chandra-book.indb 121

Chapter 7

OpenACC and
Performance Portability

7.1

Graham Lopez and Oscar Hernandez, Oak Ridge National Laboratory

This chapter discusses the performance portability of directives provided by
OpenACC to program various types of machine architectures. This includes nodes
with attached accelerators: self-hosted multicores (e.g., multicore-only systems
such as the Intel Xeon Phi) as well as GPUs. Our goal is to explain how to success-
fully use OpenACC for moving code between architectures, how much tuning might
be required to do so, and what lessons we can learn from writing performance
portable code. We use examples of algorithms with varying computational inten-
sities for our evaluation, because both compute and data-access efficiency are
important considerations for overall application performance. We explain how
various factors affect performance portability, such as the use of tuning parame-
ters, programming style, and the effectiveness of compilers’ flags in optimizing and
targeting multiple platforms.

Challenges

Performance portability has been identified by the high-performance computing
(HPC) community as a high-priority design constraint for next-generation systems
such as those currently being deployed in the Top500 (a list that ranks systems by

121

@ 8/5/2017 10:10:15 PM

CHAPTER 7

122

chandra-book.indb 122

OPENACC AND PERFORMANCE PORTABILITY

using the Linpack benchmark)' as well as the exascale systems upcoming in the
next decade. This prioritization has been emphasized because software devel-
opment and maintenance costs are as large or larger than the cost of the system
itself, and ensuring performance portability helps protect this investment—for
example, by ensuring the application’s usability if one architecture goes away or a
new one becomes available.

Looking forward, we are seeing two main node-architecture types for HPC: one
with heterogeneous accelerators (e.g., IBM Power-based systems with multiple
NVIDIA Volta GPUs; Sunway accelerator architecture), and the other consisting of
homogeneous architectures (e.g., third-generation Intel Xeon Phi-based nodes,
Post-K ARM, etc.). At present it is a nontrivial task to write a performance portable
application that targets these divergent hardware architectures and that makes
efficient use of all the available computational resources (both at the node level and
across nodes). It is clear that applications need to be written so that the parallelism
can be easily decomposed and mapped with at least three levels of parallelism:
across nodes, within the nodes (thread-level parallelism), and vector-level parallel-
ism (fine-grained or SIMD-level parallelism).

The latest OpenACC 2.5 specification defines a directive-based programming API
that can target the thread and vector levels, and it accommodates both traditional
shared-memory systems and accelerator-based systems. However, we have also
learned that performance portability depends on the quality of the implementation
of the compilers and their ability to generate efficient code that can take advantage
of the latest architectural features on different platforms. Shared-memory pro-
gramming has been available in, and has been the main focus of, the industry-standard
OpenMP specification for more than a decade, but the recent introduction of an
offloading model in OpenMP poses the question, Is the accelerator model suitable
to target both shared-memory and accelerator-based systems?

In this chapter, we show how OpenACC can be used as a single programming model
to program host multicore, homogeneous, and heterogeneous accelerators, and
we discuss the potential performance or productivity tradeoffs. We highlight how
OpenACC can be used to program a micro-kernel called the Hardware Accelerated
Cosmology Code (HACCmk), which is sensitive to vector-level parallelism (e.g.,
vectorization, warps, SMTs/SIMD, etc.).

We use the PGl and Cray compilers (see Section 7.3.4, “Data Layout for Perfor-
mance Portability,” later in this chapter for versions) to target OpenACC both on
CPUs and on NVIDIA GPU hardware platforms. We compare the performance of

1. https://www.top500.org/project/.

8/5/2017 10:10:15 PM

chandra-book.indb 123

7.2 TARGET ARCHITECTURES

the OpenACC versions versus baseline platform-optimized code written in multi-
threaded OpenMP 3.1. Another approach to measure performance portability of
the code is to compare the performance results to the machine theoretical peak
floating-point operations per second (FLOPS) (for compute-bound kernels) or
bandwidth (for memory-bound kernels) across the target architectures.

We summarize these experiences to reflect the current state of the art for achiev-
ing performance portability using OpenACC.

7.2 Target Architectures

To demonstrate performance portability using OpenACC, we use two target archi-
tectures: x86_64 with attached NVIDIA GPUs, and x86_64 only (multicore). The
work can also be extended to target self-hosted Intel Xeon Phi KNL processors. At
the time of this writing, support for Knights Landing (KNL) was not generally avail-
able with the PGl compilers.

