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SUMMARY 

Enzyme catalyzed processes are rapidly becoming a viable means to accomplish 

chemical transformations in the field of synthetic chemistry. In an era where concern 

about the current and future state of the environment is at its peak, biocatalysts offer 

many advantages over conventional chemical catalysts, such as low toxicity, 

renewability, biodegradability, high selectivity, and high activity and stability in aqueous 

solvents at ambient temperature and neutral pH.  

The current dissertation research focuses on one particular class of enzyme: 

laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2). These enzymes belong to the 

sub-class of enzymes known as multi-copper oxidases. Attributing to the fact that they 

oxidize a variety of electron-rich organic compounds while concomitantly catalyzing the 

four electron reduction of O2 to 2H2O, they have received increasing use in recent 

decades as green catalytic oxidants within a variety of industries, including pulp and 

paper, bioremediation, textiles, food, cosmetics, and pharmaceuticals.  

Within the field of organic synthesis, laccases have been employed to catalyze a 

multitude of radical-radical coupling, cross-coupling, and cascade reactions. Part one of 

this dissertation research has focused on harnessing the ability of laccases to generate 

reactive para-quinones in situ from the corresponding hydroquinones, followed by 

reaction with a variety of nucleophiles to perform novel carbon-carbon, carbon-nitrogen, 

and carbon-sulfur bond forming reactions for the synthesis of new and existing 

compounds. All reaction protocols are conducted in one-pot in an aqueous solvent system 

at ambient to slightly elevated temperatures and neutral to slightly acidic pH. As an 



 xxii 

example of laccase-catalyzed carbon-carbon bond forming reactions, which is the topic of 

Chapter 4, the model compound benzoylacetonitrile was coupled with a variety of 

substituted hydroquinones via a laccase-catalyzed α-arylation reaction to afford benzylic 

nitriles. Focus was then geared toward using laccases to synthesize heterocyclic bis-

sulfide compounds, such as 2,3-ethylenedithio-1,4-quinones, via coupling 1,2-

ethanedithiol to hydroquinones in a laccase-catalyzed carbon-sulfur bond forming 

reaction, which is discussed in Chapter 5. Continuing on with laccase-catalyzed syntheses 

of heterocycles, Chapter 6 presents a comparative study for the synthesis of 

phenothiazones that examines different methods of coupling 2-aminothiophenol with 

both hydroquinones and para-quinones under laccase catalysis. 

In part two of this dissertation, the fundamental laccase-catalyzed coupling 

chemistry developed in part one was applied to functionalize the surface of kraft lignin. 

In Chapter 7, it is demonstrated how a simple hydroquinone can be employed as a 

bridging reagent along with a trithiol that acts as a branching reagent to synthesize lignin-

core hyperbranched polymers and polymer networks.  This work provides a novel route 

for the synthesis of lignin-based biomaterials as well as a means for lignin valorization 

within the biorefinery. 

The content in the final chapters of this dissertation will attempt to tie together the 

major findings of the research conducted, as well as provide guidance for future work in 

the field of laccase-catalyzed coupling reactions. 
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CHAPTER 1. INTRODUCTION 

Sustainability, the ability of a process to continuously operate indefinitely without 

depleting natural resources, is the core concept influencing all aspects of modern society: 

sustainable manufacturing processes, sustainable living conditions, and sustainable 

business operations to name a few. In fact, in a recent study by the United Nations Global 

Compact, which is the largest global corporate sustainability initiative with over 8,000 

member companies from 161 countries, 96% of CEOs surveyed believe that 

sustainability should be incorporated into a company’s strategy and operations.
[1]

 Thus, it 

is fair to say we are currently experiencing the birth of an era of sustainability. 

The chemical and forest products industries have acknowledged and championed 

sustainability concerns and are at the forefront position to make a significant and lasting 

effect on environmental sustainability. An initial step in achieving this goal in the United 

States was the establishment of the Pollution Prevention Act of 1990, which identified 

reducing waste production at the source as a key strategy in alleviating the harmful 

effects of chemical waste on the environment.
[2]

 Seemingly spurred on by the Act, a 

whole new field of science was energized: green chemistry. The concept, coined in 1991 

by Paul Anastas, aims at promoting the design and development of chemical products and 

processes that reduce or eliminate the generation of hazardous materials.
[3]

 Since its 

inauguration, numerous initiatives have evolved to promote an awareness of green 

chemistry and the environmental and economic benefits its implementation can provide 

to contemporary society. 



2 

 

Potentially the most pioneering work to date in the field of green chemistry was 

the establishment of the 12 Principles of Green Chemistry. Devised by Anastas and John 

Warner, these principles aim to guide chemists in designing safer and environmentally 

benign chemical products and processes.
[4]

 Central to the 12 Principles is the idea of 

waste prevention, rather than waste treatment, as many of the principles are based on 

reducing or eliminating waste generation. This can be achieved by such strategies as 

using benign solvents or conducting solvent-free reactions, employing catalysts, 

eliminating the need for derivatization, and using and manufacturing biodegradable 

materials. The standard metric for assessing waste generation is the E Factor, which 

measures kg of waste produced per kg of desired product formed.
[5]

 Thus, reducing the E 

Factor of chemical processes is of high priority. As an example, pharmaceutical giant 

Pfizer, who is a member of the ACS GCI Pharmaceutical Roundtable,
[6]

 used the 

principles of green chemistry to reduce the E Factor for the synthesis of Lyrica, an 

anticonvulsant drug, from 86 to 9.
[7]

 Not only does this have a beneficial impact on the 

environment, but it also yields economic benefits in the form of cost savings related to 

waste treatment, which provides any company with a competitive edge, especially in the 

fiercely competitive pharmaceutical industry. It is clear that green chemistry practices 

have been adopted – for example, in the US, hazardous waste generation has dropped 

from 278 million tonnes to 35 million tonnes in the past two decades.
[7] 

Catalysis is largely viewed as a “foundational pillar” of green chemistry.
[8]

 By 

employing catalysts rather than stoichiometric reagents to perform chemical 

transformations, both the amount of waste generated and the amount of reagent required 

are significantly reduced. Thus, catalysis achieves both environmental end economic 
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benefits simultaneously. Biocatalysts, or enzymes, take the benefits of catalysis to new 

heights. These naturally derived catalysts are highly active and stable in aqueous solvents 

at ambient temperature and pressure, thus eliminating the need for reactions to be 

conducted in organic solvents or in the presence of auxiliary energy requirements. They 

are also highly selective, thus reducing the formation of unwanted side products. And 

given that they are found in biological systems, biocatalysts are relatively inexpensive, 

renewable, nontoxic, and biodegradable. Attributing to revolutionary advances in the 

field of protein engineering,
[9]

 the use of biocatalysts within various sectors of the 

chemical industry is at its highest.
[10-12]

 One such class of biocatalysts that have received 

much use over the years in a variety of industrial applications are laccases 

(benzenediol:oxygen oxidoreductase, EC 1.10.3.2).
[13]

 Owing to their environmentally 

benign nature, in that they require O2 as their only co-substrate and produce H2O as the 

sole by-product, they have found much use as green catalytic oxidants in the field of 

synthetic chemistry.
[14-15] 

Guided by the 12 Principles of Green Chemistry, chemists hold the ability to 

create a sustainable industry and make a difference. The ability to harness the power of 

nature is key to providing a sustainable society whilst also providing significant 

economic savings. The current dissertation aims to exploit the oxidizing capabilities of 

laccases for the development and implementation of sustainable chemistry. The 

objectives of the current research have been divided into two parts. Part one deals with 

the applications of laccases in organic synthesis, with the specific goals: 

 to provide a green solution in organic synthesis; 

 to develop fundamental laccase-catalyzed coupling chemistry; 
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 to catalyze novel carbon-carbon, carbon-nitrogen, and carbon-sulfur bond 

forming reactions; 

 to synthesize new and existing compounds under environmentally benign 

conditions (i.e. aqueous solvent, ambient to slightly elevated temperatures, and 

neutral to slightly acidic pH). 

Part two of the research deals with the laccase-assisted functionalization of lignin, with 

the specific objectives: 

 to apply the fundamental laccase-catalyzed coupling chemistry to graft small 

molecules onto the surface of lignin; 

 to develop novel lignin-based biomaterials / lignin-core hyperbranched 

copolymers; 

 to establish an alternative route for lignin valorization within the biorefinery. 
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CHAPTER 2. LITERATURE REVIEW
I
 

2.1 Green Chemistry 

Modern society is becoming increasingly aware of the negative environmental 

impact posed by the chemical industry. With this increased awareness, the field of green 

chemistry has been steadily gaining momentum within the greater chemical industry as 

chemists and chemical engineers alike strive to alleviate the harm that has been inflicted 

on the environment and reduce any further damage that may be incurred in the future. 

Although green chemistry processes have been in place for centuries, the term “green 

chemistry” was only recently coined, in 1991 by then US EPA chemist Paul Anastas, 

who defined it as “the design, development, and implementation of chemical products 

and processes to reduce or eliminate the use and generation of substances hazardous to 

human health and the environment.”
[3]

 

2.1.1 The 12 Principles of Green Chemistry 

Perhaps the most pioneering work to date in the field of green chemistry was the 

establishment of the 12 Principles of Green Chemistry. Devised by Anastas and John 

Warner, these principles aim to guide chemists in designing safer and environmentally 

                                                 
I
 A portion of the content written in this chapter originated from published manuscripts. The manuscript 

titled “Two decades of laccases: advancing sustainability in the chemical industry” was published in The 

Chemical Record (2017, 17(1), 122-140) and was reproduced with permission from John Wiley and Sons. 

The manuscript titled “Conversion of lignin into value-added materials and chemicals via laccase-assisted 

copolymerization” was published in Applied Microbiology and Biotechnology (2016, 100(20), 8685-8691) 

and was reproduced with permission from Springer. The other author in both manuscripts is Arthur J. 

Ragauskas, who is affiliated with Georgia Institute of Technology. The copyright license agreements are 

provided in Appendix B. 
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benign chemical products and processes.
[4, 16]

 The 12 Principles of Green Chemistry are 

stated below and are summarized in Figure 1. 

1. It is better to prevent waste than to treat or clean up waste after it is formed. 

2. Synthetic methods should be designed to maximize the incorporation of all 

materials used in the process into the final product. 

3. Wherever practicable, synthetic methodologies should be designed to use and 

generate substances that possess little or no toxicity to human health and the 

environment. 

4. Chemical products should be designed to preserve efficacy of function while 

reducing toxicity. 

5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be 

made unnecessary wherever possible and innocuous when used. 

6. Energy requirements should be recognized for their environmental and 

economic impacts and should be minimized. Synthetic methods should be 

conducted at ambient temperature and pressure. 

7. A raw material of feedstock should be renewable rather than depleting wherever 

technically and economically practicable. 

8. Unnecessary derivatization (blocking group, protection/deprotection, temporary 

modification of physical/chemical processes) should be avoided whenever 

possible. 

9. Catalytic reagents (as selective as possible) are superior to stoichiometric 

reagents. 



7 

 

10. Chemical products should be designed so that at the end of their function they 

do not persist in the environment and breakdown into innocuous degradation 

products. 

11. Analytical methodologies need to be further developed to allow for real-time, in 

–process monitoring and control prior to the formation of hazardous substances. 

12. Substances and the form of a substance used in a chemical process should be 

chosen so as to minimize the potential for chemical accidents, including 

releases, explosions, and fires. 

 

Figure 1. The 12 Principles of Green Chemistry Pocket Guide.
[17] 

 

While every attempt was made to abide by all the 12 Principles of Green 

Chemistry in this dissertation research, some of them were not applicable. Thus, the 

principles that have been addressed in the current work are: 1. Prevent waste; 2. Atom 
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economy; 3. Less hazardous synthesis; 5. Benign solvents and auxiliaries; 7. Use of 

renewable feedstocks; 9. Catalysis; and 12. Inherently benign chemistry for accident 

prevention. 

2.1.2 Green Chemistry Metrics 

It is not sufficient enough to simply state that a reaction process or synthetic 

protocol is green. The greenness of a reaction must be quantified by using metrics such as 

the E factor, atom economy, and space time yield, and if catalysts are involved, both the 

turnover number and turnover frequency should also be determined, if possible. The E 

Factor, a concept first published by Roger Sheldon in 1992,
[18]

 is the mass ratio of waste 

produced to desired product (Equation 1) and is a useful tool to assess waste management 

     𝐸 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑠𝑡𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
=  

𝛴 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 − 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
      (1) 

in chemical processes. Typical E Factors within different areas of the chemical industry 

are provided in Table 1.
[19]

 The atom economy is commonly used as a quantitative 

measure of the efficiency of the synthetic process and is defined as the percentage ratio of 

the incorporation of reactant atoms into the desired product (Equation 2).
[20]

 The space 

  𝐴𝑡𝑜𝑚 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 =  
𝑀𝑊 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝛴 𝑀𝑊 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
 × 100%        (2) 

time yield (STY) of a synthetic process quantifies the amount of desired product formed 

per unit volume and time, calculated using Equation 3, thus can have units such as 
𝑚𝑜𝑙

𝐿∙ℎ
. 

𝑆𝑇𝑌 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 × 𝑇𝑖𝑚𝑒
         (3) 

Although more applicable to industrial scale synthetic processes, the STY is also useful 

in assessing production efficiency of lab scale synthetic processes. For synthetic 



9 

 

processes involving catalysts, which comprise many transformations nowadays, the 

turnover number, calculated as the molar ratio of substrate consumed to amount of 

catalyst used (Equation 4), and the turnover frequency, simply the turnover number 

divided by time (Equation 5), are informative quantities used to assess the efficiency of 

the employed catalyst. 

                  𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟 =  
𝑚𝑜𝑙 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑜𝑙 𝑜𝑓 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑢𝑠𝑒𝑑
          (4) 

         𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟

𝑇𝑖𝑚𝑒
            (5) 

Table 1. Typical E Factors within different areas of the chemical industry.
[19] 

Industry Product Mass (tons) E Factor 

Oil refining
 

10
6
-10

8 
<0.1 

Bulk chemicals 10
4
-10

6 
<1-5 

Fine chemicals
 

10
2
-10

4 
5-50 

Pharmaceuticals 10-10
3 

25-100 

 

2.1.3 Adoption of Green Chemistry within the Chemical Industry 

Since the establishment of the 12 Principles of Green Chemistry, a concerted 

global effort to adhere to the principles and unite in developing a more sustainable 

society is evident. In the United States, such initiatives as the US Green Chemistry 

Program and the American Chemical Society Green Chemistry Institute (ACS GCI), as 

well as the US Presidential Green Chemistry Challenge Award, have dramatically 

increased the adoption of green chemistry practices into existing operations.
[16]

 Green 

chemistry has also received a warming welcome across the globe, with over 20 countries, 

including powerhouse nations such as Japan, the United Kingdom, and Australia, also 
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participating  in the movement, establishing their own green chemistry programs and 

initiatives..
[16]

 

2.2 Chemistry in Water 

Syntheses in the field of organic chemistry have classically been performed in 

organic solvents, such as toluene, dichloromethane, and acetonitrile to name a few. These 

traditional organic solvents are far from ideal when discussing the topic of a green and 

sustainable chemical industry as they are not renewable or biodegradable, costly to 

dispose of, usually flammable, potentially explosive, and toxic to both humans and the 

environment. Water on the other hand is abundant, inexpensive, safe to use, recyclable, 

and completely benign to both humans and the environment, which are some key reasons 

why synthetic chemists are focusing their attention more and more toward using water as 

a solvent in organic synthesis.
[21]

 The types of reactions that can occur in water are vast, 

ranging from simple nucleophilic substitutions to complex pericyclic reactions, and the 

products that can be achieved have extensive diversity and functionality. After all, all 

biological reactions that occur in nature and all complex molecules that are synthesized 

within humans and other organisms occur in an aqueous medium. In addition, new types 

of reactions have been discovered in which water is a vital component. It is believed that 

water acts as a catalyst in certain situations, lowering the activation energies of bond 

cleavage and formation, allowing for reactions to occur that would otherwise not take 

place in organic solvents.
[21]

 

A core principle of synthetic chemistry is a battle of competing rates. For 

example, in nucleophilic addition reactions, the nucleophile must attack the electrophile 

at a faster rate than say the rate of decomposition of that electrophile if the nucleophilic 



11 

 

addition reaction is to succeed. Thus, accelerating the rate of a desired reaction to the 

point in which it is kinetically favorable is of enormous importance for high yielding 

processes. Conducting organic synthesis reactions employing water as a solvent has 

shown to increase the rates of particular reactions immensely (by a factor of 79,300 for a 

particular Diels-Alder reaction),
[22]

 even to the point of catalyzing reactions that would 

otherwise not occur in organic solvents. Furthermore, the use of water as a solvent can 

greatly influence the stereoselectivity of transformations, providing >99% enantiomeric 

excess (ee) in many instances.  

2.2.1 The Michael Addition Reaction 

Conjugate 1,4-additions (also known as Michael additions) involve the 

nucleophilic addition of carbanions and other suitable nucleophiles to the β-position of 

α,β-unsaturated compounds, such as α,β-unsaturated ketones, aldehydes, esters, and 

nitriles (Figure 2). Substantial developmental research in conjugate 1,4-additions was  

 

 

Figure 2. The Michael addition. 

 

conducted by the American chemist Arthur Michael in the 1880’s, for who the reaction is 

named after.
[23]

 Breakthrough work by Michael was conducted in 1887 when he reacted 

diethylmalonate and ethyl cinnamate in ethanol under basic conditions to yield the 

corresponding 1,4-addition product (Figure 3).
[24]

 In contemporary organic synthesis, the 

Michael addition is one of the most important tools for achieving carbon-carbon, carbon-  
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Figure 3. Michael addition of diethylmalonate with ethyl cinnamate.
[24] 

 

nitrogen (aza-Michael addition), and carbon-sulfur (thiol-Michael addition) bond 

formations and is the key bond forming reaction that has been utilized in the current 

dissertation research.  

There are multiple positions where nucleophilic addition can take place on α,β-

unsaturated compounds: the α-carbon, the β-carbon, the carbonyl carbon for carbonyl 

compounds, and the nitrile carbon in nitrile compounds. Generally speaking, the β-carbon 

is more electrophilic than the α-carbon, as it participates in resonance stabilization of the 

partial positive charge on the carbonyl carbon in α,β-unsaturated carbonyls,
[25]

 resulting 

in an increased likelihood of nucleophilic attack.  Furthermore, the β-carbon is “softer” 

than the α-carbon, rendering water, a “hard” nucleophile, a suitable medium to conduct 

the Michael addition reaction because water does not compete or interfere with other 

“softer” nucleophiles adding to the β-carbon of α,β-unsaturated compounds.
[21]

 The 

following section will discuss the primary forces impacting the reaction kinetics at both 

the ground states and transition states of reactions conducted using water as a solvent, 

paying particular attention to Michael addition reactions where appropriate. 
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2.2.2 Induced Effects of Water on Chemical Transformations 

 When discussing the use of water a as solvent in organic synthesis, it is important 

to distinguish between three broad classes of reaction phenomena that can occur, 

simultaneously in many cases: 1) reactions that occur “in water”, in which the reactants 

are soluble in water; 2) reactions that occur within hydrophobic cavities within water, 

usually between insoluble reactants; and 3) reactions that occur “on water”, or more 

strictly speaking at the water-oil interface, in which the reactants are insoluble in 

water.
[26]

 The following sections will discuss the types of effects that are present in each 

phenomenon. 

2.2.2.1 Hydrogen-Bonding Effects – Transformations “In Water” 

The main phenomena responsible for rate enhancements for reactions conducted 

in water in which reactants are soluble are hydrogen-bonding and polarity effects. If one 

or multiple of the reactants possess hydrogen-bond donor or acceptor sites, then those 

reactants are able to participate in hydrogen-bonding interactions with water, resulting in 

stabilization/lowering in energy of that compound’s molecular orbitals. The origin of this 

energy lowering is due to less electron density and interorbital repulsion among the 

impacted molecular orbitals.
[26]

 Depending on which molecular orbitals are taking part in 

the bond forming reaction, the hydrogen-bonding induced lowering in energy of 

molecular orbitals may increase or decrease the rate of the reaction. For example, in the 

nucleophilic addition reaction of a general nucleophile with a general electrophile 

depicted in Figure 4, which involves the highest-occupied molecular orbital (HOMO) of 

the nucleophile interacting with the lowest-unoccupied molecular orbital (LUMO) of the 
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electrophile,
[27]

 hydrogen-bonding interactions between water and the nucleophile will 

lower the frontier molecular orbital energies of the nucleophile, increasing the HOMONuc 

– LUMOElec gap, resulting in a larger activation energy of reaction (Eact) and 

consequently decreasing the reaction rate. On the other hand, if the electrophile forms 

hydrogen-bonds with water, the frontier molecular orbital energies of the electrophile will 

be stabilized and the HOMONuc – LUMOElec gap will be narrowed, resulting in a smaller 

Eact and a subsequently increased rate of reaction. 

 

 

Figure 4. Molecular orbital depiction of nucleophilic addition reaction. 

 

To assess the effect hydrogen-bonding interactions have on transition state 

stabilization and rates of certain chemical transformations in water, many studies have 

focused on pericyclic reactions such as the 4π + 2π Diels-Alder cycloaddition and 1,3-

dipolar cycloadditions, as well as the Claisen rearrangement. For example, quantum 

mechanical/molecular mechanical (QM/MM) computations have been employed to 

determine the contribution of the hydrogen-bonding effect in stabilizing the transition 

state for the Diels-Alder cycloaddition reaction of cyclopentadiene with methyl vinyl 
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ketone (a hydrogen-bond acceptor) in water compared to the gas phase (Figure 5). The 

computations unveiled a significant stabilization of the transition state (-3.5 kcal/mol) for 

the cycloaddition reaction conducted in water, due in part to hydrogen-bonding 

interactions.
[28]

 A more recent study utilizing QM/MM computations also demonstrated 

 

Figure 5. Diels-Alder cycloaddition of cyclopentadiene with methyl vinyl ketone.
[28] 

 

that the transition state energy for the cycloaddition of cyclopentadiene with methyl vinyl 

ketone increases in going from water, to acetonitrile, to methanol as a solvent, further 

validating the stabilizing effects of hydrogen-bonding interactions.
[29]

 Experimental data 

for the Claisen rearrangement of a water soluble allyl vinyl ether derivative in a variety of 

solvents, shown in Figure 6, revealed that the rate of the rearrangement is 214 times 

faster in water than in cyclohexane.
[30]

 

 

Figure 6. Claisen rearrangement of an allyl vinyl ether.
[30] 

 

It has also been postulated that the hydrogen-bonding effect is not just localized to 

the hydrogen-bonds between water and reactants (i.e. the primary water-solvation shell), 

but also extends to secondary bridging hydrogen-bonding of structured water clusters in 

the vicinity. Butler and co-workers compared the 1,3-dipolar cycloaddition reaction of 
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pyridazinium-dicyanomethanide 1,3-dipole with various dipolarophiles in water and in 

organic solvents, such as acetonitrile, acetone, methanol, ethanol, and tert-butyl alcohol 

(Figure 7). They noted that by increasing the water content in water-organic solvent 

mixtures, the rate of the cycloaddition reaction increases dramatically. Theoretical 

calculations unveiled an extended hydrogen-bonding effect: Eact for the cycloaddition 

reactions were reduced when a four-water cluster was bound to the carbonyl group of the 

dipolarophile compared to when only one water molecule was bound. Furthermore, 

adding an acetonitrile molecule that is able to interact with the dipolarophile carbonyl 

group to the complex containing the four-water cluster indeed raises the Eact once 

again.
[31]

 

 

Figure 7. 1,3-Dipolar cycloaddition reaction of pyridazinium-dicyanomethanide 1,3-dipole with ethyl 

vinyl ketone.
[31] 

Regarding the Michael addition reaction in water, the discovery chemistry team at 

the Bristol-Myers Squibb Pharmaceutical Research Institute in Wallingford, CT, USA, 

observed significantly enhanced rates in water compared to methanol for the Michael 

addition of amines and thiols to the α,β-unsaturated carbonyl moiety of dehydroalanine 

amides (Figure 8).
[32]

 The reaction did not proceed at all in DMF or THF, however, when 

one equivalent of water was added, the reaction occurred, albeit, at a slower rate than in 

pure water. The authors proposed a hydrogen-bonding stabilization of the transition state 
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for the increased reaction rate. In a follow up study by the same research group, 

nocathiacins, a class of cyclic thiazolyl peptide antibiotics containing the dehydroalanine 

 

Figure 8. Michael addition of methylamine to a dehydroalanine amide in water.
[32] 

 

amide side chain, were used as the acceptor molecule for the Michael addition of thiols 

and amines in an effort to introduce functionality and increase the water solubility of the 

antibiotics.
[33]

 Mild reaction conditions are necessary to maintain structural integrity of 

nocathiacins; furthermore, the use of water as a solvent enhances the selectivity of the 

addition, which can be further enhanced by lowering the reaction temperature, even to as 

low as -20°C, so that the reaction is essentially conducted in frozen water (i.e. ice). More 

recently, the hydrogen-bonding enhanced rate acceleration was observed in the Michael 

addition of 1,3-dicarbonyl compounds with α,β-unsaturated nitro compounds in brine 

using cinchona-based organocatalysts (Figure 9).
[34]

 The stereoselectivity of the carbon-

carbon bond-forming reaction was also enhanced in water. Evidence for hydrogen-

bonding enhanced rate acceleration is inferred from the reduced rate of addition when the 

reaction is conducted in D2O. 
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Figure 9. Michael addition of 2,4-pentanedione with β-nitrostyrene.
[34] 

 

2.2.2.2 The Hydrophobic Effect – Transformations within Hydrophobic Cavities in 

Water 

 

Although widely considered an “in water” effect, I believe that the hydrophobic 

effect is deserving of its own category because the transformations that it promotes do not 

occur in solution, rather the transformations take place in hydrophobic cavities within the 

solution. Generally speaking, the hydrophobic effect is the forced aggregation of 

nonpolar substances within an aqueous medium to form nonpolar aggregates and 

micelles. It is of extreme importance in biological systems, dictating the folding of 

proteins and the formation of membranes.
[21]

 The effect is also of paramount significance 

in synthetic reactions taking place in an aqueous medium, as the forced aggregation of 

nonpolar compounds leads to a greater frequency of physical collisions between 

molecules and consequently enhanced rates of reaction. Furthermore, the forced 

aggregation heightens the ground state energy of the reactants without affecting the 

transition state energy significantly, thus lowering Eact, also resulting in an increased 

reaction rate.
[35-36]

 

 The hydrophobic effect derives its origins from thermodynamics. The solvation 

of a nonpolar compound by water requires an ordering of water molecules on the surface 
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of the nonpolar compound, resulting in a decrease in entropy, S, and a corresponding 

increase in the Gibbs free energy, G, of the system, based on Equation 6. When nonpolar 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆    (6) 

compounds aggregate, the surface area exposed to water is reduced, which releases water 

molecules allowing them to diffuse freely, resulting in an increase in entropy and a 

corresponding decrease in Gibbs free energy of the system (Figure 10).
[21]

 Additionally, a 

common misconception about the cause of the hydrophobic effect is that it is due to the 

attraction of nonpolar compounds to each other in aqueous media; however, this is not 

accurate. In actuality, it is the extremely large cohesive energy density of water (550.2 

cal/cm
3
 - the largest cohesive energy density of all known solvents)

[37]
 that causes water 

molecules to attract each other, thus essentially forcing the nonpolar compounds into 

close proximity with each other.
[21]

  

 

 

Figure 10. Thermodynamic origin of the hydrophobic effect.
[21] 

  

The use of salts has been applied extensively to probe the hydrophobic effect in 

aqueous solutions. Depending on the salt employed, it can either increase the internal 
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pressure of the solution, forcing organic compounds out of solution and to aggregate (i.e. 

salting-out), or alternatively, the salt may decrease the internal pressure of the solution, 

allowing more of the organic compound into the solution phase (i.e. salting-in). Generally 

speaking though, the vast majority of salts increase the internal pressure of the solution 

due to a decrease in volume caused by the solvation of the salt ions by water molecules – 

a phenomenon known as electrostriction.
[21]

 Thus, the increase in internal pressure and 

augmentation of the hydrophobic effect lead to an increase in reaction rates for nonpolar 

reactants in aqueous media. The increase in pressure also has an effect on the 

stereochemistry of specific reactions, such as the Diels-Alder cycloaddition, typically 

yielding the endo-stereoisomer product rather than the exo-stereoisomer due to its more 

compact structure.
[38-39]

 

Ronald Breslow has studied the impact of the hydrophobic effect on the Diels-

Alder reaction in water extensively, his work providing much insight for synthetic 

chemists.
[40]

 In Breslow and Darryl Rideout’s pioneering work published in 1980, clear 

evidence for the hydrophobic effect rate enhancement was observed for the Diels-Alder 

reaction of cyclopentadiene with either methyl vinyl ketone or acrylonitrile (Figure 

11).
[41]

 Initially, reactions were carried out in water with β-cyclodextrin, based on the 

hypothesis that β-cyclodextrin could provide a hydrophobic cavity for the nonpolar 

reactants to aggregate and undergo a cycloaddition with one another. Indeed, the 

cycloaddition reactions proceed at rates 2-3 orders of magnitude greater than when the 

reactions were performed in the nonpolar organic solvent isooctane. The reactions 

conducted in pure water also showed a significant rate enhancement compared to when 
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Figure 11. Diels-Alder cycloaddition of cyclopentadiene with acrylonitrile in different solvents.
[41] 

 

isooctane was used, although not to the extent as the reactions carried out with added β-

cyclodextrin. Furthermore, to eliminate the perception of any polarity or hydrogen-

bonding induced rate enhancements, the reactions were also conducted in methanol for 

comparison, with the polar organic solvent also providing inferior rates compared to 

water. Thus it became clear that the increased reaction rates were due to the hydrophobic 

effect. Evidence for the roles salts play in the hydrophobic effect were also uncovered: 

adding the salting-out reagent LiCl more than doubled the reaction rate for the Diels-

Alder reaction of cyclopentadiene with methyl vinyl ketone compared to pure water, 

while adding the salting-in reagent guanidinium chloride slightly reduced the rate 

compared to pure water.
[41]

 

The hydrophobic effect has also proven to be responsible for rate accelerations of 

particular Michael addition reactions conducted in aqueous media. A study by Lubineau 

and Augé in 1992 on the Michael addition reaction of nitromethane and nitroethane with 

methyl vinyl ketone uncovered significant rate enhancements when the reactions were 

performed in water compared to CH2Cl2, THF, or toluene, as well as polar organic 

solvents, such as methanol and DMSO (Figure 12).
[42]

 Additionally, the reaction rates 
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were increased even further when aqueous sugar solutions were used as solvent. The 

authors proposed that the increased rates were due to a negative volume of activation and 

increased internal pressure brought about by the hydrophobic effect. Similar reactions 

utilizing primary and secondary nitroalkanes as the Michael donors and α,β-unsaturated 

nitriles, esters, and ketones as the Michael acceptors have afforded the Michael adducts 

in high yields in short reaction times using water as a solvent.
[43-44]

 In another study, the  

 

Figure 12. Michael addition of nitromethane with methyl vinyl ketone in water.
[42] 

 

rate enhancement for the Michael addition of primary and secondary amines with α,β-

unsaturated nitriles in water compared to acetonitrile has been attributed to the increased 

internal pressure brought on by the hydrophobic effect and has been likened to similar 

rate enhancements observed when an applied external pressure is present.
[45]

 Evidence for 

the hydrophobic effect has also been observed for the organocatalyzed Michael addition 

of 2,4-pentanedione with β-nitrostyrene (Figure 9). The reaction conducted in brine, 

which induces a salting-out effect, requires less than 10 minutes to achieve a 99% 

conversion, whereas when the reaction medium is composed of the salting-out agent 

LiClO4 dissolved in pure water, less than 2% conversion is reached in 30 minutes.
[34]

 Not 

only has the water induced hydrophobic effect proved to increase the rate of the Michael 

addition reaction, but it has also shown to improve the enantioselectivity of addition as 

well. In a recent study, the Michael addition of acetylacetone with cyclohex-2-enone in 

water using a ytterbium(III) triflate complex with an α-amino acid ligand as the Lewis 
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acid catalyst (Figure 13) discovered that the stereoselectivity of addition can be 

controlled by adjusting the temperature of the reaction. The authors propose that water 

induces a large entropic factor, which has been termed stereospecific aqueous solvation, 

that can be used to tailor the enantioselectivity of addition.
[46]

    

 

 

Figure 13. Michael addition of acetylacetone with cyclohex-2-enone in water catalyzed by a 

ytterbium(III) triflate Lewis acid catalyst.
[46]

 

 

2.2.2.3 Trans-Phase Hydrogen-Bonding – Transformations “On Water” 

A third important effect in which water can influence chemical reactions is 

through trans-phase hydrogen-bonding effects. Although lesser known than “in water” 

hydrogen-bonding effects and hydrophobic effects, the more recently considered trans-

phase hydrogen-bonding effects can be used to explain the rate enhancements and 

stereoselectivities obtained for reactions performed using water as a solvent when the 

reactants are insoluble in water.  

