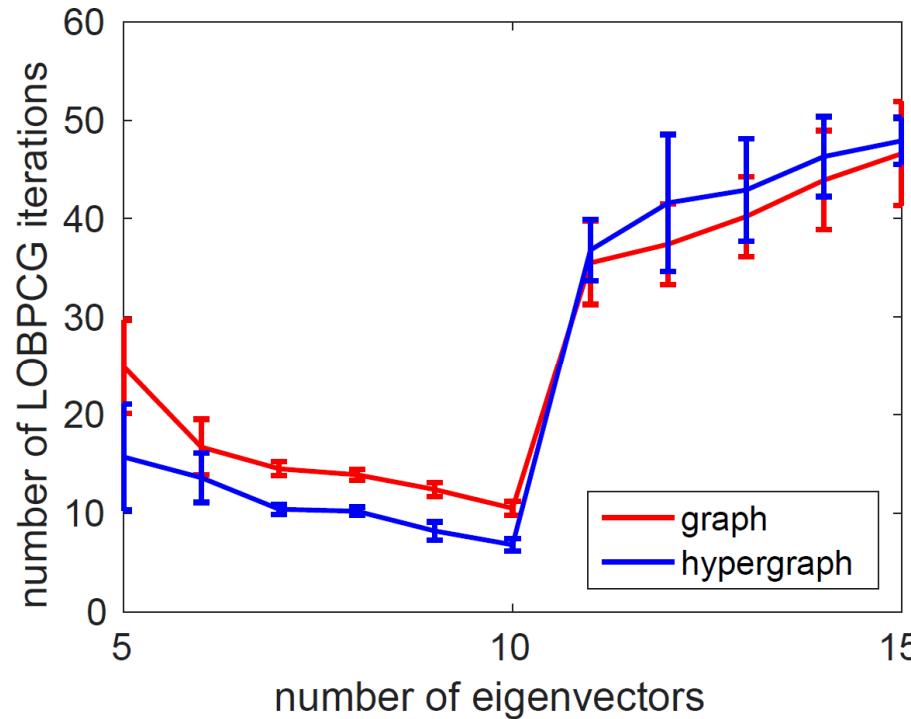
How many eigenvectors should we calculate?



Less noisy data: P1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000
Intra/Inter-cluster h-edge cardinality	5
h-edge cardinality	5

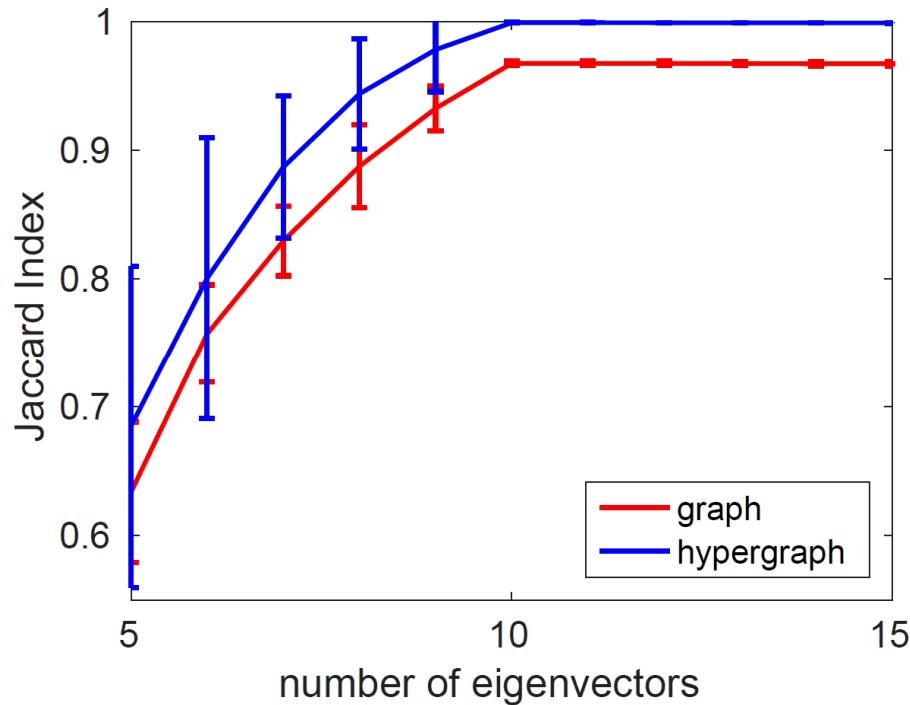
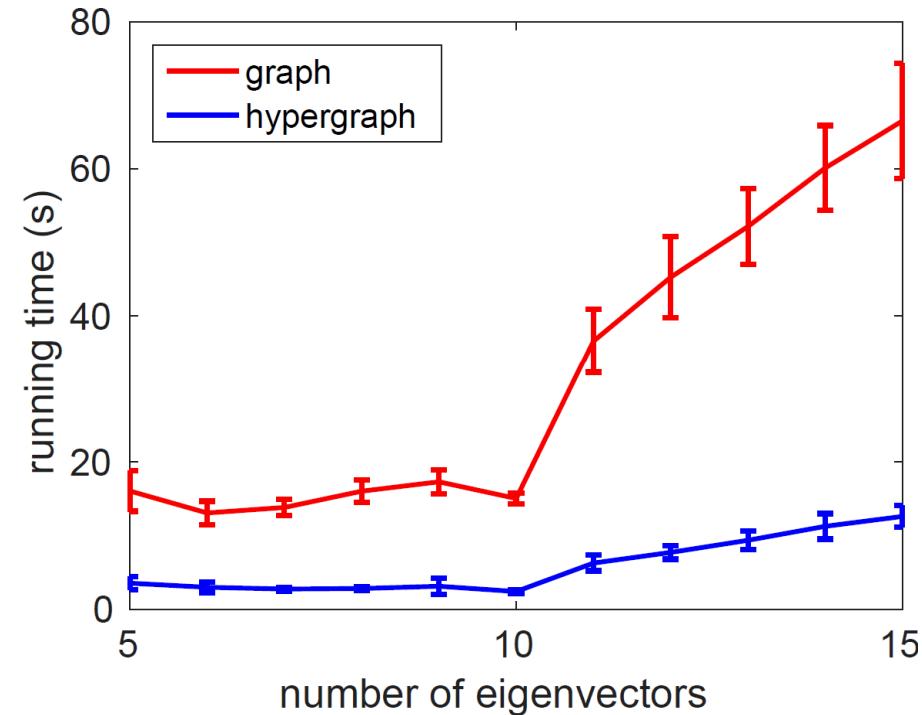
How many eigenvectors should we calculate?