7.2.1 COMPILING FOR SPECIFIC PLATFORMS

OpenACC is an open standard that is not tied to a specific architecture or soft-
ware stack, but in this chapter we focus primarily on the PGl compiler, because it
currently provides the most general performance portability. At this time, other
available implementations, such as Cray, are more specialized in purpose, and
upcoming implementations, such as that in the GNU compilers, are not yet as
robust across multiple architectures.

7.2.2 X86_64 MULTICORE AND NVIDIA

In the PGI compiler, in addition to the —acc switch to enable general OpenACC sup-
port, there are flags that can further direct the generation of target code. Here we
explain an example of how to use the PGl compiler to generate an executable that is
suitable for various types of host CPU and NVIDIA accelerator platforms.

The default PGl behavior for the —acc flag is to create a unified “fat” binary that
includes both host serial CPU and multiple targets of varying compute capabilities
(cc20, cc35, cch0, etc.). This same behavior can be obtained by using, for instance,
the flag -ta=tesla, host. At runtime, the default OpenACC device type will
be NVIDIA unless no NVIDIA targets are available, in which case the device
type will be HOST.

123

@ 8/5/2017 10:10:15 PM

CHAPTER 7

124

chandra-book.indb 124

7.3

OPENACC AND PERFORMANCE PORTABILITY

Users can modify the default by either compiling to a specific target (such as
-ta=tesla:cco60 for the Pascal architecture, or ~ta=multicore for a parallel
CPU version); calling acc_set device type () inthe program; or setting the ACC
DEVICE TYPE environment variable to have an effect on the default device type.

To take advantage of recent unified memory capabilities in the NVIDIA architecture,
you can add the flag -ta=tesla:managed.

In the near future, OpenACC parallelization for KNL will be supported by the PGI
compiler, furthering its capabilities toward performance portability.

OpenACC for Performance Portability

When targeting multiple architectures you must be aware of how the program-
ming model maps to the target architecture. One important factor for high perfor-
mance is efficient use of the memory systems. In this section, we examine how the
OpenACC memory model can be mapped to the various memory architectures.

7.3.1 THE OPENACC MEMORY MODEL

OpenACC uses a copy-in and copy-out data regions memory model to move data

to local (otherwise known as affine) memories of the accelerator. These data
regions can be thought of as user-managed caches. The interesting property of
this memory model is that it can be mapped efficiently to a variety of architectures.
For example, on shared memory, the data regions can be either ignored or used

as prefetching hints. On systems that have discrete memories, data regions can

be translated to data transfer APIs using a target runtime (e.g., CUDA, OpenCL,
etc.). On partially shared memory systems, the data directives can be either used
or ignored, depending on whether the thread that encounters the data region can
share data with the accelerator (e.g., unified memory, managed memory, etc.).

OpenACC data regions can be synchronized with the host memory. All data move-
ment between host memory and device memory is performed by the host through
runtime library calls that explicitly move data between the memories (or ignored in
shared memory), typically by using direct memory access (DMA) transfers.

8/5/2017 10:10:15 PM

7.3 OPENACC FOR PERFORMANCE PORTABILITY

7.3.2 MEMORY ARCHITECTURES

Following is a list of various types of system memory.

¢ Discrete memories. These systems have completely separate host and device
memory spaces that are connected via, for example, PCle or NVLINK. This mem-
ory architecture maps well to the OpenACC data regions’ copy-in and copy-out
memory model.

¢ Shared memory. In these systems, all of the cores can access all of the memory
available in the system. For example, traditional shared multicore systems (Intel
KNL self-hosted, etc.) fit into this category. This model maps well to OpenACC,
because the data region directives can be ignored or used as hints to the com-
piler to do prefetching.

¢ Partially shared memories. In this scenario, some of the system memory is
shared between the host and the accelerator threads. Each device may have its
own local memories but accesses a portion of memory that is shared. Future
OpenACC specifications will support this by allowing data regions to be option-
ally ignored or used for prefetching if the thread of a host shares the same address
space as the thread of the device. Currently, this is supported in the PGl compiler
using the ~-ta=tesla:managed flag for dynamic allocated memory, and on sys-
tems where sharing is possible, as in the case of NVIDIA managed memory sup-
ported by software (e.g., CUDA Managed Memory over PCle, or NVLINK).

