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Abstract
Polymer residue plays an important role in the performance of 2D heterostructured materials.
Herein, we study the effect of polymer residual impurities on the electrical properties of
graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron
nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques.
Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN
layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm2 area
for several planar heterostructure configurations was assessed by impedance spectroscopy and
modeled by equivalent electrical circuits. Conductive AFM measurements showed that the
presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in
significant resistance deviations over nanoscale regions.
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Introduction

The design of atomically thin electronic devices requires the
synthesis and assembly of large-area heterostructures of two-
dimensional (2D) crystals with complementary electrical
properties and compatible crystal structures. Graphene (Gr)
and hexagonal boron nitride (h-BN) are the most commonly
used 2D crystals with intrinsic electrical conductive and
insulating properties, respectively. Because of the similar
lattice parameters of the Gr and h-BN, the latter is an ideal
dielectric support layer for the fabrication of Gr-based

nanoelectronics and devices for energy storage [1–6]. The
charge carrier mobility in planar heterostructures of atomic
layer Gr that is either supported by h-BN or being encapsu-
lated between h-BN atomic layers has been shown to sig-
nificantly increase due to the reduced surface roughness,
screening of surface charges and the weaker electron-phonon
surface scattering [7–9]. The reported micrometer-scale
mobility values of the Gr/h-BN heterostructures are
approximately one order of magnitude higher than the
respective values of the Gr transferred onto oxidized silicon
wafer substrates [9].
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Chemical vapor deposition (CVD) is the predominant
technique for growing scalable quantities of Gr and h-BN
single layers on copper catalyst substrates. Polymer sacrificial
layers, such as poly(methyl methacrylate) (PMMA), have
commonly been used to remove the Gr and h-BN layers from
the copper foil and to assemble them into van-der-Waals
heterostructures on the substrate of choice. The latter, are
typically annealed at temperatures higher than 500 °C to
remove the PMMA; however, the complete removal of the
PMMA residue is still a challenging problem [10–12] and it
has been shown to impact the electrical properties of the Gr
[13, 14]. Moreover, the configuration of multilayer hetero-
structures introduces additional capacitive contributions due
to the dielectric layers [2, 15, 16]. Herein, we investigate the
electrical properties of large area (1 cm2) multilayer

configurations of Gr and h-BN planar structures and the effect
of the PMMA residues on the electrical properties. The
electrical characterization was performed using impedance
spectroscopy, and current–voltage (I–V ) measurements using
conductive atomic force microscopy (AFM). Scanning elec-
tron microscopy (SEM), and Raman spectroscopy were uti-
lized to characterize the quality of the synthesized 2D crystals
and their lateral heterostructures.

Experimental

Gr and h-BN monolayers were grown on copper foils using
the regular CVD technique and transferred on the substrate
via the wet chemical method. The growth conditions, the

Figure 1. SEM images of mono-, bi-, and tri- layers of Gr (a), (b) and h-BN (c), (d) crystals on SiO2/Si substrate. The assembled
heterostructures of h-BN/Gr and Gr/h-BN are shown in images (e) and (f), respectively.
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crystal morphology and the transfer process of the Gr and
h-BN layer onto substrates are described elsewhere [17, 18].
Details on the experimental setup are provided in the sup-
plementary data section is available online at stacks.iop.org/
NANO/0/000000/mmedia.

Results and discussion

The SEM images of the CVD synthesized h-BN and Gr are
shown in figures 1(a)–(d). During the growth of the Gr and
h-BN, the crystal domains keep growing till coalesced to form
a continuous monolayer film. Intermittent bi- and tri- layer
crystals were randomly formed on the top of the monolayer
film. The synthesized layers were assembled at several con-
figurations to form heterostructured layered films. Repre-
sentative SEM images of the h-BN/Gr, and Gr/h-BN
configurations are shown in figures 1(e) and (f), respectively.
Raman spectra of the h-BN and Gr layers were obtained over
several spots to verify the complete coverage of the films and
the number of single crystal layers. Representative Raman
spectra are shown in figure 2. The characteristic peak for a
single h-BN layer was found at 1369 cm−1 (figure 2(b)) [18–
20]. The characteristic G and 2D bands approximately at 1590
and 2650 cm−1, respectively for the single layer Gr are shown
in figure 2(a) [21–23]. Defects in the crystal structure may
form during the growth and assembly process. They are
associated with the formation of grain boundaries, lattice
distortions, surface wrinkles, and dangling bonds; all of which
impact the macroscopic electrical properties [24–27]. The
intensity of the D band at 1350 cm−1 which is associated with
the formation of crystal defects is very weak in the measured
spectra (figure 2(a)) indicating the high quality of the
assembled layers.

