Exploring the Effect of Compiler Optimizations on
the Reliability of HPC Applications

Rizwan A. Ashraf
Oak Ridge National
Laboratory
Oak Ridge, TN 37831
Email: ashrafra@ornl.gov

Abstract—The strict power efficiency constraints required to
achieve exascale systems will dramatically increase the number
of detected and undetected transient errors in future high per-
formance computing (HPC) systems. Among the various factors
that effect system resiliency, the impact of compiler optimizations
on the vulnerability of scientific applications executed on HPC
systems has not been widely explored. In this work, we analyze
whether and how most common compiler optimizations impact
the vulnerability of several mission-critical applications, what are
the trade-offs between performance and vulnerability and the
causal relations between compiler optimization and application
vulnerability. We show that highly-optimized code is generally
more vulnerable than unoptimized code. We also show that, while
increasing optimization level can drastically improve application
performance as expected. However, certain cases of optimization
may provide only marginal benefits, but considerably increase
application vulnerability.

I. INTRODUCTION

Achieving exascale performance within constrained power
budgets [13] will require the deployment of new hardware
technologies, such as massively multi-threaded cores that oper-
ate at near-threshold voltage (NTV) [10] while simultaneously
reaping the benefits of shrinking process technology. This
strict power budget will also limit the amount of circuit hard-
ening, guard-bands, ECC, and other resilience mechanisms
that can be incorporated to detect and/or correct errors at
the hardware level [17]. This will exacerbate the number
of undetected errors, including silent data corruption (SDC),
which may significantly corrupt application correctness, re-
sulting in wasted energy and resources. The use of these new
technologies, together with the sheer number of components in
an exascale-class high-performance computing (HPC) system,
will cause the number of soft and hard errors to increase
dramatically [32], [3]. Without novel resilience solutions, the

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Roberto Gioiosa
and Gokcen Kestor
Pacific Northwest National
Laboratory
Richland, WA, 99352
Email: {roberto.gioiosa, gokcen.kestor} @pnnl.gov

Ronald F. DeMara
Department of Electrical and
Computer Engineering
University of Central Florida
Orlando, FL 32816
Email: demara@ucf.edu

mean time to failure (MTTF) of an exascale supercomputer
will be considerably lower than current petascale systems, to
the point that it will become difficult to correctly complete a
parallel application [13].

Many factors affect the resilience of a HPC system, in-
cluding the application’s algorithm and characteristics, the
scientific libraries used, the programming language used, the
environmental conditions of the system (e.g., altitude), and the
aging of the hardware components [34], [40]. Among these
factors, compiler optimizations have been usually considered
of secondary order and their impact on resiliency has not been
widely investigated, especially in the context of HPC systems.
Such studies are critical for HPC applications since compiler
optimizations are one of the most successful ways to improve
performance with relatively low effort from the programmer.
Modern compilers perform very sophisticated code analysis
and code transformation almost transparently to the user. The
most common compiler optimizations include loop unrolling,
memory pre-fetching, instruction reordering to hide memory
latency and increase instruction-level parallelism, and elimina-
tion of dead branches and unused global variables. Moreover,
compilers can exploit hardware-specific optimizations, such as
special instructions and vector units, transparently to the user.
The impact of these code transformations and optimizations on
performance is substantial to the point that compiler optimiza-
tions are considered essential to achieve high performance and
efficiency.

Compiler optimizations and/or software/algorithmic modifi-
cations, however, also impact the vulnerability of the applica-
tion, which can affect the overall resilience of the computing
system [4], [20], [31]. For example, code optimization can
increase the utilization and the throughput of out-of-order pro-
cessors, which generally improve performance. On the other
hand, assuming that faults occur randomly in the processor,
higher utilization implies higher sensitivity to faults, as there
are more processor’s components that operate on application’s
instructions at the same time. Similarly, increasing data lo-
cality may reduce the number of cache misses, thus errors
occurring in a cache line will have a lower probability to
propagate to main memory. The same optimization, however,
may increase the time a certain value resides in a register



before being refreshed. Thus, an error in the processor register
will stay in the processor longer and have a high probability
of propagating into the application’s data structures and incur
disruptive effects.

In this work, we investigate the interplay between compiler
optimizations and the vulnerability of HPC parallel applica-
tions in the presence of radiation-induced soft errors which
effect Static Random-Access Memory (SRAM) elements as
elaborated in Section II. This fault model has been em-
ployed in various other studies, e.g., LLFI [39], KULFI [30],
VULFI [29]. As a result of this work, we analyze the HPC-
specific trade-offs between performance improvement and
resilience, and the implications of scaling parallel applications
beyond a single multi-core compute node. Specifically, we
seek the answer to several important questions, such as:

e “Is performance gain obtained by a given optimization
worth the increase in vulnerability?”,

o “Are there optimizations that provide the same level of
performance, but decrease vulnerability?”,

e “Do memory operations modified by optimization levels
have a significant impact on vulnerability?”

Previous work has focused on investigating the effects of com-
piler optimizations on the vulnerability of multi-programmed
workloads [9], [19] or fault injection studies in the embedded
system domain [25], [22]. However, as HPC applications
and systems are more vulnerable to soft errors due to their
distributed nature and scale, we undertake this task to explore
opportunities for design of exascale systems. In this work,
we analyze several mission-critical and proxy applications
from the DOE domain on a cluster of dual-socket AMD
Opteron 6227 (Interlagos) compute nodes with up to 512
cores. Our results show that optimized code performs better
than unoptimized code but also that optimized code is more
vulnerable to failures. Moreover, we show that both perfor-
mance and vulnerability generally follow the same trend and
increase with increasing level of code optimization. We also
show that, in some cases, additional compiler optimizations
do not yield additional performance, but significantly increase
application vulnerability. In other cases, a small performance
penalty caused by not using some compiler optimization may
decrease the vulnerability of the application. Finally, we ana-
lyze the causal relationships between compiler optimizations
and application vulnerability and the main reasons that induce
application crashes.