7.3.3 CODE GENERATION

The best way to generate performance portable code is to use and tune the
OpenACC acc loop directive, which can be used to distribute the loop iterations
across gangs, workers, or vectors. The acc 1oop directive can also be used to
distribute the work to gangs while the loop is still in worker-single and vector-single
mode. For OpenACC, it is possible in some cases to apply 1oop directives such
as tile to multiple nested loops to strip-mine the iteration space that is to be
parallelized.

The OpenACC compilers also accept gang, worker, or vector clauses to pick the
correct level of parallelism. If you specify only acc loop, the compiler decides
how to map the iteration space to the target architecture based on its cost models
and picks the right type of scheduling across gangs, workers, or vectors. This is an
important feature of OpenACC, because it gives the compiler the freedom to pick
how to map the loop iterations to different loop schedules, and that helps generate

125

chandra-book.indb 125 @ 8/5/2017 10:10:15 PM

CHAPTER 7

OPENACC AND PERFORMANCE PORTABILITY

performance portable code while taking advantage of the target accelerator
architecture.

However, in some cases the compiler cannot do the best job in generating the cor-
rect loop schedules. For these cases, you can improve the loop scheduling by add-
ing clauses such as gang, worker, or vector to the OpenACC loops. In cases of
perfectly nested parallel loops, OpenACC also supports the use of the tile clause
to schedule nested loops to a given level of parallelism (e.g., gang or vector).

7.3.4 DATA LAYOUT FOR PERFORMANCE PORTABILITY

It's important to decide how the layout of data structures affects performance
portability. Structures of arrays are in general more suitable for GPUs as long as
the data access to the arrays is contiguous (memory coalescing). This is a good
layout optimization for throughput-driven architectures. On the other hand, arrays
of structures are also good for caching structure elements to cache lines, a layout
that is important for latency-driven architectures common to host CPUs. Interest-
ingly, we have noted that in some cases, improving data layouts on GPUs can also
benefit the multicore case, but not as commonly the other way around.

We note that high-level frameworks for data abstractions (e.g. Kokkos,? SYCL,®
etc.) can be useful to explore these types of issues related to data structure lay-
outs, but they come at the cost of making the compilation process and compiler
analysis more complex.

7.4 Code Refactoring for Performance

126

chandra-book.indb 126

Portability

To study the performance portability of accelerator directives provided by
OpenACC, we use a kernel from the HACC HPC cosmology application. This kernel
is part of the CORAL benchmarks suite.

2. http://www.sciencedirect.com/science/article/pii/S0743731514001257.

3. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf.

8/5/2017 10:10:15 PM

7.4 CODE REFACTORING FOR PERFORMANCE PORTABILITY

7.41 HACCMK

HACC is a framework that uses N-body techniques to simulate fluids during the
evolution of the early universe. The HACCmk* microkernel is derived from the HACC
application and is part of the CORAL benchmark suite. It consists of a short-force
evaluation routine which uses an 0(n?) algorithm using mostly single-precision
floating-point operations.

The HACCmk kernel as found in the CORAL benchmark suite has shared memory
OpenMP 3.1 implemented for CPU multicore parallelization, but here we convert

it to OpenACC 2.5. The kernel has one parallel loop over particles that contain a
function call to the bulk of the computational kernel. This function contains another
parallel loop over particles, resulting in two nested loops over the number of par-
ticles and the 0(n?) algorithm, as described by the benchmark. A good optimizing
compiler should be able to generate performance portable code by decomposing
the parallelism of the two nested loops across threads and vector lanes (fine-
grained parallelism). For vector (or SIMD-based) architectures, the compiler should
aim at generating code that exploits vector instructions having long widths. For
multithreaded or SMT architectures, it should exploit thread-level parallelism and
smaller vector lanes.

As shown in Listing 7.1, the OpenACC version of the HACCmk microkernel, we
parallelize the outer loop level using the acc parallel loop directive. The inner
loop is marked by using an acc loop with private and reduction clauses.
We intentionally do not specify any loop schedule in both acc loops to allow the
compiler to pick the best schedule for the target architecture (in this case the

GPU or multicore). We did this both to test the quality of the optimization of the
OpenACC compiler and to measure how performance portable OpenACC is across
architectures.