Sharpless and colleagues were the first to notice significant enhancements in 

reaction rates for systems in which the organic reactants are insoluble in water, so that the 

reactions take place in a heterogeneous aqueous suspension, hence the term “on 

water.”
[47]

 In their initial studies in 2005, the researchers noticed an immense increase in 

reaction rate for the 2σ + 2σ + 2π cycloaddition of the strained hydrocarbon 

quadricyclane and dimethyl azodicarboxylate, shown in Figure 14, when the reaction was 
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conducted in water compared to when it was performed in organic solvents such as 

toluene, acetonitrile, or methanol, or when the reaction was performed under neat  

 

Figure 14. Cycloaddition of quadricyclane with dimethyl azodicarboxylate in a variety of solvents.
[47] 

conditions (i.e. solvent-free). The reaction conducted using water as a solvent was 

completed in only 10 minutes, affording the 1,2-diazetidine in 82% yield. Thus, it was 

postulated that the heterogeneity of the reaction system, in which the organic reactants 

are dispersed as oil droplets or solid suspensions within the aqueous phase, was critical 

for the superior reaction rates. Furthermore, based on the observation that the 

cycloaddition reaction proceeded slowly in perfluorohexane (a solvent which the 

reactants were also insoluble in) and less accelerated in D2O, the criterion of 

heterogeneity as a sole factor contributing to the enhanced rates was inadequate, thus the 

researchers proposed a second criterion that water must also be present. It was also 

realized that vigorous stirring of the reaction mixture was key, as it promoted the 

formation of finer organic particles/droplets and consequently increased the interfacial 

surface area of the organic phase with the aqueous phase. Other transformations that 

experienced similar enhancements in reaction rates in an aqueous suspension included the 
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Diels-Alder cycloaddition, the Claisen rearrangement, and nucleophilic opening of an 

epoxide. While the authors proposed plausible reasons as to the origins of the rate 

enhancements, they conceded that the exact mechanism by which the rates of the 

reactions were increased was still unclear and that further research was required to 

identify the governing cause. It had been proposed that because the transition state 

complexes of the reactions performed by Sharpless and coworkers were probably more 

efficient at participating in hydrogen-bonding interactions than the ground states were, 

leading to a decreased Eact and increased reaction rate, the primary hydration layer at the 

organic-aqueous interface may provide vital information.
[48]

  

About a decade earlier, Du, Freysz, and Shen  studied the interfacial structure of 

water at the organic-aqueous boundary via vibrational spectroscopy.
[49]

 They discovered 

a sharp peak at 3680 cm
-1

 in the infrared spectrum, attributing the signal to free hydroxyl 

groups at the organic-aqueous interface. At the organic-aqueous interface, water 

molecules will arrange themselves into a network that minimizes the surface free energy 

by maximizing the total number of hydrogen bonds for each water molecule. The study 

uncovered that such an arrangement involves one in every four water molecules having 

an unbound hydroxyl group, which penetrates into the organic phase (Figure 15). In 

2007, Jung and Marcus applied this knowledge in an attempt to explain the “on water” 

rate improvements experienced by Sharpless and colleagues a couple years earlier.
[50]

 In 

their publication, calculated data from kinetic models for the reaction in Figure 14 

conducted “on water” and under solvent-free conditions were compared to the 

experimental data. The theoretical calculations provide a 3 × 10
5
-fold rate enhancement 
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for the reaction carried out “on water” as opposed to solvent-free conditions, which is in 

good agreement with the experimentally derived value of 1.5 × 10
5
. Transition state  

 

Figure 15. Trans-phase hydrogen-bonding at the organic-aqueous interface.
[49-50] 

 

theory computations yielded a lowering of Eact by approximately 7 kcal/mol for the “on 

water” reaction compared to the neat reaction. The authors concluded that the underlying 

mechanism for the reduction in Eact and hence remarkable rate enhancements experienced 

by Sharpless and colleagues in their “on water” reactions was due to hydrogen-bonding 

interactions between the transition state complex and the interfacial hydroxyl groups of 

water. Thus, the trans-phase hydroxyl groups essentially provide a source of catalytic 

protons. 

“On water” rate enhancements have been observed for several Michael addition 

protocols in recent years. Keller and Feringa have employed a ytterbium(III) triflate 

catalyst to promote the Michael addition of β-keto esters and α-nitroesters with α,β-

unsaturated ketones and aldehydes using water as a solvent.
[51-52]

 They noticed that the 

reaction mixture need not be homogeneous for the reaction to occur, and that reaction 

mixtures in which one or both of the reactants were suspended in water proceeded at a 
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faster rate. Little or no reaction took place in organic solvents, such as THF, CH2Cl2, and 

dioxane. Exceptional rate enhancements have been achieved under ultrasound conditions 

for the aza-Michael addition of a variety of amines with α,β-unsaturated ketones, esters, 

and nitriles in water compared to several common organic solvents as well as solvent-free 

conditions.
[53]

 The reaction of piperidine with methyl acrylate afforded the Michael 

adduct in 98% yield in only 5 minutes under ultrasound compared to 93% yield in 15 

minutes for solvent-free conditions and 45% yield in one hour for the reaction performed 

in THF (Figure 16). It can be thought that the use of ultrasound disperses the organic 

reactants within the aqueous medium so as to increase the interfacial surface area 

between the aqueous and organic phases, thus increasing the trans-phase hydrogen- 

 

 

Figure 16. Comparison of the Michael addition reaction of piperidine with methyl acrylate in THF, 

neat, and water.
[53] 

 

bonding effect. In a rare seleno-Michael addition reaction, a phenyl substituted zinc 

selenolate was used as the Michael donor to react with carbonyl conjugated alkynes in 

water or THF (Figure 17).
[54]

 Due to the insolubility of one or both reactants in water, the 

reactions conducted using water as a solvent were in the form of an aqueous suspension. 

Generally, the reactions performed “on water” achieved almost quantitative yields of the 

vinylic selenides within 2 hours compared to the reactions performed in THF, which took 
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24 hours to reach comparable yields. Furthermore, stereoselectivity of addition was 

enhanced "on water" with products consistently favoring the Z isomer.  

 

Figure 17. Seleno-Michael addition of a phenyl substituted zinc selenolate with methyl 3-

phenylpropiolate.
[54]

 

 

2.2.3 Oxidation of Phenols and Hydroquinones in Water for the Synthesis of para-

Quinones 

 

Phenol and quinone chemistries are ubiquitous in nature. Phenols are abundant in 

plant materials and many natural products and serve as a source of powerful, naturally 

derived antioxidants, such as the flavonoids resveratrol and catechin (Figure 18), the 

former exhibiting strong cancer chemopreventive activity.
[55]

 Quinones too are found all 

throughout nature in plants, bacteria, fungi, arthropods, and echinoderms,
[56]

 with perhaps 

the most well-known and important para-quinone being coenzyme Q (Figure 18), which 

plays a key role in oxidative phosphorylation and in the electron-transport chain within 

the mitochondrial membrane, and is thus vital for human and animal life.
[57]

 Quinones are 

also present in many biologically active compounds,
[58]

 and owing to their intense colors, 

are widely used as organic dyes and pigments.
[59]

  

The relationship between phenols and quinones is governed by redox chemistry. 

For example, a phenol such as hydroquinone, can be converted to para-benzoquinone via 
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the loss of two electrons and two protons, a process known as oxidation, while the 

reverse is also possible, the reduction of para-benzoquinone to hydroquinone via the  

 

Figure 18. Basic structure of a phenol and a para-benzoquinone, as well as more complex phenols 

resveratrol and catechin, and the para-benzoquinone coenzyme Q.
[55, 57] 

 

acquisition of two electrons and two protons (Figure 19). By and large, the majority of 

strategies used to convert phenols into para-benzoquinones involve stoichiometric 

oxidants or transition-metal catalysts, and are conducted in organic solvents, such as 

toluene and acetonitrile.
[58]

 This is not ideal from a green chemistry perspective. Methods 

that are conducted in aqueous solvents do exist, such as the use of peroxides, bleach 

(NaClO), or Frémy’s salt (K2NO(SO3)2);
[60]

 however, these are all stoichiometric 

oxidants, thus are not atom economical and contribute largely to hazardous waste. 
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Figure 19. Redox reaction between hydroquinone and para-benzoquinone. 

 

Enzymatic oxidation using various oxidase enzymes mimics the process that 

occurs in natural systems and is a much more sustainable approach, as it employs 

naturally derived catalysts which are nontoxic, renewable, biodegradable, and operate 

under mild conditions in aqueous solvents. Furthermore, the para-quinones can be 

generated and used for subsequent reactions in one-pot without any need for isolation and 

purification. This enzymatic approach forms the basis of the current dissertation research 

- the in situ generation of para-quinones via enzymatic oxidation of the corresponding 

hydroquinones in water. 

2.2.4 Michael Addition to para-Quinones in Water 

Water is a suitable solvent to conduct the Michael addition reaction of various 

nucleophilic compounds with para-quinones for reasons such as hydrogen-bonding and 

hydrophobic effects. Once the nucleophile attacks the para-quinone at one of its olefinic 

carbon atoms, the adduct will tautomerize to the hydroquinone form, and depending on 

the electronic properties of the new substituent and if an oxidant, such as atmospheric 

oxygen is present, may or may not re-oxidize back to the para-quinone form (Figure 20). 

This section is not meant to be exhaustive, rather it is meant to be representative of how  
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Figure 20. Michael addition to para-quinones in water. 

   

this synthetic methodology can be used to create carbon-nitrogen and carbon-sulfur 

bonds under environmentally friendly conditions. 

In a simple and efficient reaction protocol, Yadav and coworkers demonstrated 

that the Michael addition of para-benzoquinone, 1,4-naphthoquinone, and 2,6-

dimethoxyquinone proceeded smoothly with ethanethiol, thiophenol, and 4-

methylthiophenol in water at room temperature to yield the corresponding thio-benzene-

1,4-diol adducts in excellent yields (≥ 82%) within 15 minutes of reaction (Figure 21).
[61]

  

 

 

Figure 21. Michael addition of ethanethiol with para-benzoquinone in water.
[61] 

 

It is believed that the extremely fast reaction rates achieved in water are the result of 

hydrogen-bonding effects induced by the interaction of both reactants with water. More 

specifically, hydrogen-bonding between water and the carbonyl oxygen of the quinone 

increases the electrophilic character of the conjugated olefinic carbon atom, while 

hydrogen-bonding between water and the sulfhydryl group of the Michael donors 
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increases the nucleophilicity of the thiol group, both factors contributing to the 

accelerated reaction rates. Similar yields and reaction times were achieved when aliphatic 

and aromatic amines were used as the Michael donors instead of thiols, and the 

underlying phenomena responsible for the increased reaction rates in water compared to 

organic solvents were rationalized in a similar fashion to the reactions involving thiols 

(i.e. hydrogen-bonding effects).
[62]

 The main difference between the reactions involving 

amines and the those involving thiols as the Michael donors is that the reactions 

involving amines undergo a final oxidation to yield the para-quinone (Figure 22), 

whereas the reactions involving the thiols remain in the hydroquinone state. Also, the 

amine-substituted para-quinones precipitate out of solution, allowing for a much more 

facile product separation. The “on water” rate enhancements of both of these reaction 

protocols were assessed in another study and it was found that Michael addition reactions 

of amines and thiols with para-quinones in which one or both reactants were insoluble in 

water (i.e. carried-out in suspension) proceeded much more rapidly than did the same 

reactions conducted in organic solvents.
[63]

 It was proposed that hydrophobic effects play 

a prominent role in the rate accelerations for the reactions conducted in aqueous 

suspension. 

 

 

Figure 22. Michael addition of propylamine with 1,4-naphthoquinone in water.
[62] 
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While the above mentioned synthetic methodologies present an efficient and 

green approach for the Michael addition using para-quinones as the Michael acceptors, 

they are not without limitations. For example, given that the para-quinones are the 

starting reactant, they must be stable enough so that they can be isolated from the reaction 

mixture in which they were synthesized or have long enough shelf-life to be purchased 

from a commercial source. The current dissertation work overcomes this challenge by 

generating the para-quinones from the corresponding hydroquinones via enzymatic 

oxidation, and then consuming the para-quinone shortly after it is formed in a subsequent 

Michael addition in the same reaction vessel. Thus, not only are hydroquinones, which 

originate from a renewable feedstock, used as the para-quinone precursors, but para-

quinones that are too unstable to be isolated can also be used as Michael acceptors 

because they are consumed immediately after their generation. 

 

2.3 Biocatalysis 

Biocatalysis entails the entire spectrum from using purified enzymes to perform 

chemical transformations all the way through to fermentations with microorganisms. The 

use of biocatalytic systems within many areas of the chemical industry has been rapidly 

increasing in recent decades as a result of an industry wide effort toward greener 

processes. Biocatalysts possess many advantages over conventional chemical catalysts 

such as being renewable and biodegradable, nontoxic, highly active and stable in aqueous 

environments under mild conditions, highly selective, relatively inexpensive, all the 

while providing significant productivity.
[64-65]

 They also transform many renewable 

materials and natural products, thus providing an avenue to develop a bio-based chemical 



34 

 

industry. Furthermore, with technological advances in the fields of genetics, molecular 

biology, and protein engineering, biocatalysts and biocatalytic networks are being 

engineered to convert an ever-increasing range of substrates in shorter reaction times.
[9]

 

Given that this dissertation research uses a single enzyme to catalyze chemical reactions, 

the remainder of this section will focus primarily on single enzyme processes and will 

only briefly address biocatalytic networks and fermentations as they pertain to prominent 

industrial processes. 

2.3.1 Enzymes 

Enzymes are catalytically active proteins found in nature and are responsible for 

the chemical transformations that take place in biological systems. The word “enzyme” is 

a Greek term for “in yeast”, referring to the observation that there was a substance, or 

substances, in yeast that were responsible for carrying out the chemical transformations 

associated with fermentations.
[57]

 

The International Union of Biochemistry and Molecular Biology (IUBMB) has 

developed a systematic way of naming enzymes based on the enzyme’s substrate and the 

type of reaction it catalyzes. Each enzyme is also assigned an Enzyme Commission (EC) 

classification that consists of four numbers, each separated by a period. The first number 

represents the primary enzyme class, while the following three numbers successively 

represent the subclass, sub-subclass, and serial number.
[57]

 Table 2 lists the six primary 

classes of enzymes along with the type of transformation each class catalyzes. By and 

large, the vast majority of industrially relevant biocatalytic transformations are carried  
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Table 2. Enzyme classification.
[57] 

Primary EC 

Number 

Enzyme 

Classification 

Reaction 

Catalyzed 

1
 

Oxidoreductases
 

Redox reactions 

2 Transferases
 

Transfer functional groups 

3
 

Hydrolases
 

Hydrolysis reactions 

4 Lyases
 

Group elimination and addition 

5 Isomerases Isomerizations 

6 Ligases Bond formation coupled with ATP hydrolysis 

 

out using the class of enzymes known as hydrolases. The use of oxidoreductases to 

catalyze industrially important redox processes has been steadily rising over the years and 

these enzymes are regarded as the second most used enzyme class for industrial 

applications after hydrolases. The enzyme used in this dissertation research belongs to the 

class known as oxidoreductases.
[10]

 

2.3.2  Origins of Enzyme Catalysis 

The manner in which an enzyme (E) performs a chemical transformation is by 

first associating with a suitable substrate (S) molecule in what can be described as a 

“lock-and-key” model (Figure 23), a concept put forward by Emil Fisher in 1894.
[57]

 This 

essentially means that a particular enzyme will bind a substrate if the geometric shape of 

the enzyme’s active site (i.e. the part of the protein where catalysis takes place) and 

substrate are complementary. However, it was later proposed by John Haldane that the 

binding of enzyme and substrate in the ground state is not an exact fit, but that the 

enzyme binds more tightly with the substrate in the transition-state (TS), which  
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Figure 23. “Lock-and-key” model of enzyme-substrate interaction. 

 

contributes enormously to the rate enhancements induced by enzymes,
[66]

 as will be 

discussed in the following paragraphs. In any case, the substrate binds reversibly in the 

active site of the enzyme via either covalent or non-covalent interactions, such as 

hydrogen-bonding and hydrophobic interactions, to form what is known as the enzyme-

substrate (ES) complex. The chemical transformation then occurs, resulting in the 

conversion of substrate to product (P), which is then expelled from the enzyme to yield 

free product and free enzyme. The binding of substrate by the enzyme not only brings the 

substrate within close proximity of the enzyme’s catalytic center, but also aligns the 

substrate in the correct orientation to promote efficient interaction, both of which are 

crucial for catalysis.
[57] 

Arguably the most remarkable feature of enzymes is the tremendous rate 

accelerations they are capable of effecting on chemical transformations. The rate 

acceleration or rate enhancement can be defined as the ratio of the rate constant for the 

catalyzed reaction to that of the uncatalyzed reaction, as shown in Equation 6. Thus, the 

Rate enhancement = kcat/kuncat         (6) 

lower bound is the rate of the uncatalyzed reaction, kuncat, and the upper bound is set by 

the rate of diffusion in a solution, which is approximately 10
9
 s

-1
 M

-1
.
[67]

 As an example 

of the impressive catalytic power of enzymes, the uncatalyzed decarboxylation of amino 
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acids has a kuncat of approximately 10
-17

 s
-1

 which corresponds to a reaction half-time (t1/2) 

on the order of one billion years, compared to the catalytic rate constant kcat of the 

decarboxylation reaction catalyzed by arginine decarboxylase, which is approximately 

10
3
 s

-1
, which corresponds to a reaction half-time on the order of seconds.

[68]
 Thus, 

enzymes are capable of increasing the rates of reactions immensely, approximately 

twenty orders of magnitude for the case of arginine decarboxylase, achieving a chemical 

transformation that would otherwise take a billion years to occur within seconds. As a 

comparison, the best chemical catalysts available to synthetic chemists can provide rate 

enhancements of about six to eight orders of magnitude, yet another reason why 

biocatalysts are superior to conventional chemical catalysts. 

So how do enzymes induce such immense reaction rate accelerations? A 

thermodynamic argument suggests that a decrease in the free energy of the transition 

state (ΔG
‡
), resulting from a reduction in the enthalpy of activation (Hact), is a key 

contributing factor to the enhanced reaction rates for single substrate reactions.
[67]

 This 

TS stabilization, which effectively lowers the Eact, is the underlying force responsible for 

the increased reaction rates induced by not only enzymes, but all types of catalysts. The 

reduction in Hact, which is essential to offset the unfavourable decrease in entropy upon 

substrate binding with enzyme, can be explained by invoking concepts from transition-

state theory (TST). It is suggested that the enzyme binds the substrate more tightly in the 

TS than it does in the ground-state as a result of increased enzyme-substrate interactions 

(e.g. hydrogen-bonding) in the TS compared to the ground-state, which results in an 

increase in the effective concentration of activated substrate and subsequently increased 

reaction rate. In essence, the geometries of the enzyme and the activated substrate are 
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precisely complementary.
[69]

 The reaction system is represented pictorially as a reaction 

coordinate diagram in Figure 24. As illustrated, the reaction pathway can progress 

through two routes, a higher energy uncatalyzed path or a lower energy catalyzed path, 

both of which originate from the same reactant(s) and culminate in the formation of the 

same product(s). The rate enhancement can be calculated using Equation 7 below: 

       𝑅𝑎𝑡𝑒 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 =  𝑒∆∆𝐺‡/RT            (7) 

where ΔΔG
‡
 is the difference in free energy of TS complex between the catalyzed and 

uncatalyzed reactions (equivalent to ΔEact between the catalyzed and uncatalyzed 

 reactions), R is the gas constant, and T is the temperature.
[57]

  

 

Figure 24. Reaction coordinate diagram comparing uncatalyzed reaction versus enzyme catalyzed 

reaction.
[67] 

 

In 1963, Joseph Kurz developed a kinetic model based on a thermodynamic cycle 

that could be used to explain TS stabilization induced by a generic catalyst.
[70]

  For the 

scenario in which an enzyme reacts with a single substrate to produce a single product, as 

in Equation 8, the corresponding thermodynamic cycle is depicted in Figure 25. 
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                                                                  (8) 

 

Figure 25. Thermodynamic cycle illustrating transition-state stabilization in enzymatic catalysis.
[70] 

The rate constant of a reaction can be expressed in the form of Equation 9: 

                                                          k = κ·ν·K‡                                                        (9) 

where k is the rate constant, κ is the transmission coefficient, ν is the frequency of 

crossing the TS, and K
‡
 is the TS equilibrium constant. Assuming that the transmission 

coefficient and the frequency of crossing the transition state are near unity, Equation 9 

simplifies to Equation 10. From the thermodynamic cycle, an expression can be derived  

                                                               k = K‡                                                           (10) 

that equates the rate enhancement of a catalyzed process compared to the uncatalyzed 

process to the ratio of association constants of enzyme with ground-state substrate (KS) 

and activated substrate (KT) (Equation 11).
[70]

 All of the above mentioned work  

                                Rate enhancement = kcat/kuncat = KS/KT                                      (11) 

corroborates the hypothesis made by Linus Pauling in the 1940s, which stated that for an 

enzyme to successfully accomplish a chemical transformation in a short period of time, 

the TS must be stabilized.
[71] 

 

 

2.3.3 Enzyme Kinetics 
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Kinetic data of enzyme catalyzed transformations is extremely important, not only 

for industrial purposes in determining the time period of a biocatalytic process, but also 

to offer insight into the reaction mechanism, which is of immense worth in drug design, 

specifically in the area of enzyme-small molecule interactions. The study of enzyme 

kinetics dates back to as early as 1902 when Adrian Brown investigated the hydrolysis of 

sucrose into fructose and glucose by invertase.
[72]

 However, perhaps the most pioneering 

work in the field of enzyme kinetics was conducted by Leonor Michaelis and Maud 

Menten in 1913 when they applied the principles of thermodynamics to the case of 

sucrose hydrolysis.
[73]

 Michaelis and Menten are nowadays widely regarded as the 

founders of the field of enzyme kinetics and are whom the governing equation is named 

after. 

Before delving into the derivation of the rate equation for enzymatic reactions, it 

is important to note that the rate constant of a reaction, k, has origins grounded in TST. 

Using the principles of thermodynamics, an expression for the rate constant can be 

derived (Equation 12): 

                                       k = (kBT/h)e-(ΔG‡/RT)                                                   (12) 

where kB is the Boltzmann constant, h is Planck’s constant, R is the gas constant, T is 

temperature, and ΔG
‡
 is free energy of TS.

[57]
 This expression takes into account intrinsic 

values such as κ and ν that were discussed in the preceding section. 

 The enzymatic reactions in the current dissertation research abide by the reaction 

model depicted in Equation 8, in which the decomposition of ES to E + P is irreversible. 

Additionally, when the substrate concentration is much greater than the enzyme 

concentration (i.e. [S] >> [E]), which is typically the case for enzyme catalyzed processes 



41 

 

both in industrial applications and in biological systems, the reaction rate is independent 

of the [S], that is the reaction rate is zeroth order in [S], but first order in [E].  Thus the 

second reaction where ES decomposes to E + P is the rate-limiting step, and the reaction 

rate can be expressed in the form of Equation 13, where v is the reaction rate or velocity. 

                                                          v = 
𝑑[P]

𝑑𝑡
= k2[ES]                                                     (13) 

However, this equation does not suffice because [ES] is a transient species that cannot be 

quantified. Therefore, for the rate expression in Equation 13 to have practical value, [ES] 

must be expressed in terms of measurable species. The change in concentration of [ES] 

with respect to change in time can be modeled as in Equation 14. To this equation, 

                                            
𝑑[ES]

𝑑𝑡
 = k1[E][S] – k-1[ES] – k2[ES]                                           (14) 

Michaelis and Menten applied an argument based on the assumption that k-1 >> k2, which 

is usually incorrect. Haldane and George Briggs, on the other hand, applied the 

assumption of a steady state based on the hypothesis that [ES] increases at the start of a 

reaction and then levels off (i.e. reaches equilibrium) as time progresses, so that the rate 

of change of [ES] throughout the course of a reaction is equal to zero (Equation 15).
[74]

  

                                                                   
𝑑[ES]

𝑑𝑡
= 0                                                       (15) 

This assumption is valid for instances where [S] >> [E]. Applying the steady state 

assumption, along with the additional assumption that S is converted to P only, Equation 

14 can be re-written in the form of Equation 16. Applying the enzyme mass balance, in 

                                                   k1[E][S] = k-1[ES] + k2[ES]                                         (16) 

which the total enzyme concentration [E]T, a measurable quantity, is equal to the sum of 

free enzyme [E] and [ES] (Equation 17), and rearranging yields Equation 18, where 

                                                        [E]T = [E] + [ES]                                                     (17) 
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                                (([E]T – [ES])[S])/[ES] = (k-1 + k2)/k1 = KM                               (18) 

 KM is the Michaelis constant. Rearranging, solving for [ES] and then multiplying each 

side by k2 yields an expression for the initial reaction rate or velocity, vo, also known as 

the Michaelis-Menten equation (Equation 19), where Vmax is the maximum reaction rate 

             vo = 
𝑑[P]

𝑑𝑡
= k2[ES] = (k2[E]T[S])/(KM + [S]) = (Vmax[S])/(KM + [S])               (19) 

or velocity, and is equal to the product of k2 and [E]T. Although Equation 19 

oversimplifies the real life situation by not taking into consideration effects such as 

enzyme deactivation and inhibition, it is still the governing equation for enzyme kinetics 

and can be manipulated to take into account the above mentioned effects.  

The Michaelis-Menten equation (Equation 19) can be plotted to depict vo as a 

function of [S] (Figure 26).
[57]

 The curve represents a hyperbola which has an asymptote 

equal to Vmax. The [S] corresponding to the point on the curve where vo is equal to half 

Vmax is the Michaelis constant, KM. Thus, the KM, which is temperature and pH 

dependent, is a measure of the affinity of an enzyme for a given substrate and is therefore 

unique for each enzyme-substrate pair. From the plot, it can be visually deduced that as 

the enzyme becomes completely saturated with substrate (i.e. at very large [S]), the rate 

of the reaction approaches Vmax, but never reaches it. On the other end of the spectrum at 

very low [S] (i.e. [S] << KM), the rate becomes first order in both [S] and [E], and vo can 

be expressed as in Equation 20. In this equation, the value kcat/KM represents the catalytic 

                                                                   vo = (kcat/KM)[E][S]                                            (20) 

efficiency of the enzyme. Furthermore, for the simple one substrate reaction shown in 

Equation 8, kcat = k2, which essentially equates to the turnover number of the enzyme,  
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Figure 26. A generic Michaelis-Menten plot.
[57]

 

 

which is the number of substrate molecules each enzyme converts per unit time (usually 

one second). 

It is often difficult to obtain accurate values for KM and Vmax from Michaelis-

Menten plots. In 1934, Hans Lineweaver and Dean Burk developed an alternative method 

to experimentally determine  KM and Vmax by plotting the reciprocal plot of the Michaelis-

Menten equation, which were later named Lineweaver-Burk plots.
[75]

 This equation is 

linear with a slope equal to KM/Vmax, a 1/vo intercept equal to 1/Vmax, and a 1/[S] intercept 

equating to -1/KM. Thus, this allowed for KM and Vmax to be determined with more 

confidence. However, Lineweaver-Burk plots have more or less become redundant 

nowadays due to advances in computational methods. 
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2.3.4 Enzyme Activity 

Unlike conventional chemical catalysts, which can be applied to reaction systems 

using molar amounts or mole percentages just like any other reagent, the use of enzymes 

is a little more complex. Owing to a multitude of influences, such as enzyme source, 

stability, and pH and temperature of reaction medium to name a few, each enzyme will 

likely have a different catalytic activity. The standard unit of enzyme activity is enzyme 

units, U, and can be determined via Equation 21. There are a few variations of enzyme  

                            1U =
μmol product generated (or substrate consumed) 

minute
                               (21) 

activity. For example, specific activity is the nomenclature given when pure protein is 

used and enzyme activity is expressed as U/mg pure protein. Another variation is the 

volumetric activity, which is U/mL of crude enzyme solution, which is the appropriate 

enzyme activity in the current dissertation research. 

Enzyme activity is determined by conducting an enzyme assay experiment. This 

experiment is dependent on either the formation of a product or the consumption of a 

substrate and on an analytical method in which to quantify the amount of depleted 

substrate or generated product over time. Spectroscopic techniques, such as ultraviolet-

visible (UV-vis) spectroscopy and fluorescence spectroscopy, have found much use in 

enzyme assay experiments. The enzyme activity is highly dependent on parameters such 

as temperature, pH, solvent, and ionic strength of the reaction medium, therefore, the 

reaction conditions under which the enzyme assay was performed must also be appended 

when providing enzyme activity data.  
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2.3.5 Enzyme Inhibition 

As was discussed in section 2.3.3, the classical Michaelis-Menten equation does 

not take into consideration the effects enzyme inhibition have on enzyme kinetics. The 

effect of enzyme inhibition is caused by an inhibitor (I), which can be defined as any 

molecule that is able to interact with an enzyme in such a way so as to reduce or halt the 

catalytic activity of the enzyme. Enzyme inhibitors are important in the field of 

therapeutic drug design as they provide a means to temporarily or permanently retard 

enzymes that are crucial to the survival and proliferation of bacteria, fungi, and viruses, 

as well as adverse metabolic pathways within the human body. For example, the HIV 

therapeutic indinavir (trade name Crixivan), developed by Merck in the 1990s, is able to 

bind to HIV protease, an enzyme that is essential for viral reproduction, and inhibit its 

activity, thus reducing the proliferation of HIV.
[76]

 

Enzyme inhibition can be reversible or irreversible and take the form of one of 

three modes: competitive inhibition, uncompetitive inhibition, or mixed inhibition 

(Figure 27).
[57]

 Competitive inhibition involves the inhibitor binding at the substrate 

binding site, thus competing with the enzyme’s native substrate for active site binding 

and effectively reduces the concentration of free enzyme available for the native substrate 

to bind with, an effect that will make the KM appear larger than it really is. Such 

inhibitors typically resemble the structure of the native substrate, but can also include the 

product of the catalytic reaction, an effect known as product inhibition. Based on the 

knowledge that the enzyme binds more tightly to the TS species, the class of inhibitors 

known as TS analogs have proved to be extremely potent inhibitors. Uncompetitive 

inhibition involves the inhibitor binding to the ES complex; thus, this type of inhibitor 
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does not compete with the substrate for binding at the enzyme’s active site, hence, will 

underestimate the actual KM and Vmax values. An uncompetitive inhibitor induces its 

inhibition effect by distorting the protein in such a way so that its activity is reduced. 

Finally, mixed inhibition is competitive and uncompetitive inhibition combined, so the 

inhibitor induces its effects by binding to both the free enzyme and the ES complex. This 

type of inhibition results in an underestimation of Vmax. 

 

 

Figure 27. Reaction models of enzyme inhibition modes.
[57]

 

 

2.3.6 Enzyme Stability and Deactivation 

The topics of enzyme stability and deactivation are of great significance in 

biocatalysis. These factors must be taken into consideration when deploying an industrial 

scale biocatalytic process as they will have a dramatic influence on process parameters 

such as temperature, residence time, solvent, and amount of enzyme to be used. 

Protein folding and unfolding is a fascinating natural phenomenon. The final step 

in protein synthesis involves the folding of the elongated polypeptide chain into the three-

dimensional architecture of the native enzyme conformation, which follows a potential 
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energy landscape where the native protein is the energy sink.
[77]

 The forces responsible 

for stabilizing proteins and holding them in their native conformation are mostly 

hydrophobic in nature.
[78]

 The thermodynamic stability of a protein can be modeled by 

Equation 22: 

                                                           Ts = Tm𝑒-[ΔHm/(Tm·ΔCp)]                                                  (22) 

where Ts is the temperature of maximum stability, Tm and Hm are the melting temperature 

(i.e. temperature at which protein is half unfolded) and enthalpy, respectively, and Cp is 

the heat capacity.
[78]

 The curve of this equation resembles an inverse parabola, with the 

global maximum indicating the Ts. Ts is not necessarily the optimum temperature at 

which a biocatalytic process should be conducted at because the enzyme usually exhibits 

greater catalytic activity closer to Tm; however, protein denaturation can occur very 

rapidly in the vicinity of Tm, thus the true optimum process temperature (Topt) is located 

somewhere between the temperature that produces the greatest catalytic rate and the 

temperature of maximum enzyme stability (i.e. Ts < Topt < Tm), as demonstrated in Figure 

28. 

 

Figure 28. Catalytic activity as a function of temperature for a generic biocatalytic process. 
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Enzyme deactivation is detrimental to the catalytic activity of the enzyme. There 

are two main processes that can lead to enzyme deactivation: conformational processes, 

such as inter- and intramolecular aggregation; and covalent processes, such as hydrolysis 

of labile bonds, deamidation of asparagine (Asn) or glutamine (Gln) residues, and 

reduction of disulfide bonds.
[78]

 There are many underlying causes responsible for 

deactivation. Research strongly suggests that covalent processes are more likely to occur 

at elevated temperatures, an effect known as thermal deactivation.
[78]

 Stirring and 

agitation has also shown to deactivate enzymes, proposedly as a result of collisions 

between active and inactive enzymes, with the observed deactivation rate constant, kd,obs, 

proportional to stirring power.
[79]

 Enzyme deactivation has also shown to occur in the 

presence of gas bubbles, presumably due to liquid/gas interfacial interactions.
[80]

 A 

similar interfacial enzyme deactivation process is also evident in aqueous/organic solvent 

systems.
[81]

 

Kinetics of enzyme folding/unfolding and deactivation can be represented by the 

Lumry-Eyring model, named after Rufus Lumry and Henry Eyring for their pioneering 

research on the topic.
[82]

 In the model, depicted in Equation 23, an equilibrium exists 

                                                                                         (23) 

between the native, catalytically active, folded state (N) and the unfolded, inactive state 

(U) such that unfolding from N to U is a reversible process, and an irreversible process 

that converts U to a permanently inactive state (I). In this model, kd represents the 

intrinsic deactivation rate constant from U to I. Combining kd,obs with the observed 

catalytic rate constant kcat,obs, one can calculate the turnover number of the enzyme taking 

into account deactivation effects (Equation 24). 
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                                         Turnover Number = kcat,obs/kd,obs                                         (24) 

2.4 Laccases 

The enzymes used in this dissertation research are laccases. Laccases 

(benzenediol:oxygen oxidoreductases, EC 1.10.3.2) belong to the broader family of 

multicopper oxidases – proteins that contain four copper ions in their active site.
[13]

 Their 

discovery dates way back to 1883 where they were identified as a component of the sap 

of the Japanese lacquer tree Rhus vernicifera.
[83]

 A little over a decade later, the first 

fungal derived laccases  were discovered in various species of Russula fungi.
[84]

 In 

nature, laccases catalyze the one electron oxidation of a variety of organic and inorganic 

substrates whilst concomitantly reducing molecular oxygen to water. Attributing to their 

environmentally benign character and their broad substrate range, their use as 

biotechnological tools in a variety of industries is continuing to prosper. 

