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[Abstract]

Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. 

However their couplings with flexoelectricity have been less understood. In this work we applied 

phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin 

structures in lead ziconate titanate (PZT) thin films. Local stress gradients were found to exist 

near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, 

resulting in polarization inclinations from either horizontal or normal orientation, polarization 

rotation angles deviated from 90° and consequently highly asymmetric a/c twin walls. By tuning 

the flexoelectric strengths in a reasonable range from first-principle calculations, we found that 

the transverse flexoelectric coefficient has a larger influence on the polarization rotation than 

longitudinal and shear coefficients. As polar rotations that commonly occur at compositional 

morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for 

further exploration of alternative strain-engineered polar rotations via flexoelectricity in 

ferroelectric thin films.
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Flexoelectricity, a ubiquitous property in most insulating materials describes the coupling 

between electric polarization and strain gradient.1, 2 Discovered several decades ago, 

flexoelectricity has long been neglected and less explored due to its small magnitude in bulk 

materials.3 Recent development of nanoscale technology has aroused interests in flexoelectricity 

due to the enhanced strain gradients and flexoelectric strengths in nanoscale thin films. These 

include the measurement of flexoelectric coefficients via experimental approaches 4, 5 and first 

principles calculations6, 7, the study of flexoelectric field induced mechanical switching 8-10, and 

the flexoelectric effect on ferroelectric domain patterning11. Large strain gradients are usually 

located near defect sites in ferroelectric thin films, such as oxygen vacancies, dislocations and 

domain walls, the latter of which has been long recognized to influence the ferroelectric 

properties. 12-14 Nevertheless the flexoelectric coupling with ferroelectric domain walls are less 

studied.15, 16 Recently Catalan et al. observed polarization rotation in lead titanite (PbTiO3) 

twined structure and attributed it to the flexoelectric effect.17 However direct evidences 

associating polarization rotations with flexoelectricity are still lacking; partly due to the 

complexity and uncertainties of the flexoelectric coefficients. Thoughts then arise naturally about 

the threshold flexoelectric strength for experimentally observable polarization rotations, how 

does each component of the flexoelectric coefficient tensors affect the rotations separately, and 

whether we can determine the flexoelectric coefficients by comparing the theoretical calculations 

with experiments. These concerns can hardly be addressed from the perspective of experimental 

approach. Therefore we employed phase-field simulations18 to study how flexoelectricity would 

influence the local strain/stress distribution, the polarization inclination and polarization rotations 

near a/c twin walls in ferroelectric thin films. 
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In the phase-field simulation of ferroelectric oxides, we take their paraelectric phase, 

which is typically of cubic symmetry as the reference state. The total free energy density of a 

ferroelectric crystal includes five energy contributions which are written as a function of 

polarization , strain , electric field ,and the gradient of and ,19
iP kl iE iP kl
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in which , , ,  and  represent the Landau-Ginzburg-Devonshire (LGD) free landf gradf elastf elecf flexof

energy density, the gradient energy density, the elastic energy density, the electrostatic energy 

density and the flexoelectric energy density respectively. The LGD free energy is written as a 6th 

order polynomial expansion of ,20
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in which are the landau coefficients and only is temperature dependent. The gradient energy  1

is introduced through the polarization gradient,
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in which  are the gradient energy coefficients. The elastic energy density is written as,21
ijklg
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where  is the elastic stiffness tensor, is the total strain and  is the eigenstrain induced by ijklc ij 0
ij

the spontaneous polarization . To consider the dipole-dipole interaction during ferroelectric iP

domain evolution, the electrostatic energy of a domain structure is introduced through,22
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where and are the applied electric field and depolarization field respectively. The iE d
iE

flexoelectric energy density in Eq. (1) can be expanded as,23
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in which  (unit: V) and (unit: Vm2N-1) are the flexocoupling coefficient (FCC) tensors, ijklf ijklF

which are related through . The driving force of  from the flexoelectric energy ijkl ijmn mnklf c F iP