The remainder of this work is organized as follows: Sec-
tion II describes our methodology; Section III presents our
hardware and software setup; Section IV shows our experi-
mental results; Section V presents the related work; Section VI
presents the conclusions of this work.

II. METHODOLOGY

In this section, we describe the fault model used in this
work, our methodology for accelerated fault injection, and the
compiler optimizations considered.

A. Fault Model

Faults occur at hardware level as a result of physical
phenomena or exposure to alpha particles. Generally, faults
are categorized in two main categories: hard faults, which
are either permanent or intermittent and are typically the
result of transistor aging effects or malfunctioning devices;
soft faults, which are transient in nature and typically caused
by environmental conditions, such as radiation effects [7], that
manifest in the form of bit flips at the circuit-level. With
the development of technologies needed for low-power opera-
tion [10], technology scaling of electronic components and the
need for higher temperature tolerance and the scale (number
of components) required to achieve exascale efficiency [13],
soft faults are expected to become predominant [16], [32].

In this work, we analyze the intrinsic vulnerability of HPC
parallel applications to errors independently of the underlying
hardware, i.e., we analyze the impact of transient errors on par-
allel applications once a fault is articulated at the application
level. Our methodology follows the general idea proposed by
analysis such as the program vulnerability factor (PVF) [31],
where a program is analyzed in terms of its instruction flow
and the probability that a fault occurring at register-level
contaminates the application data structures. Given that HPC
systems are built out of commodity hardware, we refer to
previous work to assess the probability that a fault at circuit-
level induces a bit flip at the register-level [4], [7].

In order to emulate the occurrence of transient hardware
faults, we use accelerated error injection techniques [14], [39],
[40], [26] and analyze the application outcomes. In particular,
we randomly inject single-bit flips [7], [6], [36], [1] during
the execution of an application by leveraging the LLVM
compiler framework and extending an existing fault injection
tool, LLFI [39].

Transient errors may occur any time during the execution of
an application and can result in different outcomes. Although
many possible classifications are possible, in this work we
extend the classification proposed in [6], [7], [4], [36], [37] to
account for the specific characteristics of HPC applications.
We classify the possible application outcomes resulting from
fault injection into the following classes:

Masked: A fault is masked if it does not effect the final
output of the application nor the total execution time.
Note that this does not necessarily mean that no data
structure is affected by the fault, but rather the application
is able to tolerate the fault and still produce correct
outputs [1]. Moreover, the result of an HPC application
is usually considered acceptable if it falls within certain
error margins, thus small variations in the final result may
be tolerated by the algorithm.

SDC: If the final result computed by the application is
outside of the allowed error margins, the solution is not
acceptable, thus the output is considered wrong.
Prolonged execution: Some applications may be able
to tolerate transient faults by performing extra work to
refine the current solution. These applications provide



some form of inherent fault tolerance in their algorithms,
though at the cost of delaying the output.
Crash: Faults which induce program crashes or hangs.

Several definitions of application vulnerability have been pro-
posed in the literature [31], [9], [18], [40], some of which re-
quire a complete understanding or estimation of the utilization
of internal processor functional units and storage. However,
collecting these metrics on a cluster of distributed compute
nodes is computationally expensive. Moreover, most of these
metrics are scalar values [31], [18], [40] that do not take into
account the effects of message interleaving common in MPI
applications, or are biased towards the application’s execution
time, i.e., shorter applications appear more reliable [9]. Given
the complexity and the scale of the applications tested in this
work, we use a practical approach based on the observation
of the application characteristics and how these change, when
applying different compiler optimizations. We are interested
to understand the performance and vulnerability trade-offs
and the interplay between compiler optimizations and the
application sensitivity to faults. This approach is orthogonal
to the vulnerability metrics already proposed and can be used
in conjunction with them.

B. Fault Injection Module

Several fault injection tools have been proposed in the
literature [30], [39]. In this study, we use LLFI [39], an
LLVM based fault injection tool that instruments sequential
applications at the level of LLVM intermediate representation
(IR) with function calls into the runtime fault injector. At
runtime, a fault is injected into one of the registers of a
randomly selected instruction in the form of a bit flip. We
extended LLFI to account for the distributed and parallel
nature of HPC applications. We inject a single-bit fault into
one of the application’s MPI processes, randomly selected in
each experiment. However, the fault can propagate to other
MPI processes, corrupting their memory address spaces [1].

It should be pointed out that there are limitations of using
compiler-based fault-injection tools. For example, faults are
injectable only into live user-programmable registers, and dor-
mant and/or OS-visible registers. This is a common problem
for software-implemented fault injection tools.On the other
end, simulated environments allow to insert faults into dead
or non-programmable registers, but it would drastically limit
the scope and scale of this study.

C. Compiler Optimizations

In this work, we use the clang 3.4 compiler. Although
modern compilers provide the users with specific options
to optimize their code, typically set of optimizations are
grouped into higher level options 00, 01, 02, 03. Table I
lists the clang optimizations applied at each optimization
level incrementally from OO0, to 03. Several optimizations
are applied at level O1, including loop unrolling, rotation
and simplifications, function inlining, memory dependency
analysis, etc. At level 02 the compiler performs store and
loop vectorization, removes unreachable global variables, and

eliminates redundant instructions. At optimization level 03,
the compiler promotes arguments passed by reference to
arguments passed by value. The most important compiler
transformations which may effect the memory operations in
program code include:

e Loop Vectorization: transform data dependence graphs
that do not exhibit cycles between iterations into single
instructions on multiple data items consisting of a range
of array indexes;

o Memory to Register: promotes memory references to
register references to increase register utilization;

o Dead Load/Store Elimination: redundant stores are elimi-
nated; global values are enumerated to enable elimination
of redundant loads;

o Register Renaming: reassignment of variables to remove
output dependencies or optimize register use.

