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Hypergraph Models for Data Science

 Explore usage of hypergraphs for modeling complex, 
multiway (non-pairwise) relational data

 Goal: Improve data analysis – more accurate, faster

 Questions we are trying to address
 Why should we use hypergraphs?

 When are hypergraph models preferable over graph models?

 What hypergraph model should be used?

 How should we compute the solution to our hypergraph problems?

 Specific problem
 Data clustering:  Determine groupings of data objects given sets of 

relationships between/amongst objects

2



What is a hypergraph?

 Generalizations of graphs
 Hyperedges represent multiway relationships between vertices

 Convenient representations of relational data
 Each email (subset of users) can be represented by hyperedge

 Relational data often stored as hypergraph incidence matrices (e.g., 
D4M* tables
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Hypergraph to Graph: Clique Expansion
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Why hypergraphs?

 Typically graph models lose information
 Were Carl, Dan, and Ed involved in same email?

 Fix: multi-graphs + metadata, changes to algorithms
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 Hypergraphs require significantly less storage space than 
graphs generated using clique expansion

 Hypergraph incidence matrices require fewer operations for 
matrix-vector multiplication

Why hypergraphs? 

6

1 1

1

1 1

1 1

1 1 V
e

rt
ic

e
s

Graph Incidence matrix

1 1 1 1

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Hypergraph incidence matrix

Hypergraphs have computational advantagesHypergraphs have computational advantages



 Introduction to Hypergraphs

 Spectral clustering

 Software implementation

 Spectral clustering results

 Conclusions

Outline
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Motivating Problem: Clustering of Relational Data

 Determine groupings of data objects given sets of relationships 
amongst those objects
 Relationships may be represented as graph or hypergraph

 Focus: spectral clustering 
 Compute the smallest eigenpairs of the graph or hypergraph Laplacian

 Normalized graph Laplacian:

 Hypergraph Laplacian (Zhou, et al., 2006)

 Eigenvectors used to group vertices into clusters (sorting, kmeans++, …)

8SpMV = Sparse matrix-dense vector multiplication
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Laplacians:  To Form or not to Form

 Laplacians:

 One option:  Explicitly form Laplacian

 Instead: Define application of Laplacian as series of SpMV
and vector addition operations 
 Store incidence matrix, degree matrices

 Reason 1:  Matrix-matrix products are expensive

 Reason 2:  Dynamic graphs – easier to change incidence matrix than 
Laplacian

9SpMV = Sparse matrix-dense vector multiplication

Computational advantages to not explicitly forming Laplacians Computational advantages to not explicitly forming Laplacians 



 Introduction to Hypergraphs

 Spectral clustering 

 Software implementation

 Spectral clustering results

 Conclusions

Outline
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TriData: Trilinos for Data Analysis

 C++ Trilinos based software for data analytics problems
 High performance (target: billions of vertices)

 Early focus on spectral methods

 Hypergraphs and graphs

 Supports several eigensolvers available in Anasazi
 LOBPCG, TraceMin-Davidson, Riemannian Trust Region, Block Krylov-

Schur

 Very fast convergence for Laplacians (especially hypergraphs)

 Trilinos/Anasazi supports modern HPC architectures
 MPI+X

 Where X = {multicore, GPUs, Xeon Phi…}

11
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 Parameterized Generator

 Clusters

 Vertices per cluster

 # of intra/inter-cluster hyperedges

 Intra/Inter-cluster hyperedge cardinalities

• Generate real-world inspired hypergraphs at different scales
• Generates “ground truth”
• Generate real-world inspired hypergraphs at different scales
• Generates “ground truth”



 Introduction to Hypergraphs

 Spectral clustering

 Software implementation

 Spectral clustering results
 Clustering Quality

 Runtimes

 Conclusions

Outline
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Numerical Experiments

 Experiments conducted on workstation with 128 GB of 
memory using 16 cores

 Generated Hypergraphs
 Number of clusters: 5

 Vertices per cluster (mean): 10,000

 Intra/inter-cluster hyperedges (mean): 20,000 / 200,000

 Intra/inter-cluster hyperedge cardinality (mean): 3-10 / 3-10

 “Quality” of our clustering measured using the Jaccard index
 T = true cluster assignments – ”ground truth” from generator