density is calculated through,
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where  is called the flexoelectric field (unit: V/m). It should be noted that although the f
kE

flexoelectric field is very similar to the electric field, the latter of which is defined as the 

electrostatic driving force ,  they are different in that the flexoelectric field only elec / k kf P E   

couples with polarization evolution and does not directly act on the space charge migration, 
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while electric field does both.  For cubic symmetry the flexoelectric coefficient tensor has three 

independent components, i.e., , and .24-26 By using Voigt notation , 1111F 1122F 1221F 11 1111F F

 and , Eq. (7) can be expanded as, 12 1122F F 44 12212F F

                              (8-1)3 5 61 2
1 11 12 44

1 1 1 3 2

( ) ( )fE F F F
x x x x x

       
    

    

                               (8-2)3 62 1 4
2 11 12 44

2 2 2 1 3

( ) ( )fE F F F
x x x x x

      
    

    

                               (8-3)3 51 2 4
3 11 12 44

3 3 3 2 1

( ) ( )fE F F F
x x x x x
      

    
    

Finally the temporal evolution of the ferroelectric polarization is governed by the time-

dependent LGD equations, 19
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in which  is the position, t is the time, L is the kinetic coefficient related to the domain x

movement, and  is the total free energy. total
V
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In our simulations, we chose Pb(Zr0.2Ti0.8)O3 to preset the domain structure consisting of 

(100)a and (001)c domain variants as the model system (Fig. 1(a)). The film lies on the x-y plane 

with plane normal along z direction. The system is thus simplified into a two-dimensional (x-z) 

problem with a simulation size of 256Δx×64Δx and Δx =0.25nm. The thickness of the film and 

substrate are assumed to be 50Δx and 10Δx, representing a 12.5nm thick thin film. A semi-

implicit spectral method27 was employed to solve the time-dependent LGD equation with 
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periodical boundary conditions applied along the x direction and thin film boundary condition 

along the z direction. The epitaxial substrate strain was set to be zero along x and y directions. 

The gradient energy coefficients are set to be  while .28 11 110/ 0.6G G  10 -2 4
110 1.73 10 C m NG  

The flexocoupling coefficient (FCC) is chosen on the order of 10-11 C-1m3 based on literature.7 

The Landau coefficients, electrostrictive coefficients and elastic compliance constants of 

Pb(Zr0.2Ti0.8)O3 are collected from literature29-31. The background dielectric constant of PZT is εr 

≈5-7.32, 33 However to compare with experimental results from real samples, we used εr of 50 as 

suggested from literature.34

The equilibrium PZT twin structure without the flexoelectric effect consisted of a 

majority of (001)c domain variants, as shown in Fig. 1(a). The polarization orientations in three 

typical zoom-in regions at different film depths near the a/c twin walls (indicated by colored 

boxes in 1(a) are represented by the arrow plots in Fig. 1 (b) ~ (d). On the top surface the 

polarization rotations are symmetric (1b) and the domain walls are well defined in the width of 

~2.5nm. In the center (1c) and bottom layer (1d) of the film, the polarization rotations become 

sharper along one of the twin walls and smoother along the other, resulting in asymmetric twin 

walls with remarkable differences in wall widths. This is more clearly seen at the bottom surface, 

due to the substrate constraint at the film/substrate interface, which is gradually relaxed towards 

the top surface of the film. Notably the polarization orientations inside a/c domains remain 

horizontal/vertical away from the wall regions.