Baldrian has compiled data of molecular weight, isoelectric point, temperature 

and pH optima, and KM for common substrates, for over 100 fungal laccases isozymes.
[85]

 

In general, fungal laccases exhibit highest activity between 50 and 70°C, while the pH 

optimum is highly substrate dependent. Given that their exists much diversity among 

different laccase isozymes with respect to molecular weight, quaternary structure, and 

spectroscopic properties, an enzyme can be defined as a laccase by the substrates it can 

oxidize. Thus, one defining feature of a laccase is an enzyme that is able to oxidize 

syringaldazine, but cannot oxidize tyrosine.
[86]

 Furthermore, a more current definition can 

be proposed based on amino acid sequence homology. Multicopper oxidases contain four 

highly conserved regions, denoted L1-L4, that encompass the copper-coordinating 

residues in the active site of the enzyme. The L1 and L3 regions however, are distinct for 



50 

 

fungal laccases, a feature which assists in differentiating them within the broader class of 

multicopper oxidases.
[87]

 The following sections will discuss the distribution of laccases 

in nature, their structure, catalytic and redox properties, typical substrates and inhibitors, 

as well as the applications of laccase-mediator systems (LMS). 

2.4.1 Natural Sources 

Historically, laccases have been isolated predominantly from plants and fungi. 

However, in recent years, the laccase toolbox has been expanding, with the enzymes also 

being detected in bacteria, insects, and algae.
[88-90]

 The physiological functions of 

laccases from different sources are highly diverse. 

Fungal laccases are derived from numerous species of basidiomycetous and 

ascomycetous fungi as both extracellular and intracellular enzymes (Figure 29).
[85]

 In 

fungi, laccases are responsible for fruiting body formation, pigmentation, morphogenesis, 

plant pathogenesis, fungal virulence, the synthesis of humic substances in soil, and lignin 

degradation.
[88, 91-92]

 Plant laccases, on the other hand, are partially responsible for the 

biosynthesis of lignin.
[93]

 The antagonistic roles of lignin polymerization and degradation 

 

 

Figure 29. Wood-rot fungi Trametes versicolor: a common source of laccases.
[94] 
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between plant and fungal laccases, respectively, have been studied via molecular  

docking and dynamic simulation methods utilizing lignin model compounds and have 

revealed that differences in enzyme structure and in substrate binding mode are 

contributing factors.
[95]

 Bacterial laccases play a role in morphogenesis, in the synthesis 

of melanin, and in the production of the brown spore pigment, which protects the spore 

coat against UV light and hydrogen peroxide.
[96-98]

 In general, bacterial laccases possess 

higher thermostability and increased tolerance of alkaline pH and high salt 

concentrations, as well as a larger binding cavity, compared to fungal and plant 

laccases.
[88]

 Enzymes with laccase activity have also been isolated from bovine rumen 

microflora, where it is believed they aid in the digestion of ryegrass lignin.
[99]

 Laccases 

are also found in insects, where they are believed to play a role in tanning, a process that 

hardens the newly secreted exoskeleton, by catalyzing the cross-linking reaction between 

structural proteins in the insect and catechol derivatives.
[90]

 More recently, laccases have 

been isolated from soil algae, where it is proposed that they contribute to the turnover of 

soil organic matter.
[89]

 

Multiple laccase isozymes can be produced by a single source due to the presence 

of multiple laccase genes.
[100]

 For example, the fungus Pleurotus ostreatus produces at 

least eight laccase isozymes.
[85]

 The reasoning for this gene multiplicity may be due to 

the different physiological functions proposed for laccases from a given source,
[100]

 as 

discussed in the preceding paragraph. The remaining sections will focus primarily on 

fungal laccases as these enzymes have been studied extensively and are widely used for 

biotechnological purposes due to their higher redox potentials compared to plant and 

bacterial laccases. 
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2.4.2 Structure 

Details of the three-dimensional structures of laccases can be obtained from 

purified crystals of the enzymes. A recent review surveying all the currently available 

crystal structures of laccases has been presented by Hakulinen and Rouvinen.
[101]

 Fungal 

laccases are typically monomeric proteins with molecular weight of 60-70 kDa,
[85]

 

although oligomeric forms of laccases do exist. For example, Trametes villosa laccase 

isozymes exist as homodimers.
[102]

 It is believed that the oligomeric architecture may aid 

in stabilizing the protein. Laccases are glycoproteins with an extent of glycosylation 

usually between 10 to 25%.
[85]

 The carbohydrates are linked to the polypeptide chain via 

N-linkages,
[103]

 and have many roles including structural, protection against proteolytic 

degradation,
[104]

 and increasing thermostability.
[105]

 The three-dimensional structure of a 

Trametes versicolor laccase is presented in Figure 30. 

The active site of laccases contain four copper ions, categorized based on 

spectroscopic features as Type 1 Cu (T1), Type 2 Cu (T2), and binuclear Type 3 Cu (T3) 

(Figure 31).
[106]

 Substrate oxidation occurs at the T1 Cu while oxygen reduction takes 

place at the T2 and T3 Cu sites, which are collectively known as the trinuclear cluster 

(TNC). Fungal laccases have three sequentially arranged cupredoxin-like domains, each 

of which contains Greek key β-barrel topology. T1 Cu is located in domain 3, and TNC is 

entrenched between domains 1 and 3.
[100]

 In fungal laccases, the T1 Cu possesses trigonal 

planar geometry coordinated with the S atom of a Cys residue and the Nδ1 atoms of two 

His residues.
[100]

 In laccases from nonfungal origins, a fourth coordinating ligand, usually 

an axial Met, may be present. The absence of an axial ligand at the T1 Cu site in most 
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Figure 30. Three-dimensional structure of a Trametes versicolor laccase. Protein backbone shown in 

ribbon representation (blue), copper ions as spheres (magenta), and carbohydrates as lines 

(green/blue/red). Image created with open-source PyMol from PDB file 1GYC.
[94] 

  

Figure 31. Left: 3D representation of laccase active site. Image created with open-source PyMol from 

the crystal structure of a Trametes versicolor laccase (PDB file 1GYC). Right: schematic 

representation of the active site of the same laccase showing coordinating residues and interatomic 

distances (Å).
[94] 
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fungal laccases is compensated for by a stronger Cu-SCys bond.
[107]

 The SCys → Cu charge 

transfer, which gives an absorption at 614 nm , manifests itself visually as the deep blue 

color of the enzymes.
[108]

 The three Cu ions comprising the TNC possess a triangular 

geometric arrangement. The antiferromagnetically coupled T3 Cu ions are coordinated 

with three His residues each and are bridged via a hydroxide ligand, while the T2 Cu ion 

is coordinated with two His ligands and one water molecule.
[109]

 

The substrate binding cavity is primarily lined with hydrophobic residues along 

with a highly conserved His and acidic residue, as depicted in Figure 32.
[110]

 Mutagenic 

and structural studies have shown that this acidic residue (either an Asp or Glu) is crucial 

for the oxidation of substrates containing phenolic or aromatic amine functional groups. 

  

 

Figure 32. Substrate binding cavity of a Trametes versicolor laccase depicted as an electrostatic 

potential surface displaying the conserved His (blue) and acidic (red) residues. Image created with 

open-source PyMol from PDB file 1GYC.
[94] 

 

It is believed that this residue, in its carboxylate form, is able to hydrogen bond with OH 

or NH2 groups of substrates, aiding in deprotonation of the substrate.
[110-111]

 Thus, pH 

control is important to ensure the residue is present in its carboxylate form (typically 

around pH 5 or higher). Furthermore, the pH optimum for specific substrates can be 

altered via replacing this acidic residue with non-acidic residues.
[112] 



55 

 

Recently, a variety of computational techniques have been used to shed light on 

the potential pathway of oxygen diffusion into the TNC, providing evidence for the 

existence of a purposefully constructed channel.
[113]

 Structures of some fungal laccase 

isozymes exhibit an extended C-terminal, which may block this channel, significantly 

impairing the catalytic efficiency of the enzyme.
[114-115]

 A recent study by Hu and 

coworkers showed that the activity of a laccase from the fungus Pleurotus florida could 

be increased substantially when its C-terminal was truncated by 13 residues.
[116]

 Substrate 

accessibility to the active site also affects the catalytic efficiency of the enzyme. 

Sometimes this can be hindered by bulky, hydrophobic residues at the entrance of the 

active site.
[100]

 

2.4.3 Redox Properties 

The redox potentials (E°) of laccases play a paramount role in the overall 

energetics and kinetics of electron transfer during the oxidation of substrate by the T1 Cu. 

In fact, kinetic analyses show that the difference in E° between the T1 Cu and substrate 

determines the rate of electron transfer, and that this reaction is the rate-limiting step of 

the entire catalytic cycle.
[117]

 Fungal laccase redox potentials vary from one source to 

another, ranging between 0.44 and 0.79 V versus NHE,
[118]

 and are generally 

considerably higher than laccases from plant and bacterial origins. 

Structural studies of fungal laccases have deduced that the greater the 

coordination distances of ligands to the T1 Cu, the higher the E°.
[109, 119]

 In high E° 

laccases, the T1 Cu-N distance of a ligating His residue is elongated. This increased 

distance is believed to be caused by a hydrogen bond between highly conserved Glu and 

Ser residues, the former located on the same helix as the ligating His residue, thus pulling 
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this His further away from the T1 Cu. It is postulated that the increased Cu-N distance 

renders the Cu ion more electron deficient due to less of a contribution of the lone pair 

from NHis, which may destabilize higher oxidation states, thus increasing the E°.
[109]

 The 

same logic may also be used to explain why the absence of a fourth axial ligand in fungal 

laccases correlates with a markedly higher redox potential. Site-directed mutagenesis of 

the axial ligand shows that when this ligand is changed from a noncoordinating residue, 

such as Leu or Phe, to a coordinating Met residue, the redox potential of the T1 Cu is 

lowered substantially.
[120-121]

 This theory has been further validated by QM/MM 

molecular dynamics simulation results.
[122]

 Other factors, including solvent accessibility, 

dipole orientation, and hydrogen bonding, also contribute to the differences in redox 

potential and substrate oxidation.
[120]

 Protein engineering techniques, such as site-directed 

mutagenesis and directed evolution, are used to modify the structure of the enzymes in 

the hope of improving redox properties, with the ultimate intention of fabricating tailor-

made laccases for specific industrial purposes.
[123]

 

2.4.4 Substrates and Inhibitors 

A comprehensive list of fungal laccase substrates and inhibitors has been 

assembled by Baldrian.
[85]

 Owing to their E°, which are typically in the range of 0.6 to 

1.2 V vs NHE,
[124]

 phenols have demonstrated themselves to be suitable substrates for 

laccases. Thus, it should come as no surprise that lignin, an irregular phenolic polymer 

that is one of the main constituents of wood, is a natural substrate of laccases. 

Representative laccase substrates include: phenols, para- and ortho-diphenols, 

polyphenols, aromatic and polyamines, thiophenols, and some metal ions.  
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True laccase inhibitors are small molecules that are capable of binding to the Cu 

ions of the TNC, thereby interrupting the internal electron transfer process. Inhibitors 

include: sodium azide,
[125]

 small halides,
[117, 126]

 heavy metals, and EDTA to name a few. 

Bulky organic compounds, such as medicarpin, have also shown to inhibit laccase 

activity. The inhibitory effect is due to medicarpin blocking both the solvent channel 

where oxygen enters and the substrate binding site.
[127]

 Recently, it has been suggested 

that mono-carboxylates, such as propionate and butyrate, are able to substantially reduce 

the activity of some fungal laccases.
[128]

 This has important implications on the selection 

of a suitable buffer system to carry out laccase-catalyzed reactions. 

2.4.5 Catalytic Mechanism 

Mono-electron oxidation of substrate, which occurs at the T1 Cu site, is the first step in 

the catalytic cycle (Figure 33). Galli and coworkers have studied both wild type and 

mutant laccases to gain insight into the oxidative mechanism. Via the Hammett approach 

and Marcus analysis, they were able to provide unambiguous evidence for a concerted 

electron/proton transfer (EPT) mechanism in the oxidation of phenolic substrates by 

laccases.
[129]

 A concerted EPT mechanism is an energetically efficient route as it avoids 

the formation of a high-energy charged intermediate, as would be generated if either 

electron or proton were transferred individually, and is commonplace in many biological 

systems.
[130]

 It is believed that the Nδ1 of a highly conserved T1 Cu coordinating His 

residue in the substrate binding site may be the initial electron acceptor from the 

substrate.
[111]
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Figure 33. Laccase catalytic cycle.
[94]

  

 

Once the T1 Cu ion has gained an electron form the substrate, the electron is then 

shuttled to the TNC via one of two routes: through-bond via a highly conserved Cys-His 

motif, or through-space.
[111]

 The transfer of electrons from the T1 Cu ion to the TNC is 

greatly affected by pH. It is known that the E° of both laccases and substrates vary with 

pH, and that the E° of a phenolic substrate will decrease more significantly compared to 

the E° of a laccase at increased pH, allowing for more energetically favorable  electron 

transfer from substrate to the T1 Cu ion. However, at higher pH values, internal electron 
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transfer from the T1 Cu ion to the TNC is inhibited by the binding of a hydroxide anion 

to the T2 and T3 Cu ions, which severely hinders the catalytic efficiency of the 

enzyme.
[131]

 Hence the significance of pH control in laccase-catalyzed processes. 

Through use of a variety of spectroscopic techniques, Solomon and his coworkers 

have elucidated the catalytic cycle, including geometric and electronic structures of 

intermediates. The native intermediate (NI) is a fully oxidized form of the enzyme with 

all three Cu ions of the TNC connected via a μ3-oxo bridging ligand.
[108]

 This ligand 

allows for electron transfer to all Cu ions of the TNC. In the presence of a reducing 

substrate, the NI will gain four electrons, reducing all Cu
II
 ions to Cu

I
 ions, whilst 

concomitantly releasing two molecules of water with the aid of four protons. 

Spectroscopic data suggests that one of the T3 Cu ions is reduced first, followed by the 

T2 Cu ion, then the other T3 Cu ion, and then finally, with nowhere to relay the electron, 

the T1 Cu ion remains reduced.
[132] 

The reaction of fully reduced enzyme with dioxygen occurs via two sequential 

two-electron steps. First, dioxygen binds in the TNC, followed by instantaneous two-

electron transfer, one electron from the T2 Cu ion and one from a T3 Cu ion, to the bound 

oxygen molecule to generate the peroxy intermediate (PI).
[133]

 On further transfer of two 

more electrons to the PI, one electron from the other T3 Cu ion and one from the T1 Cu 

ion, the O-O bond is cleaved and the NI is reached, thus completing the catalytic cycle. 

Experimental and computational data suggest that a highly conserved carboxylate residue 

(typically Asp) in the vicinity of the T2 Cu ion may assist in stabilizing the PI and is vital 

for O-O bond cleavage.
[134]
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On the occasion that there is no reducing substrate present, the NI decays to an 

oxidized resting form of the enzyme. Given that the rate of decay is orders of magnitude 

slower than the turnover rate of the enzyme, it is suggested that this resting form of the 

enzyme is not part of the catalytic cycle.
[132]

 A more in depth discussion of the catalytic 

cycle and the reduction of oxygen to water, including experimental and computational  

data, is provided by Solomon and coworkers.
[135]

 

2.4.6 Laccase-Mediator System (LMS) 

The scope of laccase-catalyzed oxidations can be expanded to include atypical 

laccase substrates, such as those with E° too high for laccases to oxidize or too bulky to 

enter the active site of the enzyme, via use of the laccase-mediator system (LMS). This 

system employs small molecules that are readily oxidized by laccases to act as electron 

shuttles between the enzyme and the target substrate (Figure 34). Once oxidized by 

laccase, the small molecule mediator must be stable enough to diffuse into the bulk 

reaction medium and react with the final substrate. The first report of an LMS was 

described by Bourbonnais and Paice in 1990. They established that a system containing 

 

 

Figure 34. Laccase-mediator system (LMS).
[94] 

  

both a laccase from Trametes versicolor and the common laccase enzyme assay substrate 

2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS)  could oxidize non-phenolic 
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lignin model compounds, such as veratryl alcohol.
[136]

 Since this pioneering work, LMS 

have been employed for a variety of industrial applications, such as delignification, 

bleaching of kraft pulps, and in the degradation of dyes and xenobiotic compounds.
[137]

 

Furthermore, the system has been used to perform a variety of synthetically useful 

chemical transformations.
[138]

 For example, in the conversion of aromatic methyl groups 

and benzylic alcohols into the corresponding benzaldehydes,
[139-140]

 for the conversion of 

diols to lactones,
[141]

 in the deprotection of para-methoxyphenyl and N-benzyl protected 

amines,
[142-143]

 and for the regeneration of the coenzyme NAD(P)
+
.
[144]

 

Laccase mediators can be either natural or synthetically derived. Structurally, 

natural mediators resemble lignin degradation products, such as acetosyringone, 

syringaldehyde, and para-coumaric acid.
[145]

 The fact that these lignin derived 

compounds have proved to be efficient mediators in the LMS delignification of kraft pulp 

supports the role of fungal laccases as delignifying enzymes in the environment.
[146]

 

Some common synthetic mediators include: ABTS, the N-hydroxy type mediators, such 

as violuric acid (VLA), N-acetyl-N-phenylhydroxylamine (NHA), N-

hydroxybenzotriazole (HBT), and N-hydroxyphthalimide (HPI), and the radical 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO) (Figure 35).
[146]

 Depending on the structure of 

the mediator, the mechanism by which the LMS functions differs. Research suggests that 

ABTS follows an electron transfer (ET) mechanism, and that the N-OH type mediators 

follow a hydrogen atom transfer (HAT) route,
[147]

 while TEMPO operates via an ionic 

mechanism (Figure 36).
[148]

 Whether to use natural or synthetic mediators in LMS 
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Figure 35. Chemical structures of common synthetic mediators used in LMS.
[94] 

 

Figure 36. LMS routes. a) Electron transfer (ET) mechanism; b) Hydrogen atom transfer (HAT) 

mechanism; c) Ionic mechanism.
[94] 
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processes has been of much debate in recent years. While natural mediators have the 

advantages of being less toxic and less expensive than their synthetic counterparts, they 

are generally less effective.
[149]

 The reasoning for this is that nitroxyl radicals formed via 

the oxidation of N-hydroxy compounds are more stable than the corresponding phenoxy 

radicals formed via the oxidation of phenols,
[150]

 meaning that nitroxyl radicals will 

persist for a longer period of time and react more selectively. 

2.4.7 Applications of Laccases in Organic Synthesis 

Laccases have proved to be exciting catalysts in the field of synthetic organic 

chemistry in recent decades. They offer significant advantages over traditional chemical 

oxidants and transition metal catalysts, such as being renewable, biodegradable, relatively 

inexpensive, highly active in aqueous solvents and under mild conditions, and having a 

broad substrate range which can be further expanded via the use of LMS. The versatility 

of these enzymes in organic synthesis is exemplified by the variety of chemical 

transformations they are capable of effecting. In section 2.4.5, the laccase catalytic 

mechanism, consisting of substrate oxidation and oxygen reduction, was discussed in 

detail. The resultant laccase-generated phenoxy radicals that are produced upon oxidation 

of phenolic compounds can undergo a variety of reactions, including: radical-radical 

coupling reactions of monomers for the synthesis of dimers, oligomers, and polymers; 

radical cross-coupling reactions; and in situ generation of ortho- and para-quinones from 

the corresponding catechols and hydroquinones, respectively, via disproportionation 

(Figure 37).
[151]

 

In the following sections, examples of how laccases and LMS have been applied 

to effect carbon-carbon and carbon-heteroatom (O, N, and S) bond forming reactions 
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under environmentally benign conditions will be discussed. Given that there exists over 

200 published accounts on the use of laccases for organic synthesis purposes at the point 

in time this dissertation was written, the following is not meant to be exhaustive, rather it 

is intended to be illustrative of the types of reactions that can be afforded and a means to 

gauge and compare how the current dissertation work is different and original from 

previous research. For comprehensive accounts of laccase-catalyzed reactions, the reader 

is encouraged to consult recent reviews.
[14-15]

 

 

 

Figure 37. Laccase-initiated disproportionation of a) catechols into ortho-quinones, and b) 

hydroquinones into para-quinones. 

 

2.4.7.1 Laccase-Catalyzed Radical-Radical Coupling, Dimerization, and Polymerization 

Reactions 

The laccase-catalyzed coupling of naturally occurring bioactive compounds has 

been the focus of much research. Two different fungal laccases have been successfully 

employed in the dimerization of trans-resveratrol in aqueous solvent under mild 

conditions (Figure 38). Resveratrol is a phenolic compound present in dietary plants as 
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well as red wine that exhibits strong antioxidant activity and is believed to have positive 

implications in cancer and heart disease prevention. The dimer also exhibits strong 

antioxidant properties in assays with 2,2-diphenyl-1-picrylhydrazyl free radical.
[152]

 

Subsequent studies focused on broadening the scope of the laccase-catalyzed 

dimerization of resveratrol were performed by reacting laccases with a glycosylated 

derivative of resveratrol, namely piceid,
[153]

 and various hydroxystilbene analogs of 

resveratrol.
[154]

 All dimers were produced via radical-radical couplings between carbon-

carbon radicals and carbon-oxygen radicals. In a follow up study a decade later, the 

laccase-synthesized resveratrol dimers were further oxidized using the chemical oxidant 

2,3-dichloro-5,6-dicyano-para-benzoquinone to afford the benzofuran framework, which 

is present in many biologically active molecules.
[155]

 

 

 

Figure 38. Laccase-catalyzed dimerization of trans-resveratrol.
[152] 

 

Laccases from the fungus Trametes pubescens have been used to dimerize totarol 

in an aqueous/organic solvent system (1:1, v:v) in high conversions, the extent to which 

was highly dependent on the organic cosolvent (Figure 39). Totarol is a diterpenoid that 

possesses potent antibacterial effects and has found much use in cosmetic and personal 

care products. The use of laccases to synthesize the dimers, which were formed via either 
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a C-C or C-O linkage, was far more superior in regards to product yields compared to 

using chemical oxidants, such as MnO2 and FeCl3.
[156] 

Similar conditions have been used 

to synthesize C-C and C-O dimers of the flavonolignan silybin. Crucial to successful 

dimerization was selectively protecting specific hydroxyl groups on silybin so as to 

inhibit polymerization. The dimers exhibit good radical scavenging abilities.
[157]

 The 

dimerization of silymarin flavonolignans was also achieved in a similar fashion.
[158] 

Very 

recently, Trametes versicolor laccases have been employed in a radical-radical 

dimerization reaction for the synthesis of dihydrobenzofuran neolignanamides under mild 

conditions in short reaction times. The products displayed potent antiproliferative activity 

towards a few different cancerous human cells, such as colon, mammary, and 

prostate.
[159] 

Laccases from Coriolus versicolor have been employed in the dimerization 

of penicillin X ester derivatives via a radical-radical coupling mechanism. The penicillin 

X dimers exhibited good antibacterial activity.
[160]

 

 

 

Figure 39. Laccase-catalyzed dimerization of totarol.
[156]

 

 

Laccase-catalyzed heteromolecular radical coupling of catharanthine and 

vindoline was employed to synthesize the bisindole alkaloid anhydrovinblastine, a natural 
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product that possesses anti-tumor and anti-cancer properties. The synthesis exploits the 

aromatic amine groups on both reactants, which are susceptible to laccase oxidation, to 

produce resonance-stabilized radicals that can couple with one another. A final reduction 

with NaBH4 affords the final product in 56% yield.
[161]

 

Laccase-catalyzed dimerizations are not only applicable to phenolic compounds, 

but can also be used for the dimerization of aromatic amines. For example, it has been 

demonstrated that 2,4–diaminodiphenylamine can be dimerized to yield the 

benzocarbazole framework in good yield under mild reaction conditions utilizing a 

bacterial laccase.
[162] 

In a similar way, the laccase-catalyzed dimerization of ortho-

aminophenols has led to the synthesis of novel phenoxazinone dyes. The dimerization of 

4-methyl-3-hydroxyanthranilic acid catalyzed by laccases immobilized in polyacrylamide 

gel resulted in the synthesis of actinocin (Figure 40), which is a chromophore present in 

actinomycin antibiotics.
[163]

 Related head-to-tail dimers with tuneable water solubility 

and good antioxidant properties have been synthesized using sulfonated derivatives of 3- 

hydroxyanthranilic acid.
[164-167] 

Laccases have also been useful in the trimerization of 

indole and sesamol.
[168-169]

 

 

 

Figure 40. Laccase-catalyzed dimerization of 4-methyl-3-hydroxyanthranilic acid.
[163] 

 



68 

 

Greener fluorination methods have been identified by the ACS GCI as a key 

research focus area in the field of organic synthesis in the coming years because 

fluorinated compounds represent a class of important building blocks for many 

pharmaceuticals and advanced materials. Toward this, Simon and coworkers have 

developed an elegant approach to the trifluoromethylation of phenols by combining either 

Langlois’ reagent (NaSO2CF3) or Baran’s zinc sulfonate (Zn(SO2CF3)) with laccases 

from Agaricus bisporus (Figure 41).
[170]

 The trifluoromethyl-substituted phenols are 

synthesized via a radical-radical coupling reaction between the laccase-generated 

phenoxy radical and the peroxide-generated trifluoromethyl radical. Products are afforded 

in good yield with high regioselectivity under mild conditions, and the reaction protocol 

is tolerant of most common functional groups present on the phenol. 

 

 

Figure 41. Laccase and Langlois’ reagent catalyzed trifluoromethylation of phenols.
[170] 

 

Kurisawa and coworkers have studied the laccase-induced polymerization of two 

major flavonoids present in many plants, catechin and rutin, the latter being a 

glycosylated flavonoid.
[171-172]

 Both polyphenol monomers efficiently polymerized using 

Myceliophthora laccases in an aqueous/organic solvent system at room temperature. 

Electron spin resonance (ESR) analyses of both polymers indicated the presence of a 

radical species in each polymer, which may be responsible for the increased radical 

scavenging and antioxidant activities compared to the catechin and rutin monomers. In a 
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subsequent study by another group, laccase-generated poly(catechin) was coupled with 

the antibiotics trimethoprim and sulfamethoxazole using N,N′-disuccinimidyl carbonate 

as the coupling reagent.
[173]

 The poly(catechin)–antibiotic conjugates were then coated 

onto the surface of silicone and polyurethane catheters via laccase-catalyzed coupling. 

The poly(catechin)–antibiotic functionalized catheters significantly reduced bacterial 

adhesion to the catheters, thus present a promising strategy to reduce catheter-associated 

infections. Laccase-mediated polymerizations of N-vinylimidazole,
[174]

 m-

phenylenediamine,
[175]

 urushiol,
[176]

 taxifolin,
[177]

 8-hydroxyquinoline,
[178]

 and catechol 

have also been documented.
[179]

 

2.4.7.2 Laccase-Catalyzed C-C Bond Forming Reactions Involving Catechols and 

Hydroquinones 

Carbon-carbon bond forming reactions are arguably the most important type of 

chemical transformations in organic synthesis. The use of carbon based nucleophiles to 

perform laccase-catalyzed cross-coupling reactions provides a green method for C-C 

bond formation between hydroquinones or catechols and compounds containing an acidic 

methylene or methine proton.
[180]

 The first reaction of this type was described in 2005 

when the activated methylene group of heterocyclic 1,3-dicarbonyls were employed as 

the nucleophiles to react with substituted catechols for the synthesis of benzofuran ring 

systems via a laccase-catalyzed domino reaction that proceeded via way of a laccase-

generated ortho-quinone intermediate (Figure 42).
[181]

 The products of interest possess a 

benzofuran core, which is an important structural motif present in many 

pharmacologically active compounds exhibiting antioxidant, antimicrobial, and anti-HIV-

1 properties.
[182]
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Figure 42. Laccase-catalyzed coupling of catechol with a heterocyclic 1,3-dicarbonyl.
[181] 

 

Our group has studied the oxidation-Michael addition cascade of aliphatic 1,3-

dicarbonyls with catechol and 3-methylcatechol. The addition of a water stable Lewis 

acid, such as Sc(OTf)3 or Yb(OTf)3, provided an increase in product yields, presumably 

by coordinating with the carbonyl groups of 1,3-dicarbonyls to promote the Michael 

addition step (Figure 43).
[183]

 This reaction highlighted the opportunity to combine 

classical inorganic catalysis with biocatalysis, an exciting field of future research. In a 

follow up study, we called upon the aptitude of a lipase to assist in promoting the 

Michael addition step.
[184]

 This cocatalytic enzyme system was regarded as a greener 

alternative compared to the previous system where Sc(OTf)3 was employed as it 

eliminated hazardous waste associated with the transition metal catalyst; however, the 

product yields were generally slightly lower. A common feature of the two 

aforementioned cocatalytic systems is the recyclability of the reaction medium. 

 

 

Figure 43. Laccase-catalyzed coupling of 3-methylcatechol with a 1,3-dicarbonyl.
[183]
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Since these initial studies, several original research articles have been published 

on the laccase-catalyzed oxidation-Michael addition of catechols with aliphatic, cyclic, 

and heterocyclic 1,3-dicarbonyls for the synthesis of a variety of benzofuran products,
[185-

189]
 3‐arylated 4‐oxochromanes,

[190]
 α-arylated cyclic β-dicarbonyl compounds,

[191]
 and 

substituted para-benzoquinones.
[192]

 These studies exemplify the versatility of this 

enzyme initiated cascade reaction as a legitimate synthetic tool for organic chemists. 

The acidic methylene group of pyrazolinones has also been exploited to effect 

laccase-catalyzed C-C bond forming reactions. The coupling of 3-methyl-1-phenyl-

pyrazolin-5-one or 3-methyl-pyrazolin-5-one with both catechols and hydroquinones 

utilizing laccases from Pycnoporous cinnabarinus yielded the benzofuro[2,3-c]pyrazole 

derivatives in good yields under mild reaction conditions.
[193]

 This approach has also 

been used to couple 3-tert-butyl-1H-pyrazol-5(4H)-one with several substituted 

catechols.
[194]

 Along similar logic, the laccase-initiated coupling of 3-substituted 

oxindoles and catechols has been achieved in high yields and high regioselectivity in a 

phosphate buffer/acetonitrile (2:1, v:v) solvent system.
[195]

 The transformation effectively 

adds an aryl group at the C-3 position of oxindoles by exploiting the reactivity of the 

methine carbon. 

Another C-C bond forming reaction that has been catalyzed by laccases is a Diels-

Alder reaction. Drawing upon the previously discussed work of Rideout and Breslow for 

inspiration,
[41]

 our group has developed the first and only laccase-catalyzed Diels-Alder 

reaction to date. In our aqueous one-pot protocol, laccases were employed to couple both 

catechols and hydroquinones with assorted dienes for the synthesis of 1,2-

naphthoquinones and 1,4-naphthoquinones, respectively (Figure 44).
[196-197]

 The idea is 
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similar to other reactions involving catechols and hydroquinones in that laccases are 

employed to generate the reactive quinone intermediate which can then go on to react 

with the diene in a 4+2 cycloaddition. Depending on the hydroquinone and diene 

employed, two types of products were formed: in the majority of cases, complete 

oxidation occurred to yield the aromatized 1,4-naphthoquinone products, however, when 

the dienes possess terminal alkyl substituents, complete oxidation did not occur and the 

final products lack aromaticity. 

 

 

Figure 44. Laccase-catalyzed Diels-Alder reaction between dienes and a) hydroquinones or b) 

catechols.
[196-197] 

 

2.4.7.3 Laccase-Catalyzed C-N Bond Forming Reactions Involving Catechols and 

Hydroquinones 

Laccase-catalyzed carbon-nitrogen bond forming reactions occur via Michael 

addition of amines to laccase-generated ortho- and para-quinones. One of the first 

accounts of such a reaction was described by Niedermeyer et al. in 2005 when fungal 

laccases were used to couple variously substituted hydroquinones with a variety of para-
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substituted anilines (Figure 45).
[198]

 The reactions proceeded in an aqueous buffer at room 

temperature to provide very good yields of mono- and diaminated para-quinones. 

