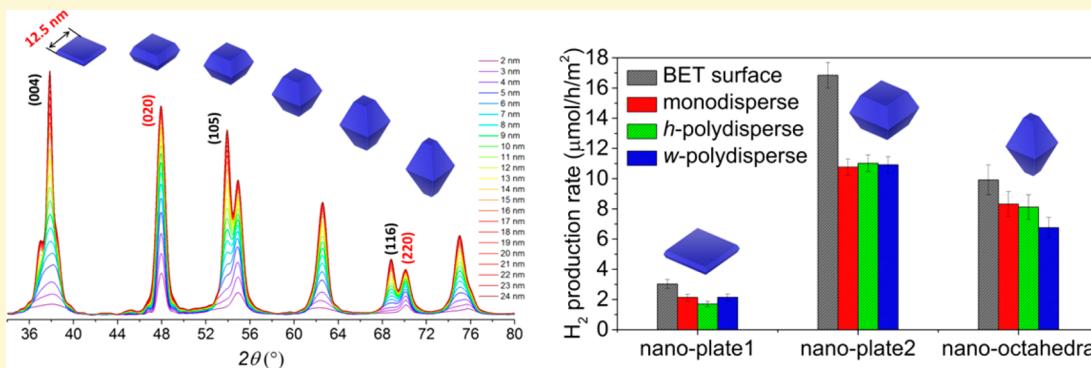


Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO_2 Nanocrystals and Its Implication on Photocatalytic Activity

Jue Liu,^{*,†} Daniel Olds,[†] Rui Peng,[‡] Lei Yu,[§] Guo Shiou Foo,[‡] Shuo Qian,[#] Jong Keum,[‡] Beth S. Guiton,[§] Zili Wu,[‡] and Katharine Page^{*,†}


[†]Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

[§]Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

[‡]Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

[#]Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

10 Supporting Information

11 **ABSTRACT:** The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their
 12 physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or
 13 another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray
 14 diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic
 15 structure of {001} and {101} faceted anatase TiO_2 nanocrystals based on differential evolution refinements using Debye
 16 scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO_2 nanocrystals can be
 17 effectively obtained from the diffraction data via a numerical refinement routine. The morphology refinement results are in good
 18 agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This
 19 method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO_2 nanocrystals
 20 with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets
 21 shows the best photocatalytic hydrogen evolution reaction (HER) activity. It is expected that the simultaneous structure and
 22 morphology refinement technique can be generally used to study the relationship between morphology and functionality of
 23 nanomaterials.

INTRODUCTION

Nanomaterials have emerged as very important candidates for energy storage, catalysis, and semiconductor applications.^{1–5} It has also been recognized for a long time that the morphology (particle shape and size) of nanomaterials can strongly affect their physical and chemical properties.^{6–9} It is for this reason that nanomaterials with specific morphologies, such as nanospheres, -cubes, -octahedra, -plates, -needles, etc., are highly sought for a variety of applications.^{10–14} Electron microscopy techniques, i.e., scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as small-angle X-ray/neutron scattering (SANS/SAXS), have been widely used to investigate the morphologies of nanoma-

terials. However, it is worth noting that TEM and SEM images can only provide selected local morphology information, often conveying questionable representative results of the whole sample.^{15,16} In addition, these approaches become problematic when nanoparticles are agglomerated,¹⁷ and samples can be damaged by high energy electron beams.^{18,19} Therefore, it is imperative to develop an average (bulk) morphology evaluation tool to assist traditional electron microscopy investigations to gain more reliable morphology information on nanomaterials.

Received: March 22, 2017

Revised: June 8, 2017

Published: June 14, 2017

46 On the other hand, the composition and atomic structure also
 47 play a very important role for specific functionalities of
 48 nanomaterials. For example, the water splitting performance
 49 of $(\text{ZnO})_x(\text{GaN})_{1-x}$ nanoparticles is strongly correlated to its
 50 composition (x value),²⁰ and the enhanced correlation of
 51 internal dipoles of BaTiO_3 nanocubes have been hypothesized
 52 to stabilize nanoscale ferroelectricity.²¹ Therefore, to better
 53 understand the relationship between the functionality and
 54 structure of nanomaterials, it would be highly desirable to
 55 characterize the morphology and internal atomistic structure
 56 simultaneously.

