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ABSTRACT 

This study examines the roughness profiles and aperture distributions of fractures 
and faults by using concepts from fractal geometry. Simple models of flow of fluid in 
rough fractures are also discussed. A deterministic fractal representation of the rough­
ness profile is presented which is shown to have many distinct advantages over other 
numerical methods, such as information compression, uniqueness and repeatability of 
surface simulation, retention of statistical information, and self-similarity over many 
scales. Also the fractal representation enables an isotropic surface and an aperture dis­
tribution to be simulated by examining a measured profile. Saturated fluid flow in 
fractures is then computed using a combined Navier-Stokes and Darcy equation. 
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EMTRODUCTION 

Fluid flow in fractures plays an important role in the characterization of the unsa­
turated zone at Yucca Mountain, the proposed nuclear repository site. Various tests 
are and will be conducted to investigate the fracture characteristics, and their abilities 
to transmit fluid under different unsaturated conditions. As a part of this effort a large 
number of roughness profiles of fracture surfaces are expected to be measured and 
analyzed.1 In this work we investigate the fractal characteristics of fracture surfaces 
and develop a methodology for estimating the aperture distribi«ions from roughness 
profiles. A simple model of fluid flow in fractures ^ rented .v!-.i .1 is illustrated by 
examining idealized case of fractures with cylindrical asperities a.••• the effects of drag 
by the asperities are evaluated. 

Surfaces of fractures and faults exhibit two distinct properties that make them 
amenable for analysis by the application of the theory of fractal geometry. The first is 
that roughness profiles of the surface seem to be non-differentiable, though they are 
continuous. The other is that the profile is self-similar at different scales over a large 
range of length scales. Previous studies in the literature have established the fractal 
dimension of various geophysical surfaces but have relied on numerical simulations 
based on random number generators to simulate2 and study3 these surfaces. I*he 
present analysis focuses on a deterministic representation of the roughness profile and 
the rough surface in order to reduce the computational effort as well as to derive 
semi-analytical expressions for various surface characteristics. The deterministic tech­
nique enables an isotropic surface and an aperture distribution between opposing sur­
faces to be created by examining one profile. 

A fractal representation has the advantage that it preserves the self-similarity 
exhibited by the surface roughness and retains the statistical information without 
resorting to large numerical simulations. With the selection of a few constants the 
deterministic formulation uniquely re-creates the rough profile of the surface. This 
yields a large information compression. Additionally, the deterministic formulation is 
independent of any kind of mesh spacing. A final advantage of the deterministic frac­
tal formulation is that the various values of interest (such as contact area) can be 
evaluated semi-analytically. 



- 3 -

The flow of fluid over fracture surfaces is difficult to analyze because of the com­
plicated flow paths of the fluid between discrete asperities. The asperities are not uni­
form in height, shapes, nor spacings, and follow a statistical distribution. Upon 
encountering an obstacle in the form of a solid asperity the fluid has to go around or 
above it, depending on the path of least resistance. The present study introduces a 
simple model to analyze fluid flow over rough surfaces. Assuming that the fluid 
always goes around the asperity along the plane of the mean flow, an effective per­
meability is defined to account for the viscous and pressure drag by the asperities. 
The resultant flow is modeled by a combination of Stokes and Darcy flows, thereby 
reducing the mathematical complexity of the original three-dimensional Navier-Stokes 
flow. 

FRACTAL REPRESENTATION OF ROUGHNESS 

The deterministic formulation selected for the representation of surface roughness 
profile is the Weierstrass-Mandelbrot cosine fractal function W(x) which is expressed 
as*"7 

i C O - W D - A Z ™*£$lx) . 1 < 0 < 2 
It * l l | p(2-D)" (1) 

where D is the fractal dimension of the roughness profile, B is a non-integral constant 
greater than unity, and A is a scaling constant. The above function W is continuous at 
all points but has no derivative anywhere. The frequencies of W are in geometric pro­
gression and, if the point x * 0 is avoided, the phases of different modes do not coin­
cide. This gives the resultant profile a random appearance. The power spectrum 
(spectral density) S(co) of the above profile representation is proportional to t i )" < 5 - 2 0 ) 

and is expressed as 

« * \ - * 2 v 8(a>-2wB") 
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A 2 ( 2 n ) (4-2D) t 
21np m(5-2D) ' K ' 

Here the zero frequency and negative frequencies have been neglected. Experimen­
tally observed profiles of fracture and other rock surfaces show similar straight line 
behavior on log-log plots8 indicating that the above representation is a valid one. 