 

Figure 45. Laccase-catalyzed coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with para-

aminobenzoic acid.
[198] 

 

Nuclear amination of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide or 2,5-

dihydroxybenzoic acid methyl ester with para-aminobenzoic acid catalyzed by laccases 

from Trametes villosa yielded the mono-aminated para-quinones in high yields.
[199]

 In a 

later study by the same group, amination of hydroquinones with various alkyl, alkoxy, 

and halo substituents was achieved by reaction with para-aminobenzoic acid in the 

presence of fungal laccases at room temperature in a pH 7 citrate-phosphate buffer.
[200]

 

Products were generally formed in good yield as the mono- or diaminated adducts, with 

the regioselectivity of Michael addition to the para-quinone ring dictated by the nature of 

the substituent. Furthermore, product yields achieved using laccases as the oxidant were 

greater than when sodium iodate was used as the oxidant. para-Aminobenzoic acid has 

also been used to aminate the naturally occurring catechol dihydrocaffeic acid via 

laccase-catalysis. The authors postulate that the reaction does not occur via an ortho-

quinone intermediate, rather through a radical coupling mechanism. The reaction also 

proceeds with the aliphatic amine n-hexylamine.
[201]

 Laccase-catalyzed coupling of 1,4-
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dihydroxy-2-naphthoic acid with aniline and substituted anilines via amination was 

achieved in a succinate-lactate buffer/DMF (1:1, v:v) solvent system at room 

temperature. The mono-aminated naphthoquinones were synthesized in good to excellent 

yields. The products exhibited potent cytostatic effects against a number of cancer cell 

lines, including melanoma, breast, and renal.
[202]

 

The Michael addition of amino acids with laccase-generated para-quinones has 

proved to be a valuable method for the derivatization of several amino acids, such as L-

phenylalanine and L-tryptophan (Figure 46).
[203-204]

 Hahn and colleagues compared the 

biocatalytic derivatization of amino acids using laccases with the chemical route that 

employs sodium iodate.
[205]

 In this study, both L-Phe and L-Trp were reacted with 

hydroquinone and substituted hydroquinones in the presence of laccase or sodium iodate. 

As was observed in the reactions of para-hydroquinones with para-aminobenzoic acid, 

product yields of the mono- or diaminated para-quinones were much greater when 

laccase was employed, indicating the biocatalytic route is superior in this amino acid 

derivatization protocol. In a later study by the same group, L-lysine was reacted with 

hydroquinones under laccase catalysis to yield Lys substituted para-quinones.
[206]

 

Structural characterization of the products revealed that Lys could bond to the laccase-

generated para-quinone via either the α- or ε-amino group to yield a complex mixture of 

products. The study was extended further to the reactions of a lysine-tyrosine dipeptide 

and oligopeptides with dihydroxylated aromatic compounds. The products mimic the 

naturally occurring mussel adhesive proteins, thus, this synthetic methodology is 

regarded as a means to produce functional biomaterials. In another recent study, the 

alanine-histidine dipeptide carnosine was coupled with ferulic acid via laccase catalysis 



75 

 

in an aqueous solution under mild conditions. The synthesized hydroxycinnamoyl-

peptides exhibited significantly enhanced antioxidant and antiproliferative properties 

compared to carnosine.
[207]

 

 

 

Figure 46. Laccase-catalyzed coupling of hydroquinone with L-phenylalanine.
[203] 

 

Just as amino acids have been derivatized by laccase-catalyzed couplings with 

hydroquinones and catechols, so to have various antibiotics. Mikolasch and coworkers 

successfully coupled a variety of β-lactam antibiotics, such as ampicillin, amoxicillin, 

cefadroxil, cefalexin, cefaclor, and loracarbef with derivatives of 2,5-dihydroxybenzoic 

acid and methyl substituted catechols using laccases from Trametes spec. or 

Myceliophthora thermophila in aqueous solvent at room temperature (Figure 47).
[208-210]

 

The newly synthesized antibiotics inhibited the growth of several strains of gram positive 

bacteria. A later study identified methylhydroquinone and 2,3-dimethylhydroquinone as 

laccase substrates that exhibit the greatest antibacterial activity out of thirty-eight 

screened hydroquinones and catechols.
[211]

 Thus, these two hydroquinones were then 

cross-coupled with the previously mentioned β-lactam antibiotics via laccase-catalysis. 

The derivatized β-lactam antibiotics exhibited very promising antibacterial properties. In 

another study by the same research group, N-analogous corollosporines, which are 

antimicrobial natural products found in the marine fungus Corollospora maritima, were 
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derivatized by coupling with 2,5-dihydroxybenzoic acid derivatives. As it turns out, the 

derivatized N-analogous corollosporines exhibited greater antimicrobial properties than 

did the parent corollosporines.
[212]

 Novel morpholine derivatives with biological activity 

have also been synthesized in a similar fashion.
[213]

 

 

 

Figure 47. Laccase-catalyzed coupling of methyl 2,5-dihydroxybenzoate with amoxicillin.
208

 

 

A similar synthetic protocol was used to derivatize 1-aminobenzotriazole by 

coupling it with methyl and ethyl esters of 2,5-dihydroxybenzoic acid mediated by 

laccase catalysis, albeit, in poor yields.
[214]

 Earlier, this methodology had been used for 

the synthesis of tinuvin, a UV-absorber that is a component of many polymer 

formulations, specifically by coupling 1H-benzotriazole with 3-(3-tert-butyl-4-

hydroxyphenyl) propionic acid methylester via laccase catalysis.
[215]

 

The laccase-catalyzed coupling of 2,5-dihydroxybenzoic acid and 2,5-dihydroxy-

N-(2-hydroxyethyl)benzamide with compounds containing multiple nucleophilic amine 

moieties has been studied.
[216]

 Amines such as 4-aminoimidazole-5-carboxamide and 3-

aminopyrazole-4-carboxamide first added to an olefinic carbon atom of the laccase-

generated para-quinone via the aromatic amino group, and then, following a second 

laccase-catalyzed oxidation, the aliphatic amino group added to the neighboring carbonyl 
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group, yielding the cyclized adducts. When diaminopyridines with adjacent aromatic 

amino groups were used, phenazine products were formed.  

The coupling of several primary aliphatic amines with 3-methylcatechol was 

achieved using both native and recombinant laccases. The products were formed via a 

laccase-generated ortho-quinone intermediate to which regioselective Michael addition of 

amines occurred at the C-5 position. A final oxidation resulted in the mono-aminated 

ortho-quinone products in moderate yields within 1-2 hours.
[217]

 The laccase-mediated 

coupling of catechols and hydroquinones with N,N′-dimethylethylenediamine has 

resulted in the synthesis of the heterocyclic quinoxalines in good yields (Figure 48).
[218]

 A 

phosphate buffer at pH 7 proved to be the optimal reaction medium. This is the first time 

this important class of pharmaceutical intermediates has been enzymatically synthesized 

and this study further adds to the growing list of enzyme generated heterocyclic 

compounds. 

 

Figure 48. Laccase-catalyzed coupling of catechol with N,N′-dimethylethylenediamine.
[218]

 

 

2.4.7.4 Laccase-Catalyzed C-S Bond Forming Reactions Involving Catechols and 

Hydroquinones 

Accounts of laccase-catalyzed carbon-sulfur bond forming reactions have been far 

less studied than the analogous C-C and C-N bond forming reactions, possibly due to 

theories that suggest small sulfhydryl compounds are inhibitors of laccases. Despite this 
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notion, studies entailing the successful laccase-catalyzed coupling of sulfhydryl 

compounds with hydroquinones and catechols do exist. 

The laccase-catalyzed coupling of naphthohydroquinone and 1,4-dihydroxy-2-

naphthoic acid with alkyl and aryl thiols for the synthesis of 1,4-naphthoquinone-2,3-bis-

sulfides has been achieved in an aqueous/organic solvent mixture at slightly elevated 

temperature (Figure 49). Product yields were moderate, however, but the reaction 

protocol eliminates the need for a chemical oxidant and sodium salts of alkyl thiols.
[219]

 

In a follow up study by the same group, the carboxylate moiety of 1,4-dihydroxy-2-

naphthoic acid was first reduced with borane to yield the benzylic alcohol moiety before 

reaction with alkyl and aryl thiols and laccase. In this scenario, both mono- and 

dithiolated 1,4-napthoquinones were produced, the latter being the major product. 

Formation of the dithiolated products are thought to proceed via a rare laccase-generated 

ortho-quinone methide intermediate. Furthermore, C-C dimers of the monothiolated 1,4-

napthoquinones were also identified in reasonable amounts, most likely formed via a 

radical-radical coupling mechanism.
[220]

 

 

Figure 49. Laccase-catalyzed coupling of naphthohydroquinone with 3-mercaptopropanoic acid.
[219]

 

 

The laccase-catalyzed coupling of catechols with thiols for the synthesis of 

catechol thioethers has been achieved. Abdel-Mohsen et al. reacted catechol and C-3 or 
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C-4 substituted catechols with 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 

4,5-dihydrothiazole-2-thiol in a phosphate buffer/methanol solvent system using laccases 

from Agaricus bisporus (Figure 50).
[221]

 The catechol thioethers were synthesized in up to 

96% yield, however, the addition of thiols to laccase-generated ortho-quinones was not 

regioselective in many cases, with two regioisomers forming in many reactions. 

Nonetheless, this study presents a mild, ecofriendly approach for the synthesis of an 

important class of biologically active molecules. A laccase-catalyzed domino reaction 

between catechol or 3-methylcatechol and 6-substituted 1,2,3,4-tetrahydro-4-oxo-2-

thioxo-5-pyrimidinecarbonitriles that involves sequential C-N and C-S bond formations 

has been accompished.
[222]

 The pyrimidobenzothiazole products were synthesized in 

excellent yields, but typically as regioisomeric mixtures. 

 

 

Figure 50. Laccase-catalyzed coupling of catechol with 2-mercaptobenzoxazole.
[221]

 

 

An assortment of thiolated compounds have been synthesized in the laccase-

mediated coupling of several hydroquinones with three aromatic thiols.
[223]

 Depending on 

how many substituents were present on the hydroquinone, mixtures of mono-, di-, and 

trithiolated para-quinones were afforded under environmentally benign conditions. 

Furthermore, S-S dimer products were detected in the reactions of laccases with the 

aromatic thiols, indicating that laccases are capable of performing oxidative 

dimerizations of benzenethiols. Similar results have been obtained for the dimerization of 

heterocyclic thiols using LMSABTS.
[224]
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2.4.7.5 Laccase and LMS Catalyzed Oxidation of Alcohols and C-H Bonds 

The oxidative versatility of laccases and LMS is exemplified by the abundance of 

oxidative transformations that have been documented. For example, LMSTEMPO using 

laccase from the fungus Trametes pubescens has been used to oxidize the hydroxymethyl 

group of mono- and disaccharides in a slightly acidic aqueous buffer at room temperature 

to yield the corresponding carboxylic acids in moderate yields (Figure 51).
[225]

 A follow 

up study demonstrated that the same laccases immobilized onto the surface of Eupergit 

C250L could be used in the LMSTEMPO oxidation of natural glycosides to provide 

increased conversion and in addition, the immobilized biocatalysts could be reused in up 

to ten subsequent reaction cycles without loss of activity.
[226]

 

 

 

Figure 51. LMSTEMPO oxidation of phenyl β-D-glucopyranoside.
[225]

 

 

Laccases from Trametes villosa in combination N-hydroxy mediators (HBT and 

HPI) have been successfully employed in the bioconversion of  benzylic and cyclic ethers 

into benzoate esters and lactones, respectively. Reactions proceeded via a HAT 

mechanism, and the N-hydroxy mediators proved to be superior than using LMSTEMPO in 

regards to product yields.
[227]

 The same LMS was employed for the oxidation of alkyl 

substituted amides and lactams for the synthesis of imides in reasonable yields. As in the 

case of ethers,  product formation occurs via a HAT mechanism.
[228]

 The chemoselective 

C-4 oxidation of catechins as well as regioselective oxidation of certain steroids have also 
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been achieved using LMSHBT.
[229-230]

 Additionally, LMS using laccases from Trametes 

versicolor, either free or immobilized, have been used for the oxidation of various 

polyaromatic hydrocarbons resulting in the introduction of carbonyl groups onto the 

hydrocarbon skeleton.
[231-233]

 

LMS have been used extensively for the selective, mild oxidation of benzylic 

alcohols into benzaldehydes. Potthast et al. were the first to describe such a method that 

employed LMSABTS to convert benzylic alcohols into benzaldehydes in almost 

quantitative yields (Figure 52). For this reaction protocol to work however, the benzylic 

alcohol must have atleast one free ortho position.
[140]

 These results were supported a few 

years later by the work of another gorup.
[234]

 An LMSTEMPO catalytic system has also 

been applied to the selective oxidation of benzylic and aliphatic alcohols to yield the 

corresponding aldehyde products. The product yields are much greater when benzylic 

alcohols are reacted compared to when the aliphatic alcohols are used.
[235]

 Very recently, 

this catalytic system has evolved to incorporate laccases immobilized onto magnetic 

nanoparticle supports.
[236]

 The immobilized laccases exhibited greater catalytic activity 

and greater temperature and pH stability compared to the free enzymes, and in 

combination with TEMPO, could be used to convert benzylic alcohols into the 

corresponding benzaldehydes in almost quantitative yields. Furthermore, the immobilized 

enzyme system could be reused in six subsequent cycles without much loss in activity. 

Laccases immobilized in Na-Alginate matrix have been used for the oxidation of glycerol 

to produce glyceric acid utilizing TEMPO as a mediator.
[237]
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Figure 52. LMSABTS oxidation of benzyl alcohol to benzaldehyde.
[140]

 

 

LMS have been utilized widely for the selective oxidation of aromatic methyl 

groups to yield benzaldehydes, with no further oxidation to benzoic acids. The first 

account of such a reaction protocol was described in 1995 by Potthast and coworkers, 

who used LMSABTS to convert toluene and substituted toluenes into the corresponding 

aldehydes in excellent yields under mild conditions (Figure 53).
[139]

 Since this initial 

account, similar studies have been published on the subject.
[238-239]

 Subsequent studies 

utilizing HBT or HPI as the mediator also proved to be successful in converting aromatic 

methyl groups into aldehydes, as well as allylic alcohols into the corresponding 

aldehydes.
[240]

 Very recently, novel yellow laccases have been iosolated from new strains 

of the fungi Coriolopsis floccosa, Trametes hirsuta, Daedalea flavida, and Fomes 

durissimus and used to oxidize aromatic methyl groups to aldehydes in excellent yields 

(≥ 87%) in less than two hours in the absence of a mediator.
[241-244]

 

 

Figure 53. LMSABTS oxidation of toluene to benzaldehyde.
[139]

 

 

Stereoselective C-4 hydroxylation or ergot alkaloids, a class of important 

bioactive natural compounds, has been achieved using laccases from Trametes versicolor 

(Figure 54). Modification at the C-4 position of ergot alkaloids had yet to be achieved 
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with other methods. Product formation is proposed to proceed through a laccase-

generated enimminium intermediate which is then subjected to a nucleophilic attack by 

water to yield the final product.
[245]

 

 

 

Figure 54. Laccase-mediated stereoselective C-4 hydroxylation of lysergol.
[245]

 

 

2.5 Lignin Valorization 

In the early 1900s, it was common practice to produce fuels, materials, and 

chemicals for industrial purposes from terrestrial plants and trees. However, midway 

through the century, this reliance upon biomass as a source for the production of these 

necessary commodities had shifted well in favor of petroleum resources.
[246]

 And it’s not 

hard to understand why: petroleum was cheap, abundant, and, contrary to biomass, 

inexpensively and effortlessly processed into marketable products. Therefore, it seemed 

logical, and for many companies was a sound business strategy. Fast-forward ahead to 

the 21
st
 century, petroleum supplies are dwindling, and the public is becoming 

increasingly aware of the impact fossil fuels have on contemporary society’s carbon 

footprint and the associated negative environmental consequences. Thus, for life on Earth 

as we know it to be sustainable, the paradigm needs to be shifted once again, reverting 

back to renewable, carbon-neutral biomass as the primary source for fuels, chemicals, 
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and materials. Introducing the biorefinery, the biomass analog of the long standing oil 

refinery. In an idealized model, the biorefinery will separate biomass into its basic 

chemical constituents and transform each individual component into a marketable 

product, maximizing yield and complete use of this renewable resource.
[247]

 

2.5.1 Woody Biomass 

Woody biomass consists of an intertwined matrix of three main constituents – 

cellulose, hemicellulose, and lignin (Figure 55) – and minor amounts of extractives and 

minerals. While the relative proportion of each varies from source to source, woody 

biomass generally contains 35-50% cellulose, 25-30% hemicellulose, and 15-30% 

lignin.
[247]

 The vast majority of the polysaccharides present in woody biomass are used to 

produce paper products and, more recently, enzymatically hydrolyzed and subsequently 

fermented to produce bioethanol, while a smaller portion is used for the production of 

fine chemicals.
[247]

 Utilization of lignin, on the other hand, has not been as prosperous, 

thus it is largely regarded as a waste material. 
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Figure 55. The chemical structures of cellulose, hemicellulose, and softwood lignin.
[248] 

 

 

 

2.5.2 Lignin 

Lignin is a highly irregular, amorphous polymer of oxidatively coupled 4-

hydroxyphenylpropanoid units (Figure 55) and is the second most abundant terrestrial 

biopolymer on Earth, surpassed only by cellulose. In woody biomass, lignin provides 

mechanical support, a means for water conduction throughout the tree or plant, and 

resistance to microbial degradation. The three main monolignols which comprise lignin 
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are p-coumaryl alcohol (H), coniferyl alcohol (G), and sinapyl alcohol (S), all of which 

are derived from phenylalanine (Figure 56). The type and amount of monolignol that the  

 

 

Figure 56. Structures of monolignols: p-coumaryl alcohol (H), coniferyl alcohol (G), and sinapyl 

alcohol (S).
[248]

 

 

lignin macromolecule is composed of depends on the nature of the woody biomass. In 

general, hardwoods contain primarily S and G lignin, whereas softwoods consist of 

predominantly G units with a minor fraction of H units.
[249]

 The biosynthesis of the lignin 

polymer occurs in situ via the action of oxidative enzymes, such laccases and 

peroxidases, which generate phenoxy radicals on the monolignols that are then able to 

undergo radical-radical couplings to produce C-C and C-O bond linkages. The lignin 

polymer chain thus grows by one unit at a time via radical-radical couplings in a process 

known as endwise coupling.
[249]

  There are several types of lignin structural linkages that 

are synthesized via this enzymatic radical coupling. For example the β-O-4 structural unit 

(Figure 57), which is the most prevalent structural linkage accounting for approximately 

45-50% of the linkages in softwood lignin,
[250]

 is generated via radical coupling between 

a phenoxy radical and a carbon radical at the β position. 

Production of lignin on an industrial scale has historically occurred as a by-

product of kraft pulping in the paper making process. Briefly, the kraft pulping process  
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Figure 57. The β-O-4 linkage in softwood lignin.
 

 

involves separating cellulose fibers from lignin by employing highly alkaline conditions 

that promote the selective degradation and solubilization of the lignin component of 

wood without degrading cellulose to a large extent. What results are high quality 

cellulose fibers which can then be used in the fabrication of assorted paper products, and 

a solution of dissolved lignin, known as black liquor (Figure 58). The solubilized lignin 

can be precipitated by increasing the acidity of the solution to produce solid kraft lignin 

via a process known as the LignoBoost process (Figure 59).
[251]

 In this way, lignin is 

produced on the order of 50 million tons a year, approximately only 2% of which is used 

for value-added products, such as dispersants and binders, while the remainder is burned 

as an inefficient fuel to power the pulping process.
[252-254]

 In recent decades, the increased 

demand for second generation biofuels (i.e. lignocellulosic derived ethanol) and the 

associated advent of industrial cellulosic ethanol plants has resulted in an overwhelming 

increase in lignin production as a co-product of different biomass conversion 

technologies. It has been forecasted that approximately another 60 million tons/year of 

lignin will be produced within the next decade in the US alone.
[255]

 Thus, it is imperative 

that robust methods for lignin valorization be developed for the fully integrated 

biorefinery to be implemented.
[256]
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Figure 58. Black liquor from kraft pulping process.
[248]

 

 

 

Figure 59. Precipitated kraft lignin.
[248]

 

 

2.5.3 Laccase-Assisted Functionalization of Lignin 

One strategy that has proved to be highly successful assisting in the conversion of 

lignin into marketable products is enzymatic modification.
[257-258]

 Using enzymes to 

modify the structure of lignin provides environmental and economic advantages over 

chemical or thermal processes, such as mild reaction conditions, the use of renewable and 

inexpensive biocatalysts, and reduction in the use of toxic chemicals. In essence, it is a 

completely biotechnological approach. Laccases have received much use in the field of 

lignocellulosic fiber modification to create paper products with increased strength, 

hydrophobicity, and antimicrobial properties.
[259]

 Regarding the use of laccases to modify 
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lignin to create value-added materials and chemicals, much success has been achieved in 

the generation of resin free particle boards, such as medium-density fiberboard, and wood 

composites that have comparable strength and mechanical properties to those containing 

artificial resins.
[260]

 This is particularly important given the growing concerns and 

knowledge on the negative health and environmental impacts of formaldehyde emissions 

from typical phenol-formaldehyde resins currently used as binders in particle boards.
[261]

 

The binding phenomenon observed upon laccase treatment is due to laccase-generated 

phenoxy radicals on the lignin component of the fiber surface, which are capable of 

undergoing radical-radical coupling reactions with one another that lead to an increase in 

bonding among fibers.
[262-263]

 Thus, this method of lignin modification mimics the very 

process that occurs in nature. 

Following similar principles, novel lignin copolymers can be synthesized utilizing 

laccases to graft molecules onto the surface of lignin, via either a radical-radical coupling 

mechanism or a nucleophilic addition via a quinone methide intermediate (Figure 60). In 

this way, novel lignin-derived biomaterials possessing biodegradable properties can be 

crafted. In the past, Milstein and coworkers were able to demonstrate the 

copolymerization of kraft lignin and organosolv lignin with low molecular weight 

compounds, such as vanillic acid, 4,4ʹ-methylenediphenyl diisocyanate, and acrylamide, 
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Figure 60. Laccase-catalyzed grafting reactions: a) Radical-radical coupling mechanism; b) 

Nucleophilic addition mechanism.
[248] 

 

in the presence of a fungal laccase.
[264]

 It has also been previously established that a 

fungal laccase is able to graft water soluble phenols, such as guaiacol sulfonate and 4-

hydroxyphenylacetic acid, onto the surface of kraft lignin, increasing the water solubility 

of the lignin macromolecule.
[265]

 

2.5.3.1 Formulation of Novel Lignin-Based Biomaterials 

As mentioned previously, much research has been dedicated to the formulation of 

lignin based resins so as to reduce or eliminate the use of formaldehyde based resins. 

Ibrahim et al. have demonstrated the use of a fungal laccase to graft polyethylenimine 

(PEI), chitosan, and soy protein onto hardwood kraft lignin.
[266]

 The adhesive properties 

of the formulations were tested via tensile strength measurements using a loading 

machine. It was discovered that the formulation prepared by laccase treated lignin, 

followed by NaBH4 reduction and mixed with soy protein yielded an adhesive with 

greater than 50% of the strength of commercial polyurethane adhesive and good water 

resistance properties. Furthermore, the incorporation of lignin renders the adhesive with 
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antimicrobial properties. The authors concluded that the created adhesives may find 

suitable use in the binding of paper and cardboard boxes. In another study, it was 

established that lignin may serve as a viable base material to replace synthetic latex in the 

formulation of an adhesive used for wool floor coverings. Aracri and coworkers used a 

fungal laccase to copolymerize a variety of technical lignins with gallic acid, tannic acid, 

and dopamine in an attempt to increase reactive quinonoid moieties on the surface of 

lignin that are capable of undergoing nucleophilic addition by amino groups present in 

wool to form covalent linkages between lignin and wool.
[267]

 Based on loop withdrawal 

force measurements, the lignin based adhesives exhibited good flexibility and 

comparable strength performance to that of the synthetic latex adhesives. 

 Over the years, the research group of Mai has investigated the chemo-enzymatic 

grafting of acrylic compounds onto the surface of lignin. Incorporating a lignin backbone 

into synthetic acrylic polymers, such as polyacrylamide and polyacrylic acid, has proved 

to be a successful approach in creating novel engineering plastics, thickeners, fillers, and 

adsorbents with biodegradable properties. Initial studies demonstrated that a fungal 

laccase in combination with an organic peroxide, such as dioxane peroxide, were able to 

successfully copolymerize acrylamide with softwood organosolv lignin.
[268-269]

 Additional 

studies showed that a variety of technical lignosulfonates could be copolymerized with 

acrylamide and acrylic acid in the presence of laccase and t-butylhydroperoxide, and that 

this system was more effective in promoting copolymerization than a Fenton-like system 

consisting of ferrous ion and t-butylhydroperoxide.
[270]

 A follow up exploration into the 

mechanism of the grafting and copolymerization reactions revealed the roles of laccase 

and organic peroxides. It was proposed that laccase initially oxidizes lignin to generate 
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phenoxy radicals, which then go on to oxidize peroxides to produce peroxy radicals that 

are capable of initiating a homopolymerization of acrylic monomers. The living 

polymerization of acrylic monomers is eventually quenched by radical-radical coupling 

reactions between the living ends of the homopolymers and lignin radicals (Figure 

61).
[271] 

 

Figure 61. Reaction mechanism for the laccase-initiated copolymerization of lignin with acrylamide 

(adapted from Mai et al. 1999).
[248, 269]

 

 

Extensive research has been conducted over the past two decades on the laccase-

catalyzed synthesis of conducting polyaniline and its applications.
[272-273]

 Very recently, 

Zhang and coworkers synthesized a polyaniline-lignosulfonate complex via laccase 

catalysis.
[274]

 The lignosulfonate acted as a template for the synthesis of linear 

polyaniline. The conductive complex was able to be successfully immobilized onto the 

surface of cotton and therefore, may find potential use as a textile in electronic devices. 

Also in a recent report, the laccase-catalyzed grafting of hydrophilic compounds, such as 

glucosamine and the tripeptide glycil-tyrosyl-glycine, to hardwood organosolv lignin and 

alkali pretreated wheat straw lignin was achieved.
[275]

 The synthesized lignin-
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carbohydrate and lignin-peptide conjugates provide a framework for further 

functionalization and formulation of materials with distinct properties. 

2.5.3.2 Mechanistic Insights into Laccase-Induced Lignin Functionalization 

Equally as important as the applications of lignin-based copolymers are the 

molecular mechanisms by which they are synthesized. Kudanga et al. have studied the 

mechanisms of lignin functionalization by using laccases to couple small phenolic 

molecules to lignin model compounds. Using a bacterial laccase, the researchers were 

able to successfully couple the phenolic compound tyramine to the lignin model 

syringylglycerol β-guaiacylether.
[276]

 Subsequent studies with another common structural 

unit found in lignin, dibenzodioxocin, demonstrated that a variety of phenolic compounds 

could be coupled to this lignin model using laccases.
[277-278]

 Based on the structures of the 

reaction products from the coupling reactions, it can be inferred that phenolic compounds 

form covalent linkages with lignin model compounds via radical-radical coupling 

reactions (Figure 62). In the case of syringylglycerol β-guaiacylether, a model of S type 

lignin, coupling occurs via a phenoxy radical to form a C-O bond, whereas for 

dibenzodioxocin, a model for G type lignin, coupling occurs exclusively at the vacant 

position 5 of the aromatic ring to yield a C-C adduct. These results provide great 

mechanistic insight into laccase-mediated couplings of phenolic compounds onto the 

surface of lignin and guidance for future functionalization strategies. 
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Figure 62. Reaction mechanism for the laccase-catalyzed coupling of tyramine with a) 

syringylglycerol β-guaiacylether (adapted from Kudanga et al. 2009a),
[276]

 and b) dibenzodioxocin.
[248]
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CHAPTER 3. EXPERIMENTAL 

3.1 Materials 

3.1.1 Chemicals, Solvents and Materials 

All reagents and solvents were purchased from either Sigma-Aldrich or VWR and 

were used as received, except for tert-butylhydroquinone, which was a product of Acros 

Organics, and endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND), which was 

purchased from Alfa Aesar. Chloroform and dioxane were distilled just prior to use. 

Aluminum sheets pre-coated with silica gel 60 (EMD Chemicals) were used for thin-

layer chromatography (TLC) experiments. Silica gel 60 (EM Separations Technology) 

was used as the stationary phase for column chromatography. Glass plates coated with 

silica gel (20 x 20 cm, 2000 μm) were used for preparative layer chromatography. 

Nitrogen and helium gas were purchased from Airgas. Nitrogen gas was dried using a 

Drierite™ gas-drying unit (Sigma-Aldrich). 

3.1.2 Enzyme 

Laccases from the white-rot fungus Trametes villosa expressed in an Aspergillus 

host (NOVO NS51002) were appreciatively donated by Novo Nordisk Biochem (now 

Novozymes), Franklinton, North Carolina, USA, and used as received. This fungal 

laccase is of high E° (~0.79 V vs NHE),
[118]

 and according to the manufacturer, possesses 

a pH optimum of 4.5 and an optimum temperature of 45°C,
[279]

 making it highly suitable 

for industrial biotechnology applications. The enzyme solution is kept frozen at -20°C in 

small vials until it is required in an effort to preserve enzyme activity. 
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3.1.3 Lignin 

Southern pine softwood kraft lignin, isolated via the LignoBoost process, was 

donated by Domtar, Plymouth, USA, and was purified following standard methods prior 

to use. 

3.2 Experimental Procedures 

3.2.1 Enzyme Assay 

Laccase activity was determined according to standard literature procedures 

which involve the oxidation of ABTS dianion to ABTS radical anion (Figure 63).
[280]

 The 

oxidation of 3.50 mL of solution consisting of 50 μM ABTS in 0.10 M sodium acetate 

buffer (pH 5.0) by 8.0 x 10
-5

 mL laccase solution was observed spectrophotometrically at 

room temperature (22°C)  via a UV-vis spectrophotometer by following the absorbance 

increase at 420 nm (ε420 = 3.6 x 10
4
 M

-1
 cm

-1
). Volumetric laccase activity is expressed in 

units (U) per mL where U = μmol ABTS oxidized per minute. The assay was run in 

triplicate and the enzyme activity used in subsequent experiments is the average of the 

three experiments. Images of the reaction solution before the addition of laccase and 10 

minutes after the addition of laccase are presented in Figure 63. 

Based on the data obtained from the enzyme assay experiment, an absorbance vs 

time curve can be constructed. Figure 64 displays the absorbance vs time curve for one of 

the experiments. From the data, it is possible to calculate the activity of the enzyme. An 

example calculation from experiments one is detailed below. 
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Figure 63. Laccase-catalyzed oxidation of ABTS dianion to ABTS radical anion with accompanying 

images of enzyme assay solution before the addition of laccase (left vial) and 10 minutes after the 

addition of laccase (right vial).  

 

 

Figure 64. Absorbance vs time curve for the laccase-catalyzed oxidation of ABTS dianion to ABTS 

radical anion. 

  

In 3.5 mL of reaction solution, there is: 

3.5 × 10−3𝐿 (
50 𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆

𝐿
) = 0.175 𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆 

Assuming that maximum absorbance indicates ABTS dianion has been completely 

oxidized to ABTS radical anion, then an absorbance of 0.5256 indicates that 0.175 μmol 

ABTS has been oxidized. Given that the greatest rate of change in absorbance occurs 
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between 0-10 s (0-0.166 min), which corresponds to an absorbance change of 0.0638, 

then: 

0.0638

0.5256
 × 100% = 12.14% 𝐴𝐵𝑇𝑆 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 × 0.175 𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆

=  0.0212 𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑  

The volumetric activity can then be calculated: 

𝑈

𝑚𝐿
=  

𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑

min× 𝑚𝐿 𝑒𝑛𝑧𝑦𝑚𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=  

0.0212 𝜇𝑚𝑜𝑙 𝐴𝐵𝑇𝑆 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑

0.166 min× (8.0×10−5 𝑚𝐿)
= 1596 

𝑈

𝑚𝐿
  

Experiment 1: 1596 U/mL 

Experiment 2: 1452 U/mL 

Experiment 3: 1482 U/mL 

Average enzyme activity = 1510 U/mL 

Standard deviation = 62 U/mL 

3.2.2 General Procedure for the Laccase-Catalyzed Synthesis of Benzylic Nitriles 

Benzoylacetonitrile (1 mmol) was added to a 250 mL round bottom flask 

equipped with a stir bar followed by 30 mL of 0.1 M sodium phosphate buffer (pH 7.0) 

and the solution was stirred vigorously and heated to 60°C in an oil bath. Once the solid 

had dissolved (~1 h) the substituted hydroquinone (0.25 mmol) was introduced, followed 

by the desired amount of laccase stock solution. The reaction mixture was stirred in the 

presence of air at 60°C for 24 h. The reaction progress was monitored by TLC using 

silica gel coated on aluminum sheets as the stationary phase, 10% MeOH in DCM (v:v) 

as the mobile phase, and iodine vapor as the staining agent. In each reaction, all the 

starting hydroquinone had been consumed after the 24 h period, as judged by TLC and 

GC-MS data. After this time, the reaction mixture was allowed to cool to room 
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temperature and then filtered via gravity filtration to capture any solids, if present. The 

solids were left to dry in a fume hood overnight. The liquid fraction was acidified to pH 

3.5 with conc. H2SO4, extracted with EtOAc (3 x 30 mL), dried over MgSO4, and the 

solvent removed via rotary evaporation. The crude solid and extract portions were 

combined and purified via column chromatography using silica gel as the stationary 

phase and 10% MeOH in DCM (v:v) as the mobile phase to obtain the desired products. 

The products were characterized by HRMS, 
1
H NMR, 

13
C NMR, 

1
H-

13
C HMBC NMR, 

and FTIR methods. 