57 X-ray or neutron Bragg diffraction has been widely used to
 58 gain accurate atomistic structures of crystalline materials.^{22–24}
 59 This approach correlates the measured diffraction intensity with
 60 crystal structure by mathematical functions, notably the three
 61 Laue equations.^{25,26} For large crystals, the translational
 62 periodicities along three crystallographic axis direction (a , b ,
 63 and c) are large enough that each of these equations only differs
 64 from zero when Bragg diffraction conditions ($2d \sin \theta = n\lambda$) are
 65 strictly satisfied, and hence the Bragg diffraction peaks are very
 66 intense and sharp. In contrast, for small nanocrystals, the
 67 translational periodicities are limited or even eliminated and
 68 thus the nonzero areas broaden for the three Laue equations,
 69 resulting in much broader Bragg diffraction peaks: a
 70 phenomenon that is often termed as size broadening.^{27,28}
 71 Therefore, measurement of the widths of Bragg diffraction
 72 peaks provides the simplest method to estimate the crystallite
 73 size of polycrystalline samples (depending on the instrumental
 74 resolution, sensitivity is typically available up to 100 nm in
 75 particle dimensions). Several well-adapted methods, such as the
 76 Scherrer equation,²⁷ Stokes–Wilson method,²⁹ and Warren–
 77 Averbach method,³⁰ can be used to treat the size broadening
 78 effects from powder diffraction data. However, it should be
 79 noted that the coexistence of strain, dislocations, or defects
 80 (e.g., stacking faults) may bring other isotropic or anisotropic
 81 broadening effects into the diffraction profiles. Theoretically,
 82 quantitative information about the atomistic structure and size
 83 of nanoparticles can be extracted from corresponding Bragg
 84 diffraction profiles if all of these broadening effects can be
 85 effectively deconvoluted.³¹ However, in reality, Bragg diffrac-
 86 tion peaks of small nanocrystals are often found to be so broad
 87 that they overlap significantly or even smear into the
 88 background, resulting in difficult profile deconvolution.^{16,32} In
 89 addition, the existence of anisotropic particle shapes for many
 90 nanocrystals (e.g., nanodisks, -rods, -tetrapods) brings further
 91 complexity into the conventional Rietveld-type analysis. In
 92 contrast to the traditional treatment of powder diffraction data
 93 (in reciprocal space), the Debye scattering equation (DSE)³³
 94 calculation operates in real space and takes no preassumption of
 95 any translational periodicity. Thus, it can be equally applied to
 96 materials with long-range order as well as materials with
 97 intermediate/short-range order or even amorphous materials
 98 and liquids.³⁴ Historically, the major limitation of using DSE for
 99 structure analysis is the requirement of tremendous amounts of
 100 computational power, as the summation of DSE runs over all
 101 atoms and thus the computational time is proportional to the
 102 square of the number of atoms in the particle ($\sim N^2$). However,
 103 as computational power continues to grow, the calculation of
 104 scattering profiles of nanoparticles with dimensions of tens of
 105 nanometers is now achievable within a reasonable amount of
 106 time (hours) even on personal computers. For example, several
 107 groups have successfully used the Debye scattering equation to
 108 study the morphology and atomistic structure of oxide

109 nanoparticles^{15,16,35} and lead chalcogenide quantum dots³⁶
 110 with powder X-ray diffraction data.¹¹⁰

111 Pair distribution function (PDF) analysis has emerged as
 112 another powerful tool to study the particle shape, size, and
 113 atomistic structure of nanomaterials or materials with
 114 appreciable amount of disorder.^{34,37–40} The real-space-based
 115 PDF analysis utilizes both Bragg scattering and diffuse
 116 scattering information and thus is very sensitive to short-
 117 range ordering (SRO) in disordered materials or intermediate-
 118 range structure in nanoscale materials. Despite its great
 119 advantages in studying the structure of nanomaterials, it is
 120 worth noting that the detailed morphology (size and shape)
 121 information is often absent from the experimental PDF ($G(r)$)
 122 data due to the lack of low- Q scattering data at dedicated PDF
 123 instruments (typical $Q_{\min} \sim 0.1 \text{ \AA}$ or higher), as can be seen in
 124 eq 1. This problem is overcome in modeling by implementing a
 125 characteristic shape function $\gamma_0(r)$, or the so-called envelope
 126 function, into the PDF analysis process.^{41,42} However, this
 127 approach is effective only if a priori knowledge of the
 128 morphology (shape and size) of nanoparticles is obtained
 129 from other techniques such as TEM or small-angle X-ray/
 130 neutron scattering. More recently, our group developed a new
 131 approach for this “shape-correction” that can be used during
 132 structure refinement utilizing the calculated complete PDF
 133 $G^*(r)$ from an atomistic model with known Q_{\min} from
 134 measurements.⁴³ This approach provides an efficient route to
 135 quantitative analysis of the atomistic structure of nanomaterials
 136 using PDF data. This becomes even more critical in terms of
 137 irregular particle shapes where the calculation of accurate
 138 mathematical expressions for the shape function is exceptionally
 139 challenging.¹⁴⁰

$$\begin{aligned} G(r) &= \frac{2}{\pi} \int_{Q_{\max}}^{Q_{\min}} Q[S(Q) - 1] \sin(Qr) dQ \\ &= 4\pi r \rho(r) - 4\pi r \rho_0 \gamma_0(r) \\ &= G^*(r) - 4\pi r \rho_0 \gamma_0(r) \end{aligned} \quad (1)$$