Listing 7.1 OpenACC version of the HACCmk microkernel

#pragma acc parallel private(dxl,dyl,dzl) \
copy (vxl,vyl,vzl) \
copyin(xx[0:n] ,yy[0:n],zz[0:n])
#pragma acc loop

for (1 = 0; 1 < count; ++1i) {
const float maO = 0.269327, mal = -0.0750978,
ma2 = 0.0114808, ma3 = -0.00109313,
ma4 = 0.0000605491, ma5 = -0.00000147177;

float dxc, dyc, dzc, m, r2, £, xi, vyi, zi;

4. https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACCmk_Summary_v1.0.pdf.

127

chandra-book.indb 127 @ 8/5/2017 10:10:15 PM

CHAPTER 7

OPENACC AND PERFORMANCE PORTABILITY

Listing 7.1 OpenACC version of the HACCmk microkernel (continued)

int
xi

#pragma acc

for (

dxc
dyc
dzc

-

(

3
o

Hh
Il

(
xi =
vi
zi

dx1
dyl
dzl

vx1[i]
vyl[i]
vz1[i]

37
=0.; yi=0.; zi = 0.;

loop private(dxc, dyc, dzc, r2, m, £) \
reduction (+:xi,yi,zi)

=0; j < n; j++) {

xx[J] - xx[i];

yy[3] - yyl[il;

zz[3] - zz[i];

dxc * dxc + dyc * dyc + dzc * dzc;

r2 < fsrrmax2) ? mass[j] : 0.0f;
powf(r2 + mp rsm2, -1.5)

- (ma0 + r2* (mal + r2* (ma2 + r2* (ma3
+ r2* (mad+ r2*mab)))));
r2 > 0.0f) ? m* £ : 0.0f;
xi + £ * dxc;

vi + £ * dyc;

zi + £ * dzc;

= x1i;

= yi;

= zi;
= vx1[i] + dx1 * fcoeff;
= vyl[i] + dyl * fcoeff;
= vz1[1] + dzl * fcoeff;

128

chandra-book.indb 128

HACCmk is an extremely interesting case study, because to work with performance
portable codes, the compiler must successfully vectorize all the statements of the
inner procedure (generate vector instructions) or generate efficient multithreaded
or SMT code. For this code, performance portability depends on the quality of the
compiler implementation and its ability to vectorize code or to generate multi-
threaded (SMT) code for GPUs. To get good performance on the CPU and Xeon

Phi, we also need to make sure that there is a vector implementation of the powf,
which belongs to the C math library math.h.

7.4.2 TARGETING MULTIPLE ARCHITECTURES

Achieving performance portability with OpenACC depends on how the compiler
lowers (translates) and maps the parallelism specified by OpenACC to the target
architecture. When we compile HACCmk with the PGl compiler and target a K20x
NVIDIA GPU, we get the following output:

pgcc -acc -Minfo -03 -c main.c -o main.o

main:
203, Loop not vectorized: data dependency

8/5/2017 10:10:15 PM

7.4 CODE REFACTORING FOR PERFORMANCE PORTABILITY

Loop unrolled 4 times

FMA (fused multiply-add) instruction(s) generated
211, Generated an alternate version of the loop

Generated vector simd code for the loop
222, Memory set idiom, loop replaced by call to c msetl
223, Memory copy idiom, loop replaced by call to _ c mcopyl
239, Generating implicit copyin(mass[:n])

Generating copy(vxl[:],vyl[:],vz1l[:])

Generating copyin(xx[:n],zz[:n],yyl[:n])

Accelerator kernel generated

Generating Tesla code

242, #pragma acc loop gang /* blockIdx.x */

257, #pragma acc loop vector (128) /* threadIdx.x */

Generating reduction (+:xi,zi,yi)

When you compile HACCmk with the PGl compiler and target an AMD Bulldozer
architecture, you get the following compiler output:

pgcc -acc -Minfo -03 -ta=multicore -c main.c -o main.o
main:
188, Loop not vectorized/parallelized:
contains a parallel region
203, Loop not vectorized: data dependency
Loop unrolled 4 times
FMA (fused multiply-add) instruction(s) generated
211, Generated an alternate version of the loop
Generated vector simd code for the loop
222, Memory set idiom, loop replaced by call to c msetl
223, Loop unrolled 8 times
239, Generating Multicore code
242, #pragma acc loop gang
257, Loop 1is parallelizable
Generated vector simd code for the loop containing
reductions and conditionals
Generated 4 prefetch instructions for the loop
FMA (fused multiply-add) instruction(s) generated
301, Generated vector simd code for the loop containing
reductions
Generated 3 prefetch instructions for the loop
FMA (fused multiply-add) instruction(s) generated