3.2.3 General Procedure for the Laccase-Catalyzed Synthesis of 2,3-Ethylenedithio-

1,4-quinones 

The hydroquinone (0.50 mmol) was added to a 50 mL round bottom flask 

equipped with a stir bar followed by 15 mL of solvent and the mixture was stirred. Once 

the solid had dissolved, 1,2-ethanedithiol (2.50 mmol) was introduced, followed by 50 U 

of laccase. The reaction mixture was stirred at room temperature (22°C) for 16 h whilst 

O2 was bubbled through. The reaction progress was monitored by TLC using silica gel 

coated on aluminum sheets as the stationary phase, 1:1 EtOAc/hexane (v:v) mixture as 

the mobile phase, and iodine vapor as the staining agent. Once the reaction was complete, 

the reaction mixture was extracted with EtOAc (3 x 20 mL), dried over MgSO4, and the 

solvent removed via rotary evaporation. The crude extract was purified via column 

chromatography using silica gel as the stationary phase and 1:1 EtOAc/hexane (v:v) 

mixture as the mobile phase to obtain the desired products. The products were 

characterized by HRMS, 
1
H NMR, 

13
C NMR, and FTIR. 
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3.2.4 General Procedure for the Laccase-Catalyzed Synthesis of Phenothiazones and 

Related Structures 

The synthetic procedures for the laccase-catalyzed synthesis of phenothiazones 

and related compounds differ depending on the starting reagents, and multiple synthetic 

routes were experimented with. Chapter 6.2.3 provides detailed experimental procedures 

for the synthesis of each individual compound. 

3.2.5 Lignin Purification 

The lignin purification procedure followed standard methods developed 

previously with some slight modifications.
[281-282]

 Firstly, treatment of lignin with EDTA-

2Na
+
 was performed to remove trace metals. This process involved suspending 5.0180 g 

of lignin in 95 mL of deionized water in a 250 mL beaker and stirring vigorously. To this, 

0.4996 g of EDTA-2Na
+
 was added and the mixture was allowed to stir at room 

temperature for 1.5 h, at which time the pH of the mixture was adjusted to 3.0 with 2 M 

H2SO4. The mixture was then frozen overnight (15 h), thawed at room temperature, and 

then vacuum filtered through a sintered glass funnel. The solid was collected and re-

suspended in cold deionized water and stirred vigorously for 20 mins in an ice bath at 

0°C and then vacuum filtered through a sintered glass funnel. This final step was repeated 

two more times and then the solid was dried in a vacuum oven at 45°C overnight (19 h). 

Mass of lignin recovered: 4.7463 g (94.6% recovery). 

 The next step involved Soxhlet extraction of lignin to remove any remaining 

extractives. 4.7463 g of lignin was placed in a cellulose thimble and then Soxhlet 
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extracted with 100 mL of toluene for 6.5 h. The lignin was then allowed to dry in a fume 

hood overnight. Mass of lignin recovered: 4.4131 g (93% recovery). 

 The final step involved a dioxane/water extraction to separate the lignin from 

residual carbohydrates. Approximately 1 g of lignin was added to a 25 mL vial and 

dissolved in 10 mL distilled dioxane : deionized water solution (9:1, v:v) and stirred for 

20 h. After this time, the mixture was centrifuged, the supernatant collected, and the 

solvent removed via rotary evaporation. The remaining solid was then dissolved in 10 mL 

distilled dioxane : deionized water solution again and allowed to stir for 70 h, after which 

the mixture was centrifuged, the supernatant collected, and the solvent removed via 

rotary evaporation. Approximately 4 mL of deionized water was added to the remaining 

lignin, the mixture frozen, and then freeze-dried for 48 h. The pure kraft lignin was stored 

in a refrigerator until further use. The purified kraft lignin was analyzed via GPC, 
1
H 

NMR, 
13

C NMR, 
31

P NMR, FTIR, TGA, DSC, and SEM. 

3.2.6 Synthesis of Tris(2-mercaptoethyl)amine 

The synthesis of tris(2-mercaptoethyl)amine was based on a combination of two 

previously published syntheses.
[283-284]

 6.637 mL (7.46 g, 50 mmol) of triethanolamine 

was dissolved in 12.5 mL distilled chloroform and added dropwise, over the course of an 

hour, into a solution of thionyl chloride (12.765 mL, 20.82 g, 175 mmol) in 20 mL 

distilled chloroform, which was stirring in a 100 mL round bottom flask. The reaction 

was carried out at ambient temperature while stirring until gas evolution stopped, then, 

the reaction mixture was refluxed at 60-65°C for 4 h. The mixture was then allowed to 

cool to room temperature and then the white precipitate was vacuum filtered and washed 
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with 3 x 30 mL distilled chloroform and dried under vacuum at room temperature 

overnight (15 h). Yield of tris(2-chloroethyl)amine hydrochloride: 10.4000 g (86.3%). 

 In the next step, 10.4000 g of tris(2-chloroethyl)amine hydrochloride and 9.8551 

g (0.13 mol) of thiourea were added to a 250 mL round bottom flask equipped with a stir 

bar. 50 mL of 200 proof ethanol was added to dissolve the solids and the mixture was 

gently stirred and refluxed at 80°C for 5 h. After this time, the mixture was allowed to 

cool to room temperature and the white solid was vacuum filtered (low pressure), washed 

with 50 mL ethanol, and dried under vacuum at room temperature overnight (15 h). Yield 

of tris(ethylisothiouronium)amine chloride: 17.5750 g (86.8%). 

 In the final step, 9.3917 g of tris(ethylisothiouronium)amine chloride was added 

to 13 mL of deionized water that had been purging with nitrogen in a three-necked round 

bottom flask equipped with a stir bar. The mixture was vigorously stirred under nitrogen 

atmosphere. Once the solid had dissolved, 17 mL of 4.7 M NaOH was added and the 

solution was heated and stirred at 80°C for 15 mins under nitrogen atmosphere. The 

mixture was then cooled rapidly in an ice bath under nitrogen atmosphere and then 

extracted with 3 x 20 mL distilled chloroform, the organic phases combined, dried over 

MgSO4, and solvent removed via rotary evaporation. The final product was purified via 

micro distillation. Yield of tris(2-mercaptoethyl)amine: 5.8925 g (79.8%). The product 

was characterized by GC-MS, 
1
H NMR, and 

13
C NMR. 

3.2.7 Laccase-Mediated Synthesis of Lignin-Core Hyperbranched Copolymers 

(LCHCs) 

Approximately 100 mg of purified kraft lignin was added to a 50 mL round bottom 

flask equipped with a stir bar. 2 mL of dioxane was then added, followed by 8 mL of 0.1 
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M sodium phosphate buffer pH 8.0 and the mixture was stirred and heated to 50°C for 

approximately 10 mins to dissolve the lignin. Then, 496.56 mg (4.0 mmol) of 

methylhydroquinone was added to the mixture followed by 333 μL (394.77 mg, 2.0 

mmol) of tris(2-mercaptoethyl)amine. Finally, 200 U of laccase was added and the 

reaction mixture was allowed to stir for 20 h at 50°C. After this time, the mixture was 

allowed to cool to room temperature, centrifuged, the supernatant decanted, and the 

remaining brown sludge washed with 3 x 15 mL deionized water followed by 3 x 15 mL 

dioxane. The brown paste was then dried in a vacuum oven at 30°C for 24 h. Yield: 524 

mg. The final material was analyzed via elemental analysis, 
1
H NMR, 

13
C NMR, 

1
H-

13
C 

HMBC NMR, 
13

C DEPT-135 NMR, FTIR, TGA, DSC, and SEM. 

3.3 Analytical Procedures 

3.3.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 

All NMR experiments were conducted on a Bruker Avance DRX 400 MHz 

spectrometer using a 5 mm PABBO BB-1H/D Z-Grad probe at room temperature unless 

stated otherwise. All chemical shifts are given in ppm relative to TMS and multiplicities 

are designated as s (singlet), d (doublet), t (triplet), and m (multiplet). Data analysis was 

performed using MestReNova software. 

3.3.1.1 1
H NMR Experiments 

Quantitative 
1
H NMR experiments were conducted at a spectrometer frequency of 

400 MHz with a 90° pulse width, a 15 s relaxation delay, with 16 scans. 

3.3.1.2 13
C NMR Experiments 
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13
C NMR experiments are proton decoupled and were conducted at a 

spectrometer frequency of 100 MHz with a 90° pulse width, a 1 s relaxation delay, with 

8192 scans. 

3.3.1.3 13
C DEPT-135 NMR Experiments 

13
C DEPT-135 NMR experiments were conducted at a spectrometer frequency of 

100 MHz with a 135° pulse width, a 3 s relaxation delay, with 4096 scans. 

3.3.1.4 1
H-

13
C HMBC NMR Experiments 

1
H-

13
C HMBC NMR experiments were conducted at a spectrometer frequency of 

400 MHz in regards to the 
1
H nucleus and 100 MHz in regards to the 

13
C nucleus with a 

90° pulse width, a 1.5 s relaxation delay, with 32 scans. 

3.3.1.5 31
P NMR Experiments 

The method and solvent preparation are based on experiments developed by 

Granata and Argyropoulos (1995),
[285]

 and Zawadzki and Ragauskas (2001).
[286]

 In brief, 

15 mL of anhydrous pyridine was mixed with 10 mL of CDCl3, followed by the addition 

of 25 mg of chromium (III) acetylacetonate (relax reagent) and 100 mg of the internal 

standard NHND. 20 mg of purified kraft lignin was then dissolved in 0.5 mL of the above 

solution, followed by the addition of 70 μL of the lignin phosphitylation reagent 2-chloro-

4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) just prior to NMR analysis. 

Quantitative 
31

P NMR experiments were conducted at a spectrometer frequency of 162 

MHz with a 90° pulse width, a 25 s relaxation delay, with 64 scans. 
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3.3.2 Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR analyses were carried out on a PerkinElmer Spectrum 100 spectrometer 

using the attenuated total reflectance (ATR) method. 128 scans were used for all 

analyses. Data was gathered using Spectrum 10 software and analyzed using Microsoft 

Excel. 

3.3.3 Ultraviolet-Visual (UV-Vis) Spectroscopy 

UV-Vis spectroscopy was used for the enzyme assay experiments. Analyses were 

performed on a PerkinElmer LAMBDA 35 UV-Vis spectrophotometer. Absorption 

wavelength was fixed at 420 nm and absorbance data points were collected every 2 s. 

Data was gathered with UV WinLab software and analyzed using Microsoft Excel. 

3.3.4 Gas Chromatography – Mass Spectrometry (GC-MS) 

GC–MS experiments were run using an Agilent Technologies 7890A GC system 

equipped with a HP-5MS column coupled with a 5975C inert MSD with triple-axis 

detector. Samples were completely dissolved in an appropriate solvent to give a final 

concentration of 1 mg/mL. The sample was injected into the column via the automatic 

liquid sampler (ALS) accessory with an injection volume of 1 μL. Helium was used as 

the carrier gas at a flow pressure of 10 psi. Initial oven temperature was 50°C for all 

experiments, while the final oven temperature and the rate at which the oven temperature 

was increased varied depending on the analysis. Data was collected and analyzed using 

Agilent ChemStation software installed with an NIST library. 

3.3.5 Mass Spectrometry (MS) 
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High-resolution mass spectrometry (HRMS) analyses were performed by the 

Georgia Institute of Technology Bioanalytical Mass Spectrometry Facility on a 

Micromass AutoSpec M spectrometer using the electron ionization method. Molecular 

weight data are accurate to within 5 ppm. 

3.3.6 Gel Permeation Chromatography (GPC) 

A Polymer Standards Service (PSS) SECurity 1200 system equipped with Agilent 

Technologies high-performance liquid chromatography (HPLC) parts, such as UV (270 

nm) and refractive index (RI) detectors, was used for molecular weight distribution 

analysis of purified kraft lignin. The sample was dissolved in THF that had been 

degassed and then filtered through a polytetrafluoroethylene (PTFE) membrane (pore size 

of 0.45 μm) to yield a final sample concentration of 1 mg/mL. Degassed and ultrafiltered 

THF was used as the mobile phase and a Waters Styragel
®
 HR 2 column was used as the 

stationary phase. The sample was injected into the column via the ALS accessory with an 

injection volume of 30 μL. The experiment was run at 30°C at a pump flow rate of 1 

mL/min. Data was calibrated against a polystyrene standard calibration curve, and 

collected and analyzed with PSS WinGPC Unity software. 

3.3.7 Melting Point Determination 

A Barnstead International Mel-Temp
®
 apparatus was used to determine melting 

temperature ranges for all synthesized products. Approximately 3 mg of compound was 

loaded into a glass capillary tube which was then placed into the melting point 

temperature apparatus equipped with a thermometer. The temperature was ramped from 
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room temperature at a rate of approximately 5°C per minute until the compound had 

completely melted. 

3.3.8 Elemental Analysis 

Elemental analysis experiments were conducted by Atlantic Microlab, Inc., 

Norcross, USA. All values were determined via combustion and are reported as percent 

weight. 

3.3.9 Thermogravimetric Analysis (TGA) 

TGA analyses were conducted on purified kraft lignin and LCHCs using a 

PerkinElmer Pyris 1 thermogravimetric analyzer. Approximately 15 mg of sample was 

loaded into the sample holder and the experiments were conducted under nitrogen (flow 

rate of 50 mL/min) with the following temperature profile: heat from 50°C to 600°C at a 

rate of 20°C/min, and holding at 600°C for 5 mins. One data point was collected per 

second. Data was recorded as mass %. Data was exported and analyzed using Microsoft 

Excel. 

3.3.10 Differential Scanning Calorimetry (DSC) 

DSC analyses were conducted on purified kraft lignin and LCHCs using a TA 

Instruments Q200 differential scanning calorimeter. Approximately 5 mg of sample was 

placed in the sample pan and the experiments were conducted under nitrogen (flow rate 

of 50 mL/min) with the following temperature profile: hold at 0°C for 5 mins, heat from 

0°C to 160°C at 20°C/min, hold at 160°C for 5 mins, cool to 0°C at a rate of 20°C/min, 

hold at 0°C for 5 mins, heat from 0°C to 160°C at 20°C/min, hold at 160°C for 5 mins, 
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cool to 25°C at a rate of 20°C/min. Data was collected during the second heating cycle. 

Heat flow was reported in mW. Data was exported and analyzed using Microsoft Excel. 

3.3.11 Scanning Electron Microscopy (SEM) 

Surface morphology of pure kraft lignin and LCHCs was analyzed on a Zeiss 

LEO 1530 Gemini field emission scanning electron microscope. The samples were 

sputter coated with gold prior to analysis to provide a thin conducting layer on the sample 

surface. 
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CHAPTER 4. LACCASE-CATALYZED ΑLPHA-ARYLATION 

OF BENZOYLACETONITRILE WITH SUBSTITUTED 

HYDROQUINONES
II
 

4.1 Introduction 

The formation of benzylic nitriles via α-arylation of the corresponding primary or 

secondary nitrile is a key C-C bond forming reaction in organic synthesis. Compounds 

possessing a benzylic nitrile functionality are of importance to the pharmaceutical 

industry as this structural moiety is present in biologically active compounds such as 

anastrozole (estrogen-dependent breast cancer), verapamil and gallopamil 

(antiarrhythmic), cilomilast (anti-inflammatory), levocabastine (allergic conjunctivitis), 

piritramide (postoperative pain), and diphenoxylate (diarrhea).
[287]

 Not only are benzylic 

nitriles present in the final active pharmaceutical ingredient, but they are also important 

synthetic intermediates for many other bioactive compounds,
[288-292]

 for example, in the 

preparation of Ibuprofen,
[293]

 as well as compounds exhibiting antimicrobial and 

antifungal properties.
[294]

 Their versatility as synthetic intermediates in organic synthesis 

is exemplified by the wide array of structural classes that can be formed upon their 

transformation, including pyridines, carboxylic acids, primary amines, bicyclic amidines,  

aldehydes, esters, β-lactams, and lactones.
[295-297] 

Several strategies exist for the synthesis of benzylic nitriles. One of the earliest 

methods involves nucleophilic aromatic substitution of aryl halides and heteroaryl halides 

                                                 
II
 This manuscript, titled “Laccase-catalyzed α-arylation of benzoylacetonitrile with substituted 

hydroquinones,” was published in Chemical Engineering Research and Design (2015, 97, 128-134). The 

other author is Arthur J. Ragauskas, who is affiliated with Georgia Institute of Technology. The manuscript 

was reproduced with permission from Elsevier; the copyright license agreement is provided in Appendix B. 
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with nitrile carbanions.
[298-303]

 The nucleophilic substitution approach has also been 

applied to the displacement of benzylic halides via the use of a cyanide nucleophile.
[304]

 

There are numerous accounts involving transition metal catalysis (predominantly 

utilizing palladium complexes) to perform cross-coupling reactions of various primary 

and secondary nitriles with substituted aryl halides.
[295, 305-316]

 The limitations to these 

methods are that they can only be applied to benzylic or aryl halides and the reactions 

must be performed in an organic solvent at high temperatures in the presence of a 

transition metal catalyst or strong base, which, for the latter, eliminates the possibility of 

carrying out the α-arylation reaction in the presence of base sensitive functional groups 

on the aromatic ring (e.g. hydroxy group). Approaches aimed at performing α-arylation 

reactions in the absence of halogen substituents on the aromatic ring have been 

developed, such as direct aryne insertion into α-cyanocarbonyl compounds via a benzyne 

intermediate,
[317]

 a Friedel-Crafts type reaction,
[318]

 and photochemical methods.
[319-320]

 

However, all these methods, with the exception of a solvent-free method recently 

developed by Yoshida et al.,
[319]

 require the reaction to be carried out in an organic 

solvent. Thus, employing laccases to catalyze such a transformation under 

environmentally benign conditions is of great appeal. 

At the time this study was undertaken, the vast majority of synthetic reactions 

catalyzed by laccases involved radical-coupling reactions of phenolic monomers and 

cross-coupling reactions of substituted catechols and hydroquinones with nitrogen based 

nucleophiles via in situ generated ortho- and para-quinones. Recently however, the 

cross-coupling approach has expanded to include carbon derived nucleophiles, and this 

has proved to be a useful tool in forming C-C bonds, which was reviewed in depth in 
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Chapter 2.4.7.2. Much of the laccase-catalyzed C-C bond forming reactions focused on 

combining catechols and hydroquinones with 1,3-dicarbonyl compounds in a laccase-

catalyzed domino reaction, which exploits the acidic methylene protons of 1,3-

dicarbonyls.
[181, 183]

 To the best of our knowledge, there are no accounts on the use of 

methylene groups substituted with a nitrile used in laccase-catalyzed cross-coupling 

reactions with substituted catechols or hydroquinones. Herein, the green synthesis of 

benzylic nitriles via the laccase-catalyzed cross-coupling reaction of benzoylacetonitrile 

(1) with substituted hydroquinones (2) is disclosed. 

4.2 Experimental 

4.2.1 Materials 

All compounds were purchased from Sigma-Aldrich except tert-

butylhydroquinone, which was a product of Acros Organics. Laccases from the white-rot 

fungus Trametes villosa expressed in an Aspergillus host (NOVO NS51002) were 

appreciatively donated by Novo Nordisk Biochem (now Novozymes), Franklinton, North 

Carolina, USA. All compounds, solvents, and enzyme were used as received without 

further purification. Aluminum sheets pre-coated with silica gel 60 (EMD Chemicals) 

were used for thin-layer chromatography (TLC) experiments. Silica gel 60 (EM 

Separations Technology) was used as the stationary phase for column chromatography. 

4.2.2 Enzyme Assay 

Full experimental procedures regarding laccase activity measurements are 

detailed in Chapter 3.2.1. 
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4.2.3 General Procedure for the Laccase-Catalyzed Reaction of Benzoylacetonitrile 

with Substituted Hydroquinones 

Full experimental procedures regarding the laccase-catalyzed synthesis of 

benzylic nitriles are provided in Chapter 3.2.2. 

4.2.4 Product Characterization Data 

Compounds 6a, 6d, 6h, 7d, and 8g are new compounds; NMR and MS spectra of 

these compounds are given in Appendix A. All NMR experiments were conducted using 

DMSO-d6 as the solvent.  

2-(2′,5'-Dihydroxy-4'-methoxyphenyl)-3-oxo-3-phenylpropanenitrile (6a)  

Yield: 37%; dark-brown solid; mp: 106-111°C; IR: ṽ 3289, 2228, 1624, 1473, 1354, 

1315, 1189, 1115, 1020, 902, 815, 750, 699 cm
-1

; 
1
H NMR: δ 3.72 (s, 3H, OCH3), 5.74 

(s, 1H, CH), 6.12 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H), 7.54 (m, 5H, Ar-H), 8.44 (s, 1H, Ar-

OH), 8.51 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 55.0, 56.5, 92.5, 96.6, 105.0, 118.6, 126.9, 

128.5, 130.4, 141.4, 143.4, 166.9, 188.2 ppm; HRMS (ESI): C16H13NO4 calculated 

283.0845, found 283.0843. 

 

2-(2',5'-Dihydroxyphenyl)-3-oxo-3-phenylpropanenitrile (6b) 

Yield: 24%; dark-yellow solid; mp: 95–100°C; IR: ṽ 3302, 2220, 1637, 1594, 1459, 

1201, 1167, 998, 915, 807, 750, 700, 667 cm
-1

; 
1
H NMR: δ 6.05 (s, 1H, CH), 6.37 (d, 

3
J = 

8.6 Hz, 1H, Ar-H), 7.09 (d, 
3
J = 8.6 Hz, 1H, Ar-H), 7.55 (m, 5H, Ar-H), 8.54 (s, 1H, Ar-

OH), 8.95 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 92.7, 104.6, 108.4, 110.0, 126.9, 128.5, 
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130.5, 141.4, 142.3, 153.8, 167.5, 188.7 ppm; HRMS (ESI): C15H11NO3 calculated 

253.0739, found 253.0732. 

 

2-(2',5'-Dihydroxy-4'-methylphenyl)-3-oxo-3-phenylpropanenitrile (6d) and 2-(2',5'-

Dihydroxy-3'-methylphenyl)-3-oxo-3-phenylpropanenitrile (7d) 

Yield: 26%; yellow/orange solid; mp: 95-100°C; IR: ṽ 3289, 2237, 1646, 1626, 1472, 

1167, 972, 907, 802, 754, 698 cm
-1

; 6d: 
1
H NMR: δ 2.25 (s, 3H, CH3), 5.88 (s, 1H, CH), 

6.22 (s, 1H, Ar-H), 6.24 (s, 1H, Ar-H), 7.53 (m, 5H, Ar-H), 8.51 (s, 1H, Ar-OH), 8.81 (s, 

1H, Ar-OH) ppm; 
13

C NMR: δ 14.7, 93.1, 102.3, 110.0, 119.6, 126.6, 126.9, 128.4, 

130.4, 141.4, 153.7, 167.3, 188.8 ppm; 7d: 
1
H NMR: δ 2.08 (s, 3H, CH3), 5.87 (s, 1H, 

CH), 6.23 (s, 1H, Ar-H), 7.02 (s, 1H, Ar-H), 7.56 (m, 5H, Ar-H), 8.45 (s, 1H, Ar-OH), 

8.80 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 16.2, 92.7, 104.3, 111.1, 117.6, 124.4, 127.1, 

128.4, 130.5, 142.2, 151.7, 167.2, 188.3 ppm; HRMS (ESI): C16H13NO3 calculated 

267.0895, found 267.0892. 

 Note: NMR data for compounds 6d and 7d were obtained from the spectrum of the 

60:40 regioisomeric mixture of 6d and 7d. 

2-(3',6'-Dihydroxy-2',4'-dimethoxyphenyl)-3-oxo-3-phenylpropanenitrile (6h) 

Yield: 25%; brown solid; mp: 175-180°C; IR: ṽ 3415, 3298, 2937, 2833, 2212, 1646, 

1626, 1473, 1364, 1272, 1146, 898, 846, 747, 698, 663 cm
-1

; 
1
H NMR: δ 2.90 (s, 3H, 

OCH3), 3.75 (s, 3H, OCH3), 6.89 (s, 1H, Ar-H), 7.45 (m, 5H, Ar-H), 8.13 (s, 1H, Ar-

OH), 8.20 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 56.6, 58.6, 92.1, 112.1, 127.4, 127.8, 130.3, 

136.7, 139.5, 141.6, 141.9, 144.7, 166.3, 189.0 ppm; HRMS (ESI): C17H15NO5 calculated 

313.0950, found 313.0961. 
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2-(3'-tert-Butyl-2',5'-dihydroxyphenyl)-3-oxo-3-phenylpropanenitrile (7c) 

Yield: 46%; yellow solid; mp: 228-233°C; IR: ṽ 3370, 2954, 2237, 1641, 1599, 1473, 

1346, 1285, 1163, 920, 846, 811, 737, 693 cm
-1

; 
1
H NMR: δ 1.36 (s, 9H, t-Bu), 5.75 (s, 

1H, CH), 5.90 (s, 1H, Ar-H), 6.32 (s, 1H, Ar-H), 7.52 (m, 5H, Ar-H), 8.46 (s, 1H, Ar-

OH), 8.81 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 29.6, 30.0, 33.7, 92.6, 102.5, 106.3, 126.9, 

128.5, 130.4, 133.1, 141.4, 153.4, 166.7, 188.8 ppm; HRMS (ESI): C19H19NO3 calculated 

309.1365, found 309.1354. 

 

2-(2'-Acetyl-3',6'-dihydroxyphenyl)-3-oxo-3-phenylpropanenitrile (8f) 

Yield: 89%; brown solid; mp: 106-111°C; IR: ṽ 3302, 2228, 1616, 1572, 1454, 1411, 

1350, 1207, 1189, 998, 907, 854, 798, 737, 693, 672 cm
-1

; 
1
H NMR: δ 1.84 (s, 3H, CH3), 

5.75 (s, 1H, CH), 6.54 (d, 
3
J = 8.7 Hz, 1H, Ar-H), 7.24 (d, 

3
J = 8.7 Hz, 1H, Ar-H), 7.43 

(m, 5H, Ar-H), 7.73 (s, 1H, Ar-OH), 9.74 (s, 1H, Ar-OH) ppm; 
13

C NMR: δ 31.2, 92.8, 

101.5, 108.9, 112.4, 118.9, 127.5, 128.7, 131.1, 141.1, 142.2, 152.4, 165.9, 189.2, 201.7 

ppm; HRMS (ESI): C17H13NO4 calculated 295.0845, found 295.0855. 

 

Ethyl 2-(1'-cyano-2'-oxo-2'-phenylethyl)-3,6-dihydroxybenzoate (8g) 

Yield: 80%; orange solid; mp: 76-81°C; IR: ṽ 3315, 2982, 2235, 1627, 1572, 1457, 1415, 

1197, 1020, 920, 802, 693, 667, 616 cm
-1

; 
1
H NMR: δ 0.96 (t, 

3
J = 7.1 Hz, 3H, CH3), 

3.30 (q, 
3
J = 7.1 Hz, 2H, CH2), 5.74 (s, 1H, CH), 6.57 (d, 

3
J = 8.6 Hz, 1H, Ar-H), 7.44 

(m, 5H, Ar-H), 7.58 (d, 
3
J = 8.6 Hz, 1H, Ar-H), 7.93 (s, 1H, Ar-OH), 9.63 (s, 1H, Ar-

OH) ppm; 
13

C NMR: δ 13.5, 55.0, 60.0, 93.2, 107.6, 108.9, 114.2, 127.4, 128.5, 131.5, 

139.8, 141.8, 154.6, 166.3, 167.5, 188.8 ppm; HRMS (ESI): C18H15NO5 calculated 

325.0950, found 325.0946. 
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4.3 Results and Discussion 

The initial reaction for the laccase-catalyzed α-arylation of benzoylacetonitrile (1) 

was conducted using methoxyhydroquinone (2a) (Figure 65). The reaction was 

performed at 60 °C to aid in the solubility of 1 in the aqueous solution, in which it was 

only slightly soluble at room temperature, and in a 0.1 M sodium phosphate buffer pH 7.0 

to increase the concentration of the conjugate base of 1. The reaction product 3a was 

formed as a single regioisomer in moderate yield (21%). 

 

Figure 65. Initial reaction of benzoylacetonitrile (1), 1 mmol, with methoxyhydroquinone (2a), 0.25 

mmol. 

 

Interestingly, addition of 1 to 2a yielded only the C-C bond adduct and not the 

substituted benzofuran product that would be expected from the cyclizing O-C bond 

formation that has been seen in the majority of these types of reactions. Beifuss et al. also 

experienced this same trend in their study involving the addition of 3-tert-butyl-1H-

pyrazol-5(4H)-one to substituted catechols in which only the C-C adduct was formed.
[194]

 

This trend may be due to the electron-withdrawing nature of the newly formed 

substituent on the hydroquinone or catechol, which could raise the redox potential of the 

substrate to a value where oxidation by the current laccases used is not possible. 

A major side-reaction that occurred, which may be responsible for the moderate 

product yield, was oxidative degradation of 1. GC-MS analysis of the crude extract from 
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the reaction mixture showed a significant amount of benzoic acid formation. It is thought 

that this degradation pathway is caused by 2a acting as a laccase-mediator, as the mixture 

of just laccase and 1 did not provide the desired reaction. A proposed reaction mechanism 

for the formation of the potential 1,2-dicarbonyl intermediate 4 and its hydrolysis to 

benzoic acid and isocyanic/cyanic acid is shown in Figure 66. Compound 2a is oxidized 

by laccases and then abstracts a hydrogen atom from the methylene carbon of 1 to 

produce a resonance-stabilized radical. This radical combines with oxygen and is then 

hydrolyzed to the corresponding intermediate 4, which is then further hydrolyzed to 

benzoic acid. It must be noted that 4 is an unstable intermediate that was unable to be 

isolated. 

 

Figure 66. Proposed mechanism for the oxidative degradation of 1 to form benzoic acid and 

isocyanic/cyanic acid via 1,2-dicarbonyl intermediate 4. 
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The next step was focused on increasing the yield of product 3a by modifying the 

reaction conditions so that the reaction could be of synthetic value. Parameters such as 

the 1:2a ratio, laccase dose, pH of buffer solution, temperature, and time were all varied 

to determine the reaction conditions that would provide the greatest product yield.  The 

results of reaction optimization are displayed in Table 3. As can be seen, yield of 3a 

seems to be independent of the amount of laccase used (entries 1 and 2). 10 U of laccase 

was shown to be an ample amount of enzyme to completely oxidize 0.25 mmol of 2a to 

the corresponding para-quinone under the given reaction conditions. Bubbling O2 

through the reaction mixture, a method employed to increase laccase activity, actually 

decreased the product yield (entry 3), probably due to an increase in the oxidative 

degradation route. Increasing the ratio of 1:2a provided an increase in product yield 

(entries 1, 4, and 5). A 4:1 ratio of 1:2a seemed to be the most feasible option as a 10:1 

ratio didn’t increase the yield substantially (24% compared to 21%), probably due to the 

low solubility with the larger amount of 1. The reaction time seemed to have the largest 

impact on the product yield (entries 1, 6, 7, and 8); the longer the reaction time, the 

greater the yield. This suggests that the coupling reaction is likely to be the rate-limiting 

step, not the oxidation reaction. The pH of the buffer solution was also shown to have a 

major impact on product yield. It was found that by lowering the pH to 5.0 (entry 9), the 

oxidative degradation pathway of 1 could be retarded; however, no product was formed, 

probably due to the very low amount of the enolate form of 1 being present. Increasing 

the pH to 7.5 and 8.0 (entries 10 and 11, respectively) showed a minor decrease in 

product yield. As was expected, temperature played a crucial role in the formation of the 

desired product as the reaction conducted at room temperature (entry 12) yielded no 
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product. From these results, it was concluded that the optimum reaction conditions for the 

formation of 3a are those listed in entry 8 of Table 3. 

Table 3. Results of reaction optimization for the laccase-catalyzed cross-coupling reaction of 

benzoylacetonitrile (1) with methoxyhydroquinone (2a). 

Entry 1:2aa 
Laccase (U) pHb 

Temp. (°C) Time (h) Yield (%) 3a 

1
 

4:1
 

10 7.0 60 4 21 

2 4:1
 

100 7.0 60 4 21 

3c 4:1
 

10 7.0 60 4 11 

4 2:1
 

10 7.0 60 4 16 

5 10:1 10 7.0 60 4 24 

6 4:1 10 7.0 60 2 9 

7 4:1 10 7.0 60 12 26 

8 4:1 10 7.0 60 24 37 

9 4:1 10 5.0 60 24 0 

10 4:1 10 7.5 60 24 34 

11 4:1 10 8.0 60 24 33 

12 4:1 10 7.0 22 24 0 
a 
0.25 mmol of 2a used in all experiments 

b 
30 mL of 0.1 M sodium acetate buffer was used for pH 5.0 and 0.1 M sodium phosphate buffer was used 

for pH 7.0  
c
 O2 bubbled through the reaction mixture 

 

 

The optimized conditions were then employed to react 1 with a series of 

substituted hydroquinones to determine the effect the substituent has on the product yield 

and regioselectivity of the reaction. The reaction scheme is shown in Figure 67. Firstly, 

laccase oxidizes the substituted hydroquinone substrates 2, which are then further 

oxidized to the para-quinone intermediates 5. The enolate of 1 is then able to undergo 

nucleophilic attack on the para-quinone. This can occur at three possible positions of 

para-quinone intermediates 5: carbon 3, 5, or 6. The products were formed as either 

single regioisomers or a mixture of products 6 and 7. 
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Figure 67. The laccase-catalyzed reaction of benzoylacetonitrile (1) with a variety of substituted 

hydroquinones (2). 

