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Puncture of Al 7075 Tube by Cylindrical Punch
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• Within the Johnson-Cook model, assess the dependence of material failure 
on stress triaxiality

• Conduct quasi-static tests and analysis to calibrate and evaluate the model

• Elastic-plastic response evaluated using J2 flow rule with isotropic hardening

• Concentrate on a “hat” specimen geometry where failure is shear dominated

• Explore two materials: Al 7075-T651 and Steel A286

Objective/Outline

and
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Al 7075-T651
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Triaxiality Dependence (Al7075-T651)

High: (0.005, 0.34, -1.5)
Mid: (0.015, 0.24, -1.5)
Low: (0.000, 0.15, -1.5)

What about the region around  = 0?
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Hat Specimen Geometry
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Test Configuration
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Test Results (Steel A286)
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Test Results (Steel A286)

Test Start Just Before Failure
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Finite Element Model

• Two planes of symmetry
• 8-node hexahedral elements
• Reduced integration elements
• Explicit dynamics formulation
• Smooth step loading
• Johnson-Cook material model
• Abaqus Code

Surface
Side

Center
Side
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Hat Specimen Results
Al 7075-T651

Surface Center
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Triaxiality Dependence with Hat Specimen

• Johnson-Cook model fits data well
• Current results show preference for the “Med” fit.
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Steel A286
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Load-Deflection Response
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Johnson-Cook Failure Calibration for Steel A286
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Measured and Predicted Response for Hat Specimen
Steel A286
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Load-Deflection Responses for 
All Steel A286 Specimens
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Specimen Sectioning
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Micrographs for Steel A286 Specimens
(Right Side)
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Four Critical Regions Center of S3 (Max Load) 
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Examples of Higher Magnification Images 
Post Maximum Load
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Progression of Johnson-Cook Damage

Center

Surface



24

Two-Phase (Imperfect) Model

Phase 1 (Johnson-Cook) Phase 2 (Fail at low      )



25

Two-Phase (Imperfect) Model Results
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Model Configurations at Center
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3

45

Model Configurations Center - 2
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Conclusions

• The dependence on triaxiality of the plastic strain to failure of the Johnson-Cook 
failure criterion seems appropriate for the Al 7075-T651 tested.

• The same cannot be said of the Steel A286 alloy.   J-C calibrated from notched 
tension test specimens overestimated significantly the plastic strain to failure.

• The limit load seen in the Steel A286 hat specimens is the result of material 
damage.

• Need to lower the plastic strain at failure for Steel A-286 at low triaxialities in 
comparison to calibrated J-C model.

• Several ways to achieve this can be implemented.  Here, we chose an 
“imperfection” approach that precipitated failure at critical locations.

• This approach allowed our calculations to show the development of the 
maximum load.  
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Extra Slides
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Johnson-Cook Strength and Failure Models

Strength Model:
J2 isotropic hardening

Hardening curve:

1. Quasi-static uniaxial tension test 
2. Quasi-static high-temperature uniaxial tension tests 
3. High strain-rate tension tests

Calibration
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Johnson-Cook Strength and Failure Models

Failure Model:

Calibration:

1. Notched tension tests
2. Quasi-static high-temperature uniaxial tension tests 
3. High strain-rate tension tests

where

Damage accumulation

and
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Puncture of Al 7075 Cylinder by Cylindrical Punch



33

Triaxiality Dependence (Al7075-T651)

High: (0.005, 0.34, -1.5)
Mid: (0.015, 0.24, -1.5)
Low: (0.000, 0.15, -1.5)

What about the region around  = 0?
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Triaxiality Dependence with Hat Specimen

Hat specimen provides evidence to prefer the “Med” fit for Al 7075 T651.
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Uniaxial Stress-Strain Curves – Al7075-T651
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Surface Center
State Just Prior to Failure (Mid)
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Micrography: Just Prior to Failure

Specimen A5 at  B

Surface Center
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Uniaxial Stress-Strain Curves – Steel A286
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Strain Gage Measurement in Tension Tests – Steel A286

x
y
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Hill Anisotropy, R12 = 0.96
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Johnson-Cook Failure Calibration for Steel A286
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Top Profile Comparisons
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Mesh Convergence Study
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Micrographs for Steel A286 Specimens
(Left Side)
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Surface Roughness and Internal 
Microstructure in A286 Specimens
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Four Critical Regions Surface of S3 (Max Load) 
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Damage Progression: Center, S2, S3, S4
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Damage Progression: Surface, S2, S3, S4
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Model Configurations - Surface
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Strain Measurement by DIC – Steel A286


