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ABSTRACT

We report a new multicanonical Monte Carlo (MC) algorithm to
obtain the density of states (DOS) for physical systems with contin-
uous state variables in statistical mechanics. Our algorithm is able
to obtain an analytical form for the DOS expressed in a chosen basis
set, instead of a numerical array of finite resolution as in previous
variants of this class of MC methods such as the multicanonical
(MUCA) sampling and Wang-Landau (WL) sampling. This is en-
abled by storing the visited states directly in a data set and avoiding
the explicit collection of a histogram. This practice also has the
advantage of avoiding undesirable artificial errors caused by the
discretization and binning of continuous state variables. Our results
show that this scheme is capable of obtaining converged results
with a much reduced number of Monte Carlo steps, leading to a
significant speedup over existing algorithms.
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1 INTRODUCTION

Monte Carlo (MC) methods are one of the major computational
techniques in statistical physics for the study of finite tempera-
ture properties and thermodynamics of materials [12]. Traditional
MC methods such as the Metropolis algorithm [14], an importance
sampling method, works by generating a Markov chain of energy
states E that obey the Boltzmann distribution, e E/ kBT, which de-
scribes the probability of finding the system at a certain energy
state at a given temperature T. Thermodynamics properties are
then calculated by averaging over the entire Markov chain after
equilibration. A well-known limitation of the Metropolis method is
the “critical slowing down” near phase transitions [8], where the
correlation time diverges at the critical temperature T¢. Hence, sim-
ulations around and below T¢ are simply impractical or unreliable
to perform.

Important breakthroughs were introduced by advanced tech-
niques such as the reweighting methods, which allow for the pro-
curement of a distribution function of properties. They can be used
to obtain properties at a temperature other than the simulation tem-
perature by “reweighting” the distribution function properly. Um-
brella sampling [1, 16], multihistogram method [6], multicanonical
(MUCA) sampling [3, 4], and more recently Wang-Landau sampling
[19, 20], all belong to this class of reweighting methods. Because
of a special formulation of the sampling weights that control the
acceptance probability, the random walks in these methods are
not “trapped” in local minima as in Metropolis sampling. They are
thus able to circumvent the critical slowing down problem. Among
the reweighting methods, Wang-Landau sampling is proven to be
quite robust because the simulation is performed independent of
temperature. The resulting distribution function is essentially the
density of states (DOS) or the energy degeneracy of the system.
Thus it reflects only the intrinsic properties defined by the Hamil-
tonian. The DOS allows for the direct access to the microcanonical
entropy, with which all the thermodynamics properties including
the specific heat and free energy can be calculated. This feature is
essential to enable a reliable study of phase transitions and critical
phenomena, particularly at low temperatures.

With the advancement of high performance computers (HPC),
it is now possible to combine Wang-Landau sampling with first-
principles methods, e.g. density functional theory (DFT) [7, 11],
to simulate finite temperature materials properties to a high ac-
curacy that is comparable with experimental observations [5, 10].
However, first-principles energy calculations are computationally
intensive; and yet a reliable Wang-Landau sampling often needs a
minimum of millions of MC steps (i.e. energy calculations) for one
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single simulation. The time required to finish a simulation is often
measured in weeks or even months on one of the fastest supercom-
puters currently available. Such a huge computational cost is barely
affordable. The type of scientific problems that can be practically
solved by this approach are, for this reason, still very limited.

To address this problem, improvements of existing Monte Carlo
algorithms are required. In general, two feasible strategies are avail-
able: one is the parallelization of existing algorithms, in which com-
putational cost is spread over multiple computing units. Examples
include parallel tempering [9, 15], parallel Wang-Landau sampling
on a graphical processing unit (GPU) [21], replica-exchange Wang-
Landau sampling [17, 18], and parallel multicanonical sampling
[22]. Another strategy is to find ways to reduce the number of MC
steps needed to complete a simulation. This is normally done by
introducing tricks within the framework of existing algorithms; but
the number of MC steps saved is often small.