 

The results for the reaction of 1 with a series of substituted hydroquinones 2 are 

shown in Table 4. Firstly, the amount of laccase employed to completely oxidize the 

hydroquinone 2 to the corresponding quinone 5 is highly substituent dependent. Electron-

donating substituents (i.e. OCH3, t-butyl, CH3) on the hydroquinone required only 10 U 

of laccase to be completely oxidized (as determined by TLC and GC-MS data) while 

those hydroquinones containing electron-withdrawing substituents (i.e. F, COCH3, 

CO2CH2CH3) required a much greater amount of laccase to achieve the same result. This 

is consistent with data showing that the redox potential of the hydroquinone increases 

when electron-withdrawing substituents are present compared to when electron-donating 

substituents are present and that the rate of oxidation by laccase is dependent on the 

redox potential of the substrate, with substrates having a lower redox potential exhibiting 

a greater rate of oxidation.
[150, 321]
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Table 4. Product yields and ratios for the laccase-catalyzed reaction of   benzoylacetonitrile (1) with 

substituted hydroquinones (2)
a
 

Entry 2
 

R Laccase (U)
 

Product Ratio 6:7 Yield (%) 3a 

1
 

a
 OCH3 10 6a - 37 

2 b
 H 50 6b - 24 

3
 

c
 t-butyl 10 7c - 46 

4 d
 CH3 10 6d, 7d 60:40 26 

5 e F 50 - - - 

6 f COCH3 100 8f - 89 

7 g CO2CH2CH3 100 8g - 80 

8 h 
b 10 6h - 25 

a 
Reaction conditions: 1 mmol 1, 0.25 mmol 2, 60°C, 24 h, 30 mL 0.1 M sodium phosphate buffer pH 7.0 

b 
Compound 2h is 2,6-dimethoxyhydroquinone 

 

With regards to product yields, it can be seen from Table 4 that the two 

hydroquinones containing a conjugated carbonyl within their substituent, 2f and 2g 

(entries 6 and 7), by far provided the highest yielding products (8f and 8g). This can be 

rationalized by the stability of the initial radical that is formed upon laccase oxidation, as 

the carbonyl group allows for further delocalization via resonance, thus making these 

radicals more stable compared to those where radical delocalization into the substituent is 

not possible. A more stable radical would decrease the likelihood of hydrogen atom 

abstraction from 1, thus decreasing the extent of oxidative degradation of 1 (Figure 66). 

This same argument can be used to explain the other product yields. Hydroquinones 2a 

and 2c (entries 1 and 3) have substituents with greater electron-donating power than 2d 

(entry 4), allowing for a more stable radical via induction, thus producing greater product 

yields. 2b provided the lowest yielding product (entry 2), while 2e, which has a highly 

electron-withdrawing fluorine substituent, provided no coupling product due to complete 

oxidative degradation of 1 (entry 5). Compound 2h provided a lower than expected 

product yield based on the preceding argument; however, this is likely due to the added 
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steric hindrance of the second methoxy substituent. It must be noted that the reaction of 1 

with phenylhydroquinone produced a coupling product in good yield (63%); however, the 

product could not be fully characterized due to overlapping signals in the 
1
H and 

13
C 

NMR spectra, due to the formation of non-isolable regioisomers (data for product from 

reaction of 1 with phenylhydroquinone: yield: 63%; dark-brown solid; mp: 105-110°C; 

IR: ṽ 3307, 2237, 1638, 1598, 1472, 1167, 1024, 998, 907, 698 cm
-1

; HRMS (ESI): 

C21H15NO3 calculated 329.1052, found 329.1048). 

The structures of the products formed by the laccase-catalyzed reaction of 1 with 

substituted hydroquinones 2 were determined based on 
1
H, 

13
C, and 

1
H-

13
C HMBC NMR 

spectroscopic data. The structures of the compounds in which different regioisomers 

could exist are shown in Figure 68. Product 6a was formed as a single regioisomer from 

the reaction of 1 with 2a. The methoxy protons were assigned to the singlet at δ = 3.72 

ppm in the 
1
H NMR spectrum. This signal exhibited only one correlation in the HMBC 

spectrum, that being a 
3
J correlation with C-4ʹ (δ = 143.4 ppm). C-4ʹ showed four 

correlations in the HMBC spectrum, including a 
3
J with the singlet at δ = 7.04 ppm, 

corresponding to 6ʹ-H, thus ruling out products that would be formed via addition at 

positions 3 and 6 of 5a. Product 7c, on the other hand, which was formed by the reaction 

of 1 with 2c, was found to be produced via addition at carbon 6 of 5c. C-3ʹ (δ = 133.1 

ppm), which was assigned based on a 
3
J HMBC correlation with the t-butyl protons at δ = 

1.36 ppm, provided only three HMBC correlations, thus providing evidence for the 

proposed structure. 

The reaction of 1 with 2d yielded a mixture of two products, 6d and 7d in a 60:40 

ratio, which could not be separated via column chromatography. The product 6d, C-4ʹ (δ  
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Figure 68. Structures of the products formed by the laccase-catalyzed reaction of benzoylacetonitrile 

(1) with substituted hydroquinones (2). 

 

= 141.4 ppm) showed a 
3
J HMBC correlation with 5ʹ-OH (δ = 8.81 ppm) as well as 

correlations with 3ʹ-H, 6ʹ-H, and CH3. On the other hand, C-3ʹ in 7d exhibited only three 

correlations in the HMBC spectrum, 
2
J with CH3 and 4ʹ-H and 

3
J with 2ʹ-OH. 

The regiochemistry of products 8f and 8g was rather unexpected, given the steric 

hindrance of nucleophilic attack at carbon 3 of 5f and 5g supplied by the substituent. 

Nevertheless, the NMR data provides clear evidence for the proposed structures. The 
1
H 

NMR spectrum of 8f clearly shows two sets of doublets in the aromatic region 

corresponding to the 4ʹ-H (δ = 6.54 ppm) and 5ʹ-H (δ = 7.24 ppm) with a coupling 

constant of 
3
J = 8.7 Hz. Similarly, the 

1
H NMR spectrum of 8g also shows two sets of 

doublets in the aromatic region, a signal at δ = 6.57 ppm and another at δ = 7.58 ppm, 

with a coupling constant of 
3
J = 8.6 Hz. 

The regioselectivity of the reaction products can be explained based on both steric 

and electronic effects, with the latter seemingly having a larger influence. For 

hydroquinones containing electron-donating substituents (i.e. 2a,c,d), addition 
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preferentially takes place on the side of the para-quinone opposite the substituent, which 

is favorable based on steric effects. Also, for these compounds, C5 is the most 

electrophilic carbon, further aiding in addition to this position. The reason for addition to 

C6 when an alkyl substituent is present, as in the cases for 2c and d (minor regioisomer), 

is unexpected given that addition to the more electrophilic C5 preferentially takes place 

when a methoxy substituent is present (2a) and is the major product formed when a 

methyl substituent is present (2d). However, a similar trend has been observed in the 

laccase-catalyzed addition of thiols to ortho-quinones whereby addition of the thiol takes 

place at a different carbon of the ortho-quinone depending on whether the catechol 

precursor is substituted with a methoxy or an alkyl substituent.
[221]

 For hydroquinones 

containing an electron-withdrawing substituent (i.e. 2f, g), it seems that electronics 

dictate the regiochemistry of addition as nucleophilic attack occurs solely at the more 

electrophilic, yet more hindered, C3 to yield products 8f and 8g. 

4.4 Conclusions 

A green, one-pot method for the α-arylation of a primary nitrile has been 

developed. It employs laccases to oxidize substituted hydroquinones to generate reactive 

para-quinones in situ, which are then able to undergo a cross-coupling reaction with 

benzoylacetonitrile to produce the corresponding benzylic nitrile products. The reaction 

conditions were optimized to provide the greatest yield of product, which was found to 

occur under mild conditions (60°C, pH 7.0). The product yields range from good to 

excellent with hydroquinones possessing a substituent with a conjugated carbonyl 

providing the highest yields, probably due to a more stable radical species. The 
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regioselectivity of the reaction products can be explained via electronic effects, in that 

nucleophilic attack is more likely to occur on the more electrophilic carbon. 
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CHAPTER 5. LACCASE-CATALYZED SYNTHESIS OF 2,3-

ETHYLENEDITHIO-1,4-QUINONES
III

 

5.1 Introduction 

To date, there had been much work published on laccase-catalyzed C-C and C-N 

bond forming reactions; however, similar reported reactions involving sulfur based 

nucleophiles for laccase-catalyzed C-S bond formations were few.
[219-222, 322]

 The focus of 

the current study was to employ laccases to perform the cross-coupling reaction of 

various substituted hydroquinones (2) with a small dithiol, namely 1,2-ethanedithiol (9). 

This study leverages the recent study conducted by Kidwai et al. whereby a successful 

laccase-catalyzed addition of a diamine to both hydroquinones and catechols was 

achieved for the synthesis of novel quinoxalines.
[218]

 The current study was conducted in 

spite of research that suggests some small sulfhydryl compounds (e.g. cysteine) are 

potent inhibitors of laccases from particular fungal species.
[323] 

The reaction products of the laccase-catalyzed addition of 9 with substituted 

hydroquinones contain the 2,3-ethylenedithio-1,4-quinone substructure (Figure 69). 

Compounds containing quinones are present all throughout nature and in many 

biologically active natural products.
[58]

 The compounds synthesized in this study are no 

different. For example, 3ʹ,4ʹ-(ethylenedithio)avarone (Figure 70), a synthetic derivative of 

the marine sponge sesquiterpene quinone avarone, is a compound that contains the 2,3-

ethylenedithio-1,4-quinone structural moiety and has shown to exhibit antiproliferative 

                                                 
III

 This manuscript, titled “Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones,” was published 

in Journal of Molecular Catalysis B: Enzymatic (2015, 119, 85-89). The other author is Arthur J. 

Ragauskas, who is affiliated with Georgia Institute of Technology. The manuscript was reproduced with 

permission from Elsevier; the copyright license agreement is provided in Appendix B. 
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activity towards tumor cells.
[324]

 Another compound with similar structural features, 

dithianon (Figure 70), has also been shown to possess cancerostatic properties as well as 

fungicidal activity.
[325]

 

 

Figure 69. 2,3-Ethylenedithio-1,4-quinone substructure. 

 

 

Figure 70. Compounds containing the 2,3-ethylenedithio-1,4-quinone substructure. 

             

Traditional syntheses of sulfide-substituted 1,4-quinones involve the nucleophilic 

addition of thiol to 2,3-dichloro-1,4-quinone derivatives.
[326]

 These reactions are usually 

conducted in ethanol and require heat. In addition, alkylthiols only undergo substitution 

to the quinone once; thus, sodium salts of the alkyl thiols must be prepared and used for 

the substitution reaction to occur at both position 2 and 3 of 2,3-dichloro-1,4-quinone 

derivatives. Furthermore, prior synthetic steps must be performed to arrive at the 2,3-

dichloro-1,4-quinone intermediate that require harsh conditions and a chemical oxidant 

(cerium ammonium nitrate).
[219]

 Thus, the laccase-catalyzed addition of 9 to substituted 
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hydroquinones conducted in this study is a simple, one-step, green alternative to the 

synthesis of 2,3-ethylenedithio-1,4-quinones. 

5.2 Experimental 

5.2.1 Materials 

All compounds were purchased from Sigma-Aldrich except tert-

butylhydroquinone, which was a product of Acros Organics. Laccases from the white-rot 

fungus Trametes villosa expressed in an Aspergillus host (NOVO NS51002) were 

appreciatively donated by Novo Nordisk Biochem (now Novozymes), Franklinton, North 

Carolina, USA. All compounds, solvents, and enzyme were used as received without 

further purification. Aluminum sheets pre-coated with silica gel 60 (EMD Chemicals) 

were used for thin-layer chromatography (TLC) experiments. Silica gel 60 (EM 

Separations Technology) was used as the stationary phase for column chromatography. 

5.2.2 Enzyme Assay 

Full experimental procedures regarding laccase activity measurements are 

detailed in Chapter 3.2.1. 

5.2.3 General Procedure for the Laccase-Catalyzed Reaction of 1,2-Ethanedithiol with 

Substituted Hydroquinones 

Full experimental procedures regarding the laccase-catalyzed coupling of 1,2-

ethanedithiol with substituted hydroquinones are provided in Chapter 3.2.3. 

5.2.4 Product Characterization Data 
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Compounds 10b, 10c, and 10e are new compounds; NMR, FTIR, and MS spectra 

of these compounds are given in Appendix A. All NMR experiments were conducted 

using CDCl3 as the solvent. 

6-Methoxy-2,3-dihydrobenzo[b][1,4]dithiine-5,8-dione (10a) 

Yield: 64%; purple solid; mp: 203-208°C; IR: ṽ 1616 (C==O) cm
-1

; 
1
H NMR: δ 3.25 (s, 

4H, (CH2)2), 3.82 (s, 3H, OCH3), 5.89 (s, 1H, C==CH) ppm; 
13

C NMR: δ 27.00, 27.55, 

56.80, 107.16, 135.11, 139.99, 159.34, 175.81, 181.73 ppm; HRMS (ESI): C9H8O3S2 

calculated 227.9915, found 227.9922. 

 

6-Methyl-2,3-dihydrobenzo[b][1,4]dithiine-5,8-dione (10b) 

Yield: 57%; brown solid; mp: 170-175°C; IR: ṽ 1636 (C==O) cm
-1

; 
1
H NMR: δ 2.04 (s, 

3H, CH3), 3.22 (s, 4H, (CH2)2), 6.56 (s, 1H, C==CH) ppm; 
13

C NMR: δ 15.65, 26.33, 

26.51, 132.78, 137.36, 137.69, 145.70, 180.38, 180.71 ppm; HRMS (ESI): C9H8O2S2 

calculated 211.9966, found 211.9960. 

 

6-(tert-Butyl)-2,3-dihydrobenzo[b][1,4]dithiine-5,8-dione (10c) 

Yield: 68%; dark purple solid; mp: 112-117°C; IR: ṽ 1635 (C==O) cm
-1

; 
1
H NMR: δ 1.29 

(s, 9H, C(CH3)3), 3.24 (s, 4H, (CH2)2), 6.58 (s, 1H, C==CH) ppm; 
13

C NMR: δ 26.20, 

26.76, 28.80, 35.18, 123.96, 131.19, 132.03, 155.93, 180.20, 181.08 ppm; HRMS (ESI): 

C12H14O2S2 calculated 254.0435, found 254.0439. 

 

6-Phenyl-2,3-dihydrobenzo[b][1,4]dithiine-5,8-dione (10d) 

Yield: 71%; black solid; mp: 72-77°C; IR: ṽ 1633 (C==O) cm
-1

; 
1
H NMR: δ 3.29 (s, 4H, 

(CH2)2), 6.84 (s, 1H, C==CH), 7.46 (m, 5H, Ar-H) ppm; 
13

C NMR: δ 26.36, 26.69, 
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128.09, 128.83, 129.79, 130.45, 132.16, 133.11, 135.35, 145.72, 179.67, 180.45 ppm; 

HRMS (ESI): C14H10O2S2 calculated 274.0122, found 274.0130. 

 

2,3-Dihydronaphtho[2,3-b][1,4]dithiine-5,10-dione (10e) 

Yield: 74%; purple solid; mp: 215-220°C; IR: ṽ 1643 (C==O) cm
-1

; 
1
H NMR: δ 3.31 (s, 

4H, (CH2)2), 7.69 (m, 2H, Ar-H), 8.08 (m, 2H, Ar-H) ppm; 
13

C NMR: δ 26.63, 126.50, 

131.20, 133.33, 140.38, 178.18 ppm; HRMS (ESI): C12H8O2S2 calculated 247.9966, 

found 247.9966. 

5.3 Results and Discussion 

To investigate whether the laccase-catalyzed reaction between 9 and substituted 

hydroquinones 2 would proceed to yield the desired product, an initial experiment was 

conducted that reacted 9 with methoxyhydroquinone (2a) in the presence of laccases 

(Figure 71). As was postulated, the reaction proceeded to yield 2,3-ethylenedithio-1,4-

quinone 10a as determined by spectral data. The reaction product is likely achieved via 

the laccase generated in situ 1,4-quinone intermediate. 

 

Figure 71. Laccase-catalyzed reaction of 1,2-ethanedithiol (9) with methoxyhydroquinone (2a). 

Reaction conditions: 2.50 mmol 9, 0.50 mmol 2a, 50 U laccase, 15 mL 0.10 M sodium acetate buffer 

pH 5.0, rt, 24 h. 
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In order to make the synthesis of practical value, follow up studies were 

conducted to determine the conditions under which optimal product yield could be 

obtained. Parameters that were experimented with include: the ratio of 9:2a, laccase 

amount, pH of aqueous solvent, temperature, and time. The results of the reaction 

optimization are displayed in Table 5. Given that the amount of substrate (i.e. 

methoxyhydroquinone 2a) used in each reaction was 0.50 mmol, the first step was to 

determine the appropriate amount of laccase that would ensure complete oxidation. 

Comparing entries 1-3 (Table 5), it can be seen that 50 U of laccase (entry 1) was 

sufficient for complete oxidation as 100 U (entry 3) had no additional impact on product 

yield and 20 U (entry 2) did not provide complete oxidation (as determined by GC-MS 

data). Next, the ratio of 9:2a was experimented with. It was found that having a low 9:2a 

ratio significantly impacted product yields as only trace amounts of desired product were 

detected under these conditions (entries 4 and 5). This suggests that a large excess of 9 

must be present to assist in preventing undesirable 1,4-quinone polymerization and 

degradation reactions that are known to occur. However, a ratio of 10:1 (entry 6) did not 

significantly increase product yield compared to a 5:1 ratio (entry 1). Increasing 

temperature (entry 7) had a negative impact on product yield, probably due to an increase 

in quinone polymerization and degradation reactions, as did increasing the pH (entry 8), 

which is likely due to the reduced activity of laccases at the higher pH.
[85]

 Reaction time 

was also experimented with and as can be seen in Table 5 a reaction time of 16 h (entry 

10) was sufficient enough to complete the reaction as 8 h (entry 11) did not give a 

complete reaction and 48 h (entry 9) did not increase the product yield substantially. 

Finally, a control reaction was conducted that reacted 9 with 2a in the absence of laccases 
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(entry 12), which gave no reaction. Thus, the reaction conditions in entry 10 were taken 

to be the optimal conditions for the laccase-catalyzed addition of 9 to 2a. 

Table 5. Reaction optimization results for the laccase-catalyzed reaction of 1,2-ethanedithiol (9) with 

methoxyhydroquinone (2a). 

Entry 
1:2a Ratioa 

Laccase (U) pHb 
Temp. (°C) Time (h) Yield (%) 3a 

1 5:1 50 5.0 rt 24 64 

2 5:1 20 5.0 rt 24 ir
 

3
 

4 

5:1 

1:1.25 

100 

50 

5.0 

5.0 

rt 

rt 

24 

24 

63 

trace 

5 

6 

7 

8 

9 

10 

11 

12 

2:1 

10:1 

5:1 

5:1 

5:1 

5:1 

5:1 

5:1 

50 

50 

50 

50 

50 

50 

50 

- 

5.0 

5.0 

5.0 

7.0 

5.0 

5.0 

5.0 

5.0 

rt 

rt 

50 

rt 

rt 

rt 

rt 

rt 

24 

24 

24 

24 

48 

16 

8 

16 

trace 

65 

37 

49 

66 

64 

ir
 

nr 
ir: incomplete reaction; nr: no reaction 
a 
0.50 mmol of 2a used in all experiments 

b 
15 mL of 0.10 M sodium acetate buffer was used for pH 5.0 and 0.10 M sodium phosphate buffer was 

used for pH 7.0 

 

 

Following the reaction optimization, the optimal reaction conditions were then 

employed to react 9 with other substituted hydroquinones in the presence of laccases 

(Figure 72). Substrates included hydroquinones substituted with a methyl, methoxy, t-

butyl, or aryl group, as well as 1,4-naphthohydroquinone 2j and 2,6-

dimethoxyhydroquinone 2h. The product yields are given in Table 6. In general, the 

yields tend to increase with increasing size of the substituent. This is likely due to the fact 

that a bulky substituent on the hydroquinone will reduce the probability of competing 

quinone polymerization and degradation reactions from occurring, thus allowing for the 

desired thiol addition reaction to take place. Furthermore, the reaction did not proceed to 

yield any desired product with unsubstituted hydroquinone, when electron-withdrawing 
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substituents were present (e.g. fluorohydroquinone and chlorohydroquinone), or when 

catechols were used, as was observed in the study documented in Chapter 4.
[327]

 Thus, for 

a thiol addition reaction to occur, the results suggest that a stable 1,4-quinone 

intermediate is mandatory, which is achieved with a bulky electron-donating substituent. 

Interestingly, the product resulting from the reaction of 9 with 2h (Table 6, entry 6) was 

the identical product to that resulting from the reaction of 9 with 2a (Table 6, entry 1), the  

 

 

Figure 72. Laccase-catalyzed reaction of 1,2-ethanedithiol (9) with substituted hydroquinones (2). 

 

Table 6. Products and yields for the laccase-catalyzed addition of 1,2-ethanedithiol (9) to substituted 

hydroquinones (2).
a 

 

Entry Substrate
 

R Product
 

Yield (%)   

1 2a OCH3 10a 64   

2 2d CH3 10b 57  
 

3
 

4 
2c 

2i 

C(CH3)3 

C6H5 

10c 

10d 

68 

71 

  

5 

6 
2jb 

2hc 
 10e 

10a 

74 

44 

  

a  
Reaction conditions: 2.50 mmol 9, 0.50 mmol 2, 50 U laccase, rt, 16 h. 2a,d were reacted in 15 mL 0.10 

M sodium acetate buffer pH 5.0 and 2c,h-j were reacted in 15 mL 0.10 M sodium acetate buffer pH 5.0 

containing 10% (v:v) methanol to aid solubility 
b 
Compound 2j is 1,4-naphthohydroquinone 

c
 Compound 2h is 2,6-dimethoxyhydroquinone 
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product being 10a, albeit in a lower yield. This implies that the dithiol undergoes addition 

to the in situ 1,4-quinone twice in the presence of a substituent that can be readily 

eliminated, that being methanol in the current example. 

The structures of all the reaction products were unambiguously determined via 

spectroscopic and spectrometric data. Interestingly, the protons of the methylene groups 

in the products, which derive from 9, appear as a singlet in the 
1
H NMR spectra, 

regardless of the substituent on the quinone moiety. The current data is consistent with 

data from another compound containing the 2,3-ethylenedithio-1,4-quinone substructure, 

namely 3ʹ,4ʹ-(ethylenedithio)avarone (Figure 70), whose two adjacent methylene group’s 

protons also appear as a singlet in the 
1
H NMR spectrum.

[324]
 

The products of the laccase-catalyzed addition of 9 to 2 are proposed to be formed 

via a sequential oxidation-addition-oxidation-addition-oxidation mechanism (Figure 73). 

Laccases oxidize the starting hydroquinone 2 into the 1,4-quinone 5. This highly reactive 

intermediate undergoes nucleophilic addition by 9, and followed by tautomerization back 

to the aromatic form, the product of a single sulfur addition, 11, is reached. Due to the 

presence of laccase, oxidation occurs yet again to give the quinone intermediate 12, 

which undergoes a second nucleophilic addition by the other sulfur atom of the dithiol to 

yield the double addition product 13 after another tautomerization. After a final laccase-

catalyzed oxidation, the final product 10 is achieved. The sequential oxidations and 

additions that are proposed in the current mechanism have also been witnessed in other 

laccase-catalyzed reactions involving sulfur nucleophiles as well as nitrogen-derived 

nucleophiles.
[199, 205, 219-220, 328]

 The subsequent oxidations are made possible by the 

electron-donating nature of the sulfur and nitrogen substituents whose pi electrons add 
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electron density to the aromatic ring allowing for a more favorable oxidation compared to 

substituents that withdraw electron density form the aromatic ring. It must be noted that, 

given the appropriate amount of laccases are used, the reaction will go to completion (i.e. 

product 10) and that no other products resulting from a single addition or incomplete 

oxidation (i.e. 11, 12, or 13) were observed at the end of the reaction period. 

 

 

Figure 73. Proposed reaction mechanism for the laccase-catalyzed reaction of 1,2-ethanedithiol (9) 

with substituted hydroquinones (2) to produce 2,3-ethylenedithio-1,4-quinones (10). 

 

Worthy of a mention is the occurrence of side-reactions that produce small cyclic 

sulfides. Based on GC-MS data of the crude extracts of the laccase-catalyzed reactions of 

9 with 2, small amounts of both 1,2,3-trithiolane and 1,2,5,6-tetrathiocane (Figure 74) 

were detected. It is thought that these products are formed via a radical-coupling 

mechanism. Interestingly, the reaction of 9 with laccase alone did not provide any 

reaction; however, adding the laccase-mediator violuric acid into the reaction mixture 

afforded the cyclic sulfides. Thus, it is proposed that, in the laccase-catalyzed reaction of 
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9 with 2, the hydroquinones act as the laccase-mediators in that the initial phenoxy 

radicals generated via laccase oxidation are able to oxidize 9 to produce sulfur 

radicals,
[125]

 which can then undergo coupling reactions with one another to yield the 

cyclic sulfides. 

 

Figure 74. Side products of the laccase-catalyzed reaction of 1,2-ethanedithiol (9) with substituted 

hydroquinones (2). 

 

The presented synthetic protocol fulfills many of the principles of green 

chemistry. Using the reaction of 9 with 2j as an example, the atom economy of this 

synthetic scheme is 92%, which indicates a highly efficient reaction. Regarding waste 

generation, the E factor for the reaction of 9 with 2j was calculated to be 64.1. This may 

seem rather high, but is standard for chemical syntheses within the pharmaceutical 

industry.
[19]

 The E factor could be decreased significantly by reducing the amount of 

EtOAc used in the extraction stage, which, as can be seen in Table 7, contributes more 

than 90% to the E factor. The reactions are conducted in an aqueous acetate buffer 

solution, employing methanol as a cosolvent on some occasions, which are 

environmentally benign solvents. Furthermore, the substitution of a dichloromethane 

based solvent with an EtOAc/hexane solvent system for chromatography completely 

eliminates chlorinated solvent waste, which is of high priority in the field of organic 

synthesis due to its toxicity and high cost of disposal.
[329]

 The reactions are run at ambient 

temperature and pressure, thus, the operating conditions are safe and there are no 
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auxiliary energy demands. The process employs a catalytic oxidant (i.e. laccases), rather 

than a stoichiometric oxidant, which dramatically reduces waste production. Furthermore, 

the biocatalyst is renewable, non-toxic, and biodegradable and the enzyme substrates (i.e. 

hydroquinones) are derived from a renewable feedstock (i.e. lignin). The space time yield 

of the synthetic process, using the reaction of 9 with 2j as an example once again, was 

calculated to be 0.002 mol × L
-1

 × h
-1

. This is rather low, but could be increased by 

lowering the solvent volume or increasing the rate of reaction via use of cross-linked 

enzyme aggregates (CLEAs) of laccases.
[224, 330] 

Table 7. Contribution of each chemical to the E factor for the reaction of 9 with 2j. 

Chemical 
Mass (mg)

 
% Contribution 

9 235.5 3.9 

2j 80.1 1.3 

Laccase
 

CH3COOH 

39.7a 

29.2 

0.7 

0.5 

NaOAc 

CH3OH 

EtOAc 

70.9 

118.7b 

5400b 

1.2 

2.0 

90.4 
Note: for convenience, column chromatography was used to 

purify the products. However, a variety of purification 

methods can be used, thus materials used in 

chromatography were not factored into the E factor 

calculations 
a 
Mass of laccase solution 

b 
Taking into account a loss of 10% of solvent used 

 

 

5.4 Conclusions 

An eco-friendly method for the synthesis of novel 2,3-ethylenedithio-1,4-

quinones has been presented. The method utilizes the oxidizing ability of laccases to 

produce 1,4-quinones in situ that undergo nucleophilic addition by 1,2-ethanedithiol 

followed by subsequent oxidation and addition steps to afford the 2,3-ethylenedithio-1,4-
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quinone products in good yields. The reactions are carried out under mild conditions in 

one-pot in an aqueous solvent. The stability of the in situ generated 1,4-quinones proved 

to be a vital factor in determining whether the cross-coupling reaction would occur, 

which was achieved by bulky electron-donating substituents on the hydroquinones. The 

presence of small cyclic sulfide compounds was detected, probably formed by competing 

radical reactions. This study is evidence that laccase-catalyzed additions involving small 

thiols are possible in spite of research that suggests small thiols are inhibitors of laccases. 
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CHAPTER 6. ECOFRIENDLY SYNTHESES OF 

PHENOTHIAZONES AND RELATED STRUCTURES 

FACILITATED BY LACCASES – A COMPARATIVE STUDY
IV

 

6.1 Introduction 

Building on the chemistry developed in Chapter 5, the study presented in this 

chapter was focused toward coupling hydroquinones with compounds containing both the 

thiol and amine functional groups. While laccase-catalyzed coupling reactions involving 

nucleophiles derived from carbon, nitrogen, or sulfur have been widely studied, the use of 

compounds containing two nucleophilic centers capable of forming multiple bonds to 

yield cyclic products is much less explored.
[222, 322, 331]

 The laccase-catalyzed coupling of 

2-aminothiophenol with hydroquinone for the synthesis of 3H-phenothiazin-3-one has 

been previously achieved;
[331]

 however, the process suffers from low product yield 

(21%). The current study presents an alternative methodology that significantly increases 

product yields of several synthesized phenothiazones. 

The phenothiazones are an important class of compounds that possess a variety of 

biological activities and practical use. Early studies demonstrated that these compounds 

exhibit lethal effects on liver fluke as well as paralytic effects on the human parasitic 

worm Ascaris lumbricoides.
[332-333]

 More recently, derivatives and analogs, particularly 4-

bromo-2,7-dimethoxy-3H-phenothiazin-3-one (Figure 75), have shown inhibitory effects 

on 5-lipoxygenase and mammalian leukotriene biosynthesis, thus, they find therapeutic 

                                                 
IV

 This manuscript, titled “Ecofriendly syntheses of phenothiazones and related structures facilitated by 

laccase – a comparative study,” was published in Tetrahedron Letters (2016, 57, 3749-3753). The other 

author is Arthur J. Ragauskas, who is affiliated with Georgia Institute of Technology. The manuscript was 

reproduced with permission from Elsevier; the copyright license agreement is provided in Appendix B. 
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use in treating allergies, inflammation, asthma, and cardiovascular disorders.
[334-335]

 They 

have also displayed tuberculostatic, antibacterial, and analgesic properties and have been 

used to treat oxidative stress disorders.
[336-337]

 Furthermore, they offer protection to mild 

steel from acidic corrosion, and find use in organic semiconductors and dyes (e.g. 

methylene violet, Figure 75). 

 

 

Figure 75. Representative structures of phenothiazones. 

 

The first reported synthesis of a phenothiazone compound involved the oxidation 

of 3-hydroxyphenothiazine by FeCl3.
[338]

 Most early syntheses relied upon the use of 

stoichiometric, transition-metal-containing oxidants, such as FeCl3, K2Cr2O7, MnO2, or 

ceric ammonium nitrate to oxidize phenothiazines to the corresponding phenothiazones at 

elevated temperatures in organic solvents.
[334-335, 339-342]

 More contemporary syntheses 

involve the condensation of 2-aminothiophenol with 1,4-quinones;
[334-335, 343-346]

 however, 

these reactions are all conducted in organic solvents. Thus, there lacks a method that is 

conducted both in an aqueous solvent system and free of stoichiometric, transition-metal 

oxidants. Herein, a green, biocatalytic approach to the synthesis of phenothiazones and 

related structures is reported. 
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6.2 Experimental 

6.2.1 Materials 

All reagents and solvents were purchased from either Sigma-Aldrich or VWR. 

Laccases from the white-rot fungus Trametes villosa expressed in an Aspergillus host 

(NOVO NS51002) were appreciatively donated by Novo Nordisk Biochem (now 

Novozymes), Franklinton, North Carolina, USA. All compounds, solvents, and enzyme 

were used as received without further purification. Aluminum sheets pre-coated with 

silica gel 60 (EMD Chemicals) were used for thin-layer chromatography (TLC) 

experiments. Glass plates coated with silica gel (20 x 20 cm, 2000 μm) were used for 

preparative layer chromatography. 

6.2.2 Enzyme Assay 

Full experimental procedures regarding laccase activity measurements are 

detailed in Chapter 3.2.1. 

6.2.3 Synthetic Procedures for the Laccase-Facilitated Synthesis of Phenothiazones 

5H-Benzo[a]phenothiazin-5-one (15a) 

Method A: 100.1 mg (0.625 mmol) of 1,4-naphthohydroquinone (2j) was dissolved in 1.5 

mL MeOH and added dropwise to 8.5 mL 0.10 M sodium acetate buffer pH 5.0 that was 

stirring in a 50 mL round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 2-

aminothiophenol (14) was added to the mixture, followed by 33.1 μL (50 U) of laccase 

solution. The resulting mixture was allowed to stir at rt for 6 h. After this time, the 

mixture was centrifuged and the supernatant decanted. The remaining solid was washed 



141 

 

with deionized water (3 x 5 mL) and dried overnight in a vacuum oven at 30°C. The 

supernatants were combined and extracted once with 10 mL EtOAc to recover any 

soluble product, dried over MgSO4, and the solvent removed via rotary evaporation. The 

crude solid and crude extract were combined and the product was purified via preparative 

layer chromatography using silica gel coated on glass plates as the stationary phase and 

dichloromethane containing 1% MeOH (v:v) as the mobile phase. Yield of 15a: 14.5 mg 

(11%). 