141 In this article, we demonstrate that DSE analysis of Bragg
 142 diffraction and PDF can be used as a powerful tool to obtain
 143 accurate atomistic structure and morphology (shape, average
 144 particle size, and particle size distribution) information for
 145 $\{001\}$ and $\{101\}$ faceted anatase TiO_2 nanocrystals. Anatase
 146 TiO_2 nanocrystals have attracted tremendous attention in
 147 recent years because of their excellent catalytic, especially
 148 photocatalytic, activity.^{5,44} In particular, TiO_2 nanocrystals with
 149 dominant $\{001\}$ facets are highly desired because they are
 150 theoretically predicted to possess more active sites (five-
 151 coordinated Ti) and higher surface energy relative to other
 152 energetically more favorable facets such as $\{101\}$ or $\{100\}$ etc.
 153 and are thus believed to show better heterogeneous catalytic
 154 performance.^{45,46} This assessment has been well adopted in the
 155 community for many years though very limited direct
 156 experimental evidence can be found, presumably due to the
 157 lack of high quality anatase TiO_2 samples with dominant $\{001\}$
 158 facets.⁴⁷ The tailored synthesis of $\{001\}$ dominant nanocrystals
 159 had been found to be exceptionally challenging because the
 160 highly energetic $\{001\}$ facets diminish quickly in equilibrium or
 161 near-equilibrium synthetic conditions.^{46,48,49} Fortunately, Yang
 162 et al. discovered that $\{001\}$ facets can be stabilized by using
 163 fluorine as a surface stabilizer under hydrothermal conditions.⁷
 164 Though the initial demonstration was to synthesize micro-
 165 meter-sized TiO_2 single crystals with a high ratio of $\{001\}$
 166

166 facets, this method was immediately adopted and modified to
167 synthesize nanocrystals with larger surface areas for catalytic
168 and energy storage related applications.^{50,51} With tremendous
169 successes in synthesizing anatase TiO_2 nanocrystals with
170 different $\{001\}$ ratios in recent years, more and more
171 controversial experimental results about the ranking of the
172 catalytic reactivity of different facets have been reported.^{35,52}
173 This controversy, in large part, is caused by the difficulty in
174 separating the catalytic contribution from distinct facets and the
175 lack of an effective method to accurately quantify the surface
176 area of each facet.^{35,53} This motivates us to carry out the
177 current comprehensive morphology study of anatase TiO_2
178 nanocrystals with different amounts of $\{001\}$ and $\{101\}$ facets.
179 By accurately determining the shape, size, and polydispersity of
180 the synthesized nanocrystals, the relationship between the
181 surface-normalized photocatalytic HER reactivity and the
182 morphology of nanocrystals is successfully unraveled. This
183 study also paves the way for quantitatively investigating the
184 relationship between the functionality and the morphology of
185 other technologically important nanomaterials based on the
186 developed methods.

187 ■ EXPERIMENTAL DETAILS

188 **Synthesis of Anatase TiO_2 Nano-Octahedra and Nanoplates.**
189 Aqueous TiCl_4 solution was prepared by adding 6.6 mL of TiCl_4 to 50
190 mL of aqueous HCl solution (0.43 mol/L) drop by drop under
191 vigorous stirring in an ice bath. TiCl_4 solution was added to 5 wt %
192 $\text{NH}_3\cdot\text{H}_2\text{O}$ aqueous solution drop by drop under vigorous stirring.
193 After a light blue Ti(OH)_4 (precursor) precipitate was formed, 10 mL
194 of 4 wt % aqueous $\text{NH}_3\cdot\text{H}_2\text{O}$ solution was added to adjust the pH
195 between 6 and 7. The suspension was centrifuged after aging for 2 h at
196 room temperature. The precipitate was washed two times with water
197 and one time with ethanol. To prepare TiO_2 nano-octahedra, 2 g of
198 fresh Ti(OH)_4 precursor was dispersed in 30 mL of 50 vol % water/
199 isopropanol. The suspension was transferred to a 50 mL Teflon-lined
200 autoclave and heated to 180 °C for 24 h. The product was centrifuged
201 after the reaction and washed with deionized water three times and
202 ethanol one time. TiO_2 nanoplates were prepared using $\text{Ti}(\text{OC}_4\text{H}_9)_4$
203 as precursor. $\text{Ti}(\text{OC}_4\text{H}_9)_4$ (5 mL) was added to 20 mL of distilled
204 water drop by drop under stirring. A total of 0.5 mL of 47 wt %
205 aqueous HF was added slowly after stirring for 15 min. The
206 suspension was stirred for 30 min before being transferred to a 50
207 mL Teflon-lined autoclave and heated to 180 °C for 24 h. The product
208 was centrifuged after the reaction and then extensively washed with
209 NaOH solution to remove the surface F ligands.^{35,54} The final product
210 was then washed with ethanol three times before recovering. Both
211 nano-octahedra and nanoplate samples were calcined at 300 °C for 4
212 h. To study the change in photocatalytic activity, another thicker
213 nanoplate sample was synthesized by calcining the pristine nanoplates
214 at 500 °C for 4 h. This is enabled by the nature of oriented attachment
215 growth of these nanoplates in the *c*-axis direction at elevated
216 temperatures (Figure S1,3).⁵⁵