In this paper, we present a new multicanonical Monte Carlo algo-
rithm that takes both strategies into account. Our scheme is readily
parallelizable to exploit the power of current HPC architectures.
In addition, our algorithm is able to attain comparable accuracy
with Wang-Landau sampling, using only about 1/10 of the number
of MC steps. This order of magnitude of reduction in the number
of energy evaluations is particularly crucial when first-principles
methods are employed for calculating the energy. Moreover, for
the very first time, our algorithm provides a viable means to obtain
the density of states in an analytical form. This algorithm will be
particularly useful to fit the functional form of the density of states
to aid theoretical studies.

2 DESCRIPTION OF THE ALGORITHM

2.1 An overview

Our novel algorithm is inspired by previous multicanonical (MUCA)
[3, 4] and Wang-Landau (WL)[19, 20] Monte Carlo methods. There-
fore our algorithm shares many of its underlying principles with
these earlier methods. The major advantage of our scheme over the
previous ones is that our algorithm, for the first time, provides a
viable avenue to estimate an analytic form of the density of states in
energy, denoted by g(E). Here E stands for an energy the simulated
physical system can realize. We assume an analytic form for the
natural log of g(E) in terms of an orthonormal basis set {¢;(E)}
each weighted by the coefficient g;:

N
Ing(E) = " gigi(E), (1)
i=1

with N being the number of basis functions utilized in the expansion.
The estimation of g(E) will be improved iteratively later during
the course of the simulation by a similarly defined, yet slightly
modified, correction function ¢(E):
N
Inc(E) = ) cigi(B), @
i=1
where c; is the weighting coefficient for ¢;(E) in the correction.
The algorithm begins with an initial guess of g(E) = 1 (ie.,
Ing(E) = 0). In other words, it is a uniform distribution with no
energy degeneracy. Next, a series of Monte Carlo moves is per-
formed and a Markov chain of k energies is generated to construct
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a data set O = {Ey, Ez, ..., Ej, ..., B} according to the following
acceptance probability:

~g(Ej) , 1). (3)
g(E j+1 )
Note that the acceptance rule follows that of the Wang-Landau
algorithm[20]. That is, if the trial energy E;;1 is rejected, the pre-
vious accepted state of the system should be recovered, but the
associated energy E; would be counted again as Ej+1. A Monte
Carlo move is then performed on the reverted state to generate the
next trial energy Ej2.

After the data set D is generated, it is used to find the correction

c(E) that improves the estimated density of states g(E) such that:
Ing(E) —» Ing(E) + Inc(E). (4)

p(Ej = Ejy1) = min(

The details of obtaining the correction function c¢(E) from the data
set O will be further described below in subsection 2.2. For now
assume that we have updated the estimated density of states §(E)
with ¢(E) using Eq. (4). The simulation is then brought to the next
iteration with D and In c(E) reset to empty or zero, respectively,
while G(E) will be kept unchanged and carried over to the next
iteration as the new sampling weights. The process of generating
the data set O and obtaining the correction c(E) is then repeated.
The iteration repeats and terminates when Inc(E) — 0. In this
case the DOS becomes a fixed point of the iterative process and
convergence is reached.

2.2 Obtaining the correction c(E) from data set
D

The key of the above framework is to obtain an analytic expression
for the correction c¢(E), or In ¢(E) in the actual implementation of
our algorithm. To do so, we must first obtain an analytic expression
for the empirical cumulative distribution function (ECDF) of the
data D, from which c(E) can be deduced.