Less noisy data: P1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

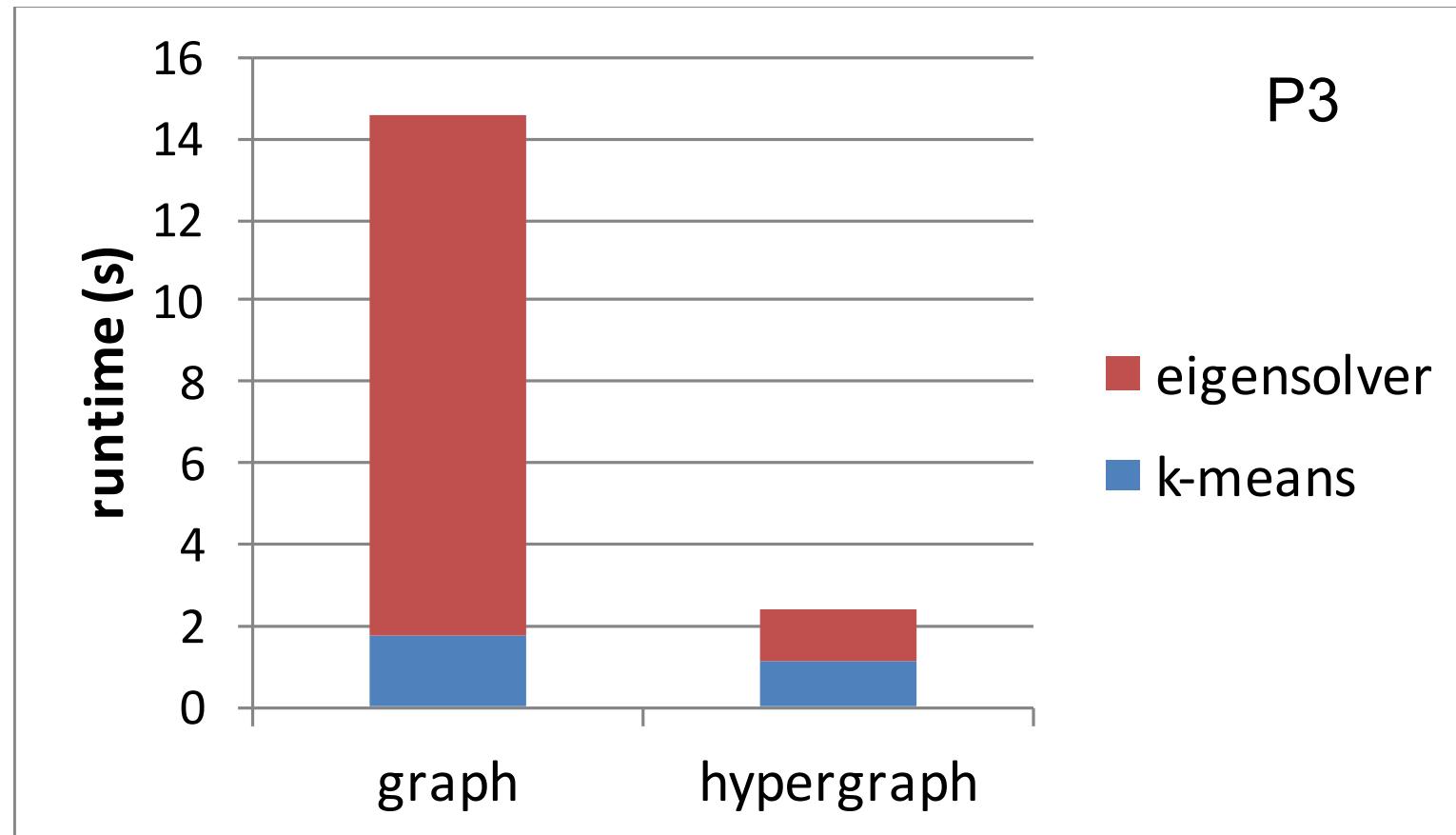
How many eigenvectors should we calculate?



Noisier data: P3

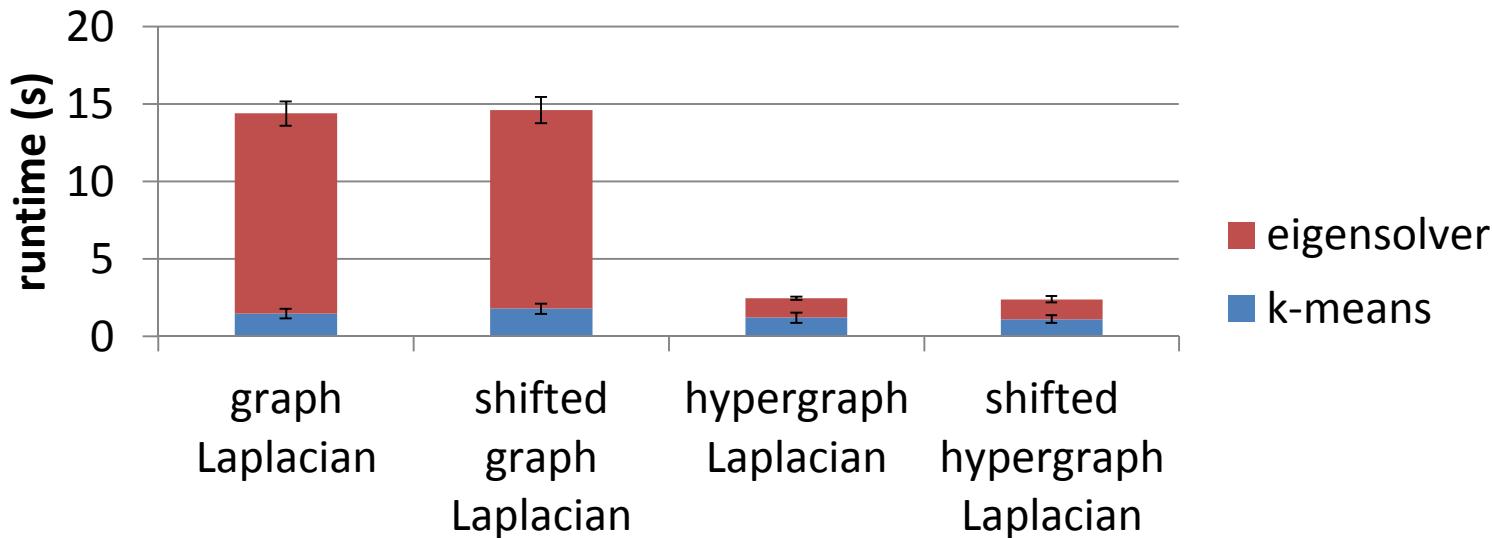
Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	200,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