Most of the above transformations are applied as reported in
Table I. For instance, —gvn global value numbering is used
to eliminate redundant load instructions during 02. Similarly,
—loop-vectorize is performed at the same optimization
level. We also consider the -mem2reg optimization, which
promotes memory references to register references, result-
ing in reduced number of memory references and increased
register pressure. We remark that we only considered safe
optimizations that do not induce code misbehavior or incorrect
application output, thus eventual errors are caused by the
injected faults.

III. EXPERIMENTAL SETUP

Next, the hardware/software setup and applications used in
this work are described.

Hardware and Software Platform: We performed our
experiments on a cluster of dual-socket AMD Opteron
6227 (Interlagos) compute nodes. Each processor socket is
comprised with 32 cores running at 2.2 GHz. Cores feature
a 64 KB L1 data cache while pair of cores share a 64 KB
L1 instruction cache and a 256 KB integrated L2 cache.
Compute nodes are equipped with 64 GB of DRAM divided
into 4 NUMA domains. Each NUMA domain consists of 8
processor cores that share a memory controller and a 8§ MB
L3 cache. The compute nodes are interconnected through an
Infiniband communication network. The system runs Linux
3.9.0 while all applications are compiled with LLVM/clang
version 3.4 and OpenMPI 1.7.4. The compiler optimizations
are applied prior to the fault instrumentation performed by
LLFI, such that error injection code is not effected by the
optimizations. In addition, error injection is not performed in
external library calls such as MPI functions, hence we focus
on the fault characterization of the application itself.

Applications: We analyze the impact of compiler optimiza-
tions on several important DOE applications and benchmarks
taken from various suites. In particular, in this study, we
analyze LULESH2, LAMMPS and MCB from the CORAL



Tab. I: Optimizations applied at each level by clang. Each column shows the additional optimizations added to the previous

level (optimizations between parenthesis are removed).

[ Opt-level [ Optimizations Applied (in order)

00 -targetlibinfo -datalayout -notti -basictti -x86tti -preverify -domtree -verify

o1 -no-aa -tbaa -basicaa -globalopt -ipsccp -deadargelim -instcombine -simplifycfg -basiccg
-prune-eh -inline-cost -functionattrs -sroa -early-cse -lazy-value-info -jump-threading
-correlated-propagation -tailcallelim -reassociate -loops -loop-simplify -lcssa -loop-rotate
-licm -loop-unswitch -scalar-evolution -indvars -loop-idiom -loop-deletion -loop-unroll
-memdep -memcpyopt -sccp -dse -adce -strip-dead-prototypes -always-inline

02 -slp-vectorizer -globaldce -constmerge -barrier -loop-vectorize -gvn -inline (-always-inline)

03 -argpromotion

program', and miniFE from the DOE proxy applications.
LULESH [12] is a shock hydrodynamics proxy application de-
veloped by the ASCR ExMatEx Exascale Co-Design Center?
to model numerical algorithms and data motion of scientific
applications that solves a Sedov blast problem with analytical
answers. We run LULESH with total aggregate number of
elements equals to 91125 and 1728000 for single node and
multiple node experiments, respectively. LAMMPS [23] is a
molecular dynamics code that models an ensemble of particles
in a liquid, solid, or gaseous state. The application computes
Newton’s equations of motion for system of interacting par-
ticles and can model atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of force
fields and boundary conditions. We solve the Cu metallic
solid with embedded atom method (EAM) potential which
involves the dynamics of 32,000 atoms for 20,000 and 75,000
time steps for single node and multiple node experiments,
respectively. MCB® models the solution of a heuristic transport
equation using a Monte Carlo technique. The application
employs typical features of Monte Carlo algorithms such as
particle creation, particle tracking, tallying particle informa-
tion, and particle destruction. The heuristic transport equation
models the behavior of particles that are originated, and then
travel with a constant velocity, scatter, and are absorbed. We
run our MCB experiments with up to 12 million particles.
miniFE* is a DOE proxy application which implements several
kernels resembling implicit finite-element applications. The
application assembles a sparse linear-system from the steady-
state conduction equation on a brick-shaped problem domain
of linear 8-node hex elements. Next, miniFE solves the linear-
system using a simple un-preconditioned conjugate-gradient
algorithm. We solve small problem size of 264 x 256 x 256
for single node and medium problem size of 784 x 768 x 768
for multi-node experiments.

IV. EXPERIMENTAL RESULTS

In this section, we analyze effects of the compiler opti-
mizations presented in Section II-C on the vulnerability of
tested applications running on single and multiple nodes.
We also analyze the performance vs. vulnerability trade-
offs and the causal relations between compiler optimizations

Thttps://asc.llnl.gov/CORAL/
Zhttp://science.energy.gov/ascr/research/scidac/co-design
3https://codesign.lInl.gov/mcb.php

“https://mantevo.org/

0 00010203
LULESH

00 010203
MINIFE

00010203
LAMMPS

00010203
MCB

Fig. 1: Performance impact of compiler optimizations.

and application vulnerability. The experiments on single and
multiple nodes are performed using the reference input set of
each application as described earlier. We use all available cores
for all applications except LULESH2, which requires a perfect
cube number of MPI tasks, e.g., 27 on single node and 512 on
multiple nodes. To ensure reasonable statistical significance,
we conduct 1,000 runs for each application/set of compiler
optimizations. We randomly select the dynamic cycle at which
we inject a fault and the target MPI task. The random cycle and
MPI task are extracted from two separate random sequences
obtained from the same uniform random number generator
using distinct seeds. We validated the random sequences with
the x? test and verified the uniform coverage of cycles and
MPI tasks. Overall, a total of 32,000 injections were performed
considering both single and multiple node experiments (1000
injections for each application, each compiled with 00, 01,
02, and 03).