2.2.1 Obtaining an analytic expression for the empirical cumula-
tive distribution function (ECDF). We construct the ECDF following
the scheme proposed by Berg and Harris [2], which we outline here.
Recall that our data set D is a collection of k energies generated
from a Monte Carlo Markov chain. The energies are first rearranged
in ascending order:

D = {E1,Ep,....Ej, ..., Ei}
= {EﬂlaEﬂ’zs ~-~,E7rj, -~-,E7rk },
where 71, ..., 7y is a permutation of 1, ..., k such that E;, < Ey, <

o £ Eg; < .0 < Ep. The empirical cumulative distribution
function (ECDF) is then defined as:

®)

F(E) = % for Ex, < E < Eg . )

Assuming that the ECDF can be decomposed into two components:
F(E) = Fo(E) + R(E), (7)

where Fo(E) = (E — Ex,)/(Ex, — Ex,) is a straight line for E €
[Ex,»Ex, ], and R(E) defines the empirical remainder. The choice
of Fy(E) as a straight line is based upon the following observations:
for traditional histogram methods, the ECDF plays the role of the
cumulative histogram that can be constructed directly from the
histogram H(E). Nevertheless, the ECDF does not suffer from the
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binning effect. The derivative of ECDF is then equivalent to the his-
togram in traditional methods: H(E) = dF(E)/dE. In such schemes,
obtaining a “flat” histogram is an indicator that the energy space is
being sampled uniformly. The sampling weights are continuously
adjusted to direct the random walk from highly accessible states to
rare events, either periodically in MUCA or adaptively in WL, to
achieve this goal. Here, a “flat histogram” is equivalent to an ECDF
with a straight line of a constant slope.

The next task would be finding an analytic expression for the
remainder R(E) to fit the empirical data R(E). R(E) signifies the
deviation from the ideal (uniform) sampling, which will inform
us on how to amend the weights to drive the random walks. It is
expected that R(E) will be related to the correction c¢(E). Therefore,
it is reasonable to assume that R(E) can be similarly expanded in
terms of an orthonormal basis set {i/; (E)}:

R(E) = )" rifi(E), ®

i=1

where m is the number of terms in the expression. The coefficients
ri can be then be found by:

Ex
n=NL R(E): (E)dE, )

with NV being a normalization constant dependent on the choice
of the basis set {/; (E)}. Note also that the basis set {1}; (E)} needs
to be able to satisfy the “boundary condition” at E, and E,, that
R(Ex,) = R(Ex, ) = 0 by definition. Since R(E) is indeed an empir-
ical function resulted from the ECDF, the integral in Eq. (9) is a
quick summation for the area under curve.

The remaining question is to determine the number of terms m
in Eq. (8) to fit R(E). This is done by an iterative procedure starting
from m = 1 where there is only one term in the sum. A statistical
test is then performed to measure the probability p that this R(E)
is a “good” fit to R(E). That is, p is the probability of obtaining
the empirical remainder R(E) if the data is generated according to
the distribution specified by R(E). We follow the suggestion of [2]
and use the Kolmogorov-Smirnov test, but other statistical tests for
arbitrary probability distributions can also be used. If p < 0.5, we
increase m to m + 1 and repeat the statistical test, until p > 0.5 is
reached. The number of terms m is then fixed at this point. Note
that in principle, increasing m further would result in a “better
fit” and thus a larger p. However, it is not preferable because it
increases the risk of over-fitting a particular data set and would be
difficult to correct through latter iterations. Thus we choose the
criterion p > 0.5 to keep the expression as simple as possible, and
to maintain some levels of stability against noise.

With the expression of R(E), the analytic approximation of ECDF
can then be obtained:

F(E) = Fo(E) + R(E). (10)

2.2.2  From ECDF F(E) to the correction c(E). Finally, the ex-
pression of F(E) in Eq. (10) is used to obtain the correction c(E)
(or Inc(E) in practice). Recall the definition of the cumulative dis-
tribution function (CDF) for a continuous variable, which can be
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constructed from the probability density function. They are, respec-
tively, equivalent to F(E) and H(E):

E
F(E) = [ H(E')dE’. (11)

Combining Egs. (10) and (11) and taking derivatives from both
sides to obtain H(E) yields:

dF(E) _ dFo(E) _dR(E)

H(E) = —7F dE dE )
12
1 2 dyi(E
_ +Zri ¥i(E)
En, —En, &4 dE

As in traditional multicanonical sampling methods, the histogram
H(E) is used to update the estimated density of states g(E), hence
the sampling weights for the next iteration. Observe that the first
term in Eq. (12) is just a constant independent of the value of E, one
can safely omit it in the correction. Thus,

Inc(E) = Z ri _dl/g}(iE)’ (13)
i=1

which has the same form as Eq. (2) with

cipi(E) =r; d[/z](iE)

Finally, the estimated density of states §(E) is updated using Eq. (4).

and N = m.