Runtimes: Eigensolver vs. K-means



Should we compute the eigenpairs of the Laplacian or the shifted Laplacian?

P3

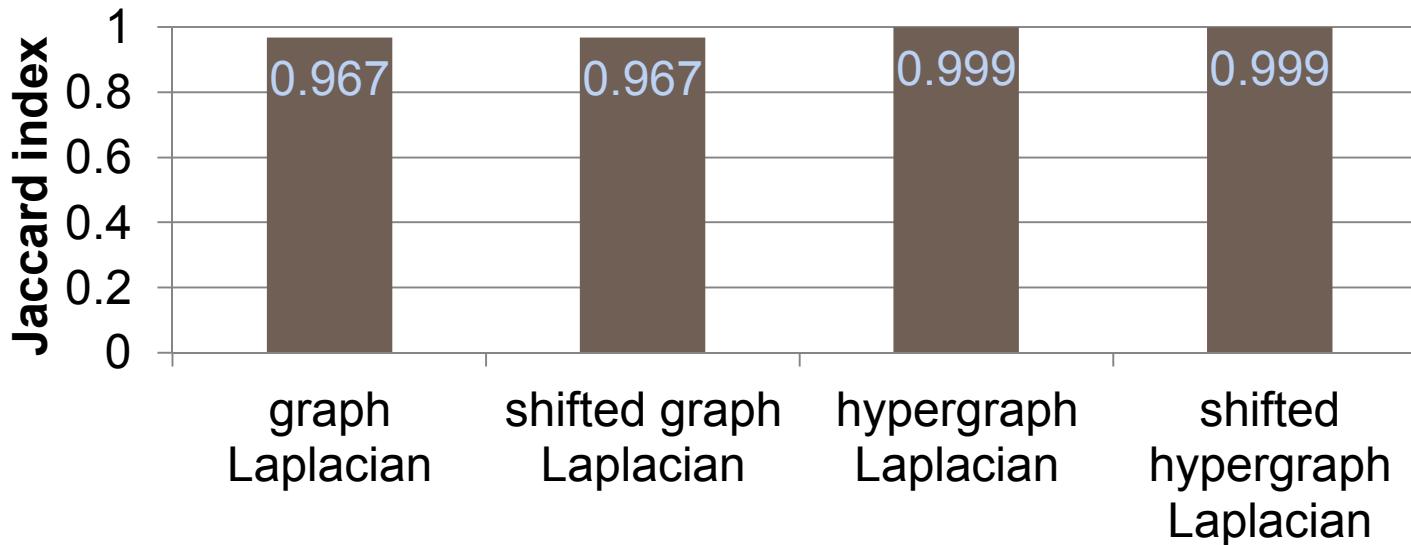


	Graph Laplacian L_g	Shifted graph Laplacian S_g	Hypergraph Laplacian L_h	Shifted hypergraph Laplacian S_h
LOBPCG iterations	15.6	15.6	8.9	8.9
K-means iterations	56.9	79.4	31.8	28.1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	5
	200,000
	5

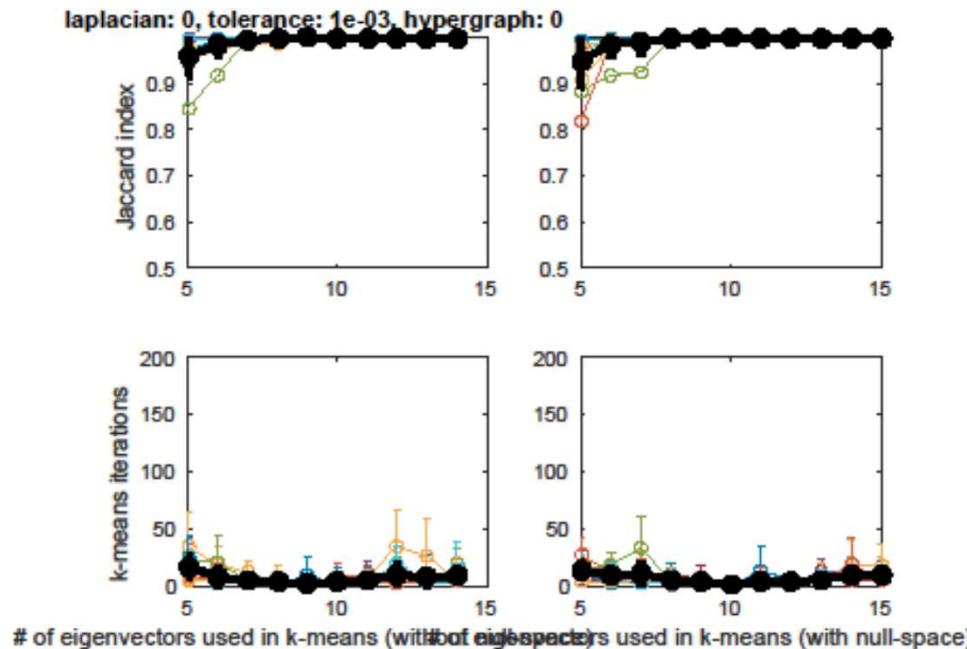
Should we compute the eigenpairs of the Laplacian or the shifted Laplacian?