A. Performance Analysis

As most compiler optimizations primarily target increased
performance, we first analyze the effects of applying a
different set of compiler optimizations on the applications’
execution time. We apply the set of optimizations
reported in Table I: increasing levels of optimization
generally augment the previous set of optimizations with
additional ones. For example, optimization level 02
augments the set of optimizations used at level O1 with
-slp-vectorizer -globaldce -constmerge



Tab. II: Characteristics of applications and impact

of compiler optimizations on performance.

LULESH MCB
00 o1l 02 03 00 01 02 03
Instruction decrease wrt O0 1.00 0.53 0.32 0.32 1.00 0.52 0.32 0.32
LLC-misses increase wrt O0 1.00 1.05 1.14 1.15 1.00 1.07 1.07 1.07
IPC 0.78 0.81 0.72 0.72 0.57 0.53 0.52 0.51
LLC misses/inst 0.00043 | 0.00084 | 0.00155 | 0.00155 0.00005 | 0.00010 | 0.00017 | 0.00017
Loads/inst 0.7988 0.5486 0.5414 0.5429 0.7298 0.6304 0.6260 0.6198
Stores/inst 0.0101 0.0169 0.0215 0.0215 0.0065 0.0075 0.0087 0.0083
MiniFE LAMMPS
00 ol 02 03 00 ol 02 03
Instruction decrease wrt O0 1.00 0.53 0.40 0.39 1.00 0.83 0.82 0.82
LLC-misses increase wrt O0 1.00 1.22 1.34 1.34 1.00 1.00 1.00 1.01
IPC 0.63 0.53 0.46 0.46 0.34 0.32 0.32 0.32
LLC misses/inst 0.00054 | 0.00125 | 0.00182 | 0.00183 0.00109 | 0.00130 | 0.00132 | 0.00134
Loads/inst 0.7722 0.5274 0.4936 0.4962 0.7779 0.6693 0.6701 0.6733
Stores/inst 0.0069 0.0128 0.0171 0.0171 0.0173 0.0207 0.0211 0.0211

—-barrier -loop-vectorize -gvn —-inline.
Figure 1 shows the speedup of applying higher compiler
optimization levels with respect to optimization level OO.
The results in the chart are average of 10 fault-free runs.
As expected, increasing the compiler optimization level
dramatically increases performance with speedup up to 2.7-
2.8x for MCB and LULESH?2, respectively. The performance
improvements are much lower, but still considerable,
for miniFE (up to 1.52x) and limited for LAMMPS. An
interesting observation is that optimization level O1 already
provides about half of the total performance improvement.
As reported in Table I, the clang compiler applies many
important optimizations, including loop unrolling, rotating and
deletion, function inlining, and memory copy optimization,
at optimization level Ol. Moving to optimization level
02 provides considerable performance improvements for
LULESH?2 and MCB, which benefit from vectorization,
while optimization level O3 does not vary the applications’
performance.

To further investigate the reasons beyond such large perfor-
mance improvements, we analyze the applications’ dynamic
characteristics using the perf tools. As noted in Table II,
the instructions per cycle (IPC) of most of the applications
decreases when applying higher levels of compiler optimiza-
tions. However, as reported in Figure 1, higher levels of
optimizations provide significant performance improvements.
The reason for these performance improvements is that higher
levels of compiler optimizations reduce the total number
of instructions (Table II), but do not generally reduce the
number of last-level cache misses, hence the Last-Level Cache
misses/Instruction (LLC misses/Instr) increases and the IPC
decreases. This is an interesting observation, as we expected a
higher IPC when applying increasing levels of optimizations
because of loop unrolling, removing unnecessary data move-
ment, vectorization, and code elimination.

B. Vulnerability Analysis

In this set of experiments, we analyze the vulnerability of
each application when applying increasing levels of compiler
optimizations. We inject a single fault into one randomly
selected MPI process and classify the final application out-
comes according to the criteria presented in Section II-A. To

understand whether an injected fault is masked or produces
a SDC, we compare the applications’ outputs against a fault-
free outcome: the results are considered correct if they fall
within 5% of the results provided by the fault-free run or
if the application itself reports results to be acceptable (and
vice versa). For example, LAMMPS reports thermodynamic
state every few timestamps, and this can compared against
a fault-free run to be within acceptable tolerance levels. On
the other hand, MCB reports the Monte Carlo maximum
error at the end of the run, which should be approximately
equal to 1/y/Number — of — Particles for the solution to
be acceptable.

Figure 2a shows the percentage of cases in each category
for single-node experiments with 32 cores. As we can see,
each application shows a different vulnerability profile: for
LULESH?2 most of the injected faults are masked (97.3%) and
do not generally produce corrupted outputs (< 3%) nor require
additional iterations to converge (< 1%). However, the injected
faults may result in the application to crash. For the other
applications we observe a much lower percentage of masked
faults (between 50 and 65%) and a predominance of other out-
comes. In particular, miniFE and MCB present a considerable
number of crashes (up to 20% and 40%, respectively), while
LAMMPS experiences a large number of cases in which the
injected faults corrupt the final output. Note that LAMMPS
and MCB run for a fixed number of iterations. Additionally,
application developers in LAMMPS have provisioned built-in
mechanisms to detect extreme erroneous behavior, upon which
user-driven invocation of MPI_Abort () is done resulting in
an application crash. Such cases are categorized as SDC in our
experiments, as we assume that these mechanisms would not
be present widely in most applications. Similar mechanisms
are enforced in LULESH? and are treated in the same manner.