The assembly of the heterostructures is a multi-step
process. Single layers of Gr and h-BN were synthesized
on copper foil and were spin coated with PMMA. After

dissolving the copper, the PMMA-coated single layers were
thoroughly rinsed with deionized water and transferred onto
the silicon wafer. The transferred layers were rinsed with
acetone and isopropyl alcohol, and subsequently were
annealed at 550 °C for 30 min (h-BN was annealed in vacuum
whereas Gr was annealed in CO2) to remove the PMMA
residues [18, 28]. The surface morphologies of the transferred
layers according to AFM measurements, are shown in
figure 3. After rinsing with acetone, the PMMA residues are
still substantial and they cover almost the entire Gr surface.
The height of the PMMA features varies from 25 to 45 nm
(figures 3(a) and (b)). The annealing resulted in a significant
reduction of the residue amount. Large size (∼20 nm height)
residues are scattered on the Gr surface. The average residue
height has been decreased to approximately 5–10 nm.

Impedance spectroscopy and conductive AFM measure-
ments were carried out to measure the interlayer electrical
properties of the heterostructures. The impedance measure-
ments provided the frequency dependence of the distributed
(average values over the length scales of the assembled cir-
cuits) interlayer resistance and capacitance; whereas, AFM
measurements were used to map the local resistance and
probe variations in the resistance values due to the PMMA
residues. To measure the interlayer electrical properties of the
heterostructures, three, six, and twelve single layers of h-BN
were layer-by-layer assembled between single Gr layers (Gr/
3h-BN/Gr, Gr/6h-BN/Gr, and Gr/12h-BN/Gr). A reference
sample of two Gr layers (Gr/Gr) was also assembled to
measure the resistance and capacitance contributions of the Gr
electrodes. The area of the heterostructures was 1 cm2. The
frequency dependence of the impedance and phase angle, and
the equivalent circuit used to simulate the electrical response
of the layered structures are shown in figures 4(a) and (b),
respectively. The resistance of the Gr electrodes is denoted as
Relect. A combination of parallel R–C configurations was used
to simulate the distributed heterojunction resistance and
capacitive contributions in the layered assembly. Specifically,

Figure 2. Raman spectra of (a) Gr and Gr/h-BN heterostructures and (b) h-BN layers. All configurations were synthesized using CVD and
assembled using layer-by-layer techniques. The intensity of the h-BN band in (a) is masked by the strong Gr band.
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Figure 3.AFM images and surface profiles according to line scans of Gr and h-BN single layers spin coated with PMMA. (a), (b) Gr/PMMA
after rinsing with acetone. (c), (d) Gr/PMMA after annealing at 550 °C. The arrows indicate large size PMMA residues. (e), (f) h-BN/
PMMA after annealing at 550 °C. The measurements were performed on Si wafers with a top layer of 100 nm SiO2. The roughness of the
substrate is less than 1 nm.
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RBN and CBN correspond to the contributions of the BN
layers; whereas, RGr-BN and CGr-BN correspond to the Gr
electrode and BN interlayer connections. All parameters in
figure 4(b) were allowed to vary without constraints during
the fitting iterations. For all sample configurations, the Relect

and RGr-BN values were found to vary from 320 to 420Ω. The
interlayer resistance values RBN were found to systematically
increase when increasing the number of h-BN layers. The
RBN values for the Gr/3h-BN/Gr, Gr/6h-BN/Gr, and Gr/
12h-BN/Gr layer configurations are 330, 790 and 1600Ω,
respectively. The resistance values of the layered h-BN
assembly, as well as of the entire heterostructure (including
the RGr-BN resistance values between the h-BN layers and the
top and bottom electrode) are summarized in figure 4(c). The
simulated capacitance values in figure 4(b) vary from 10 to
40 nF. These rather low values correspond to an approximate
thickness of 100 nm for the assembled nanostructures. The
latter, as well as the absence of electron tunneling can be
attributed to the PMMA residues between the h-BN layers.

AFM equipped with a conductive tip of approximately
30 nm radius was used to map the I–V curves over nanoscale
regions for the Gr, h-BN, and h-BN/Gr configurations. The
local resistance values for all configurations were found to
vary significantly due to the PMMA residues. Representative
resistance map images are shown in figure 5.

The resistance values were calculated from the slope of
the I–V curves and were found to typically vary from several
hundred Ω–20 kΩ for the single Gr layer. Broad variations in
the resistance values of the single h-BN layer and the h-BN/
Gr heterostructure were also observed. The typical resistance
values were approximately 80 kΩ.

Conclusions

Atomic layers of h-BN and Gr were grown on copper foils
using CVD techniques. PMMA was used to transfer the single
layers and assemble them into van-der-Waals heterostructures
of three, six and twelve h-BN layers that are encapsulated
between Gr electrodes. The heterostructures were annealed at
550 °C to remove the PMMA and their interlayer electrical
properties were measured. The resistance values of the
assembled single layers varied from several hundred Ω to tens
of kΩ over nanometer size areas. This enormous variation is
attributed to the PMMA residues that are present between the
assembled monolayers. The approximate size of the PMMA
residues is 5–10 nm resulting in high interlayer resistance and
poor electrical contact between the assembled layers.
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