P3



	Graph Laplacian L_g	Shifted graph Laplacian S_g	Hypergraph Laplacian L_h	Shifted hypergraph Laplacian S_h	Number of clusters	10
LOBPCG iterations	15.6	15.6	8.9	8.9	Nodes per cluster	10,000
K-means iterations	56.9	79.4	31.8	28.1	Intra/Inter-cluster hyperedges	20,000 200,000

Should the null space be provided to k-means?



- nClusters: 10
- nVerts: 10,000
- nEdges in cluster: 40,000
- nEdges between clusters: 50,000

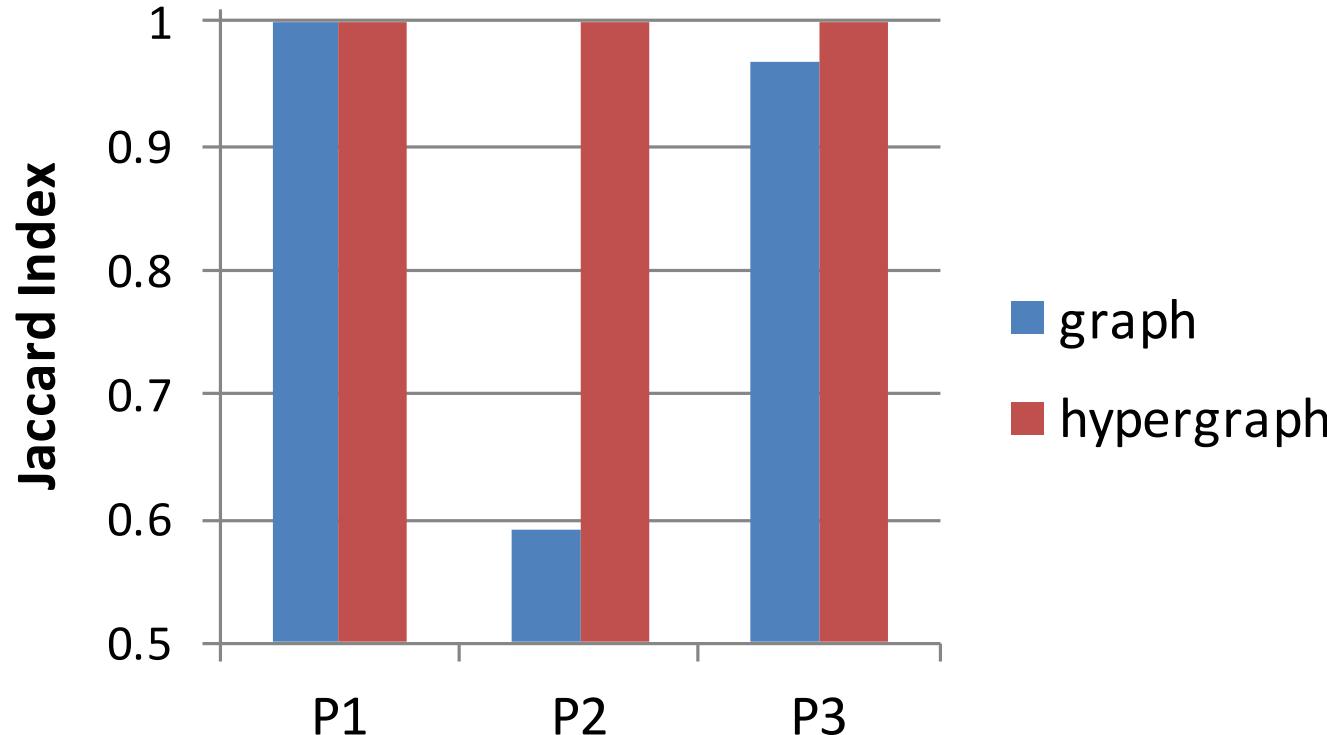
Data Sets

	P1	P2	P3	Hyperedge Cardinality
Number of clusters	10	5	10	5
Vertices per cluster*	10,000	10,000	10,000	10,000
Intra-cluster hyperedges*	40,000	20,000	20,000	20,000
Inter-cluster hyperedges*	50,000	200,000	200,000	200,000
Intra-cluster hyperedge cardinality*	5	10	5	3-10
Inter-cluster hyperedge cardinality*	5	3	5	3-10

- Generate hypergraph incidence matrices
 - 4 different sets of parameters
 - Different levels of difficulties
 - 10 randomly generated hypergraphs for each parameter set