To investigate how the flexoelectric components (F11, F12 and F44) affect the PZT twin 

structure separately, we set F11= 10 (10-11 C-1m3) and kept F12 and F44 to be zero. Notably that due 

to the uncertainty of the magnitude of flexoelectric coefficients, we intentionally chose a larger 

F11 to enhance its effect, while a detailed discussion of the flexoelectric coefficient dependence 
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of the simulated behaviors will be provided later. The equilibrium polarization orientation near 

the twin walls at the bottom surface is illustrated in Fig. 2(a). In comparison with Fig. 1(d), the 

polarizations remained normal in the (001)c domain aside the left twin wall/substrate junction; 

however they tilted downward from the horizontal orientation in the (100)a domain. Thus the 

polarization rotation across the left twin wall is expected to be larger than 90˚. On the other hand, 

the polarizations in the (100)a/(001)c domains near the right twin wall are substantially inclined 

from horizontal/vertical orientations, which renders the polarization rotations smaller than 90˚ 

across the right twin wall. An averaged one-dimensional (1D) plot of the out-of-plane 

polarization component (Pz) along the x direction (Fig. 3(a)) at different magnitude of F11 (= 0, 5, 

10 (10-11 C-1m3 )) shows that Pz’s are ~0.6 (C/m2) at different F11’s in (001)c domains; however in 

(100)a domain Pz’s decrease from 0 to -0.1 (C/m2) with increasing F11. This implies that the 

polarization inclination in the (100)a domain can be attributed to F11.

To study the effect of the transverse flexoelectric strength on polarization orientations, 

we set F12= 3.0 (10-11 C-1m3) and kept F11 and F44 to be zero. Unlike those in Fig. 2(a), the 

polarizations tilted towards –x in the (001)c domain close to the left twin wall, and +x in the 

(001)c domain close to the right twin wall. (Fig. 2(b)) In the (100)a domain the polarization 

vectors remained horizontal. All these are suggestive of polarization rotation deviations from 90˚ 

across the left/right twin walls. Fig. 3(b) shows 1D profiles of Px’s along the x direction at 

different F12’s.  When F12 increases, Px’s clearly decrease/increase in (001)c domains near 

left/right twin walls. We further studied the influence of shear flexoelectric strength by setting 

F44= 10 (10-11 C-1m3) and kept F11 and F12 zero. From Fig. 2(c), the polarizations remained 

vertical in both (001)c domains and tilted towards +z in the (100)a domain. This tilt increases 

with increasing F44’s, as evidenced by the Pz increase from 0 to 0.15 (C/m2) in (100)a domain 
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(Figure 3(c)). As Pz’s remained unchanged in (001)c domains at different F44’s,  the polarization 

rotation angles are expected to be less than 90˚ at both twin walls.

The polarization inclinations at the wall/bottom surface junctions are possibly due to the 

flexoelectric fields induced via local stress gradients. To verify it we demonstrated the stress 

distributions in PZT thin film with only longitudinal, transverse and shear flexoelectric strength 

as shown in Fig. 3(d) ~ (f). It is seen that local stresses are mostly concentrated in the vicinity of 

the twin walls at the bottom surface. In Fig. 3(d), the out-of-plane stress component ( ) at the 3

junctions of bottom surface and left/right twin walls would induce pure downward/upward 

flexoelectric fields ( ) based on Eq. (8-3), with (F11, F12, F44) = (10, 0, 0) (10-11C-1m3). This 3
fE

vertical causes the horizontal polarization vectors in (100)a domain to tilt downward near the 3
fE

left wall and upward near the right wall, as illustrated in Fig. 2(a). On the other hand,  would 3

also create in-plane flexoelectric fields ( ) (Fig. 3(e)) when there is only transverse 1
fE

flexoelectric strength (F11, F12, F44) = (0, 3, 0) (10-11C-1m3) from Eq. (8-1). This in-plane  1
fE

gives rise to polarization tilt towards –z and +z directions in (001)c domains (Fig. 2(b)). Finally 

when there is only shear flexoelectric strength (F11, F12, F44) = (0, 0, 10) (10-11C-1m3), the shear 

stress ( ) creates upward based on Eq. (8-1), which macroscopically tilts horizontal 5 3
fE

polarization in (100)a domain towards +z direction (Fig. 2(c)). The stress distributions clearly 

explain the polarization inclination behaviors in Fig. 2(a) ~ (c).