The statistical parameters such as mean square height of a profile are not 
expected to be identical to that of a surface since the profile is expected to miss most 
of the highest peaks and deepest troughs on the surface. Assuming that the auto­
correlation functions of the profile and the surface are similar (i.e., the surface is iso­
tropic), a mathematical development3 can be followed which yields the relationship 
between the surface and profile power spectrums: 

. _ (5-20 )B (3-0,0.5) 5(o» 
i ,(0» - - — . (3) 

where £ is the Beta function. 

In this study the following function which satisfies the above relation, and is 
based on the Weierstrass-Mandelbrot function, is used to represent rough surfaces: 

hix,y) «2 cos(V2w3''jt)cosO/2ffp,,y) ... 

Here F(D) is a scaling function that compensates for the additional cosine term in 
order to yield profiles that are similar is magnitude to those presented in the previous 
section. Since the above expression is symmetric about x • y, it is a good representa­
tion of the surface away from this line. The power spectrum of the above representa­
tion is 

S,(wx,to,) = - J ^ ^ ^ . (5a) 
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Converting the above from a Cartesian to a cylindrical representation yields 

, AHiriw FHD) I 
21np JI a/ 6 " 2 0 ) ' * ; 

Comparing the above expression with the previous prediction (3) yields the value of 
F(D). Using the above formulations it can be shown that the ratio of mean square 
height of the surface to that of the profile is equal to F2(D )/2 which equals unity if 
D*2. This is consistent with die physical intuition since for a fracul dimension of 2 
the surface is extremely jagged (e.g. white noise) and the profile does not miss even 
the highest peaks and the deepest valleys. 

Anisotropy is encountered in many geologic surfaces. Brown and Scholz8 

observed that the fracul dimensions along the two principal directions of anisotropy do 
not differ significantly for siltstone bedding surfaces altered by frictional wear from 
glaciation as well as for anisotropic joints in siltstone. The power spectrums of the sur­
face profiles deviate slightly at large wavelengths, with profiles perpendicular to the 
wear grooves having more power. The anisotropy of such surfaces is evident visually, 
even though its manifestation in the power spectrum is not significant. If it is assumed 
that the fracul dimension of the surface remains same in all directions then these 
weakly anisotropic surfaces are represented by the above formulation by introducing 
P x and p y in the cosines and letting p in the denominator to be the smaller of p x and 
p r The ratio Px/pj, is determined by the degree of anisotropy. If for example p y is 
larger man p x the discrete power spectrum is lower for the profiles in the y direction. 
Various parameters to quantify the anisotropic nature of the surface may then be easily 
obtained by manipulating the above formulation. 

The aperture distribution due to two opposing rough surfaces can now be 
evaluated as (see Figure 1) 
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za(.xy) = zsl(xy) + zs2(xy) + d • ( 6) 

where d is the dilatancy of the fracture. Contact areas are defined as those where za £ 

0. Since the mean values <zsi> and <zS2> are zero, the mean value <za> is d. The 

above can be' simplified by letting the two surfaces to be mirror images with shear dis­

placements xc and yc in the JC and y directions, /.«., zsi(xy) = - zsl(x+xc,y+yc). 

For such a case the power spectrum is given as 

Sa(Wj,.C0j,) • 2[1 -cos(a>xjce + ttyye)]5,(0fc,a>y) , (7) 

where negative frequencies as well as the zero frequency term have been neglected. 

Numerical Study 

Three parameters have to be selected to numerically study and simulate rough­
ness: p, fi t, and n 2 . The parameter P is conveniently selected as 1.5. Parameter /t] is 
selected so that the largest wavelength corresponds approximately to the sample length 
L. If the surface being simulated is a one which has been experimentally measured by 
a stylus then n 2 is selected to match the smallest wavelength approximately equal to 
the stylus tip dimensions. The dimension D of the profile is obtained by analyzing the 
slope of power spectrum of the experimentally obtained roughness profile. The scaling 
constant A is evaluated by examining the area under the spectral density curve. A 
profile simulated by using the Weierstrass-Mandelbrot function is presented in Figure 
2. The parameters used in generating this profile are obtained by analyzing the profile 
of Brown9 which yields: D = 1.5, «j - -16, n 2 • -2, A * 0.03234, and p » 1.5. The 
value of x is from 2700 to 3700. Figure 3 presents a surface generated by the present 
scheme corresponding to the profile presented in Figure 2. 

FLOW IN FRACTURES 

In this section we evaluate the effects of asperities on the global permeabilities of 
fractures. It is assumed that on x-y planes along the direction of the mean flow, the 
fluid streams around the roughness asperities. The average flow along this two-



- 7 -

dimensional plane is characterized by an effective permeability K2 and porosity <{>, 
where K2 is the resultant effect of he viscous and pressure drags exerted by the asperi­
ties to the flow of fluid in the plane. Both K2 and $ are functions of z, and the poros­
ity <Kz) is defined as the open area for fluid flow at a transverse location z. The 
porosity is evaluated by employing relations from fractal theory to obtain analytical 
expressions.6 The effective permeability K2(z) has to be computed by solving the 
two-dimensional Stokes equations in the x-y plane. Since the roughness elements are 
highly irregular in size the results of Hasimoto10 and Sangani and Yao, n who 
analyzed Stokes flow through random distributions of cylinders, are used. 