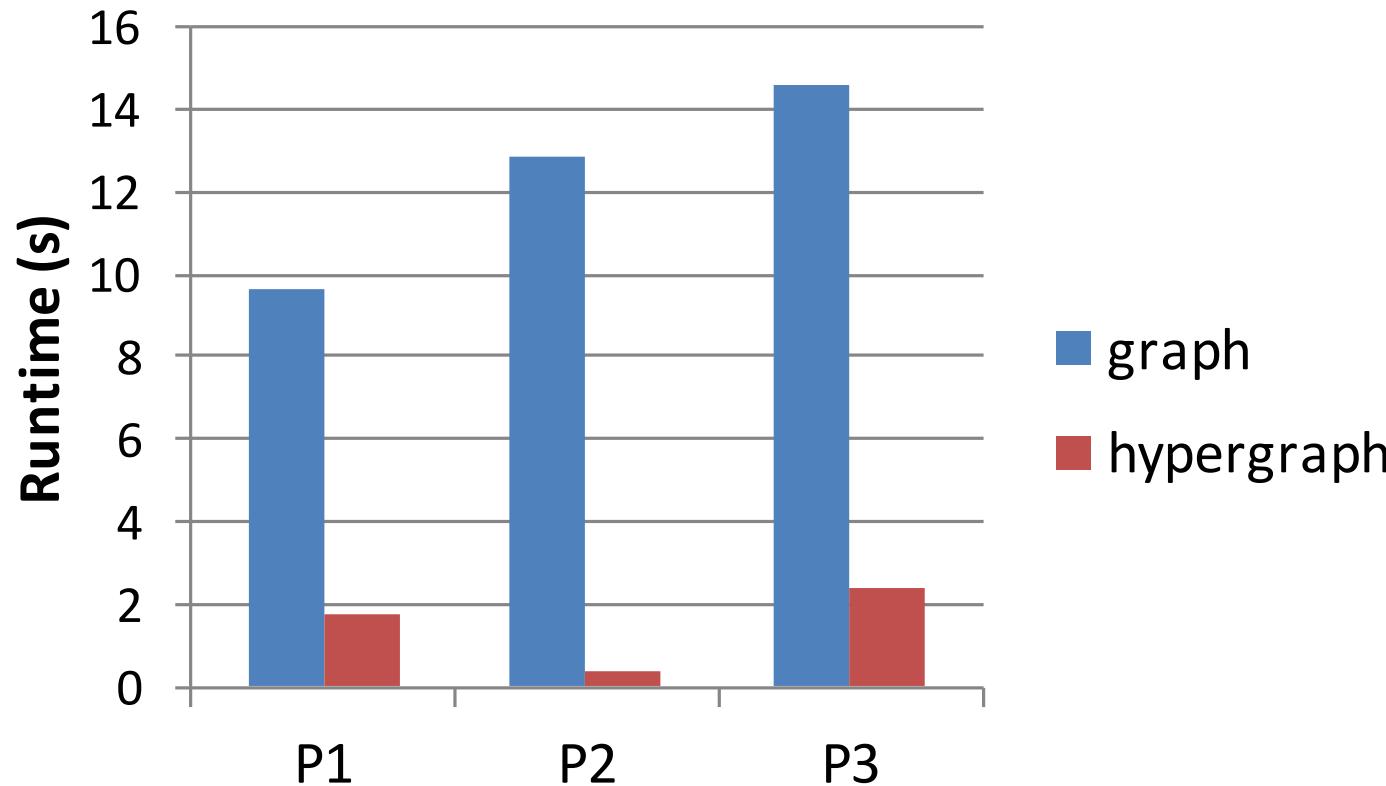
* Designates mean value

Clustering Quality: P1, P2, P3



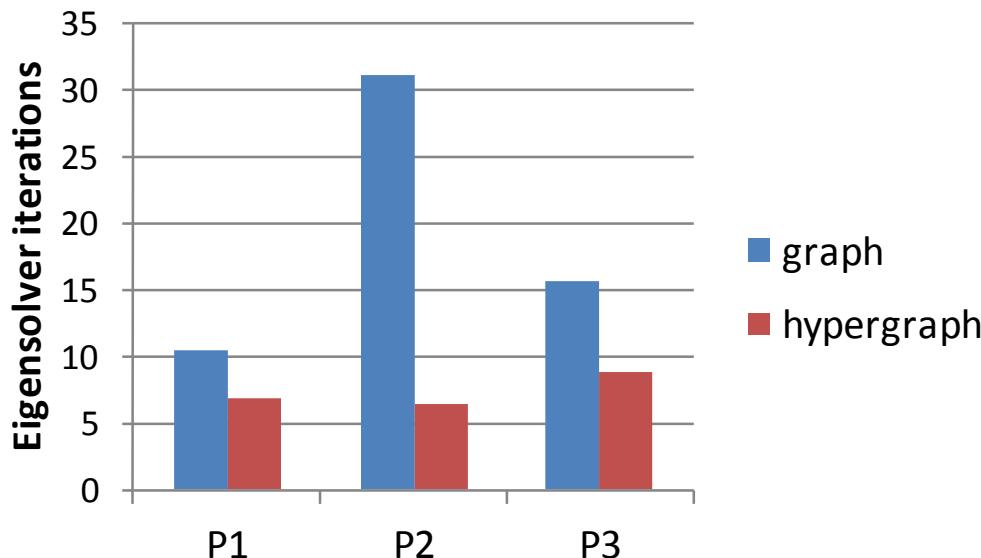
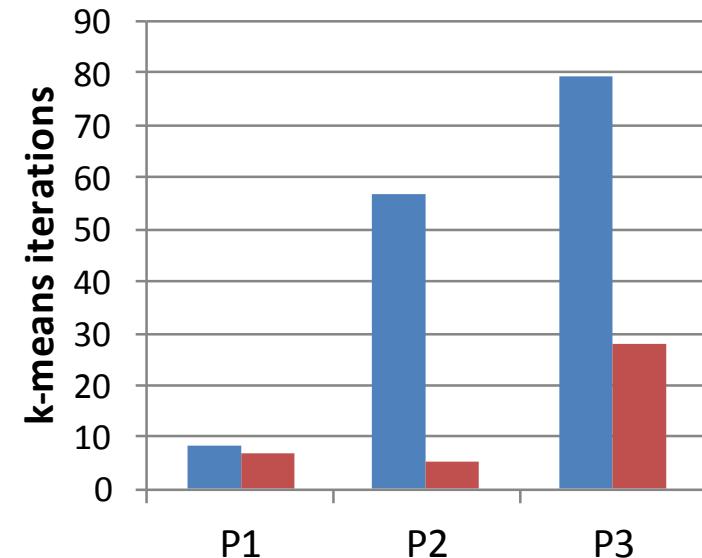
Hypergraph based clusters more similar to “ground truth” clusters than graph based clusters

Runtimes: P1, P2, P3



Hypergraph models significantly more computationally efficient than graph models (up to 30x faster)