 P = predicted cluster assignments 

 J(T,P)=1 means matches ”ground truth” exactly

14



 Introduction to Hypergraphs

 Spectral clustering

 Software implementation

 Spectral clustering results
 Clustering Quality

 Runtimes

 Conclusions

Outline
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Clustering Quality: Hyperedge Cardinality

16

0.5
10

0.6

0.7

108

g
ra

p
h

JI 0.8

0.9

6
54

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

J
a

c
c

a
rd

in
d

e
x

Hyperedge cardinality

0.5
10

0.6

0.7

108

0.8

0.9

6
54

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

J
a

c
c
a

rd
in

d
e

x

Hyperedge cardinality

General trend: hypergraph based clusters more similar to 
“ground truth” clusters than graph based clusters

General trend: hypergraph based clusters more similar to 
“ground truth” clusters than graph based clusters

Jaccard Index=1 means clusters match ”ground truth” exactly

Graph Model Hypergraph Model



 Introduction to Hypergraphs

 Spectral clustering 

 Software implementation

 Spectral clustering results
 Clustering Quality

 Runtimes

 Conclusions
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Runtime ratio = graph runtime / hypergraph runtime
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Eigensolver Iterations: Hyperedge Cardinality
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Hypergraph models converged faster (up to 6x) than graph modelsHypergraph models converged faster (up to 6x) than graph models
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Operator Apply Time: Hyperedge Cardinality
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 Introduction to Hypergraphs

 Spectral clustering 

 Software implementation

 Spectral clustering results

 Conclusions

Outline
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Summary/Conclusions

 Explored hypergraphs for modeling relational data
 TriData software for Linear Algebra Based Data Analytics

 Built on Trilinos framework (target: billions of vertices)

 Compelling advantages for computing on incidence matrices
 Avoid forming Laplacians, adjacency matrices when possible

 Hypergraphs extremely promising for data analytics
 Better model than graphs for multiway relational data (spectral 

analysis)

 Improvements in quality 

 Significant improvements in runtime (30x)

22HPC = High performance computing



Future Work

 Target larger problems 
 Currently solving problems of O(100k) vertices

 Eventual target: O(1 billion) vertices

 Performance improvements to software
 2D partitioning – important for scalability beyond O(10k) processors

 Improved efficiency of parallel hypergraph generator

 Promising problems for hypergraphs:  community and 
anomaly detection; centrality analysis; information 
propagation;  directed hypergraphs for complex, causal 
relationships 

23
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What is a hypergraph?

 Convenient representation of relational data
 Each email can be represented by hyperedge

 Emails/hyperedges consist of subsets of users

Hypergraph
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What is a hypergraph?

 Relational data is often stored as hypergraph incidence matrix
 E.g., D4M* tables

 Graph obtained through clique expansion of hypergraph
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Hypergraph clique expansion
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Weighted hypergraph clique expansion
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Motivating Problem: Clustering Relational Data

 Determine groupings of data objects given sets of 
relationships amongst those objects

 Relationships may be represented as graph or hypergraph
 Graphs represent pairwise relationships

 Hypergraphs represent relationships among groups of things

 Applications
 Finding emerging research trends from documents (Jung et al., 2014)

 Clustering categorical data (Gibson et al., 2000)

 Image segmentation (Agarwal et al., 2005)

 Metabolic networks (Guimera et al., 2004)
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Related Hypergraph Work

 Data partitioning (Computational science & engineering)
 Circuit layout, parallel processing, …

 Hypergraph eigencentrality (Bonacich, et al., 2004) 
 Analysis of attacks on Caribbean settlements

 Semi-supervised Learning (Tsuda, 2005)
 Information propagation across hypergraph, prior knowledge

 Biological networks (Klamt, et al., 2009)
 Biochemical reactions, finding related proteins (functional groups)

 Caveat emptor – hypergraphs
 Representations may increase complexity of algorithms (e.g., MST)