3 TEST CASE: NUMERICAL INTEGRATION

The algorithm was originally designed with the motivation of sam-
pling physical systems with a continuous energy domain. Yet, as
the majority of these systems do not have an analytic solution, it is
difficult to quantify the accuracy of the algorithm. We thus apply it
to perform numerical integration using the scheme suggested by
Ref. [13] as a proof-of-principle.

Note, however, that our method is not meant to be an efficient
algorithm for performing numerical integration. As pointed out in
Ref. [13], there is a one-to-one correspondence between numeri-
cal integration and simulating an Ising model when put under the
Wang-Landau sampling framework. This applies to our algorithm
too and as long as we choose an integrand that is continuous within
the interval [Ymin, Ymax], it is equivalent to the situation of hav-
ing a continuous energy domain for a physical system. Moreover,
numerical integration is indeed a more stringent test case for our
algorithm (and other histogram MC methods such as Wang-Landau
sampling in general), because the “density of states” g(y) is usually
more rugged than the density of states of a real physical system.

If one can find an expression for the normalized g(y), which
measures the portion of the domain within interval [a, b] corre-
sponding to a certain value of y, then the integral can be found by
summing the “rows” up (multiplied by the value of y) instead of
the columns in the following manner:

b Ymax
I= f y(x)dx = f 9(y)ydy. (14)
a Ymin
Note that g(y) needs to be normalized such that
ymax
f gy)dy=>b-a. (15)
Ymin
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Figure 1: A schematic diagram showing the numerical inte-
gration notations. The red regions on the x-axis marked the
portion within the interval [q, b] that gives a certain value y.
All the areas shaded in grey add up to give g(y)y.

We apply our algorithm to perform the following integration
where the exact integral is known:

z, 16
I:f xidx = o= =533333- -, (16)
-2

and the “density of states” g(y) can be expressed analytically:

2(2 - +/1)
9(y) = T

We use a Fourier sine series as the basis set {{/(E)} to fit the
remainder R(E), and therefore a Fourier cosine series as the basis
set {¢(E)} for constructing the correction Inc(E) and updating
the density of states In g(E). Moreover, we employ Kolmogorov-
Smirnov test in the R(E) fitting step to see if the expression obtained
is a good fit to the dataset O, using a criterion of p = 0.5. The
experiment is done for different numbers of data in the data set,
with k = 250, 500, 1000 and 2000.

We note that the Fourier sine and cosine series are not good
basis sets for this problem due to their oscillatory properties. Yet
the algorithm works surprisingly well. In Figure 2, we show a
resulting density of states, g(y), compared to that obtained using
Wang-Landau sampling. The fluctuations of our g(y) fall within the
statistical noise of the WL density of states.

The values of the estimated integral at different iterations for
k =500 and k = 1000 are shown in Figures 3 and 4, respectively.

We observe that the number of data points k in a data set within
an iteration plays an important role in the accuracy. Both under-
fitting from insufficient data and over-fitting from excessive data
would produce inaccurate results. In both Figures 3 and 4, most
estimated integrals agree with the exact value to within the error
bars. No systematic correlation with the number of iterations is
observed for both the estimated values of the integral and as well
as the magnitude of the error bars. Using k = 500 or k = 1000 does
not seem to result in significant differences in the estimated value
of the integral. However, if we extend the studies and use fewer or
more data points in the data set D, we observe different behavior
as shown in Figure 5. For the k = 250 case, the integrals are slightly
overestimated at the first 200 iterations or so. The percent errors

fory > 0. (17)
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In g(y)