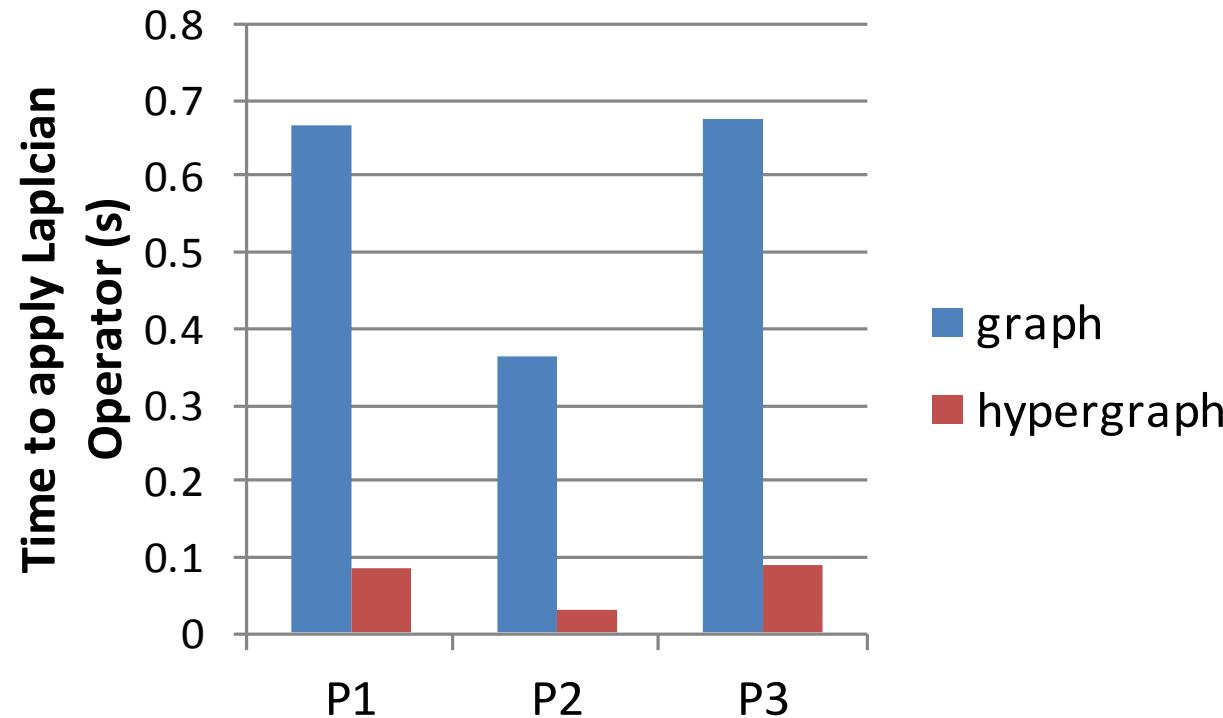
Iterations: P1, P2, P3



- Hypergraph required fewer LOBPCG iterations than graph
 - Better separation of eigenvalues in hypergraph Laplacian
- Hypergraph required fewer k-means iterations

Hypergraph models converged faster than graph models

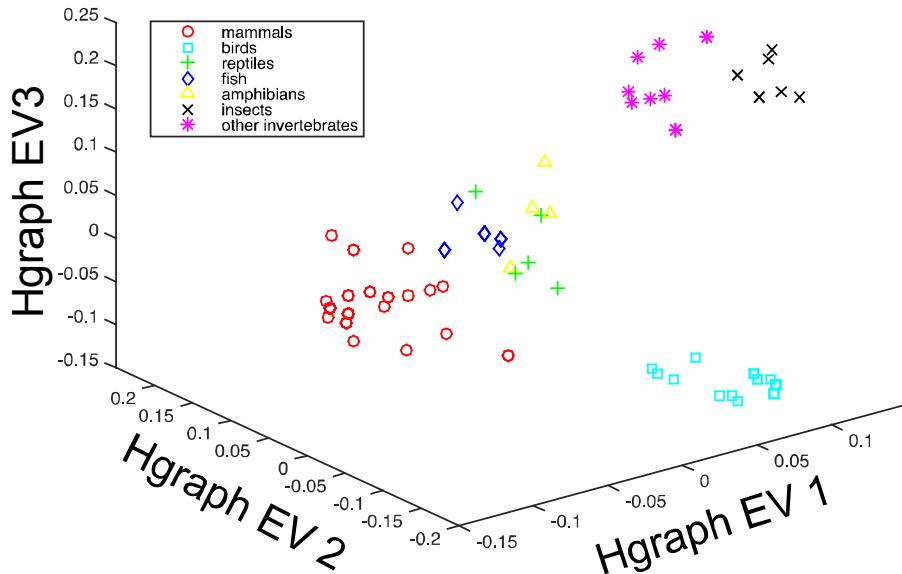
Laplacian Operator Apply: P1, P2, P3



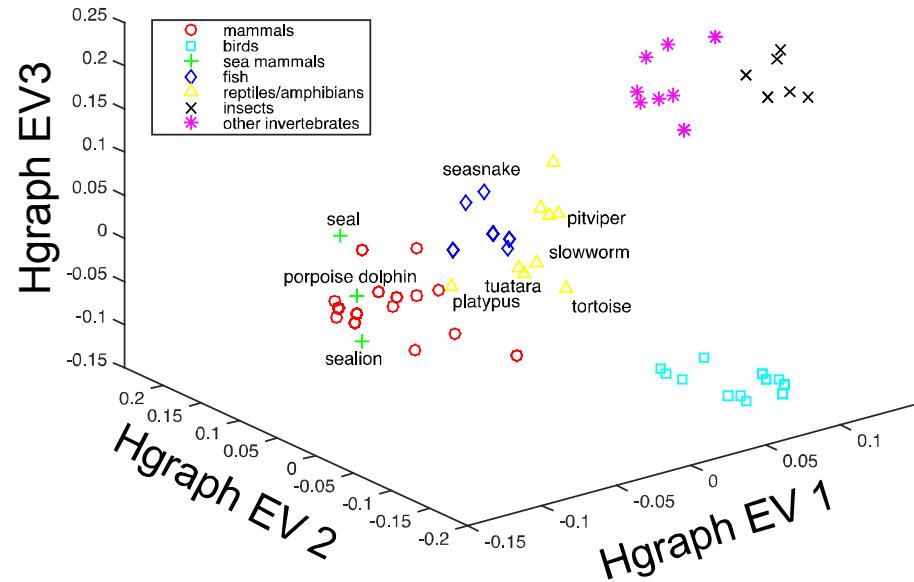
Laplacian operator apply more efficient for hypergraph model than graph model (up to 12x faster)