Method B: 100.1 mg (0.625 mmol) of 2j was dissolved in 1.5 mL MeOH and added 

dropwise to 8.5 mL 0.10 M sodium acetate buffer pH 5.0 containing 33.1 μL (50 U) of 

laccase solution while stirring at rt in a 50 mL round-bottom flask. After 2 h, 53.5 μL 

(62.6 mg, 0.50 mmol) of 14 was added to the mixture, and the reaction was allowed to 

stir for an additional 4 h. Work-up and purification as in Method A. Yield of 15a: 26.3 

mg (20%). 

Method C: 98.8 mg (0.625 mmol) of 1,4-naphthoquinone (5j) was suspended in 1.5 mL 

MeOH and added to 8.5 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 50 

mL round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to the 

mixture and the reaction was allowed to stir for 6 h at rt. Work-up and purification as in 

Method A. Yield of 15a: 57.9 mg (44%). 

Method D: 98.8 mg (0.625 mmol) of 5j was suspended in 1.5 mL MeOH and added to 

8.5 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 50 mL round-bottom 

flask. Then 53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to the mixture and the 

reaction was allowed to stir for 2 h at rt. After this time, 33.1 μL (50 U) of laccase 
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solution was added and the reaction was allowed to stir for an additional 4 h. Work-up 

and purification as in Method A. Yield of 15a:  68.5 mg (52%). 

 

3H-Phenothiazin-3-one (15b) 

Method B: 68.8 mg (0.625 mmol) of hydroquinone (2b) was dissolved in 1 mL MeOH 

and added dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 

50 mL round-bottom flask. Then, 33.1 μL (50 U) of laccase solution was added and the 

mixture was allowed to stir at rt for 2 h. After this time, 53.5 μL (62.6 mg, 0.50 mmol) of 

14 was added to the mixture, and the reaction was allowed to stir for an additional 4 h. 

After this time, the mixture was centrifuged and the supernatant decanted. The remaining 

solid was washed with deionized water (3 x 5 mL) and dried overnight in a vacuum oven 

at 30°C. The supernatants were combined and extracted once with 10 mL EtOAc to 

recover any soluble product, dried over MgSO4, and the solvent removed via rotary 

evaporation. The crude solid and crude extract were combined and the product was 

purified via preparative layer chromatography using silica gel coated on glass plates as 

the stationary phase and dichloromethane containing 5% MeOH (v:v) as the mobile 

phase. Yield of 15b: 25.6 mg (24%). 

Method C: 67.6 mg (0.625 mmol) of p-benzoquinone (5b) was dissolved in 1 mL MeOH 

and added dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 

50 mL round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to the 

mixture and the reaction was allowed to stir for 6 h at rt. Work-up and purification as in 

Method B. Yield of 15b: 9.7 mg (9%). 
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Method D: 67.6 mg (0.625 mmol) of 5b was dissolved in 1 mL MeOH and added 

dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 50 mL 

round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to the mixture 

and the reaction was allowed to stir for 2 h at rt. After this time, 33.1 μL (50 U) of laccase 

solution was added and the reaction was allowed to stir for an additional 4 h. Work-up 

and purification as in Method B. Yield of 15b:  65.0 mg (61%). 

 

2,4-Dimethoxy-3H-phenothiazin-3-one (15c) 

Method B: 106.4 mg (0.625 mmol) of 2,6-dimethoxyhydroquinone (2h) was dissolved in 

1 mL MeOH and added dropwise to 9 mL of 0.10 M sodium acetate buffer pH 5.0 that 

was stirring in a 50 mL round-bottom flask. Then, 33.1 μL (50 U) of laccase solution was 

added and the mixture was allowed to stir at rt for 2 hours. After this time, 53.5 μL (62.6 

mg, 0.50 mmol) of 14 was added to the mixture, and the reaction was allowed to stir for 

an additional 4 h. After this time, the mixture was centrifuged and the supernatant 

decanted. The remaining solid was washed with deionized water (3 x 5 mL) and dried 

overnight in a vacuum oven at 30°C. The supernatants were combined and extracted once 

with 10 mL EtOAc to recover any soluble product, dried over MgSO4, and the solvent 

removed via rotary evaporation. The crude solid and crude extract were combined and the 

product was purified via preparative layer chromatography using silica gel coated on 

glass plates as the stationary phase and dichloromethane containing 2.5% MeOH (v:v) as 

the mobile phase. Yield of 15c: 72.4 mg (53%). 
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1-Methyl-3H-phenothiazin-3-one (15d) and 2-Methyl-3H-phenothiazin-3-one (15e) 

Method B: 77.6 mg (0.625 mmol) of methylhydroquinone (2d) was dissolved in 1 mL 

MeOH and added dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was 

stirring in a 50 mL round-bottom flask. Then, 33.1 μL (50 U) of laccase solution was 

added and the mixture was allowed to stir at rt for 2 hours. After this time, 53.5 μL (62.6 

mg, 0.50 mmol) of 14 was added to the mixture, and the reaction was allowed to stir for 

an additional 4 h. After this time, the mixture was centrifuged and the supernatant 

decanted. The remaining solid was washed with deionized water (3 x 5 mL) and dried 

overnight in a vacuum oven at 30°C. The supernatants were combined and extracted once 

with 10 mL EtOAc to recover any soluble product, dried over MgSO4, and the solvent 

removed via rotary evaporation. The crude solid and crude extract were combined and the 

products were purified via preparative layer chromatography using silica gel coated on 

glass plates as the stationary phase and dichloromethane containing 5% MeOH (v:v) as 

the mobile phase. Yield of 15d: 10.2 mg (9%). Yield of 15e: 13.6 mg (12%). 

Method C: 76.3 mg (0.625 mmol) of methyl-p-benzoquinone (5d) was dissolved in 1 mL 

MeOH and added dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was 

stirring in a 50 mL round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 14 was 

added to the mixture and the reaction was allowed to stir for 6 h at rt. Work-up and 

purification as in Method B. Yield of 15d: 10.0 mg (9%). Yield of 15e: 14.1 mg (12%). 

Method D: 76.3 mg (0.625 mmol) of 5d was dissolved in 1 mL MeOH and added 

dropwise to 9 mL 0.10 M sodium acetate buffer pH 5.0 that was stirring in a 50 mL 

round-bottom flask. Then, 53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to the mixture 

and the reaction was allowed to stir for 2 h at rt. After this time, 33.1 μL (50 U) of laccase 
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solution was added and the reaction was allowed to stir for an additional 4 h. Work-up 

and purification as in Method B. Yield of 15d: 27.3 mg (24%). Yield of 15e: 33.0 mg 

(29%). 

6.2.4 Laccase-Catalyzed Dimerization of 2-Aminothiophenol 

53.5 μL (62.6 mg, 0.50 mmol) of 14 was added to 6 mL 0.10 M sodium acetate buffer pH 

5.0 that was stirring in a 50 mL round-bottom flask, followed by 33.1 μL (50 U) of 

laccase solution. The reaction was allowed to stir at rt for 4 h. The mixture was extracted 

with EtOAc (3 x 6 mL), organic phases combined, dried over MgSO4, and the solvent 

removed via rotary evaporation. The product was purified via preparative layer 

chromatography using silica gel coated on glass plates as the stationary phase and 

dichloromethane containing 5% MeOH (v:v) as the mobile phase. Yield of 16: 51.5 mg 

(83%). 

6.2.5 Laccase-Catalyzed Coupling of 1,4-Naphthohydroquinone and Cysteamine 

192.9 mg (2.50 mmol) of cysteamine (19) was added to a 50 mL round-bottom flask 

equipped with a stir bar. 8.5 mL 0.10 M sodium acetate buffer pH 5.0 was added 

followed by 33.1 μL (50 U) of laccase solution and the mixture was stirred. Then, 80.1 

mg (0.50 mmol) of 2j was dissolved in 1.5 mL MeOH and added dropwise to the 

mixture. The reaction mixture was allowed to stir at rt for 12 h. The precipitate was then 

filtered, washed with deionized water, and left to dry in a fume hood overnight. The 

product was purified via preparative layer chromatography using silica gel coated on 

glass plates as the stationary phase and dichloromethane containing 1% MeOH (v:v) as 

the mobile phase. Yield of 20: 39.3 mg (34%). 
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6.2.6 Product Characterization Data 

All products are known compounds and have been characterized previously, 

except compounds 15c; the NMR, FTIR, and MS spectra of this compound are given in 

Appendix A. All NMR experiments were conducted using CDCl3 containing 10% 

CD3OD (v:v) as the solvent unless stated otherwise. 

 

5H-Benzo[a]phenothiazin-5-one (15a) 

Red-orange solid; mp: 163-164°C; IR: ṽ 1591 (C=N), 1628 (C=O) cm
-1

; 
1
H NMR: δ 6.69 

(s, 1H, C=CH), 7.33 (m, 3H, Ar-H), 7.64 (m, 2H, Ar-H), 7.78 (d, 
3
J = 7.5 Hz, 1H, Ar-H), 

8.15 (d, 
3
J = 5.8 Hz, 1H, Ar-H), 8.71 (d, 

3
J = 7.1 Hz, 1H, Ar-H) ppm; 

13
C NMR: δ 

120.01, 122.98, 124.77, 125.69, 125.78, 127.89, 130.14, 131.43, 131.80, 132.57, 133.47, 

134.33, 138.32, 138.63, 144.66, 180.62 ppm; m/z 264 (M+1, 19%), 263 (M
+
, 100), 235 

(57), 203 (10), 190 (9), 117 (12). 

3H-Phenothiazin-3-one (15b) 

Red-purple solid; mp: 160-161°C; IR: ṽ 1599 (C=N), 1627 (C=O) cm
-1

; 
1
H NMR: δ 6.69 

(s, 1H, C=CH), 6.87 (d, 
3
J = 9.4 Hz, 1H, C=CH), 7.42 (m, 3H, Ar-H), 7.56 (d, 

3
J = 9.8 

Hz, 1H, C=CH), 7.84 (m, 1H, Ar-H) ppm; 
13

C NMR: δ 119.80, 123.91, 125.13, 128.17, 

131.26, 134.10, 135.14, 135.84, 139.21, 140.03, 146.33, 182.81 ppm; m/z 215 (M+2, 

10%), 214 (M+1, 14), 213 (M
+
, 89), 185 (100). 

 

 2,4-Dimethoxy-3H-phenothiazin-3-one (15c) 

Red-orange solid; mp: 191-192°C; IR: ṽ 1596 (C=N), 1626 (C=O) cm
-1

; 
1
H NMR: δ 3.89 

(s, 3H, OCH3), 4.01 (s, 3H, OCH3), 6.78 (s, 1H, C=CH), 7.37 (t, 
3
J = 7.5 Hz, 1H, Ar-H), 
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7.43 (t, 
3
J = 7.6 Hz, 1H, Ar-H), 7.50 (d, 

3
J = 7.6 Hz, 1H, Ar-H), 7.80 (d, 

3
J = 7.8 Hz, 1H, 

Ar-H) ppm; 
13

C NMR: δ 56.47, 59.74, 109.40, 121.33, 123.29, 125.62, 127.91, 129.56, 

132.75, 139.74, 144.79, 146.21, 157.34, 171.36 ppm; m/z 275 (M+2, 21%), 273 (M
+
, 

100), 258 (33), 255 (41), 244 (22), 230 (50), 159 (71). 

 

1-Methyl-3H-phenothiazin-3-one (15d) 

Purple solid; mp: 144-145°C; IR: ṽ 1594 (C=N), 1623 (C=O) cm
-1

; 
1
H NMR: δ 2.13 (s, 

3H, CH3), 6.58 (s, 1H, C=CH), 6.71 (s, 1H, C=CH), 7.37 (m, 3H, Ar-H), 7.82 (d, 
3
J = 5.5 

Hz, 1H, Ar-H) ppm; 
13

C NMR: δ 18.56, 119.45, 124.14, 124.87, 127.82, 130.97, 133.33, 

134.30, 135.80, 138.87, 146.52, 148.01, 182.83 ppm; m/z 229 (M+2, 30%), 228 (M+1, 

21), 227 (M
+
, 100), 199 (90), 198 (79), 167 (25), 154 (16). 

 

 2-Methyl-3H-phenothiazin-3-one (15e) 

Red-purple solid; mp: 180-181°C; IR: ṽ 1600 (C=N), 1626 (C=O) cm
-1

; 
1
H NMR: δ 2.13 

(s, 3H, CH3), 6.69 (s, 1H, C=CH), 7.39 (m, 3H, Ar-H), 7.43 (s, 1H, C=CH), 7.81 (d, 
3
J = 

6.7 Hz, 1H, Ar-H) ppm; 
13

C NMR: δ 16.52, 119.59, 123.45, 125.10, 127.96, 130.60, 

133.68, 135.02, 136.56, 139.28, 144.34, 146.55, 182.92 ppm; m/z 229 (M+2, 14%), 228 

(M+1, 17), 227 (M
+
, 100), 199 (73), 198 (38), 167 (12), 154 (8). 

 

2,2'-Dithiobis-benzenamine (16) 

Yellow solid; mp: 90-91°C; IR: ṽ 3294 (N-H), 3374 (N-H) cm
-1

; 
1
H NMR (CDCl3): δ 

4.13 (s, 4H, NH2), 6.51 (m, 2H, Ar-H), 6.64 (m, 2H, Ar-H), 7.09 (m, 4H, Ar-H) ppm; 
13

C 

NMR (CDCl3): δ 115.39, 118.39, 118.90, 131.74, 136.96, 148.73 ppm; m/z 248 (M
+
, 

55%), 124 (100), 80 (36). 
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3,4-Dihydro-2H-naphtho[2,3-b][1,4]thiazine-5,10-dione (20) 

Purple solid; mp: 218-219°C; IR: ṽ 1657 (C=O), 3347 (N-H) cm
-1

; 
1
H NMR: δ 2.94 (t, 

3
J 

= 4.5 Hz, 2H, CH2), 3.70 (t, 
3
J = 4.2 Hz, 2H, CH2), 6.11 (s, 1H, NH), 7.52 (t, 

3
J = 7.3 Hz, 

1H, Ar-H), 7.59 (t, 
3
J = 7.3 Hz, 1H, Ar-H), 7.91 (d, 

3
J = 7.4 Hz, 1H, Ar-H), 7.97 (d, 

3
J = 

7.5 Hz, 1H, Ar-H) ppm; 
13

C NMR: δ 23.87, 41.65, 111.18, 126.24, 126.42, 130.39, 

132.45, 133.23, 134.39, 141.19, 178.10, 179.59 ppm; m/z 232 (M+1, 16%), 231 (M
+
, 

100), 230 (35), 216 (29), 198 (15), 104 (13), 76 (14). 

6.2.7 Calculation of Green Metrics 

Using the reaction of 14 with 5b (Method D) for the synthesis of 15b as an 

example. 

  

Atom Economy 

% Atom Economy = 100% ×  (
Molecular weight of desired product

∑ Molecular weights of reactants
 )  

MW 14: 125.19 g/mol 

MW 5b: 108.09 g/mol 

MW ½O2: 16.00 g/mol 

MW 15b: 213.26 g/mol 

 

% Atom Economy = 100% × (
213.26

108.09 + 125.19 +16.00 
) 

                                  = 85.6% 

 

E Factor 

E Factor = 
Mass of waste

Mass of desired product
 = 

Mass of reactants − Mass of desired product 

Mass of desired product
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Mass of 14: 62.6 mg 

Mass of 5b: 67.6 mg 

Mass of laccase: 39.7 mg 

Mass of MeOH: 79.1 mg (assuming loss of 10% of solvent used) 

Mass of CH3COOH: 19.5 mg 

Mass of NaOAc: 47.3 mg 

Mass of EtOAc: 900 mg (assuming loss of 10% of solvent used) 

Mass of 15b: 65.0 mg 

 

E Factor = 
62.6 + 67.6 + 39.7 + 79.1 + 19.5 + 47.3 + 900 − 65.0 

65.0
  

                 = 17.7 

 

Space Time Yield 

Space Time Yield = 
Amount of desired product (mol)

Volume (L) × Time (h)
 

                                  = 
0.000305 mol

(0.01 L) × (6h)
 

                                  = 0.0051 
mol

L ∙ h
 

6.3 Results and Discussion 

To determine if the reaction would proceed to give the desired product, an initial 

experiment was conducted that reacted 2-aminothiophenol (14) with 1,4-

naphthohydroquinone (2j) in the presence of laccases (Method A), shown in Figure 76. 

The product, 5H-benzo[a]phenothiazine-5-one 15a, which has shown antiproliferative 
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activity towards human tumor cells,
[347]

 was achieved, albeit in very low yield (11%). The 

low yield can be rationalized by the formation of a S-S dimer of 14, which was also 

observed in a previous study.
[331]

 Studying the kcat values for laccase oxidation of phenols 

and their thiol analogs, it can be seen that benzenethiols are oxidized at a significantly 

greater rate than phenols (e.g. kcat catechol = 3300 min
-1

, kcat 1,2-benzenedithiol = 45000 

min
-1

).
[117]

 In fact, reacting 14 with laccases alone can yield the S-S dimer product 16 

(Figure 77) – which possesses antimicrobial properties and was historically used to treat 

syphilis –
[348-349]

 in very high conversion (83%). Thus, simply reacting 14 with 

hydroquinones and laccases in a one-step process is not a feasible method for the 

synthesis of phenothiazones. 

 

Figure 76. Laccase-catalyzed coupling of 2-aminothiophenol (14) with naphthohydroquinone (2j). 

Reaction conditions: 1 eq. (0.50 mmol) 14, 1.25 eq. (0.625 mmol) 2j, 50 U laccase, 8.5 mL 0.10 M 

sodium acetate buffer pH 5.0 : 1.5 mL MeOH, rt, 6 h. 

 

 

Figure 77. Laccase-catalyzed dimerization of 2-aminothiophenol (14). Reaction conditions: 0.50 

mmol 14, 50 U laccase, 6 mL 0.10 M sodium acetate buffer pH 5.0, rt, 4 h. 

 

Based on the aforementioned findings, we then experimented with a two-step 

process in which 14 is added to the reaction mixture 2 hours after the hydroquinone and 
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laccases (Method B), similar to what has been done previously.
[331]

 We hypothesized that 

this would allow for a substantial formation of laccase-generated 1,4-quinone capable of 

rapidly reacting with 14 before it is oxidized by laccases. The results are shown in Table 

8. As can be seen, the product yields are still quite low, with the exception of 15c (Table 

8, entry 3). These results indicate that this is a viable procedure for the synthesis of 2,4-

disubstituted phenothiazones, which are produced via the highly stable laccase-generated 

2,6-disubstituted-1,4-quinone intermediate. However, for the remaining hydroquinones 

examined, this is still not a practical synthetic method. 

 

Table 8. Laccase-catalyzed coupling of 2-aminothiophenol (14) with hydroquinones (2).
a 

 
Entry 2 Product Yield  

1 j 15a     20%  

2 b     R1, R2, R3 = H 15b     24%  

3 h     R1 = H, R2, R3 = OCH3  15c     53%  

4 d     R1, R3 = H, R2 = CH3 15d       9%     R1 = CH3, R2, R3 = H  

15e     12%     R1, R3 = H, R2 = CH3  

 

a  
Reaction conditions: 1.25 eq. (0.625 mmol) 2, 50 U laccase, 1 eq. (0.50 mmol) 14 added at t = 2 h, 0.10 

M sodium acetate buffer pH 5.0 with 10-15% MeOH (v:v), rt, 6 h 
 

There seemed to be two factors contributing to low product yields: 1) oxidation of 

14 by laccases, and 2) poor conversion of the hydroquinone to the corresponding 1,4-

quinone by laccases. Thus, to overcome these problems, we reacted the 1,4-quinones 5 

directly with 14 both without (Method C) and with (Method D) laccases. The results are 

displayed in Table 9. First of all, it can be seen that by using Method D, the product 
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yields can be increased compared to employing Method B (Table 8). Thus, it seems as 

though the aforestated problems can be reduced or eliminated by using this methodology. 

Furthermore, when comparing the results of Methods C and D, it is noticed that the 

product yields can be substantially increased when laccases are utilized. Comparing the 

data in Table 8 and Table 9 for the synthesis of phenothiazones using different methods, 

we can see that when employing Method D, the product yields can be increased on 

average by 2.5 fold compared to using Method B, and up to 6.8 fold compared to when 

Method C is used. For comparison, the regioselectivity of addition for the reaction of 14 

with 5d (Table 9, entry 3) is similar to that observed by Terdic, who conducted the 

coupling reaction in ethanol.
[345] 

Table 9. Coupling of 2-aminothiophenol (14) with 1,4-quinones (5) in the absence (Method C) and 

presence (Method D) of laccases. 

 
Entry 5 Product Yield 

Method C 
a 

Product Yield 

Method D 
b 

1 j 

        

15a     44% 3a     52% 

2 b     R1, R2 = H    15b       9% 3b     61% 

3 d     R1 = H, R2 = CH3 15d       9%    R1 = CH3, R2 = H  

15e     12%    R1 = H, R2 = CH3 

3d     24% 

3e     29%        
a 

Method C reaction conditions: 1 eq. (0.50 mmol) 14, 1.25 eq. (0.625 mmol) 5, 0.10 M sodium acetate 

buffer pH 5.0 with 10-15% MeOH (v:v), rt, 6 h 
b
 Method D reaction conditions: 1 eq. (0.50 mmol) 14, 1.25 eq. (0.625 mmol) 5, 50 U laccase added at t = 

2 h, 0.10 M sodium acetate buffer pH 5.0 with 10-15% MeOH (v:v), rt, 6 h 

Analysis of the gas chromatograms for the reaction of 14 with 5b using both 

Methods C and D (Figure 78) provides a qualitative picture of the reaction systems and 
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reveals the role laccases have in improving product yields. In the top chromatogram in 

Figure 78 (Method C), the peak with m/z 213, corresponding to product 15b, is relatively 

small, indicating a low product yield. In comparison, the same peak in the bottom 

chromatogram of Figure 78 (Method D) is the predominant peak in the chromatogram, 

corresponding to a high product yield. Further analysis of the top chromatogram shows a 

sizeable peak with m/z 215, which is negligible in the bottom chromatogram. It is 

believed that this compound is the reduced form of product 15b. Furthermore, allowing 

14 to react with 5b in the absence of laccases for 72 h does not significantly improve the 

yield of 15b. Thus, laccases appear to be crucial for completely oxidizing the 

phenothiazine form to the phenothiazone form and providing greatest product yields. 

 

 

Figure 78. Qualitative gas chromatograms with m/z values of peaks for the reaction of 14 with 5b 

using Method C (top) and Method D (bottom). 
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Figure 79 shows the proposed reaction mechanism. Initial addition of the aromatic amino 

group of 14 to a carbonyl group of 1,4-quinone 5 yields the imine 17, which is followed 

by addition of sulfur to an adjacent alkene carbon and subsequent tautomerization to 

produce the phenothiazine intermediate 18. A final oxidation of the phenothiazine affords 

the phenothiazone 15. 

 

Figure 79. Reaction mechanism for the laccase-facilitated synthesis of phenothiazones. 

 

With the chemistry for the coupling of an aromatic thiol-amine with 1,4-quinones 

developed, the principles were then applied to a simple aliphatic thiol-amine, cysteamine 

(19). Since it was observed that laccases do not directly oxidize 19, it was possible to 

react this compound in one-pot with the hydroquinone 2 and laccases in one-step. Using a 

variety of hydroquinones and catechols – hydroquinone, methylhydroquinone, 

methoxyhydroquinone, t-butylhydroquinone, phenylhydroquinone, fluorohydroquinone, 

chlorohydroquinone, bromohydroquinone, 2′,5′-dihydroxyacetophenone, ethyl 2,5-

dihydroxybenzoate, 3-methylcatechol, 4-methylcatechol, 3-methoxycatechol, and 1,2-

dihydroxynaphthalene – the results of these reactions were generally unsuccessful, 
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providing a vast mixture of products (based on GC-MS and TLC analyses). One reaction 

was successful, however; the laccase-catalyzed coupling of 19 with 2j yielded product 20 

(Figure 80), a compound that possesses tuberculostatic potential and is also an important 

structural moiety present in compounds that exhibit potent antibacterial and antifungal 

activities.
[350-351]

 A possible reason for the success in achieving a desired product when 

compound 2j was used may be the increased stability of the 1,4-naphthoquinone 

intermediate compared to less substituted 1,4-quinones. 

 

 

Figure 80. Laccase-catalyzed coupling of cysteamine (19) with 1,4-naphthohydroquinone (2j). 

Reaction conditions: 5 eq. (2.50 mmol) 19, 1 eq. (0.50 mmol) 2j, 50 U laccase, 8.5 mL 0.10 M sodium 

acetate buffer pH 5.0 : 1.5 mL MeOH, rt, 12 h. 

 

A proposed reaction mechanism for the laccase-catalyzed coupling of 19 with 2j 

is provided in Figure 81. First, laccases oxidize 2j to the corresponding 1,4-quinone 5j, 

which is followed by addition of sulfur to an alkene carbon. Following subsequent 

tautomerization and oxidation, the nitrogen then adds to the neighboring alkene carbon, 

forming a six-membered heterocyclic ring. After another tautomerization and final 

oxidation, product 20 is reached. From this result, a difference in reactivity of the 

aliphatic amino group of 19 and the aromatic amino group of 14 towards nucleophilic 

addition to 1,4-naphthoquinone is observed. This difference in reactivity may be 

rationalized by the differences in basicity of the amino groups. The pKb of the aromatic 

amino group of 14 is 9.49, whereas the pKb of the aliphatic amino group of 19 is 3.19.
[352]
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Thus, in the aqueous reaction medium, the amino group of 19 is predominantly in its 

cationic form, rendering it less nucleophilic and less reactive than the aromatic amino 

group of 14, which is mostly in its neutral form. The increased nucleophilicity of the 

amino group of 14 is what allows it to rapidly react with the carbonyl carbon of a 1,4-

naphthoquinone, whereas for 19, the sulfur adds first to an alkene carbon. 

 

 

Figure 81. Reaction mechanism for the laccase-catalyzed coupling of naphthohydroquinone (2j) with 

cysteamine (19). 

 

The presented synthetic protocol for the preparation of phenothiazones offers an 

ecofriendly alternative to the synthesis of these important compounds, further progressing 

sustainability within the field of chemical synthesis. The process addresses many of the 

principles of green chemistry, such as waste prevention, atom economy, catalysis 

(laccases), benign solvents (aqueous solvent system), renewable feedstocks (1,4-quinones 

and hydroquinones are biomass derived), and a safe and energy efficient synthetic 

procedure. Using the reaction of 14 with 5b (Method D) for the synthesis of 15b as an 

example, green chemistry can be quantified. The E factor was calculated to be 17.7, 
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which falls toward the lower limit expected for fine chemical syntheses,
[19]

 while the 

atom economy of the reaction is also very good, calculated as 86%, as is the space time 

yield, calculated to be 0.005 mol x L
-1

 x h
-1

. 

6.4 Conclusions 

In summary, an environmentally friendly approach for the synthesis of 

phenothiazones and related structures facilitated by laccases has been developed. By 

coupling 1,4-quinones with 2-aminothiophenol in an aqueous reaction medium in the 

presence of laccases, the yields of phenothiazones can be substantially increased 

compared to when laccases are not present or the 1,4-quinones are generated in situ via 

laccase-catalyzed oxidation of the corresponding hydroquinone. Furthermore, a 

difference in reactivity between aromatic and aliphatic amines toward nucleophilic 

addition to 1,4-naphthoquinone was also observed. This study adds to the ever-growing 

toolkit of enzyme assisted processes in chemical synthesis, aiding in the increasing global 

effort of promoting sustainability within the field. 
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CHAPTER 7. LACCASE-MEDIATED SYNTHESIS OF LIGNIN-

CORE HYPERBRANCHED COPOLYMERS 

7.1 Introduction 

Modern society has traditionally been based around a linear economy. The vast 

majority of chemicals and materials used to manufacture consumer products are derived 

from non-renewable petroleum resources, and once these commodities have been 

consumed, they are more often than not simply discarded into overflowing landfills or 

incinerated, the latter being a contributor to greenhouse gas emissions. However, due to 

the ever-growing concerns about the future welfare of the environment in which we 

inhabit, there has been a collaborative global effort to develop a more sustainable circular 

economy. Under this paradigm, raw materials and chemicals used for the manufacture of 

consumer goods will originate from renewable resources and be designed for reuse, 

recycle, or biodegradability.
[353]

 In this manner, the entire process, from manufacture to 

degradation, is almost carbon neutral and will thus only contribute a minor portion to 

society’s carbon footprint. 

The concept of utilizing lignocellulosic biomass, and in particular lignin, as an 

alternative sustainable raw material for the production of chemicals, materials, and fuels 

was discussed in Chapter 2.5, Also discussed was the application of laccases in the 

copolymerization of lignin with a variety of monomers and polymers for the synthesis of 

novel biomaterials that have found applications in adhesives, fillers, and plastics. 

Over the past few years, there has been an increase in research within the field of 

hyperbranched polymers due to their desirable properties, such as high functionality, high 
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solubility, and low viscosity.
[354]

 Relating to this, using lignin as a core polymer and 

branching out on its surface provides a promising strategy to synthesize novel 

biomaterials from lignin. Kai and colleagues (2016) have developed a series of lignin-

core supramolecular hyperbranched polymers by functionalizing the surface of lignin 

with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via atom transfer radical 

polymerization (ATRP) followed by combination with α-cyclodextrin.
[252]

 The produced 

hydrogels exhibit many promising properties and may have potential application within 

the biomedical field. The current study aims to develop a lignin-core hyperbranched 

copolymer by employing laccases to continuously graft small molecules onto the surface 

of kraft lignin. Building on the research developed in the previous three chapters, 

particularly Chapter 2, where the successful coupling of dithiols and hydroquinones via a 

laccase-catalyzed thiol-Michael addition was achieved,
[355]

 the current study applies this 

fundamental laccase-catalyzed coupling chemistry for the synthesis of lignin-core 

hyperbranched copolymers (LCHCs) by combining kraft lignin with methylhydroquinone 

and a trithiol mediated by laccase catalysis. 

7.2 Experimental 

7.2.1 Materials 

Laccases from the white-rot fungus Trametes villosa expressed in an Aspergillus 

host (NOVO NS51002) were appreciatively donated by Novo Nordisk Biochem (now 

Novozymes), Franklinton, North Carolina, USA. Southern pine softwood kraft lignin, 

isolated via the LignoBoost process, was donated by Domtar, Plymouth, USA, and was 

purified prior to use. Endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) was 
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purchased from Alfa Aesar. All other reagents and solvents were purchased from Sigma-

Aldrich and were used as received, except chloroform and dioxane, which were distilled 

just prior to use. Tris(2-mercaptoethyl)amine was synthesized. Nitrogen gas was 

purchased from Airgas and was dried using a Drierite™ gas-drying unit (Sigma-Aldrich). 

7.2.2 Enzyme Assay 

Full experimental procedures regarding laccase activity measurements are 

detailed in Chapter 3.2.1. 

7.2.3 Lignin Purification 

Full experimental procedures regarding lignin purification are detailed in Chapter 

3.2.5. 

7.2.4 Synthesis and Characterization of Tris(2-mercaptoethyl)amine 

Full experimental procedures regarding the synthesis of tris(2-

mercaptoethyl)amine are detailed in Chapter 3.2.6. Characterization data of tris(2-

mercaptoethyl)amine is consistent with that reported in the literature. Colorless viscous 

liquid; 
1
H NMR (DMSO-d6): δ 2.33 (s, 3H, SH), 2.57 (t, 6H, CH2), 2.67 (t, 6H, CH2) 

ppm; 
13

C NMR (DMSO-d6): δ 22.01, 56.41 ppm; m/z 197, 150 (100%), 90, 61. 

7.2.5 Laccase-Mediated Synthesis of Lignin-Core Hyperbranched Copolymers 

Full experimental procedures regarding the laccase-mediated synthesis of lignin-

core hyperbranched copolymers (LCHCs) are detailed in Chapter 3.2.7. 
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7.2.6 Analytical Procedures 

The purified kraft lignin and synthesized LCHCs were subjected to the following 

analyses:
 1

H NMR, 
13

C NMR, 
1
H-

13
C HMBC NMR, 

13
C DEPT-135 NMR, 

31
P NMR, 

FTIR, GPC, TGA, DSC, SEM, and elemental analysis. Detailed procedures, including 

experimental parameters, for each of these analyses are provided in Chapter 3.3. 

7.3 Results and Discussion 

The use of laccases for the copolymerization of lignin with both low molecular 

weight compounds and other polymers has proved to be a successful strategy for lignin 

functionalization in recent years. Furthermore, the use of lignin as a core macromolecular 

scaffold for which hyperbranched polymers can be constructed upon has only just been 

established in the past few years and presents an exciting new route for lignin 

valorization.
[252, 356]

 With both these in mind, it was viewed as a great opportunity to 

synthesize LCHCs via laccase-assisted grafting of small molecules onto lignin. 

For this study to be successful, it was important to select an appropriate lignin that 

would be conducive to laccase-assisted functionalization. An industrial softwood kraft 

lignin was decided upon for two main reasons: 1) kraft lignin is highly abundant as it is 

produced in the millions of tons by the pulp and paper industry as a by-product of the 

kraft pulping process, and 2) softwood lignins are composed of primarily guaiacyl 

units,
[249]

 which, unlike syringyl units found in hardwood lignins, contain a vacant 

position on the aromatic ring, which is essential for significant grafting to occur. 
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7.3.1 Purified Kraft Lignin Molecular Weight Data and Structural Characterization 

The obtained industrial softwood kraft lignin was treated prior to use to remove 

any trace metals, extractives, and remaining carbohydrates. Molecular weight distribution 

data for the purified kraft lignin was obtained via GPC. Values for number average 

molecular weight (Mn), weight average molecular weight (Mw), and polydispersity index 

(PDI) are given in Table 10. The Mn and Mw were quite small, with values of 993 g/mol 

and 2,352 g/mol, respectively, with the latter equating to approximately 13 monolignol 

units per lignin polymer, while the PDI was also quite narrow, yielding a value of 2.37. 