 Avoid such problems

31



Unweighted graph vs hypergraph 
clustering

Graph Approach Hypergraph Approach

Mean intra-cluster cardinality = 3
Number of clusters 4, mean size 100
Mean number of inter-cluster edges: 800
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Weighted graph vs hypergraph 
clustering
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Plot of eigenvalues
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Formulation of the eigenvalue 
problem

 Computing the smallest eigenpairs of 

is equivalent to computing the largest eigenpairs of the 
shifted Laplacians

 Computing the largest eigenpairs tends to be cheaper

 Laplacians are singular (but null space is known)

 Lg, Lh, and Sh are symmetric positive definite, but Sg is not

 Sg can be shifted even more to make it positive definite

35



Comparison of eigensolvers
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What tolerance should we use?
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How many eigenvectors should we 
calculate?
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How many eigenvectors should we 
calculate?
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How many eigenvectors should we 
calculate?
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Runtimes: Eigensolver vs. K-means
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Should we compute the eigenpairs of 
the Laplacian or the shifted Laplacian?
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Should we compute the eigenpairs of 
the Laplacian or the shifted Laplacian?
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Should the null space be provided 
to k-means?

 nClusters: 10

 nVerts: 10,000

 nEdges in cluster: 40,000

 nEdges between clusters: 50,000
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Data Sets

 Generate hypergraph incidence matrices
 4 different sets of parameters

 Different levels of difficulties

 10 randomly generated hypergraphs for each parameter set
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P1 P2 P3 Hyperedge
Cardinality

Number of clusters 10 5 10 5

Vertices per cluster* 10,000 10,000 10,000 10,000

Intra-cluster hyperedges* 40,000 20,000 20,000 20,000

Inter-cluster hyperedges* 50,000 200,000 200,000 200,000

Intra-cluster hyperedge cardinality* 5 10 5 3-10

Inter-cluster hyperedge cardinality* 5 3 5 3-10

* Designates mean value



Clustering Quality: P1, P2, P3
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Hypergraph based clusters more similar to “ground truth” 
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Runtimes: P1, P2, P3

47

Hypergraph models significantly more computationally 
efficient than graph models (up to 30x faster)

Hypergraph models significantly more computationally 
efficient than graph models (up to 30x faster)

0

2

4

6

8

10

12

14

16

P1 P2 P3

R
u

n
ti

m
e

(s
)

graph

hypergraph



Iterations: P1, P2, P3
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Hypergraph models converged faster than graph modelsHypergraph models converged faster than graph models

 Hypergraph required fewer LOBPCG iterations than graph
 Better separation of eigenvalues in hypergraph Laplacian

 Hypergraph required fewer k-means iterations
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Laplacian Operator Apply: P1, P2, P3

49

Laplacian operator apply more efficient for hypergraph 
model than graph model (up to 12x faster)
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Real Data – Hypergraph, 7 Clusters
Hypergraph Clustering
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 UCI ML Repository Zoo Data Set*

 Animals with 16 attributes (# legs, eggs, …) + category

 Hypergraph Clustering vs. ground truth for 7 clusters
 Jaccard index: 0.815 (Graph model 0.743)

 Merged reptiles/amphibians, new category: sea mammals

* https://archive.ics.uci.edu/ml/



Real Data – Graph, 7 Clusters
Graph Clustering
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 Graph Clustering vs. ground truth for 7 clusters
 Jaccard index: 0.743

 Data harder for kmeans to separate

 Insects, birds, mammals, other invertebrates, ?



Real Data – Hypergraph, 3 Clusters
Hypergraph Clustering
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 UCI ML Repository Zoo Data Set*

 Merged into 3 clusters: mammals/reptiles/fish/amphibians, birds, 
invertebrates

 Hypergraph Clustering vs. ground truth for 3 clusters
 Jaccard index: 1.000 (Graph model 0.865)

* https://archive.ics.uci.edu/ml/



Real Data – Graph, 3 Clusters
Graph Clustering

53

Ground Truth

G
ra

p
h
 E

V
3

EV=eigenvector

G
ra

p
h
 E

V
3

 Graph Clustering vs. ground truth for 3 clusters
 Jaccard index: 0.865

* https://archive.ics.uci.edu/ml/