-3.0

— This algorithm, k = 1000
— Wang-Landau

-3.5

-4.0

-4.5

-5.0

=55

Figure 2: Density of states g(y) at the 120th jteration, obtained
using 1000 data points in a data set (black curve), a total of
1.2 x 10° MC steps are used. It is compared to a final g(y)
obtained using Wang-Landau sampling (red curve); this par-
ticular run requires 1.1 x 10> MC steps to complete. The DOS
obtained from our algorithm is significantly smoother, yet
its fluctuations fall within the statistical noise of the Wang-
Landau DOS.

5.8 . :
k=500 —e—
57 L exact value — — - |
5.6 | 1
E
e 55 ¢ 1
=
Sosal | } |
5 53 1
>
52 1
5.1 r |
5 L L L L L L
0 50 100 150 200 250 300

Number of iterations

Figure 3: Integral of x? over x € [-2,2], obtained using 500
data points in a data set. Error bars are obtained from five
independent runs.

fall back to within the same ranges as in the k = 500 and k = 1000
cases later. This is reasonable because as the number of iterations
increases, more data are taken to correct the estimated density of
states.

However, the integrals are, unexpectedly, systematically under-
estimated for the k = 2000 case. We also observe that the number of
terms in the expression of R(E) and eventually In g(E) generally in-
creases with the number k (Table 1). A larger number of data results
in a more detailed fitting of the DOS, hence more terms are used
in the construction of the correction. Unfortunately, there is also a
higher risk of fitting the noise “too well”, causing an over-fitting of
the estimated DOS. On the other hand, using too few data points
(such as k = 250) results in larger fluctuations in the values of the
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5.8 T .
k=1000 ——e—
57 exact value — — - |

551 1

541 1

521 1

Value of integral

51 r 1

5 L L L L L L
0 50 100 150 200 250 300

Number of iterations

Figure 4: Integral of x? over x € [-2, 2], obtained using 1000
data points in a data set. Error bars are obtained from five
independent runs.

intergral as well as in the number of terms N in the expression.
From our observations, using about k = 1000 data points in a data
set is the safest and it strikes a good balance between under-fitting
(or even mal-fitting) and overfitting.

[N N R 2 )Y

—

Percent error of integral

0 N
1t / |
2t i
3 : : : : : :

0 50 100 150 200 250 300

Number of iterations

Figure 5: Percent errors of the averaged estimated integrals
at different iterations using various numbers of data points
k in a data set. The integrals for all cases are averaged over
five independent runs. Except for k = 2000, all other cases
converge to the exact value eventually with small errors
(within +£1%).

Note that the above experiments complete within hundreds of
iterations. Considering k = 1000 data points in an iteration, the
total number of MC steps needed is of the order of 10°. Comparing
to the order of 10® MC steps in Wang-Landau sampling, our scheme
is more efficient and it saves about 10X MC steps. The reason is
that when we correct the estimated DOS (i.e., sampling weights),
the correction is constructed to drive the random walk intentionally
to achieve uniform sampling, or a “flat histogram”, as opposed to
an incremental correction using the histogram as in MUCA or WL
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k N

250 | 19.4+14.6
500 17.8 £ 6.1
1000 | 29.6 +4.3
2000 | 58.2+13.0
Table 1: Averaged number of basis functions (N) for differ-
ent number of data points (k) in each data set. The average
values and errors are obtained from five independent runs.
The number N is determined within the algorithm, at which
the statistical test reaches p > 0.5.

sampling. We believe that our correction scheme can also be applied
to simple models with discrete energy levels and yields significant
speedup.

4 AN IMPROVED SCHEME FOR BETTER
CONVERGENCE

While the results above showed that our proposed scheme is suc-
cessful, one problem is that it is still difficult to determine whether
convergence has been reached. Here, we suggest a possible way to
improve the quality of the results with two slight modifications to
the original scheme.