Notice that for these two architectures, PGl translates the outer OpenACC loop to
gang-level parallelism (loop 239) and translates the inner loop to vector-level par-
allelism (loop 257). However, one of the main differences is the vector length
used. For the GPU version, the vector length is 128, whereas the CPU version is
based on the size of the vector register for AVX (256-bits). In this case the vector
length is 8 (for 8 floats vector instructions). Also notice that to efficiently vector-
ize the inner loop for multicores, generation of vector predicates and intrinsics is
needed (e.g., powf ()).

129

chandra-book.indb 129 @ 8/5/2017 10:10:15 PM

CHAPTER 7

130

chandra-book.indb 130

OPENACC AND PERFORMANCE PORTABILITY

We specified different vector lengths using OpenACC, but for both cases (GPU and
multicore) the PGl compiler always picked 128 (for the GPU) and 4 (for the multi-
core) architecture. The compiler’s internal cost models picked the right length for
the different architectures and optionally decided to ignore the clauses provided by
the user, as reported in the output from —-Minfo shown earlier.

To control the number of threads spawned on the multicore platforms, you use the
ACC_MULTICORE environment variable. However, this variable is a PGl exten-
sion and not part of the OpenACC standard. You should use this flag if you want to
control the number of threads to be used on the CPU. If the flag is not specified, the
CPU will use the maximum number of threads available on the target multicore
architecture.

7.4.3 OPENACC OVER NVIDIA K20X GPU

We ran HACCmk on the OLCF Titan Cray XK7 supercomputer, which consists of a
cluster of AMD Interlagos host CPUs connected to NVIDIA K20x GPUs. For the Oak
Ridge Leadership Computing Facility (OLCF) Titan system, a compute node consists
of (a) an AMD Interlagos 16-core processor with a peak flop rate of 140.2 GF and a
peak memory bandwidth of 51.2 GB/sec, and (b) an NVIDIA Kepler K20x GPU with

a peak single- or double-precision flop rate of 3,935/1,311 GF and a peak memory
bandwidth of 250 GB/sec. For this platform, Cray compilers were used, with ver-
sions 8.5.0, and PGl 16.5 / 17.1.

Figure 7.1 shows the HACCmk speedup of the OpenACC version when running on an
NVIDIA K20x GPU, as compared with the OpenMP shared-memory version running
on an AMD Bulldozer processor using 8 host CPU threads (because each floating-point
unit is shared between 2 of the 16 physical cores). The OpenACC version always
outperformed the shared-memory version running on the CPU. This is what we
would expect given the K20x compute capabilities. When we compare the results
using different compilers, we observed less OpenACC speedup when using the PGl
16.5 compiler. These results highlight the fact that performance portability of code
also depends on the quality of the compiler optimizations, because more hints may
be needed to generate performance portable code, depending on the compiler.

7.4.4 OPENACC OVER AMD BULLDOZER MULTICORE

Figure 7.2 shows the HACCmk speedup of OpenACC (multicore) over OpenMP 3.1
using 8 threads when running on a Bulldozer AMD using 8 cores using PGl 17.1. We
used the OpenACC environment flag ACC_NUM CORES=8 to specify 8 OpenACC

8/5/2017 10:10:15 PM

chandra-book.indb 131

7.4 CODE REFACTORING FOR PERFORMANCE PORTABILITY

25.0

20.0

15.0

10.0

Speedup over 8 CPU threads

5.0

19.6

i OpenACC 2.0 (Cray8.5.0)

B OpenACC 2.5 (PGl 16.5) 15.6

12.5
11.0
23 2.6
100 ‘ ' 1600 I 3200
Problem Size (# of particles)

Figure 7.1 Speedup of OpenACC running on NVIDIA K20x GPUs when compared to OpenMP shared

memory running on Bulldozer AMD CPU using 8 threads

g
o

4 OpenACC - Multicore (PGI) - 8 threads

g
>

I
N

-

4
o

o
IS

I
N~

Speedup over 8 OpenMP Threads

o

100 200 400 800

Problem Size (# of particles)