We have therefore calculated the polarization rotation angles (θ) across left/right twin 

walls at different film depths as a function of longitudinal, transverse and shear flexoelectric 
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strength respectively (Fig.4 (a) ~ (c)). The rotation angle (θ) is calculated to be  where i
i
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 is the angle between two adjacent polarization vectors in the x direction,i
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and i ranges from  to  where  is the center position of the domain walls and 0 dw w 0 dw w 0w

 is the half width of the domain walls.  In Fig. 4(a), θ’s across the top left and right twin walls dw

(green solid and dashed lines) are equal to each other at F11=0, and remain almost constant with 

increasing F11. In the center of the film, the rotation angles become slightly larger than 90° at the 

left wall (blue solid line) and smaller than 90° at the right wall (blue dashed line), the difference 

between which are ~10° at different F11’s. And the increase of θ with increasing F11 is almost 

negligible. However at the bottom surface of the film, θ across the left wall (red solid line) 

significantly increases with F11 and reaches ~107° at F11=10 (10-11C-1m3). On the other hand θ 

across the right wall (red dashed line) decrease to 75° at F11=10 (10-11C-1m3). The deviations of 

polarization rotation angles from 90° at the bottom surface are significantly larger than those at 

top surface and in the film center, signifying the remarkable polarization inclinations at the 

wall/bottom surface junctions.

The dependence of rotation angles on F12 is shown in Fig. 4(b). Similarly, the rotation 

angles θ on the top surface are almost equal to 90° at all F12’s (green lines). In the center of the 

film θ’s slightly deviate from 90° (blue lines) when F12 increases from 0 up to 3.0 (10-11C-1m3). 

The twin walls become highly asymmetric near the bottom surface, as evidenced by the large 
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difference of θ’s between left/right twin walls from 20° at F12=0 up to 55° at F12=3.0 (10-11C-1m3). 

Notably the rotation angles increase/decrease exponentially with F12 at the bottom surface, 

compared to the linear dependence of θ on F11 (Fig. 4a). This indicates that the polarization 

rotations are more sensitive to F12 than F11. To verify it we plotted the correlation factors 

δ=d(Log θ)/d(LogFij), i.e., the change of θ’s with the change of F11 (F12)’s, as a function of F11 

(F12), which are illustrated in Fig. 4(d) and (e). At the bottom surface (red lines), the correlation 

factors of F12 are on the order of 10-1, and reach 0.35 and -0.2 at F12=3.0 (10-11C-1m3), which is 

about 4 ~5 times larger than δ’s at F11=10 (10-11C-1m3). In the top and center layer, δ’s of F12 are 

also larger than those of F11. Our simulation results indicate that F12 has a larger influence on 

polarization rotations than F11 does.

Finally we studied the dependence of rotation angles on F44 as shown in Fig. 4(c). While 

on the top and center layer θ’s are relatively insensitive to the change of F44, there is a decrease 

in θ’s in the bottom layer at both left/right twin walls with increasing F44. This is consistent with 

our previous simulation results that the vertical flexoelectric field from the shear stress globally 

tilts the horizontal polarizations towards +z direction in (100)a domain (Fig. 2(c)), resulting in 

polarization rotation angles less than 90° at both twin walls. The plot of correlation factor δ with 

F44 (Fig. 4(f)) further indicates that the effect of F44 on θ on top and center layer are negligible, 

and become significantly pronounced at the bottom surface. The values of δ reach -0.15 and -

0.09 at F44=10 (10-11C-1m3), which implies that the influence of F44 on polarization rotations is 

slightly larger than F11, but smaller than F12.

While polarization rotations have been considered to be associated with piezoelectricity 

enhancement in compositionally engineered ferroelectrics near a morphotropic phase boundary, 

our simulation results imply that this polar rotation can also be generated in non-morphotropic 
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ferroelectrics via flexoelectricity facilitated strain engineering. The experimental characterization 

of polar rotation in PbTiO3 was first reported by Catalan et. al, who attributed it to the 

flexoelectric effect.17 Based on their observation and estimation, the flexo-induced polarization 

component P(flexo) could reach up to 0.15 C m-2, and an average polar rotation angles of 10~15°. 