When increasing the level of optimization from 00 to 03
we notice that the number of crashes generally increases, with
the exception of MCB. For instance, LULESH2 demonstrates
percentage increases of 195%, 221%, and 303% for 01, 02,
and O3, respectively as compared to OO0 in the single-node
experiments. Interestingly, this increase in crashes does not
necessarily reduce the percentage of masked faults, at least
for miniFE and LAMMPS. Rather, we observe fewer cases



[ I Masked
100

I SDC I Prolonged execution I Crashed

90
80
70F
60
501
401

Percentage Outcome

301
201

0 00010203
LULESH

00010203
MINIFE

(a) 1 Node (32 cores)

00010203
LAMMPS

00010203
MCB

[ S Masked
100

N SDC I Prolonged execution I Crashed

90
80
701
60
501

40

Percentage Outcome

301

20+

0 00010203
LULESH

00010203
MINIFE

(b) 16 Nodes (512 cores)

00010203
LAMMPS

00010203
MCB

Fig. 2: Statistical breakdown of application vulnerability to injected faults.

that require additional iterations to converge for miniFE and
fewer SDC cases for LAMMPS. Overall, however, our results
suggest that compiler optimizations have a stronger impact
on LULESH? and miniFE than on the other two applications,
as the former show a number of crashes that considerably
increases with the optimization level. For LAMMPS, we notice
that the number of crashes increases between OO0 and O1
(relative increase of 239%), but then remains constant.

The trends observed on single-node experiments can be
also identified on the multi-node experiments (Figure 2b): in
both cases, the number of crashes for LULESH2 and miniFE
increases with the optimization levels (percentage increases
up to 367% and 383% as compared to OO0, respectively),
but in the multi-node experiments the number of crashes
for LAMMPS steadily increases with each optimization level.
Comparing Figures 2a and 2b we observe a general increase
in the applications sensitivity to faults, which is due to a
combination of factors. First, a fault injected into a specific
MPI process propagates faster in the application when the
number of MPI processes increases. This is due to the higher
number of MPI messages exchanged, which increases the
probability that a specific MPI process contaminates others.
Second, assuming a constant per-process crash probability,
using more MPI processes increases the probability that the
entire application crashes as the result of any of the MPI
processes crashing. Notably, for LAMMPS with optimization
level 03, the Masked cases decrease from 54.1% to 37.5%
when increasing the number of MPI tasks from 32 to 512.

C. Analysis of the Causal Relation between Code Optimiza-
tion and Vulnerability

In Section IV-A, we observed that increasing levels of
compiler optimizations have the potential of dramatically in-
creasing application performance, with speedup up to 2.8x. In
Section I'V-B, instead, we observed that compiler optimizations
also have an impact on application vulnerability and that this
impact is usually negative, i.e., the vulnerability of applications

increases with increasing levels of code optimization. In this
section, we analyze the reasons why code optimizations impact
fault masking.

As reported in Table II, the performance observed in Fig-
ure 1 is mostly achieved by applying optimizations which
result in a decrease in the number of instructions, despite the
fact that the IPC of the tested applications generally reduces
when increasing the optimization level. In fact, LLVM applies
aggressive dead code elimination (-adce) and combining
redundant instructions (-instcombine) across all optimiza-
tion levels. By observing the results in Table II and the results
in Figure 2, we note that IPC and application vulnerability
seems inversely proportional, i.e., when the IPC decreases
the application vulnerability increases. We further investigate
the causal relation between compiler optimizations, IPC and
application vulnerability in two directions: first, we analyze the
relation between stores and vulnerability and then the relation
between loads and vulnerability.

The number of expected faults during an application run is
greatly affected by the application execution time. However,
the fact that an application runs for a shorter amount of time
than another application does not imply that the former is
more reliable than the latter [9]. To avoid effects of the bias
induced by the different amount of instructions and execution
time of each application, we analyze loads and stores with
respect to the total number of instructions. Figure 3 shows the
percentage of application crashes as function of the number
of stores/instruction, which increases with the level of code
optimization. As we can see, there is a positive correlation,
albeit not perfect, between the percentage of crashes and the
number of stores per instruction for all applications except
MCB. This is due to the probability of a fault to propagate
in the application memory state and, eventually, crash the
application. In fact, although we inject a single bit-flip during
the execution of the application, fault propagates and corrupts
the application state through store instructions resulting in
multiple errors/failure [1]. However, there is a probability



N

w
@©

o3, og
%

a o
w
>

Ok

3
)

%
Ok

w

Percentage of crash
S
Percentage Qi crash
w
&

mem2reg‘
og 0%

0b05 0.01 0.015  0.02
Number of stores per instruction

(a) LULESH

n
w
R

w
o2

03,
- 10

7 8 9
Number of stores per instructiog 107

(b) MCB

0.025

N

01& Ok

O

n
=]

®

%
Ok

N
W B~ D N

Percentage of crash
>
Percentage of crash

%
2req,

16  0.018 0.02 0.022
Number of stores per instruction

(d) LAMMPS

N

memaire

6%05 0.01 0.015 0.02
Number of stores per instruction

3
28

o
o

0.024
(¢) MiniFE

Fig. 3: Correlation between application vulnerability and num-
ber of stores/instruction.

that a fault injected into a register is masked before the next
store. If there is a large number of instructions between the
instruction at which the fault is injected and the next store
to memory, i.e., a low stores/instruction ratio, the probability
of fault masking is high, hence the probability of crashes is
low (and vice versa). Figure 3 confirms this observation for all
applications, with the exception of MCB. As reported earlier
in Figure 2, MCB does not follow any particular trend when
increasing the level of compiler optimization.

We also explore the relation between the number of loads
per instruction, which decreases with higher levels of com-
piler optimization, and the application vulnerability. In this
case, a decrease in the number of loads/instruction decreases
the probability that a memory load operation overwrites a
corrupted register before it propagates to memory, hence
masking the injected fault. Figure 4 shows that, indeed, as
the number of loads/instruction decreases, the percentage of
crashes decreases.