1600 3200

1

Figure 7.2 Speedup of OpenACC running on a Bulldozer AMD CPU when compared to OpenMP

shared memory running on a Bulldozer AMD CPU using 8 threads

131

8/5/2017 10:10:18 PM

CHAPTER 7

OPENACC AND PERFORMANCE PORTABILITY

threads on the CPU. The OpenACC version outperformed the OpenMP 3.1 version.
One of the reasons is that our OpenACC version inlines the inner loop (compared
to the OpenMP 3.1 version) and provides more information to the vectorization
phase of the compiler, including information about reductions. We also notice that
when the problem size increases, the OpenACC improvement in terms of speedup
becomes less profitable (from 1.49 to 1.06) as we saturate the memory band-
width. The Cray 8.8.5 compiler did not support the mode of targeting OpenACC
to multicore.

7.5 Summary

132

chandra-book.indb 132

It is possible to achieve improved performance portability across architectures
when you use OpenACC. Performance of OpenACC depends on the ability of the
compiler to generate good code on the target platform. For example, we observed
a significant performance variation when we compiled OpenACC with Cray 8.5.0
compared with the PGI 16.5. Further investigation showed a significant perfor-
mance variation when we tried PGI 16.7. This tells us that compilers play a sig-
nificant role in the level of performance portability of a programming model. To
write performance portable code, it is important to specify where the parallelism
in the code is (e.g., via #pragma acc 1oop) without specifying clauses that affect
how the parallelism is mapped to the architecture. For example, specifying hints
such as the OpenACC vector length can help achieve good performance on an
architecture, but, at the same time, it can possibly hinder performance on another
one. However, sometimes these hints are necessary when the compiler cannot
efficiently map the parallelism to the target platform.

When we compiled OpenACC to multicore, which in this case corresponded to the
shared-memory host CPU, the PGl compiler ignored the data region directives.
These included any #pragma acc data directives or clauses that move data to or
from the accelerator.

Not only is the #pragma acc loop directive extremely useful for performance
portability (to specify parallelism for offloading to accelerators), but also, depend-
ing on the implementation, it can be critical if you are to achieve good levels of mul-
tithreading and vectorization. It can help compilers identify the parallelism in the
code when they cannot figure it out automatically, and this is important for optimi-
zations such as automatic vectorization. Compilers cannot yet consistently identify
these opportunities in all cases, so hints must be used to ensure that vectorization
is used where appropriate. Although GPUs do not have vector units, the #pragma

8/5/2017 10:10:18 PM

chandra-book.indb 133

7.6 EXERCISES

acc loop directive can be used to help identify parallelism that can be mapped to
grids, thread blocks, and potential very fine-grained parallelism that can be exe-
cuted by SMT threads (e.g., GPU warps).

We noticed better performance when using OpenACC (multicore) versus OpenMP
3.1 baseline when running in an AMD Bulldozer processor using 8 cores using PGl
17.1. One of the possible reasons for this behavior is that OpenACC provides
more information to the vectorization phase of the compiler, including infor-
mation about reductions. Being able to specify another level of parallelism in
OpenACC that maps to vector instructions was an advantage. At the time of this
writing, the Cray compiler didn't allow the ability to generate OpenACC code that
targets multicore processors.

7.6 Exercises

1. How many levels of parallelism can be specified using OpenACC?
2. Which of the following directives is the most performance portable?
a. #pragma acc parallel loop
b. #pragma acc parallel loop gang
c. #pragma acc parallel loop vector
d. #pragma acc parallel loop vector vector length (N)

3. Which of the following memory models does OpenACC support? Describe any
limitations that apply to those models that are supported.

a. Shared memory
b. Discrete memory
c. Partially Shared Memory
4. Which of the following clauses can be used to tune for a specific architecture?
a. Specifyingavector length ()
b. Specifying the number of gangs, workers, or vectors

Cc. acc copyinand copyout

133

@ 8/5/2017 10:10:18 PM

CHAPTER 7 OPENACC AND PERFORMANCE PORTABILITY

d. All of the above
e. None of the above
5. Is an OpenACC compiler allowed to
a. Ignore directives specified by the user
b. Change values in directives provided by the user
c. Both

d. Neither

134

chandra-book.indb 134 @ 8/5/2017 10:10:18 PM