217 Brunauer–Emmett–Teller (BET) surface areas of the TiO_2
218 nanocrystals were measured via nitrogen adsorption at −196 °C
219 using a Micrometrics Gemini 275 system. For the samples calcined at
220 300 °C, TiO_2 nanoplates and nano-octahedra have surface areas of 58
221 and 101 m^2/g , respectively. The thicker TiO_2 nanoplates calcined at
222 500 °C have a surface area of 36 m^2/g .

223 **X-ray Diffraction.** Powder diffraction patterns were collected on a
224 PANalytical X’Pert MPD Pro X-ray powder diffractometer with Cu $\text{K}\alpha$
225 radiation ($\lambda = 1.54187 \text{ \AA}$) equipped with an Anton Paar XRK-90 linear
226 detector. The diffraction experiments were carried out with a step size
227 of 0.016711° and at a scan rate of 80 s/step in Bragg–Brentano
228 configuration. The primary and secondary radius was set to 240 mm.
229 Le Bail and Rietveld analyses were carried out in the TOPAS software
230 suite (version 6). Simulations of corresponding powder diffraction
231 patterns using the Debye scattering equation were conducted in the

232 DISCUS/KUPLOT/DIFFEV program suite.⁵⁶ The instrumental 232
233 function is modeled with a symmetrical Pseudo-Voigt function 233
234 obtained from fitting the diffraction profile of a standard CeO_2 234
235 powder specimen.

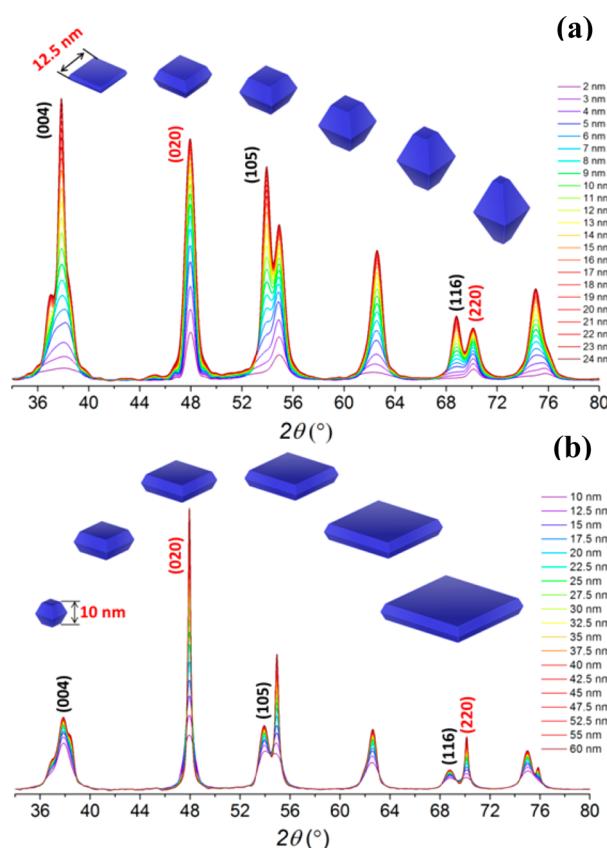
236 **Neutron Pair Distribution Function.** Neutron total scattering 236
237 data were collected at the NOMAD beamline at the Spallation 237
238 Neutron Source (SNS) at Oak Ridge National Laboratory. NOMAD is 238
239 a high flux, intermediate resolution neutron powder diffractometer that 239
240 is specifically designed for high quality neutron total scattering (both 240
241 Bragg scattering and diffuse scattering). For the current experiment, 241
242 about 0.2–0.3 g of powder samples were loaded into 3 mm quartz 242
243 capillaries. Two 30 min scans were collected for each powder sample 243
244 and then summed together to improve the statistics. The detectors 244
245 were calibrated using scattering from a diamond powder standard prior 245
246 to the measurements. Neutron powder diffraction data were 246
247 normalized against a vanadium rod, the background was subtracted, 247
248 and the total scattering structure factor $S(Q)$ data were transformed to 248
249 pair distribution function data $G(r)$ using the specific IDL codes 249
250 developed for the NOMAD instrument.⁵⁷ Small box (unit-cell based) 250
251 refinements were carried out in the TOPAS software suite (version 251
252 6).⁵⁸ Further particle morphology simulations/refinements were 252
253 carried out in the DISCUS/KUPLOT/DIFFEV software package.⁴⁸