The  correlations  between  loads/instruction  and
stores/instruction and the number of crashes resulting
from the fault injection experiments indicate the intrinsic
vulnerability of each application, i.e., the ability of an
application to mask an eventual fault that occurs at register
level. All applications except MCB follow the same trend,
i.e., a high stores/instruction ratio or a low loads/instruction
ratio indicate high numbers of crashes. Notably, MCB has a
significantly lower number of stores/instruction as compared
to other applications even with optimization level 0O,
which may be one of the reasons of its distinct behavior.
In particular, it appears that each store instruction has a
higher probability of corrupting loop control variables, as
shown in the next section. We attribute this characteristics to

~
Q

*°
@
>

O%

[2)
W
>

&

[$)]

mem2reg‘

Ok

w

mem2re%
2 : o%

.5

(&)
R

Percentage of crash
IS
Percentage of crash
w
B

%
On

o
W
=]

0.9 0.8

0.65 8 0.
Number of loads per instruction

(b) MCB

0.6 0.7 0.8
Number of loads per instruction

(a) LULESH

Q
N}
e

% ok

B

n
=]

®

%
Ok

=

Percentage of crash
- n w » [4)] (2] ~

Percentage of crash
(2]

0%

N

mem2r‘eg‘ 0oQ mem2req,

0.8

[='S)

4 0.8

0.65 7 075
Number of loads per instruction

(d) LAMMPS

0.5 0. 0.
Number of loads per instruction

(c) MiniFE

Fig. 4: Correlation between application vulnerability and num-
ber of loads/instruction.

‘ [ Seg-Fault
100

I Hangs N VPI I Others

90
801
701
60
501

401

Percentage Outcome

301

201

0 00010203
LULESH

Fig. 5: Crash breakdown.

00010203
MINIFE

00010203
LAMMPS

00010203
MCB

the random sampling of the Monte Carlo algorithm, which
produces a less regular computation and memory access
pattern [21].

D. Crash Analysis

Finally, we analyze the Crash cases in more detail to gain
insights into the different causes that may produce an abrupt
termination of an application. The results of this analysis are
presented in Figure 5. At compiler optimization level OO,
most of the crashes are due to segmentation faults caused by
attempts to access a restricted or not allocated portion of the
application address space, probably as the result of corrupting
a register that stores the value of a pointer. With increasing
compiler optimizations, some other reasons for Crash also
arise, such as “MPI faults” caused by erroneous inputs to MPI



Tab. III: Application Vulnerability Characteristics.

Bench Class Prol. Vulner. Converg.
Exec.

LULESH Sedov Blast Problem Yes Low High

MiniFE Finite-Element method Yes Medium Low

LAMMPS Molecular Dynamics No Medium N/A

MCB Transport Equation No High Low

routines, e.g., an erroneous destination rank in a MPI_Send
function call (note, that no faults are injected in the MPI
library). The “hangs” cases observed for MCB are due to the
application incurring in a time out (set to 4x the execution time
of the fault-free version). Figure 5 shows that a considerable
number of crashes are due “other” errors: these are mainly
raised by the memory controller when attempting to access
erroneous physical addresses.

E. Discussion and Future Directions

Overall, the results indicates that highly-optimized code is
more vulnerable than less-optimized code, but also there is a
good chance that a fault may be masked before propagating
to memory, either by a register refresh or by other arithmetic
operations, provided that there is “enough time” before the
store operation to memory. In the same way as the performance
impact of compiler optimization depends on the application,
our results show that the impact on application vulnerability
also depends on the particular application and algorithm.
Table III is an effort to summarize the characteristics of
each application and a qualitative assessment of the general
vulnerability of the parallel applications tested in this work, as
resulting from our experiments. Most of the HPC applications
are iterative and arithmetically-intensive in nature, thus there
is a chance that the fault is either masked or propagated
to later iterations. Moreover, the convergence properties of
each applications play an important role in the detection and
masking of SDC.

Interesting trade-offs between vulnerability and perfor-
mance are found for multiple applications from the results
in figures 1 and 2. For example, LULESH2 achieves 1.9x
and 2.8x speedup with optimization O1 and 02, respectively.
Whereas, there is only negligible performance benefit of
moving on to 03. On the vulnerability front, the (absolute)
percentage of crashes are 4.8%, 5.2% and 6.6% for 01, 02,
and O3 respectively, compared to 1.6% at 00. In this case,
there is a notable increase in vulnerability moving on from 02
to 03, with virtually no performance benefit. On the other end,
there is significant performance benefit of moving on from 01
to 02, with only slight increase in vulnerability. Similarly, for
miniFE, using 02 and 03 does not bring extra performance
benefit with respect to O1, but the vulnerability keeps increas-
ing with each optimization level. More importantly, our results
indicate that blindly increasing the level of code optimization
without considering the effects on the application vulnerability
might not be a wise choice, especially in the context of
future exascale systems where these numbers are projected
to be higher. This observation suggests that the compiler cost

function should account for vulnerability, as well as code size
and performance, and indicate optimizations that only apply
‘safe’ code transformations. As future work, an intelligent
runtime system could leverage automatic techniques, such as
genetic algorithms, to traverse the performance-vulnerability
optimization search space [11]. A recent work [19] has demon-
strated some positive results by use of genetic algorithm-based
technique to find a sequence of optimizations at compile-
time which lowers the vulnerability of the application as
compared to unoptimized version. This study uses applications
from PARSEC and Parboil benchmark suites, and it would be
interesting to apply the same technique for HPC applications
at scale as part of future work. The results in this paper show
that such a study would be worthwhile.

Moreover, our results do not indicate any significant varia-
tion in the number of SDC cases with increase of optimization
levels. In fact, for most applications, there is a slight decrease
in SDC cases. For instance, LAMMPS demonstrates about 15%
(relative) decrease with both O1 and 03, as compared to OO0.
On the other hand, slight increases in masked cases of about
6.4%, 2.1%, and 6.2% (relative) are noted for MCB, miniFE,
and LAMMPS at 03, respectively, as compared to 00. Whilst,
for LULESH, a relative decrease of 4.9% in masked cases is
noted at O3 as compared to 00. Overall, no discernible trend
is visible for both SDC or Masked scenarios (see Figure 2
for more details) in comparison to the effect on crashes.
Thus, there is nothing significant to report in this forefront.
Albeit, this could be an artifact of the adopted fault model.
Extending our fault model to include DRAM faults and multi-
bit faults [32] in future work, can provide decisive conclusions
about the impact of compiler optimizations on SDCs, if any.