Table 10. Molecular weight distribution data of purified kraft lignin.
a
 

 

Mn Mw PDI 

993 2,352 2.37 
a
 Mn = number average molecular weight (g/mol); Mw = weight average molecular weight (g/mol); PDI = 

polydispersity index 

 

 

 Structural features of the purified kraft lignin were elucidated via various 

spectroscopic techniques. The 
1
H and 

13
C NMR spectra (Figure 82) show significant 

amounts of methoxyl protons and carbons at chemical shifts of 3.79 ppm and 55.64 ppm, 

respectively, which are typical of softwood kraft lignins.
[357]

 The 
1
H NMR spectrum 

revealed signals for aromatic protons centered around 6.77 ppm and a broad peak for 

phenolic protons centered around 8.64 ppm. The FTIR spectrum (Figure 83) also displays 

a prominent O-H stretching absorption in the range of 3150-3550 cm
-1

. Quantitative 
31

P 

NMR spectroscopy is another invaluable tool to analyze the abundance of different types 

of hydroxyl groups present in lignin following derivatization with TMDP according to 

the reaction shown in Figure 84. The quantitative 
31

P NMR spectrum is displayed in 
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a) 

 
b) 

 

Figure 82. a) 
1
H NMR spectrum and b) 

13
C NMR spectrum of purified kraft lignin. 

 

Figure 85 and the various types of hydroxyl groups have been quantified using NHND as 

an internal standard (Table 11). As can be seen in Table 11, the guaiacyl hydroxyl group 

is the most abundant with 2.06 mmol/g lignin, while there were also substantial amounts 

of C5 condensed and aliphatic hydroxyl groups, which are characteristic of alkali-

processed softwood lignins.
[358]
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Figure 83. FTIR spectrum of purified kraft lignin. 

 

 

 

Figure 84. Phosphitylation of lignin with TMDP. 

 

 

Figure 85. 
31

P NMR spectrum of purified kraft lignin. 
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Table 11. Quantitative hydroxyl group content for purified kraft lignin based on 
31

P NMR analysis. 

 

Hydroxyl Group mmol/g Lignin 

COOH 0.31 

p-Hydroxy phenyl OH 0.12 

Guaiacyl OH 2.06 

C5 Condensed OH 1.84 

Aliphatic OH 1.99 

 

 

7.3.2 Laccase-Mediated Synthesis of Lignin-Core Hyperbranched Copolymers 

Based on research conducted in the previous chapters, thiols were identified as 

good nucleophiles for the Michael-addition reaction with laccase-generated para-

quinones. Thus, the synthesis of LCHCs was attempted utilizing this fundamental 

laccase-catalyzed coupling chemistry. Methylhydroquinone (2d) was selected as the 

quinone precursor because it contains three vacant positions for potential nucleophilic 

addition and the methyl group allows for facile detection of the hydroquinone monomer 

within the copolymer via NMR spectroscopic analysis. A trithiol was selected as a prime 

bridging reagent for the synthesis of LCHCs because the thiol groups add rapidly and 

reliably to in situ generated para-quinones. Thus, the synthesis of LCHCs proceeded 

using purified kraft lignin, methylhydroquinone (2d), and tris(2-mercaptoethyl)amine 

(21) as the components and laccases as the catalysts.  

The reaction was conducted at 50°C in an aqueous phosphate buffer at pH 8.0 

with 20% dioxane (v:v) as cosolvent to ensure solubility of the lignin. A proposed 

mechanism for the formation of LCHCs is provided in Figure 86. As can be seen, 

laccases oxidize both lignin and 2d to generate phenoxy radicals, which can couple with 

one another via either C-C or C-O bond formation. This is followed by laccase-catalyzed 
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oxidation of the methylhydroquinone moiety to produce a para-quinone, which 

subsequently undergoes nucleophilic addition by 21. The remaining free thiols are then 

capable of reacting with laccase-generated para-quinones that may be present in the 

reaction mixture, and the laccase-catalyzed polymerization continues. While the 

presented reaction mechanism represents an idealized scenario, it must be mentioned that 

other mechanistic routes may occur, such as radical-radical C-C or C-O couplings 

between 2d radicals or sulfur-sulfur couplings between laccase-mediator generated sulfur 

radicals. 

 

Figure 86. Proposed reaction mechanism for the laccase-mediated synthesis of lignin-core 

hyperbranched copolymers. 

 

 The product that precipitated out of the reaction mixture was in the form of a 

thick brown paste, which was subsequently washed with deionized water and then 

dioxane to remove any unreacted lignin that may have also precipitated. Following 

drying in a vacuum oven at 30°C for 24 hours, the paste had hardened into a solid glossy 

material that was insoluble in organic solvents. It is likely that curing took place during 

the drying process, possibly due to the presence of reactive free thiol end groups, which 

has been known to occur for hyperbranched polymers synthesized with 21 and ethylene 

glycol diacrylate.
[283]

 Thus, it is likely that a network of LCHCs exists, such as that 
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illustrated in Figure 87, rather than discrete LCHCs. This is the likely cause of the lack of 

solubility of the synthesized LCHCs in organic solvents, which is not uncommon for 

lignin containing copolymers.
[356, 359-360]

 It is due to this insolubility that molecular weight 

data for the synthesized LCHCs could not be obtained via GPC analysis. 

 

 

Figure 87. Schematic of lignin-core hyperbranched copolymer network. 

 

7.3.3 Structural Characterization of Lignin-Core Hyperbranched Copolymers 

The lack of solubility of the copolymeric material in any organic solvent tested 

posed a serious challenge for structural analysis at the molecular level. However, upon 

grinding up the material and vigorously stirring in DMSO-d6 at 50°C for 6 hours, a dark 

cloudy mixture that was suitable for NMR analysis was obtained. NMR spectroscopic 

data provided insight into the possible structure of the copolymeric material, which is 

presented  in  Figure 88.  Comparing  the  
1
H NMR spectrum of the copolymeric material  
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Figure 88. Proposed structure of lignin-core hyperbranched copolymers. 

 

(Figure 89) with the 
1
H NMR spectra of its constituents – lignin (Figure 82), 

methylhydroquinone, and tris(2-mercaptoethyl)amine (Figure 90) – the structural features 

of each component could be identified and a full assignment of the spectrum was 

achieved. Furthermore, a broadening of the peaks in the 
1
H NMR spectrum, particularly 

of the phenolic protons dispersed around 8.31 ppm, aromatic protons in the range of 6.45-

6.70 ppm, the methylene protons at 2.85 ppm, and the methyl protons between 2.05-2.10 

ppm, is indicative of polymerization. The methoxy protons originating from lignin are 

still present at 3.72 ppm, albeit at a rather low intensity, while the S-H peak at 2.33 ppm 
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in Figure 90b is no longer present, indicating the successful Michael-addition of the thiol 

group. 

 

Figure 89. 
1
H NMR spectrum of lignin-core hyperbranched copolymers. 

 

Analysis of the 
13

C NMR data further aids in confirming the various structural 

features of the copolymeric material. As can be seen from the 
13

C NMR spectrum in 

Figure 91a, and by comparison with the 
13

C NMR spectra of the individual components 

(Figure 92), all the structural features of the various constituents can be identified and 

assigned. The degree of substitution of the carbon atoms, and therefore their origin, were 

confirmed via 
13

C DEPT-135 NMR analysis (Figure 91b). 

While the 1D NMR results provide evidence that all three components exist in 

polymer form within the copolymeric material, they do not provide any information 

about covalent linkages between each component, which is important to decipher whether 
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 a) 

 
 b) 

 

Figure 90. 
1
H NMR spectrum of a) methylhydroquinone, and b) tris(2-mercaptoethyl)amine. 

 

the material is just a simple blend of polymers or if it is a true copolymer. Therefore, it 

was necessary to analyze the copolymeric material via correlation spectroscopy, such as 

1
H-

13
C HMBC NMR. The HMBC spectrum of the copolymeric material (Figure 93a) 

displays a signal that correlates the proton peak at 2.91 ppm and the carbon peak at 

121.80 ppm, which is attributed to a 
3
J correlation between methylene protons of 21 with 

a quaternary aromatic carbon of 2d. Thus, this signal provides evidence of a covalent 

linkage between 21 and 2d. This assignment was further supported by evidence from the  
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a)  

 
 

b) 

 

Figure 91. a) 
13

C NMR spectrum, and b) 
13

C
 
DEPT-135 NMR spectrum of lignin-core hyperbranched 

copolymers. 
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a) 

 
 

 b) 

 

Figure 92. 
13

C NMR spectrum of a) methylhydroquinone, and b) tris(2-mercaptoethyl)amine. 

 
1
H-

13
C HMBC spectrum of the product of the reaction of 21 with methyl-1,4-quinone 

(5d) in the absence of laccases (Figure 93b), which displays the same signal. 

Unfortunately however, no covalent linkages between lignin and either of the other two 

components could be identified from the 
1
H-

13
C HMBC NMR spectrum, possibly due to 

the low amount of lignin in the copolymeric material or the 
1
H and 

13
C correlations were 

too great a range to be detected in an observable quantity by the HMBC experiment. 

a) 
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 b) 

 
 

Figure 93. 
1
H-

13
C HMBC spectrum of a) lignin-core hyperbranched copolymers, and b) product 

from the reaction of methyl-1,4-quinone with tris(2-mercaptoethyl)amine. 

 

 

7.3.4 Thermal Analysis 
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Thermal analysis of the copolymeric material via TGA not only provides useful 

information regarding the thermal properties of the material, but in this scenario, may 

also provide structural insight. By inspecting the TGA curves in Figure 94, it can be 

noticed that the curve for the copolymeric material is very clean, in that the material 

exhibits a distinct onset temperature for thermal degradation. A clean curve such as this 

would imply that the material is a uniform copolymer network with covalent linkages 

rather than a blend of polymers, as the latter would most likely display multiple 

degradation temperatures for each of the individual components. Furthermore, the curve 

for kraft lignin and the curve for the copolymeric material are quite different, and no sign 

of any free lignin within the copolymeric material can be detected. 

 

Figure 94. TGA curve of pure kraft lignin (blue) and copolymeric material (red). 

 

Pertinent data extracted from the curves are given in Table 12. Based on the 

decomposition temperature, Td, and peak derivative temperature, Tp (temperature at 
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which greatest mass loss occurs), it can be inferred that the copolymeric material 

possesses greater thermostability compared to the purified kraft lignin, with Td and Tp 

values of 238°C and 266°C, respectively, for the copolymeric material, which are 

approximately 100°C higher than those obtained for the purified kraft lignin. Comparison 

of these values with other LCHCs synthesized elsewhere, such as lignin copolymerized 

with PEGMA, reveals that the copolymeric material synthesized in this study is less 

thermally stable, with Tp values for the lignin-PEGMA hyperbranched copolymers 

approximately 150°C higher than the value obtained for the material produced in the 

current study.
[252]

 However, it must be noted that the Mw of the starting lignin used for the 

synthesis of lignin-PEGMA hyperbranched copolymers is an order of magnitude larger 

than the Mw of the lignin used in this study, which may be a likely cause for the increased 

thermostability of the lignin-PEGMA hyperbranched copolymers. The mass percent 

remaining at 500°C (i.e. char yield) was significantly less for the copolymeric material 

compared to the purified kraft lignin, 22% as opposed to 52%, which is expected due to 

the lower lignin content in the copolymeric material. 

Table 12. Thermal analysis data of purified kraft lignin and copolymeric material. 

 

 Td (°C)
a,b 

Tp (°C)
a 

Tg (°C)
c 

% Mass at 500°C
a 

Pure kraft lignin 152 166 - 52 

Copolymeric material 238 266 50-60 22 
a
 Determined via TGA; 

b
 Td was measured as temperature at which mass % is 5% less than measured at 

50°C; 
c
 Determined via DSC 

 

 

The glass transition, Tg, range for the copolymeric material obtained from the 

DSC curve (Figure 95) was measured to be 50-60°C, while no Tg range could be 

determined accurately for the purified kraft lignin based on DSC measurements, which is 
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not surprising as it has been documented that while lignin in its native state within wood 

exhibits a Tg range, kraft lignin in its purified form does not exhibit a distinctive Tg.
[254]

 

The Tg range obtained for the copolymeric material is comparable to Tg values obtained 

for lignin based thermal-responsive elastomers that were synthesized by copolymerizing 

lignin with hyperbranched poly(ester-amine-amide).
[356]

 

 

Figure 95. DSC curve of copolymeric material. 

 

7.3.5 Elemental Analysis of Lignin-Core Hyperbranched Copolymers 

The results for C, H, N, and S content of LCHCs obtained via elemental analysis 

are presented in Table 13. Oxygen content was calculated by difference. Based on the 

nitrogen content, the tris(2-mercaptoethyl)amine mass component of the copolymeric 

material was calculated as follows: 
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𝑀𝑎𝑠𝑠 % 𝑁 𝑖𝑛 𝑡𝑟𝑖𝑠(2 − 𝑚𝑒𝑟𝑐𝑎𝑝𝑡𝑜𝑒𝑡ℎ𝑦𝑙)𝑎𝑚𝑖𝑛𝑒

=  
𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑁 (

𝑔
𝑚𝑜𝑙

)

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑖𝑠(2 − 𝑚𝑒𝑟𝑐𝑎𝑝𝑡𝑜𝑒𝑡ℎ𝑦𝑙)𝑎𝑚𝑖𝑛𝑒 (
𝑔

𝑚𝑜𝑙
)

 × 100%

=
14.00

197.39
 × 100% = 7.09%  

Assuming that all nitrogen in the copolymeric material originates from tris(2-

mercaptoethyl)amine, then: 

𝑀𝑎𝑠𝑠 % 𝑡𝑟𝑖𝑠(2 − 𝑚𝑒𝑟𝑐𝑎𝑝𝑡𝑜𝑒𝑡ℎ𝑦𝑙)𝑎𝑚𝑖𝑛𝑒 𝑖𝑛 𝑐𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟

=  
𝑚𝑎𝑠𝑠 % 𝑁 𝑖𝑛 𝑐𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝑚𝑎𝑠𝑠 % 𝑁 𝑖𝑛 𝑡𝑟𝑖𝑠(2 − 𝑚𝑒𝑟𝑐𝑎𝑝𝑡𝑜𝑒𝑡ℎ𝑦𝑙)𝑎𝑚𝑖𝑛𝑒
 × 100% =

4.64

7.09
 × 100%

= 65.44% 

Thus, the remaining 35% of the material is composed of lignin and methylhydroquinone; 

however, it is not possible to distinguish between the two based on elemental analysis. 

Table 13. Elemental analysis data of lignin-core hyperbranched copolymer material. 

 

Element Mass % 

C 48.86 

H 6.15 

N 4.64 

S 30.17 

O 10.18
a
 

a
 Calculated by difference 

7.3.6 Surface Characterization 

By visual inspection of the copolymeric material it can be seen that the material 

possesses a glossy surface (Figure 96a), which has also been observed for other lignin 

containing copolymers.
[356, 359]

 Additionally, it is noticed that the material takes on the 

characteristic dark brown color of lignin. Delving further into the fine details of the 

surface  structure,  examination  of  the  SEM  images  (Figure 96)   uncovers   a   smooth  
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a)      b)       

  
 

c)      d) 

  
 

e)      f) 

  

Figure 96. a) Image of the copolymeric material; b-f) SEM images of pure kraft lignin (b), and 

copolymeric material - top view (c,d), fracture line (e,f). 

 

homogeneous surface with crater like structures dispersed throughout, while an extreme 

close-up view reveals the perfectly spherical shape of one such crater (Figure 96d), which 
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seems to be protruding from the surface. The homogeneity of the material seems to 

extend throughout the bulk material, as witnessed by SEM images of the fracture line 

(Figure 96e,f). This is interesting given the porous nature of the kraft lignin (Figure 96b), 

which correlates well with the role of native lignin in wood as a means for water 

conduction. The lack of resemblance of any porous structure within the copolymeric 

material may be due to the low overall lignin content, which, given that tris(2-

mercaptoethyl)amine accounts for 65% of the material’s mass (based on elemental 

analysis), realistically may only account for about 10% of the material’s mass (the exact 

amount of lignin could not be accurately determined because it is impossible to 

differentiate between methylhydroquinone and lignin based on elemental analysis data). 

The morphology of the material, which lacks any order or orientation, is in contrast to a 

laccase-generated lignin-isocyanate copolymer, which shows a distinct fibrillar structure 

with the fibers oriented in a uniform direction.
[264] 

7.4 Conclusions 

This study demonstrates the potential to synthesize LCHCs via laccase-catalyzed 

coupling chemistry. It has been stated previously that the vast majority of hyperbranched 

polymers synthesized to date are of laboratory interest rather than commercial usage, but 

value added products are gradually being developed.
[354]

 The current study is a 

preliminary study, and future work aimed at developing practical materials utilizing this 

chemistry may focus on different monomer selection so as to produce a material with 

better thermal or mechanical properties. Addition of an external plasticizer into the 

formulation, such as polybutadiene, which has been combined with lignin in the past for 

the production of lignin-based thermoplastic, is one potential method that could be used 
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to improve the physical properties of the material.
[360]

 Also, given that the material 

synthesized in this study exists as a paste before drying, it may be worthwhile evaluating 

its adhesives properties, as it has been demonstrated in the past that lignin copolymerized 

with other small molecules or polymers via laccase catalysis produces resins that can be 

used as adhesives for particleboards and wool floor coverings.
[266-267]

 Nevertheless, this 

study provides evidence that laccases can be employed for the synthesis of LCHCs under 

sustainable conditions and provides yet another novel route for lignin valorization. 
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CHAPTER 8. OVERALL CONCLUSIONS 

To recap, the main objectives of this dissertation research were divided into two 

parts: part one was aimed at developing fundamental laccase-catalyzed coupling 

chemistry via novel C-C, C-N, and C-S bond forming reactions for the synthesis of new 

and existing compounds under environmentally benign conditions so as to provide a 

green solution in organic synthesis, while part two of the dissertation research focused on 

applying the fundamental laccase-catalyzed coupling chemistry to the functionalization 

of lignin for the development of novel lignin-based biomaterials and to establish an 

alternative route for lignin valorization within the biorefinery. The content in Chapters 4-

6 are devoted to developing the fundamental laccase-catalyzed coupling chemistry, while 

Chapter 7 deals with the application of the developed laccase-catalyzed coupling 

chemistry to the functionalization of lignin. 

Along the way of developing the new laccase-catalyzed bond forming reactions, 

many novel and existing compounds were synthesized. Some of the compounds are 

known to be important biologically active molecules, such as the phenothiazones 

(Chapter 6), which were synthesized in an aqueous solvent system for the first time, 

while others, such as the benzylic nitriles and 2,3-ethylenedithio-1,4-quinones (Chapters 

4 and 5, respectively), are prominent structural moieties in active pharmaceutical 

ingredients and present as building blocks in the synthesis of therapeutic compounds. 

Furthermore, regarding the synthesis of 2,3-ethylenedithio-1,4-quinones and 

phenothiazones, as well as the small cyclic disulfides that were inadvertently synthesized 
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in Chapter 5, this dissertation research has made significant pioneering contributions to 

the laccases-catalyzed syntheses of heterocyclic compounds.  

Much knowledge was gained throughout the course of this dissertation research 

regarding differences in reactivities of in situ generated ortho- and para-quinones and 

how this is a vital factor in determining the success of a reaction. No products were 

observed for any of the reactions performed in this dissertation research that involved 

coupling the selected nucleophiles with catechols under laccase catalysis. Given that the 

reactions were successful in forming coupling products when hydroquinones were 

reacted with the same nucleophiles under laccase catalysis, there is an obvious difference 

in reactivity between the laccase-generated ortho-quinones and para-quinones. Given 

that in all chemical transformations there exists a battle of competing rates, such that in 

the current examples a successful reaction is contingent upon the nucleophile being able 

to react rapidly enough with the in situ generated quinone before the quinone decomposes 

or polymerizes, it may be that the laccase-generated ortho-quinones decompose or 

polymerize at such rapid rates that they are not present in the reaction medium for a long 

enough period to allow for nucleophilic addition. In comparison, based on the current 

research, the para-quinones seem to be much more stable than the ortho-quinones as they 

persist in the reaction medium for an ample period to react with the tested nucleophiles 

and form coupling products.  

A similar argument can be made for how the steric and electronic properties of the 

hydroquinone substituents affect the stability of the in situ para-quinone and subsequent 

product yields. Hydroquinones bearing electron-withdrawing substituents, such as 

halogens, generally provided very low product yields or no coupling products, with the 
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exception of the carbonyl-substituted hydroquinones 2,5-dihydroxyacetophenone and 

ethyl 2,5-dihydroxybenzoate in the laccase-catalyzed reactions with benzoylacetonitrile, 

while hydroquinones bearing electron-donating substituents generally provided coupling 

products in good yields. It seems as though the electron-withdrawing nature of certain 

substituents destabilizes the laccase-generated para-quinones, which may be the cause of 

low product yields. In contrast, hydroquinones containing bulky electron-donating 

substituents invariably provided moderate to good product yields, particularly 1,4-

naphthohydroquinone. The electron-donating nature of these substituents allow for a 

more stable in situ para-quinone, while the added steric hindrance of bulky substituents 

may reduce the likelihood of competing polymerization reactions occurring. 

  Much insight into how certain reaction conditions and electronic properties of 

hydroquinone substituents impacted the rate and extent of laccase catalysis was also 

gained during the course of this research. Firstly, conditions such as temperature, solvent, 

and pH of solvent, greatly impacted laccase catalysis. By analyzing reaction mixtures via 

TLC and GC-MS at various periods during the course of the reactions, it was noticed 

that, for a given laccase substrate, the extent and rate at which substrate was consumed 

was highly dependent on the aforementioned reaction conditions. Invariably, substrate 

oxidation by laccases occurred at a much more rapid rate at slightly elevated 

temperatures (40-50°C), in an aqueous buffer at mildly acidic pH values (5.0), which is 

consistent with the reaction conditions for optimum catalytic efficiency for fungal 

laccases.
[85]

 At alkaline pH values and at ambient temperature, substrate oxidation 

generally took longer or a greater amount of laccases were required to achieve the same 

extent of oxidation. Regarding hydroquinone substituent effects, hydroquinones 



184 

 

containing electron-donating substituents were oxidized much more rapidly or required 

lesser amount of laccases to be completely oxidized compared to hydroquinones bearing 

electron-withdrawing substituents (refer to the results in Table 4). This is consistent with 

trends on how the electronic properties of substituents affect the redox potentials of 

hydroquinones and how substrate redox potentials affect the rate and extent to which they 

are oxidized by laccases: as the electron-withdrawing nature of the substituent increases, 

so too does the redox potential of the hydroquinone, and as the redox potential of the 

substrate increases, oxidation by laccases becomes less energetically favorable, resulting 

in a decreased rate or extent of reaction.
[117]

 

 Insights into the potential modes of inhibition of laccases were unraveled, as the 

results of Chapter 5 demonstrate that the laccase-catalyzed couplings of hydroquinones 

with a small sulfhydryl compound can be successfully achieved in spite of research that 

suggests small sulfhydryl compounds are inhibitors of laccases. In past laccase catalytic 

studies involving thiols, it seems as though laccases are not oxidizing the substrate, which 

can be easily mistaken for inhibition, proposedly by binding to the TNC and inhibiting 

internal electron transfer; however, in actuality, this is not the case. The current 

dissertation research supports the findings of Johannes and Majcherczyk (2000) who 

discovered that small sulfhydryl compounds are not true inhibitors of laccases, rather, 

small sulfhydryl compounds are easily oxidized by laccase-generated radicals, which act 

as mediators to oxidize the sulfhydryl compounds, in turn regenerating the initial laccase 

substrate.
[125]

 Based on classical enzyme activity assays that measure either the 

consumption of substrate or accumulation of product, it is easy to understand how this 

misconception came about. 
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LMS chemistry proved to be ubiquitous in laccase-catalyzed processes, as 

witnessed in the degradation of benzoylacetonitrile (Chapter 4) and the S-S coupling 

reactions that resulted in the formation of small cyclic sulfides (Chapter 5). This should 

come as no surprise given the highly reactive nature of radicals and it seems as though 

this issue cannot be circumvented given that laccases generate phenoxy radicals upon 

oxidation of phenolic compounds. The question is whether the LMS is a friend or foe? In 

the case of the laccase-catalyzed syntheses of benzylic nitriles in Chapter 4, LMS 

chemistry lead to the degradation of benzoylacetonitrile, which significantly reduced 

product yields of benzylic nitriles. The same can be said for the reactions performed in 

Chapter 5, as the radical-radical coupling of sulfur radicals of 1,2-ethanedithiol also 

reduced product yields of 2,3-ethylenedithio-1,4-quinones; however, that study 

demonstrated that it is possible to synthesize small cyclic sulfides via LMS. Thus, it 

seems as though in some situations LMS chemistry can be detrimental to the productivity 

of the reaction protocol, while in others, it can be a useful way to synthesize novel 

compounds. It comes down to experimenting with the reaction conditions to devise a set 

of conditions that will provide the desired outcome.  

The developed fundamental laccase-catalyzed coupling chemistry was able to be 

successfully utilized for the functionalization of purified kraft lignin. The laccase-

mediated synthesis of LCHCs utilizing laccase-catalyzed couplings between lignin, 

methylhydroquinone, and a trithiol provides another route for lignin valorization and a 

means to synthesize novel lignin-derived biomaterials. Evidence seems to suggest the 

formation of a copolymeric network rather than distinct copolymers, resulting in the 

creation of a brittle, glossy material. These preliminary results indicate that it is possible 
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to functionalize lignin using this type of chemistry; however, additional research needs to 

be conducted into developing a material that is suitable for use in a specific application. 

In closing, laccases have proved themselves to be important biotechnological 

tools with widespread applicability. The types of chemical transformations that can be 

accomplished are vast and the types of products and materials that can be produced are of 

practical value, all of which is achieved under environmentally benign conditions. The 

use of laccases as a foundation for building this dissertation research has provided a truly 

remarkable and fruitful journey and has greatly aided in accomplishing the research goal 

of developing and promoting a more sustainable chemical industry. 
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CHAPTER 9. RECOMMENDATIONS FOR FUTURE WORK 

While this dissertation research has aided in expanding the synthetic utility of 

laccases to advance sustainability within the chemical industry, there still exists the 

opportunity to build on this research even further. Regarding the types of chemical 

transformations that can be effected, new laccase-catalyzed bond-forming reactions are 

consistently being reported in the literature. Perhaps one method to aid in expanding the 

scope of laccase-catalyzed processes is to combine the oxidizing capabilities of laccases 

with transition metal catalysts. For example, very recently and for the first time, laccases 

have been paired with palladium and ruthenium transition metal complexes for the 

selective oxidation of benzylic alcohols and olefins, respectively.
[361-362]

 This pioneering 

work is just one example of the potential novel uses of laccases in the field of synthetic 

chemistry, thus it will be exciting to witness innovative developments in this field in the 

near future. 

Although the use of laccases as biotechnological tools for industrial purposes is 

promising, there exist challenges facing the commercialization of laccase-mediated 

processes, such as the lack of availability of affordable, highly active enzymes, and 

separation of enzyme from the reaction medium after process completion. To combat 

these problems, advances in protein engineering have made it possible for the 

manufacture of thermostable laccases that are tolerant to organic solvents and ionic 

liquids, which enhances their suitability for industrial applications.
[363-364]

 Also, recent 

research has shown that by combining laccases with Au nanoparticles to formulate 

laccase-Au hybrids, the laccase activity can be increased dramatically.
[365]

 Advances in 
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enzyme immobilization technology, such as cross-linked enzyme aggregates and 

adsorption onto multi-walled carbon nanotubes,
[330, 366]

 provide enhanced enzyme 

operational and storage stabilities, as well as provide a facile means to separate and reuse 

the enzyme.
[367-368]

 Furthermore, combining laccases with sonochemistry has shown to 

reduce the consumption of chemicals and energy, thereby providing a cost effective 

means to upscale laccase-catalyzed processes to an industrial scale.
[369]

 These examples 

are just a few of the many ways scientists and engineers are working to provide 

industrially practical laccase biotechnology. 

Knowing that laccase-catalyzed processes inherently involve radicals, particularly 

phenoxy radicals, another relevant research topic may involve thermodynamic and 

kinetic studies on the fate of the laccase-generated phenoxy radicals. Aspects to consider 

might include the relevant likelihood of the phenoxy radicals undergoing 

disproportionation, dimerization, polymerization, or hydrogen-atom abstraction of 

another compound. Given that the success of laccase-catalyzed coupling reactions 

involving hydroquinones and catechols is critically dependent on the laccase-generated 

phenoxy radicals undergoing disproportionation to yield quinones, information regarding 

the likelihood of disproportionation occurring as opposed to competing processes, such as 

dimerization, polymerization, or hydrogen-atom abstraction, and under what conditions, 

would be extremely useful to the synthetic chemist when devising a synthetic plan and in 

assessing the potential outcome of such a synthesis. 

Enzymatic processes, particularly on an industrial scale, are typically 

accompanied by well-defined kinetic analyses; however, kinetic studies on laccase-

catalyzed processes involving hydroquinones and catechols are anything but trivial. 
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Kinetic studies rely on the ability to measure a change in concentration of a chemical 

species over time, typically either the depletion of a substrate or the accumulation of a 

product. In the case of laccase-catalyzed processes involving hydroquinones and 

catechols, the product of laccase oxidation is a phenoxy radical, which is not stable 

enough to be quantified. Moreover, upon reacting further, the phenoxy radical does not 

just produce a single product; it could react to form a dimer or polymer, or undergo 

disproportionation with another phenoxy radical to yield a quinone and regenerate the 

original hydroquinone or catechol. Thus, neither the hydroquinone substrate nor the 

phenoxy radical product generated upon laccase oxidation can be quantified with a high 

degree of accuracy. Therefore, future research may focus on developing reliable methods 

to perform kinetic analyses on the abovementioned laccase-catalyzed processes. 

Regarding the laccase-mediated synthesis of LCHCs, future work should involve 

collaborating with materials scientists and engineers to develop a material that has 

superior physical and mechanical properties and is tailored for a particular application, 

such as an adhesive resin or a thermoplastic. The current dissertation research provides a 

pioneering framework on which to build on and proves that laccases can be used to 

successfully functionalize lignin and synthesize LCHCs. Whether the material produced 

in this dissertation is of practical value remains to be seen; however, its use as an 

adhesive in particleboard production should be assessed. 

The abovementioned recommendations for future research on the topic of laccase-

catalyzed processes highlight only a few of the potential research avenues, but the list 

could go on. Thus, laccases are truly enzymes that keep giving, and it will be exciting to 
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witness innovative ways in which laccases can continue to advance sustainability in the 

chemical industry and beyond. 
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APPENDIX A 

NMR, FTIR, AND MASS SPECTRA OF NEW COMPOUNDS 

 

Figure A1. 
1
H NMR spectrum of compound 6a. 

 

Figure A2. 
13

C NMR spectrum of compound 6a. 
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Figure A3. 
1
H-

13
C HMBC NMR spectrum of compound 6a. 

 

Figure A4. Mass spectrum of compound 6a. 
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Figure A5. 
1
H NMR spectrum of regioisomeric mixture of compounds 6d and 7d. 

 

Figure A6. 
13

C NMR spectrum of regioisomeric mixture of compounds 6d and 7d. 
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Figure A7. 
1
H-

13
C HMBC NMR spectrum of regioisomeric mixture of compounds 6d and 7d. 

 

Figure A8. Mass spectrum of regioisomeric mixture of compounds 6d and 7d. 
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Figure A9. 
1
H NMR spectrum of compound 6h. 

 

Figure A10. 
13

C NMR spectrum of compound 6h. 
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Figure A11. Mass spectrum of compound 6h. 
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Figure A12. 
1
H NMR spectrum of compound 8g. 

 

Figure A13. 
13

C NMR spectrum of compound 8g. 



198 

 

 

Figure A14. 
1
H-

13
C HMBC NMR spectrum of compound 8g. 

 

Figure A15. Mass spectrum of compound 8g. 
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Figure A16. 
1
H NMR spectrum of compound 10b. 

 

Figure A17. 
13

C NMR spectrum of compound 10b. 
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Figure A18. FTIR spectrum of compound 10b. 

 

 

 

Figure A19. Mass spectrum of compound 10b. 
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Figure A20. 
1
H NMR spectrum of compound 10c. 

 

Figure A21. 
13

C NMR spectrum of compound 10c. 
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Figure A22. FTIR spectrum of compound 10c. 

 

 

 

Figure A23. Mass spectrum of compound 10c. 
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Figure A24. 
1
H NMR spectrum of compound 10e. 

 

Figure A25. 
13

C NMR spectrum of compound 10e. 
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Figure A26. FTIR spectrum of compound 10e. 

 

 

 

Figure A27. Mass spectrum of compound 10e. 
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Figure A28. 
1
H NMR spectrum of compound 15c. 

 

Figure A29. 
13

C NMR spectrum of compound 15c. 
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Figure A30. FTIR spectrum of compound 15c. 

 

 

 

Figure A31. Mass spectrum of compound 15c. 
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