The time-dependent equations that govern flow within the fracture are obtained by 
combining the two-dimensional Navier-Stokes equations with the effective permeability 
concept (cf. Brinkman,12 Vafai and Tien13): 

4>2<z) Bt dx K2(z) fa) 3 z 2 

The velocity u is averaged locally over the x -y plane, and hence is a function only of 
x and z. This velocity is a "Darcy velocity" and can be related to the actual average 
velocity of the fluid particles by u"*$2u (actual). One factor of $ accounts for the 
reduced area available for flow, while the second is introduced here to account for 
"tortuosity", in the sense that the actual travel path of a fluid particle between two 
points x =Xy and JC -x2 must exceed the distance \x2-X\\. Although the identification 
of the tortuosity with 1/$ is not exact, this idea has had some success in predicting the 
electrical conductivity of porous rocks. 

Idealized Fracture 

A fracture consisting of smooth parallel walls separated by a distance h contain­
ing randomly distributed cylindrical asperities is considered (see Figure 4). The 
governing can be analytically integrated for steady state, constant 0 and K2 yielding 

- / x ~ * 2 dp 
«(z)= T u. dx 

cosh 
1 - -

cosh 
(9) 
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The total volumetric flux can be found by averaging the velocity again, this time over 
the z direction. The equivalent "three-dimensional" fracture permeability K3 is found 
by comparing it with Darcy's law to yield 

1 -
tanh[<|>/t/2V^J 

(10) 

The above expression reduces to the expected results in the two limiting cases of 
p-* 1 (no obstacles), and h -»•• (no side walls). In the former case, note that K2-* — 
when 0-» 1 with h held constant, so that AT3 -> A2/12 as $ - * 1, which is the known 
permeability for flow between parallel flat plates. In the other limit of h ->«• (with $ 
held fixed), tanh(«*)s l in (10), so that K3 -*K^ as h ->••. In this case the permeabil­
ity reduces to that of flow across an array of infinitely long, parallel circular cylinders. 
There is another important limit in which hla ->0 for fixed c, {c * 1—<>), in which 
case (10) reduces to K3 • 4»2/t2/12 • A 2 / 12 ( l - c ) 2 . If the concentration of obstacles c 
is small but finite, the above expression reduces to ( l -2c)A 2 /12 , which is the result 
found by Walsh14 for a thin fracture containing a small concentration of randomly dis­
tributed circular asperities. If one of the K2 expressions from literature is used, such 
as by Hasimoto10 for small values of c 

8c (-Inc - 1.476 + 2c + ...) , (Ha) 

and that of Sangani and Yao 1 1 for higher c 

^-rar[»-i-w^r. (lib) 

the three-dimensional permeability /f3 can be predicted (Figure S). Here a is root 

mean square radius of the cylindrical asperities. It is seen that for very thin fractures 
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the wall shear dominates and the reduction in permeability is due to tortuosity of the 
flow that is introduced due to asperities. For larger values of h more asperity surface 
is exposed to the flow and asperity viscous shear drag begins to be significant. Since 
most fractures have asperity contact areas less than 30%, either expression of K2 used 
yields similar results. 

CONCLUSIONS 

The deterministic scheme studied in the present work to generate roughness 
profiles and rough surfaces has tremendous advantages over conventional numerical 
algorithms for generating and visual rendering of random processes. The major advan­
tages are the extreme information compression, repeatability, saving of computer time 
and storage, an^ extrapolating the information from profiles to generate rough surfaces 
and aperture distributions. Another feature of the present scheme, not available via 
simple conventional algorithms, is the ease of generation of anisotropic surfaces. The 
present method is thus a powerful tool in the study of rough surfaces and the various 
phenomena associated with them. 

A new simple model for analyzing flow over rough surfaces has been developed. 
To illustrate the approach an expression has been derived for the permeability of a 
fracture that consists of two smooth parallel walls and contains cylindrical asperities. 
The predicted permeability reduces to that of an assemblage of infinitely long parallel 
cylinders when the aperture is very large, and to the parallel plate permeability when 
the asperity concentration goes to zero. The results show that viscous drag along the 
faces of asperities appreciably reduces the permeability of a fracture. 
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FIG. I. Schematic depiction of apertures. 
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FIG. 2. Fractal profile of dimension D * 1.5 generated by present scheme. 
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FIG. 3. Surface generated by present scheme. 
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Side View 

Top View 

FIG. 4. Schematic of an idealized fracture. 
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