V. RELATED WORK

Application vulnerability studies provide important insights
into application behavior and the proper mechanisms that
should be employed to reach the desired level of application
performance and/or resiliency. Critical application points
identified using such studies, can then be hardened against
soft errors by techniques such as instruction duplication
to ensure correct application state is maintained during
execution or otherwise the error is detectable [26]. Software-
only techniques, such as software implemented fault tolerance
(SWIFT), reduce the overhead of instruction duplication
through control-flow checking and exploiting unused
instruction-level parallelism [24]. For instance, reliability-
driven software compilation technique for SWIFT is proposed
in [28]. A detailed comparison of hardware/software
techniques for soft-error protection of embedded processors
is presented in [15]. In this work, we investigate whether
compiler-based software-only techniques can effect the
resiliency of distributed HPC applications in the presence of
soft errors, especially due to their significance in future large
scale system design.

Compiler Optimization & Application Vulnerability: The
impact of compiler optimizations on the vulnerability of



applications has been studied in other application domains [8],
[91, [31], [25], [33], [35], [19], but not extensively in the
HPC domain. In [9], the effects of the occupancy of various
micro-architecture structures such as the reorder buffer, the
instruction fetch queue and load store queue as a result of
different compiler optimizations are studied. The authors also
propose the Expected Failure metric and show that optimized
code is more reliable according to their failure metric which is
proportional to execution time. However, if the unoptimized
code was to run for equivalent time, then it would be
more reliable than optimized code. Similarly, speculatively-
scheduled loops are shown to be more vulnerable than
unrolled loops using the PVF metric [31]. LLFI has been
used to quantify the effects of compiler optimizations for
soft computing applications [33]. The authors focus primarily
on egregious data corruptions, where the resulting loss in
signal-to-noise ratio for image processing applications is
greater then 30 dBs (12% of the overall reported SDCs).
Despite large amount of work in other domains, the impact of
compiler optimizations on vulnerability of HPC applications
has not been explored.

Vulnerability metrics: Different set of metrics have been
proposed to assess the vulnerability of an application. The
architectural vulnerability factor (AVF) is based on the
susceptibility of micro-architecture components inside of a
processor [18]. In this case, the probability of an application
failure is determined when a fault affects a particular
micro-architecture component. Whereas, the PVF metric
studies the effects of application vulnerability independently
of the hardware components and can be measured with
fault injection or architecturally correct execution [31]. The
data vulnerability factor (DVF) [40] is based on memory
access pattern and failure rate. Using DVF, it is shown that
preconditioned conjugate gradient is more vulnerable than
conjugate gradient for smaller workloads.

Fault Injection: The goal of fault injection studies is to de-
termine the applications’ vulnerability to faults at various ab-
straction layers, ranging from circuit [27], to architectural [5],
[2], [38], to compiler and application level [30], [39], so that
appropriate fault tolerance mechanisms can be employed at
those layers. An extensive treatment on fault-propagation from
the flip-flops in the circuit-level to the application-level [7] is
beyond the scope of this work. Herein, we extended LLFI to
study the vulnerability of MPI applications by injecting single
fault into independent MPI processes.

VI. CONCLUSIONS

The impacts of compiler optimizations on application per-
formance have been widely studied in the past. However, as we
approach the exascale era, it can be worthwhile to understand
the new trade-offs between application performance and vul-
nerability and how code optimizations impact the vulnerability
of HPC applications. Outcomes of injecting single-bit faults
in DOE applications on single- and multi-node environments

show that, as for performance improvements, the impact of
compiler optimizations on application vulnerability strongly
depends on the application structure and algorithm. Some
applications are inherently more robust than others and can
tolerate partially-corrupted memory states, possibly at the cost
of increased execution time. We also analyzed the causal
relations between compiler optimizations and the applications’
vulnerability and showed that highly-optimized code is usually
more vulnerable than unoptimized code. On the other hand, we
show that certain cases of optimization may provide limited
performance improvement that may not pay off due to the
increase in the application vulnerability.

ACKNOWLEDGMENT

This work was supported in part by the DOE Office
of Science, Advanced Scientific Computing Research, under
award number 59542 “Performance Health Monitor”; program
manager Lucille T. Nowell.

REFERENCES

[1] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in HPC
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’15,
2015, pp. 72:1-72:12.

[2] R. Balasubramanian, Z. York, M. Dorran, A. Biswas, T. Girgin, and
K. Sankaralingam, “Understanding the impact of gate-level physical
reliability effects on whole program execution.” in the IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), February 2014.

[3] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on
a supercomputer,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC 16, 2016, pp. 55:1-55:11.

[4] C. Bender, P. Sanda, P. Kudva, R. Mata, V. Pokala, R. Haraden, and
M. Schallhorn, “Soft-error resilience of the IBM POWERG6 processor
input/output subsystem,” IBM Journal of Research and Development,
vol. 52, no. 3, 2008.

[5] S. Bohm and C. Engelmann, “xSim: The extreme-scale simulator,” in
The Int. Conference on High Performance Computing and Simulation
(HPCS), July 2011.

[6] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller, “Understanding
soft error resiliency of BlueGene/Q compute chip through hardware
proton irradiation and software fault injection,” in Int. Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC, 2014.

[7] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and S. Mitra, “Quantitative
evaluation of soft error injection techniques for robust system design,”
in 50th ACM/EDAC/IEEE Design Automation Conference, May 2013.

[8] J.J. Cook and C. B. Zilles, “A characterization of instruction-level error
derating and its implications for error detection,” in the International
Conference on Dependable Systems and Networks (DSN), 2008.