This agreed with our simulation results when Fij reached ~10-11C-1m3 (Fig. 3(a)~(c)). 

Interestingly only vertical polarization rotations in c domains were observed, while polar 

rotations in a domains are small, due to the in-plane flexoelectricity induced from horizontal 

gradient of vertical expansion (dε3/dx1). In our phase-field simulation both vertical and 

horizontal polar rotations were seen, depending on the different combinations of flexoelectric 

coefficients, nevertheless the transverse coefficients were found to have a larger effect than the 

longitudinal and shear coefficients. Therefore comparisons between experimental observations of 

polarizations at the domain walls and theoretical calculations of all the flexoelectric coefficients 

and their effects on polar rotations allow us to reconstruct the flexoelectric coefficients of 

ferroelectric oxides. It should be noted that our model can readily be applied to other 

ferroelectric oxides without loss of generality, such as BaTiO3 and BiFeO3 with even higher 

flexoelectric responses.

In summary we applied the phase-field method to study the polarization rotation 

behaviors in Pb(Zr0.2Ti0.8)O3 thin films with a/c twined structures. Polarization inclinations from 

their original horizontal and vertical orientations have been observed, in both local and global 

manner, which are induced by the local stress gradients near the twin walls through 

flexoelectricity. A clear correlation between the degree of polarization rotation and each 

component of the flexoelectric coefficient tensor has been established, which implies that the 

transverse flexoelectric coefficient influences the rotations more profoundly. Our simulation 
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results thus offer an alternative method to determine the flexoelectric coefficients in ferroelectric 

thin films.
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Fig. 1 (a) 2D (x-z plane) (100)a/(001)c domain structure in 12.5nm thick Pb(Zr0.2Ti0.8)O3 thin film 

without flexoelectric effect, and polarization vector plots near the twin wall regions at the top (b), 

center (c) and bottom layers (d) of the film marked by the colored solid boxes in (a). The arrows 

in (a) ~ (d) illustrate the polarization orientations and the rhomboids in (b) ~ (d) indicate the twin 

wall regions.
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(a)

(b)

(c)

Fig. 2 2D (x-z plane) plot of polarization vectors in the vicinity of twin walls at the bottom 

surface of the film (marked by red solid box in Fig. 1(a)) with only (a) longitudinal flexoelectric 

coefficient F11=10, F12= F44=0; (b) transverse flexoelectric coefficient F12=3.0, F11= F44=0; and 

(c) shear flexoelectric coefficient F44=10, F11= F12=0. The red arrows indicate the local 

polarization orientations. (unit of Fij: 10-11C-1m3)
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Fig. 3 (a) ~ (c) 1D profile (along x near bottom surface) of polarization component (Px, Pz) 

across a/c twin walls at different magnitudes of (a) longitudinal (F11), (b) transverse (F12) and (c) 

shear (F44) flexoelectric coefficients. Arrows indicate inclinations of both in-plane and out-of-

plane polarizations. (d) ~ (f)  2D (x-z plane) normal (σ3) and shear stress (σ5) distributions in the 

entire thin film when (d) F11=10, F12= F44=0, (e) F12=3.0, F11= F44=0, (f) F44=10, F11= F12=0. The 

arrows indicate the local flexoelectric field induced by the stress gradients through 

flexoelectricity. (unit of Fij: 10-11C-1m3)
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Dependence of (a) ~ (c) polarization rotation angles (θ) and (d) ~ (f) correlation factors 

δ=d(Log θ)/d(LogFij) as a function of (a, d) longitudinal (F11), (b, e) transverse (F12) and (c, f) 

shear (F44) flexoelectric coefficients. Green, blue and red lines represent the twin walls along the 

top, center and bottom layers respectively, while solid and dashed lines denote the left and right 

twin walls in all the figures.
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