254 **Small Angle Neutron Scattering.** Small angle neutron scattering 254
255 (SANS) data were collected at the Bio-SANS beamline at the High 255
256 Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory.⁵⁹ 256
257 Bio-SANS is a moderate resolution, broad *Q*-range small angle 257
258 instrument optimized for the study of complex and hierarchical 258
259 structures across multiple length scales. The neutron wavelength was 6 259
260 Å with wavelength spread ~13.2%. Two position sensitive detectors 260
261 covering low-*Q* and high-*Q* respectively were configured to provide a 261
262 *Q* coverage of 0.007–0.9 Å^{−1} for the measurement. A powder sample 262
263 of TiO_2 nanoplates held in 3 mm quartz capillaries was measured at 263
264 room temperature. The SANS data were reduced and azimuthally 264
265 averaged using standard procedures to correct for detector sensitivity, 265
266 instrument dark current, sample transmission, and quartz capillary 266
267 background with facility-provided data reduction software Mantid.⁶⁰ 267
268 Data were fit using the size distribution module of the Irena macros for 268
269 Igor Pro,⁶¹ modeling the structure as a disc with thickness 9.7 nm.²⁶⁹ 269
270 Using Moore’s indirect Fourier transform method,⁶² the pair–distance 270
271 distribution function was calculated from the data, corresponding to 271
272 the total scattering $G(r)$. Small angle scattering profiles were calculated 272
273 for the atomistic models⁶³ fit within the DISCUS/KUPLOT/DIFFEV 273
274 refinements, which were then weighted and combined using 274
275 polydispersity profiles derived from the diffraction fits. Additionally, 275
276 the product of two derived polydispersity profiles (varying both width 276
277 and height) was computed.

278 **Transmission Electron Microscopy (TEM).** TEM imaging was 278
279 performed on a Hitachi HF-3300 at 300 kV. TEM samples were 279
280 prepared by sonication of the as-synthesized anatase TiO_2 nanoplates 280
281 and nano-octahedra in isopropanol, followed by dropcasting onto the 281
282 lacey carbon coated copper TEM grids and then drying at 60 °C for 1 282
283 h. Manual counting was used to analyze the width and thickness 283
284 dispersion of nanoplates from TEM images in ImageJ.⁶⁴

285 **Hydrogen Evolution Reaction (HER) Activity.** Photocatalytic 285
286 hydrogen evolution reaction over the TiO_2 samples was carried out in 286
287 a quartz reactor. In a typical photocatalytic experiment, 40 mg of TiO_2 287
288 was dispersed via sonication in 40 mL of water/methanol (3:1 volume 288
289 ratio) solution. Prior to the photocatalytic reaction, the quartz cell was 289
290 deaerated by a continuous flush with ultrahigh pure Argon gas for 30 290
291 min. The light input is provided by a 200-W Hg lamp equipped with a 291
292 band-pass filter to allow the pass of UV light with wavelength in the 292
293 range of 325–385 nm. The suspension was stirred vigorously during 293
294 the entire photocatalytic reaction, and the temperature of the system 294
295 was held at 25 °C by the cooling water circulating around the entire 295
296 quartz cell. The hydrogen gas yield was determined and quantified by 296
297 using gas chromatography compiled with a hydrogen calibration plot, 297
298 with model BUCK 910 (molecular sieve column, TCD detector, and 298
299 Argon as carrier gas). To calculate the apparent quantum yield (AQY), 299
300 we used the average 355 nm for the UV light source. The energy of 300
301 photon is $E_{\text{ph}} = h\nu = hc/\lambda$, where h is the Planck’s constant, ν is the 301

frequency, c is the speed of light, and λ is the wavelength of the light source. Therefore, the energy of photon for solar simulated light source is determined to be 5.6×10^{-19} J. The number of the photons irradiating per second on the reactor can be calculated by equation $N_{\text{ph}} = \Phi/E_{\text{ph}}$, where Φ is the intensity of the light source hitting on quartz reactor (it was measured to be 8.8 W by a Newport 843-R power meter). The number of electrons that are effectively participated in the photocatalytic reaction can be determined from the hydrogen yield and are determined by equation $N_e = (\text{hydrogen yield per hour}) \times 2 \times 10^6$ (Avogadro's number), where hydrogen yield per hour is calculated by using the hydrogen yield divided by the corresponding number of hours. Taking everything together, the AQY is determined as $(N_e/314 N_{\text{ph}}/3600) \times 100\%$.