Real Data – Hypergraph, 7 Clusters

Ground Truth



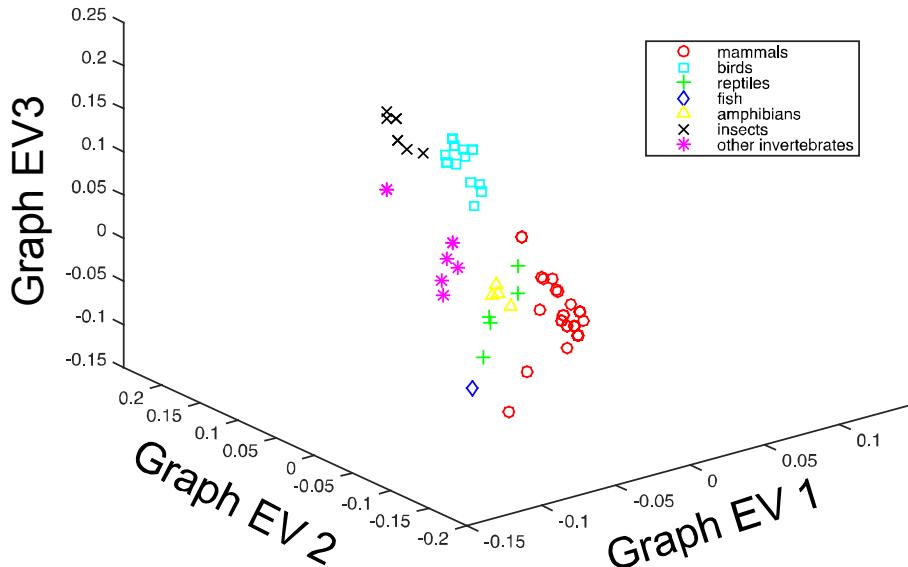
Hypergraph



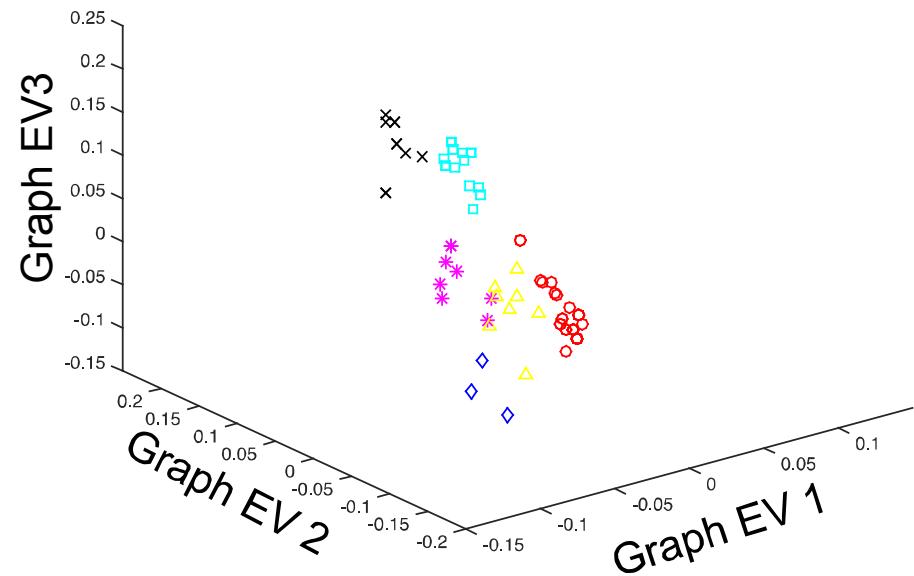
- UCI ML Repository Zoo Data Set*
 - Animals with 16 attributes (# legs, eggs, ...) + category
- Hypergraph Clustering vs. ground truth for 7 clusters
 - Jaccard index: 0.815 (Graph model 0.743)
 - Merged reptiles/amphibians, new category: sea mammals