[91 M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects of

compiler optimizations on application reliability,” in IEEE Internation

Symposium on Workload Characterization, Nov 2011.

R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,

“Near-threshold computing: Reclaiming moore’s law through energy

efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2,

pp. 253-266, Feb 2010.

N. Imran, R. A. Ashraf, and R. F. DeMara, “Power and quality-aware

image processing soft-resilience using online multi-objective GAs,” Int.

J. Comp. Vision Rob., vol. 5, no. 1, Jan 15.

1. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,

R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,

and C. Still, “Exploring traditional and emerging parallel programming

models using a proxy application,” in 27th IEEE International Parallel

& Distributed Processing Symposium, 2013.

[10]

(11]

[12]



[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
and et al., “Exascale computing study: Technology challenges in achiev-
ing exascale systems,” DARPA IPTO, Tech. Rep. DARPA-2008-13,
September 2008.

D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumentation
tool,” in the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC, Salt Lake City, Utah, 2012.
A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F. Pinto,
H. Guzman-Miranda, and M. Aguirre, “Compiler-directed soft error
mitigation for embedded systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 9, no. 2, pp. 159-172, March 2012.

S. Michalak, A. DuBois, C. Storlie, H. Quinn, W. Rust, D. DuBois,
D. Modl, A. Manuzzato, and S. Blanchard, “Assessment of the impact
of cosmic-ray-induced neutrons on hardware in the roadrunner super-
computer,” Device and Materials Reliability, IEEE Trans. on, vol. 12,
no. 2, June 2012.

S. Mitra, P. Bose, E. Cheng, C.-Y. Cher, H. Cho, R. Joshi, Y. M. Kim,
C. R. Lefurgy, Y. Li, K. P. Rodbell et al., “The resilience wall: Cross-
layer solution strategies,” in VLSI Technology, Systems and Application
(VLSI-TSA), Proceedings of Technical Program-2014 International Sym-
posium on. 1EEE, 2014, pp. 1-11.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
36th IEEE/ACM Int. Symposium on Microarchitecture, ser. MICRO 36,
2003.

N. Narayanamurthy, K. Pattabiraman, and M. Ripeanu, “Finding
resilience-friendly compiler optimizations using meta-heuristic search
techniques,” in 2016 12th European Dependable Computing Conference
(EDCC), Sept 2016, pp. 1-12.

N. Narayanamurthy, “Finding resilience-friendly compiler optimizations
using meta-heuristic search techniques,” Ph.D. dissertation, University
of British Columbia, 2015. [Online]. Available: https://open.library.ubc.
ca/cIRcle/collections/24/items/1.0166741

R. Neely, “Proxy applications: Vehicles for co-design and collaboration,”
Dec. 2013, presented at Predictive Science Academic Alliance Program
(PSAAP) II Meeting.

R. B. Parizi, R. R. Ferreira, L. Carro, and A. E Moreira, Compiler
Optimizations Do Impact the Reliability of Control-Flow Radiation
Hardened Embedded Software.  Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 49-60.

S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” J. of Computational Physics, vol. 117, no. 1, pp. 1 — 19, 1995.
G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
software implemented fault tolerance,” in International Symposium on
Code Generation and Optimization, March 2005.

B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A study
of the impact of bit-flip errors on programs compiled with different
optimization levels,” in European Dependable Computing Conference,
May 2014.

S. Sastry Hari, S. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Application resiliency analyzer for transient faults,” IEEE Micro, vol. 33,
no. 3, pp. 58-66, May 2013.

[27]

[28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

(391

[40]

N. Seifert and N. Tam, “Timing vulnerability factors of sequentials,”
Device and Materials Reliability, IEEE Transactions on, vol. 4, no. 3,
pp. 516522, Sept 2004.

M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel, “Exploiting
program-level masking and error propagation for constrained reliability
optimization,” in Proceedings of the 50th Annual Design Automation
Conference, ser. DAC *13, 2013, pp. 17:1-17:9.

V. C. Sharma, G. Gopalakrishnan, and S. Krishnamoorthy, “Towards
resiliency evaluation of vector programs,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2016, pp. 1319-1328.

V. C. Sharma, A. Haran, Z. Rakamari¢, and G. Gopalakrishnan, “To-
wards formal approaches to system resilience,” in the 19th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC), 2013.
V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in High Performance Computer Archi-
tecture, 2009. HPCA 2009. IEEE 15th International Symposium on, Feb
2009.

V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in Proceedings of 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS, 2015.

A. Thomas, J. Clapauch, and K. Pattabiraman, “Effect of compiler
optimizations on the error resilience of soft computing applications,”
in Workshop on Algorithmic and Application Error Resilience (AER),
June 2013.

A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in
multicores,” in Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 41, 2008, pp. 129-140.
L. Wang, R. Bertran, A. Buyuktosunoglu, P. Bose, and K. Skadron,
“Characterization of transient error tolerance for a class of mobile
embedded applications,” in Workload Characterization (IISWC), 2014
IEEE International Symposium on, Oct 2014, pp. 74-75.

N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” in Proceedings of 34th Annual
International Symposium on Computer Architecture, ser. ISCA, 2007,
pp. 460-469.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
International Conference on Dependable Systems and Networks, 2004.
Z. Wang, C. Chen, and A. Chattopadhyay, “Fast reliability exploration
for embedded processors via high-level fault injection,” in /4th Interna-
tional Symposium on Quality Electronic Design, March 2013, pp. 265—
272.

J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in
IEEE International Conference on Dependable Systems and Networks,
June 2014.

L. Yu, D. Li, S. Mittal, and J. S. Vetter, “Quantitatively modeling
application resilience with the data vulnerability factor,” in Proceedings
of the International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC *14, 2014, pp. 695-706.


https://open.library.ubc.ca/cIRcle/collections/24/items/1.0166741
https://open.library.ubc.ca/cIRcle/collections/24/items/1.0166741