RESULTS AND DISCUSSION

Qualitative Morphology Analysis. According to the theoretical calculation of Barnard et al.,⁶⁵ anatase TiO_2 nanocrystals with slightly truncated octahedral (or tetragonal bipyramidal) shape (those with dominant {101} facets) are predicted to possess the lowest surface energy under hydrogenated or hydroxyl conditions. This is fully consistent with experimental observations of the morphology of synthetic and natural anatase TiO_2 .⁴⁷ To synthesize nanocrystals with dominant highly energetic {001} facets, it is necessary to modify the relative surface energy between (001) and (101) faces. One effective method is to partially replace the surface oxygen or hydroxyl by capping ligands with stronger electronegativity, such as fluorine, during the synthetic process.⁷ In the current study, anatase TiO_2 nanocrystals with two different morphologies were successfully synthesized using hydrothermal reaction with and without hydrofluoric acid (HF) agent. TEM images (Figures S1 and S2) confirm that the sample synthesized without HF is dominated by slightly truncated nano-octahedra with dominant {101} facets while the one synthesized with HF contains a majority of thin nanoplates with a high percentage of {001} facets. A third sample of thicker nanoplates with an intermediate amount of {001} and {101} facets was synthesized by calcining the {001} dominant nanoplates at 500 °C for 4 h (Figure S3). It is worth noting that these hydrothermally synthesized samples are highly aggregated, making accurate morphology analysis difficult using automatic TEM counting or small angle scattering approaches.

Powder X-ray ($\text{Cu K}\alpha$) diffraction patterns of these two samples (300 °C nanoplates and nano-octahedra) are remarkably different, as can be seen in Figure S4. The diffraction pattern of the truncated nano-octahedra sample shows no obvious anisotropic peak broadening, indicating the near isotropic morphology (slightly truncated octahedra) of this sample. In clear contrast, the diffraction pattern of the nanoplate sample shows strong anisotropic peak broadening with much weaker and broader 004, 105, and 116 reflections relative to reflections associated with *ab*-plane dimensions such as 020 (or 200) and 220. This feature indicates that the as-prepared nanocrystals are highly anisotropic with much larger coherence length within *ab*-plane dimensions and very limited coherence length along the *c*-axis direction. These observations suggest that two parameters, the plate width (w) and thickness (h), are required to describe the morphology of the as-prepared anatase TiO_2 nanocrystals. It is worthwhile to note that strain/dislocation may also contribute to the broadening of Bragg diffraction peaks, yet the fwhm (full width at half-maximum) of the diffraction peaks associated with the *c*-axis direction or *ab*-plane dimension are nearly proportional to $1/\cos \theta$ and thus

indicate that size broadening is the dominant effect for peak broadening (Figure S5).⁶⁶ Therefore, no strain or dislocation induced effects will be considered in the current report. In addition, since X-rays are not sensitive to light atoms and H mainly contributes to the incoherent scattering in the neutron scattering data, the intensity contributions from residual surface ligands, such as $-\text{OH}$ or $-\text{H}$, will also be ignored for the current study.

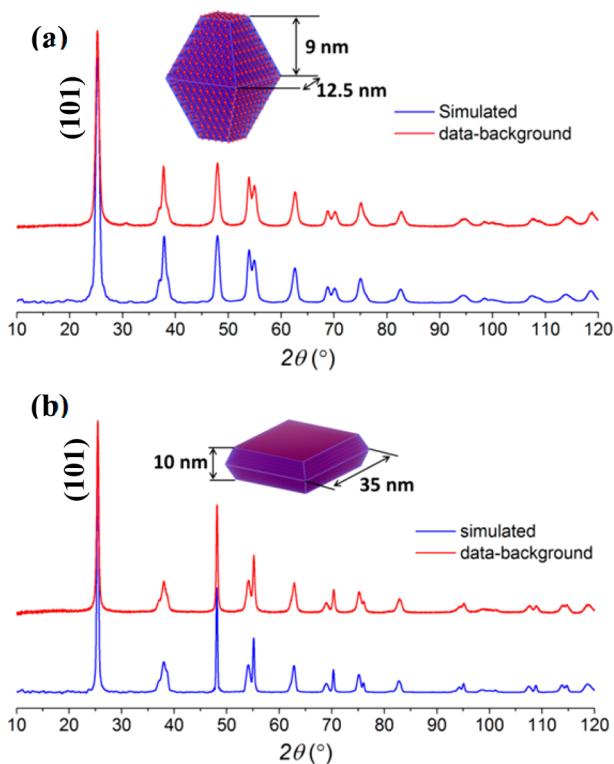

We first carried out sensitivity tests to prove that the Debye scattering equation (DSE) calculation of powder X-ray diffraction data can be used as an effective tool to probe the average morphology of {101} and {001} faceted nanocrystals. For the sensitivity test of thickness (h), a series of truncated anatase TiO_2 nano-octahedra with fixed *ab*-plane width (12.5 nm) but variable thickness (from 2 to 24 nm with a step size of 1 nm) were created using DISCUS software.⁵⁶ The TiO_2 anatase unit cell was expanded to a $40 \times 40 \times 30$ supercell and then truncated into the desired morphology with specific boundary conditions. The simulated XRD patterns using DSE calculation are shown in Figure 1a, clearly showing that the relative peak intensity of 004, 105, and 116 reflections increases as the thickness increases. In addition, the Bragg diffraction peaks become sharper and more symmetric as the thickness increases. These simulations indicate that powder XRD is indeed highly sensitive to the variation of the thickness of

Figure 1. Simulated X-ray ($\lambda = 1.54187$ Å) diffraction patterns of truncated anatase TiO_2 nanocrystals with (a) fixed *ab*-plane width (12.5 nm) as a function of thickness along the *c*-axis direction and (b) fixed thickness (10 nm) as a function of *ab*-plane width. Note a limited 2θ -range is shown. The red colored *hkl* indices are the reflections associated with *ab*-plane dimensions while the black indices are the reflections with major contributions from the *c*-axis direction.