Real Data – Graph, 7 Clusters

Ground Truth



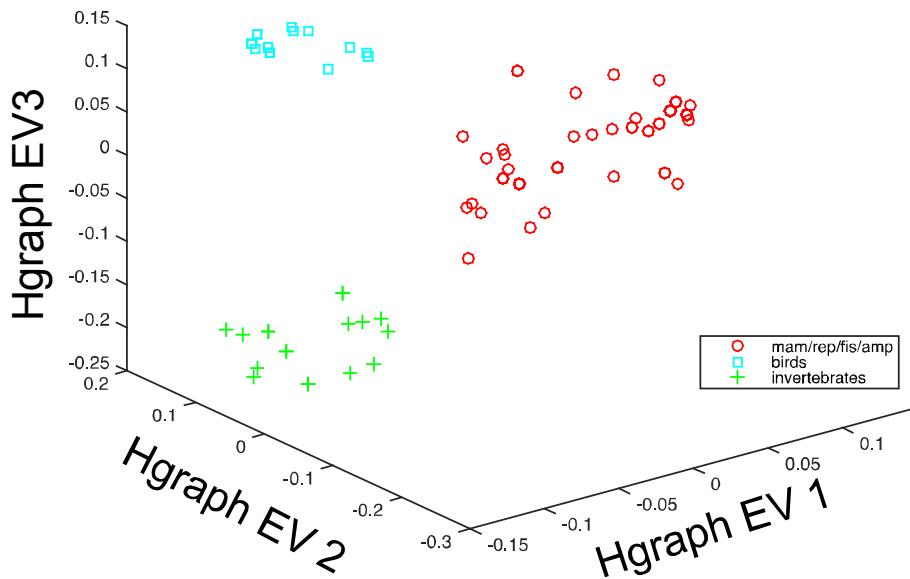
Graph Clustering



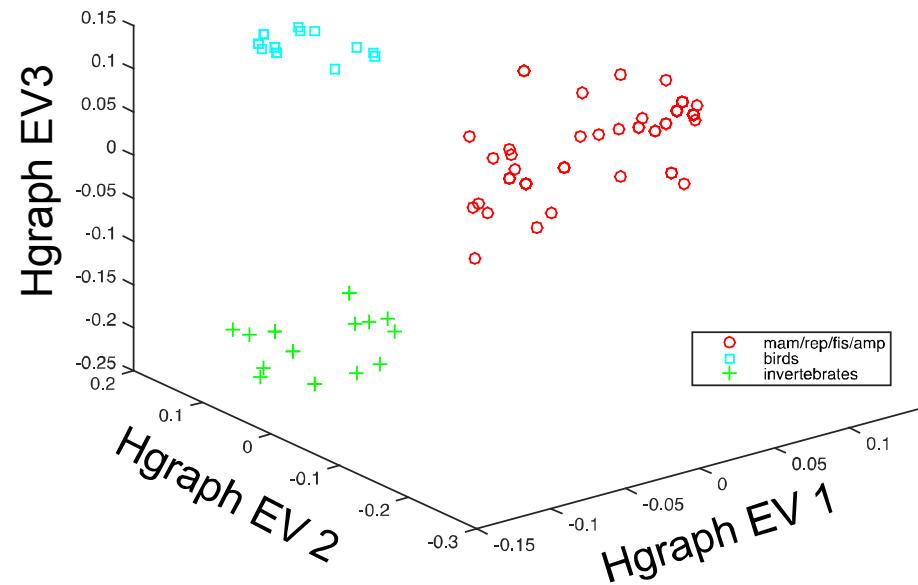
- Graph Clustering vs. ground truth for 7 clusters
 - Jaccard index: 0.743
 - Data harder for kmeans to separate
 - Insects, birds, mammals, other invertebrates, ?

Real Data – Hypergraph, 3 Clusters

Ground Truth



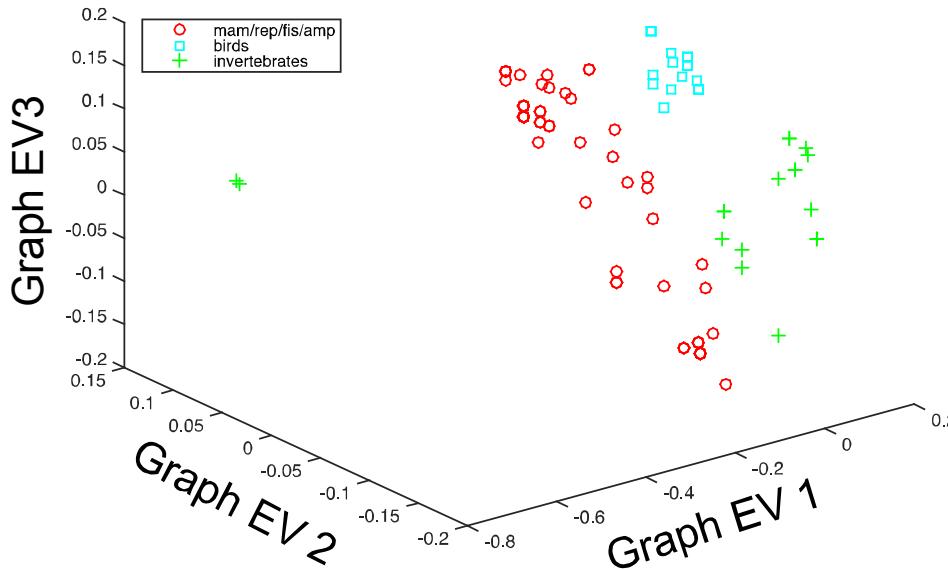
Hypergraph Clustering



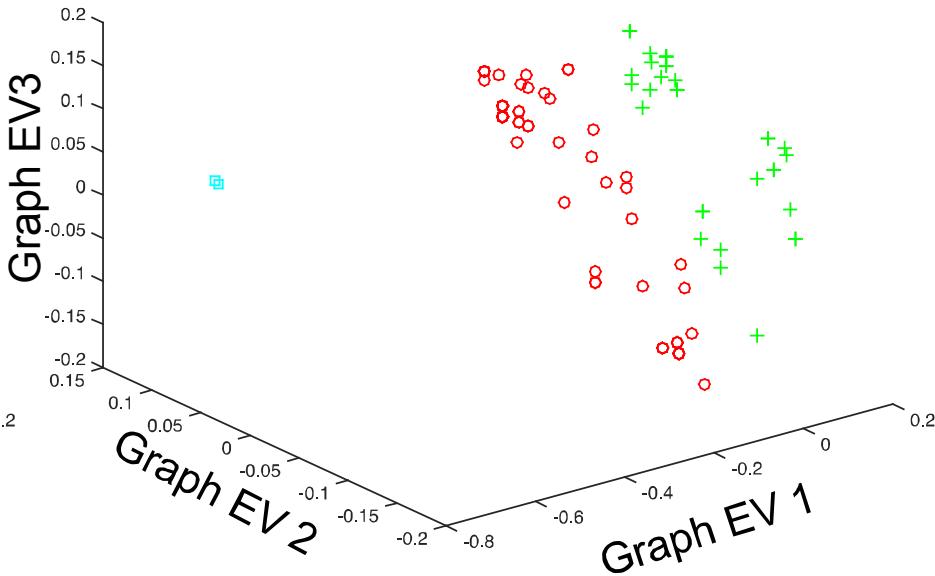
- UCI ML Repository Zoo Data Set*
 - Merged into 3 clusters: mammals/reptiles/fish/amphibians, birds, invertebrates
- Hypergraph Clustering vs. ground truth for 3 clusters
 - Jaccard index: 1.000 (Graph model 0.865)

Real Data – Graph, 3 Clusters

Ground Truth



Graph Clustering



- Graph Clustering vs. ground truth for 3 clusters
 - Jaccard index: 0.865