Firstly, when determining the number of terms for the remainder
R(E) (m in Eq. (8)), the original scheme starts from m = 1 and
increments it to m + 1 sequentially until the statistical test gives a
score of p > 0.5. We observe that this practice very often results in
the update of the first few coefficients only. A remedy to it is that
after the number m is determined in the first iteration, in the later
iterations we propose random permutations of the terms for the
statistical test to start with. This way, every coefficient will have a
roughly equal chance to get updated and refined.

Secondly, since the correction in Eq. (13) will drive the random
walker in a way to achieve uniform sampling, we observe that it
is beneficial to use a milder correction update to drive the random
walker at a smaller step at a time. To do so, we rewrite Eq. (13) with
a pre-factor s to take only a portion of R(E) as the correction:

Inc(E) =s Z ri dlﬁd,éE) . (18)
i=1

With these two small modifications, we revisited the integration
problem using k = 1000 data points in the data set (Figure 6). The
integral values in the first few dozens of iterations deviate more
from the exact value compared to the original scheme, but it con-
verges slowly to the exact value with a much clearer convergence
signal. In this example, one may terminate the simulation after e.g.
the 150t iteration. Another clear improvement is that the error
bar for each final answer is much reduced compared to the original
scheme, which indicates that the improved scheme is able to give
more precise results.

5 FURTHER IMPROVEMENTS

Our scheme is general in nature that the expression of the DOS
g(E) is not restricted to the Fourier form above, as long as there
is a way to formulate the correction c(E) and the update formula.
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Figure 6: Integral of x? over x € [-2, 2], obtained using 1000
data points in a data set and the improved scheme with a
milder correction with the pre-factor s = 0.25. Error bars are
obtained from five independent runs.

Obviously, the quality of the resulting density of states depends
heavily on the choice of a proper basis set. While the plane wave
basis used in the present study allowed us to implement a prototype
of our algorithm without major effort, it suffers from serious issues
that will require the choice of more suitable basis sets. In particular,
local improvements to the density of states in a limited region of
the domain should not introduce changes in regions far away. Also,
the density of states often spans a wide range of values; indeed the
density of states for the integration example possesses a singularity
at the domain boundary. Thus a more suitable, localized, basis set
will greatly improve the convergence and accuracy of our method.

Although we present our method as a serial algorithm so far,
we stress its parallelization is conceptually straight-forward. Since
the generation of data points (which is the energy evaluations for
a physical system) can be done independently by distributing the
work over different processors, simple “poor-man’s” parallelization
strategy would already guarantee significant speedup in both strong
and weak scaling.

6 CONCLUSIONS

In this paper, we have presented a new Monte Carlo algorithm
for calculating probability densities of systems with a continuous
energy domain. The idea is inspired by combining ideas from the
works of Wang and Landau [19, 20], Berg and Neuhaus [3, 4], as
well as Berg and Harris [2]. Nevertheless, our algorithm does not
make use of an explicit histogram as in traditional Wang-Landau
or multicanonical sampling. It is thus possible to avoid discrete
binning of the collected data. This histogram-free approach allows
us to obtain the estimated probability density, or the density of
states, in terms of an analytic expression.

We have demonstrated the application of our algorithm to a strin-
gent test case, numerical integration. Even with the sub-optimal
Fourier sine and cosine basis sets, our current algorithm is already
capable of giving reasonable results. An important point to note
is that our algorithm requires much fewer number of Monte Carlo
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steps to finish a simulation. It is enabled by the novel way we
proposed to correct the estimated density of states, and thus the
sampling weights, where the random walk is directed consciously to
achieve uniform sampling. This is essential for decreasing the time-
to-solution ratio of a simulation, especially for complex systems
where the computation time is dominated by energy evaluations.

The numerical integration test case provides useful insights into
improving the algorithm. Possible improvements include the use
of a basis set with local support and parallelization over energy
calculations. Our ongoing work includes all the possibilities for
perfecting the algorithm, as well as its application to simulations
of physical systems to solve real-world scientific problems.
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