390 nanoplates up to approximately 20 nm thickness, beyond which 391 patterns become difficult to distinguish. Sensitivity tests of the 392 *ab*-plane (*w*) dimensions were carried out in a similar manner: 393 the thicknesses of truncated nano-octahedra were fixed to 10 394 nm while the plate widths were varied from 10 to 60 nm with a 395 step size of 2.5 nm. The simulated XRD patterns (Figure 1b) 396 reveal that the reflections associated with in *ab*-plane scattering 397 such as 020 and 220 become sharper and more intense as the 398 plate width increases, up to approximately 50 nm, above which 399 the patterns appear very similar. In contrast, 004, 105, and 116 400 reflections remain relatively broad with only subtle intensity 401 increases. Overall, the powder XRD is likely to be very sensitive 402 to the average morphology (*h* and *w*) of {101} and {001} 403 faceted anatase TiO_2 nanocrystals in this size regime.

404 These results inspired us to further estimate the morphology 405 of these two different faceted nanocrystals by visually 406 comparing the DSE simulated X-ray diffraction data to the 407 experimental data. By varying the width (*w*) and thickness (*h*) 408 of the truncated nano-octahedra, a reasonable agreement 409 between simulated patterns (blue curves) and background 410 corrected experimental data (red curves) has been achieved for 411 both samples, as can be seen in Figure 2. The TiO_2 nanocrystals 412 synthesized without HF are found to be slightly truncated 413 nano-octahedra with an estimated *w* of 12.5 nm and *h* of 18 414 nm, while the ones synthesized with HF agent are more heavily 415 truncated with larger plate width *w* of 35 nm and much thinner 416 *h* of 10 nm. This result is in good agreement with previous 417 theoretical calculations and experimental observations^{7,50} and

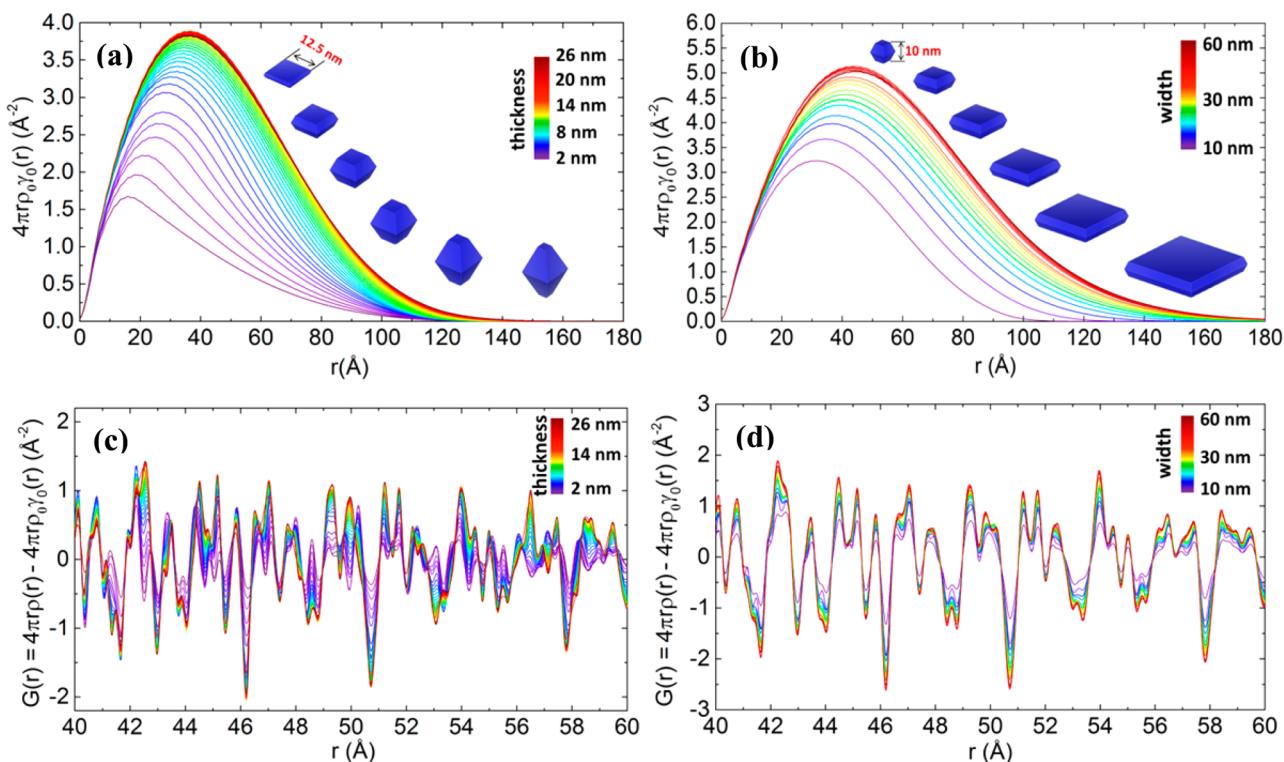
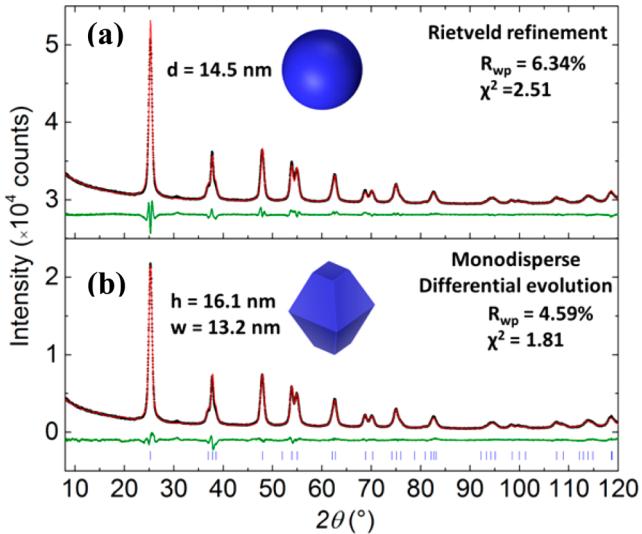


Figure 2. (a) Simulated X-ray diffraction ($\lambda = 1.54187 \text{ \AA}$) pattern (blue) of TiO_2 nano-octahedra with dimensions of 12.5 nm (*w*) by 9 nm (*h*). For comparison, experimental X-ray ($\text{Cu K}\alpha$) diffraction data with background subtraction is shown in red. (b) Simulated X-ray diffraction ($\lambda = 1.54187 \text{ \AA}$) pattern (blue) of TiO_2 nanoplate with dimensions of 10 nm (*ab*-plane width) by 35 nm (thickness), shown with experimental diffraction data in red.


also matches our TEM observations (Figures S1 and S2). 418 However, it is worth noting that the relative intensity of some 419 diffraction peaks, such as the 101 reflection, of simulated 420 diffraction patterns are much stronger than the experimental 421 data, indicating that quantitative refinement of both atomistic 422 structure and morphology is needed. 423

Morphology sensitivity analysis using neutron pair distribution function calculation was carried out in a similar fashion as 425 that for the powder X-ray diffraction. However, it is worth 426 noting that the reduced pair distribution function is computed 427 from the Fourier transformation of the normalized scattering 428 intensity (eq 1); thus, the theoretical reduced pair distribution 429 function $G^*(r)$ can be obtained only if the full *Q*-range of 430 scattering data is available, which is experimentally unachievable. 431 The lack of low-*Q* data gives rise to a characteristic 432 difference between the experimental $G(r)$ and the theoretical 433 $G^*(r)$ pertaining to long length-scale structural features, often 434 referred to as the particle shape function. In the current study, 435 an empirical method was used to extract the shape function out 436 of the theoretical $G^*(r)$ through an inverse deconvolution 437 routine, and details about the methodology can be found in the 438 report by Olds et al.⁴³ Moreover, instrumental resolution, 439 which is often expressed as the dampening effect ($e^{-1/2(Q_{\text{damp}}/r)^2}$), 440 strongly affects the sensitivity of PDF data at long pair-pair 441 distances (*r*). For a moderate or high resolution PDF 442 instrument such as NOMAD (with Q_{damp} between 0.01 and 443 0.02 \AA), the $G(r)$ intensity will smear out at pair-pair distance 444 larger than 200 \AA , making it difficult to gain reliable 445 morphology information on nanomaterials with an average 446 particle size larger than 20 nm. To demonstrate the sensitivity 447 of using neutron PDF to determine nanoplate thickness (*h*), a 448 series of theoretical $G^*(r)$ were calculated from truncated 449 anatase TiO_2 nano-octahedra with variable thickness but fixed 450 width (*w* = 12.5 nm) in DISCUS,⁵⁶ and the dampening effect 451 ($Q_{\text{damp}} = 0.0180 \text{ \AA}$) was fixed to the value obtained from 452 refinement of a standard Si sample measured on NOMAD. 453 Shape-corrected $G(r)$ data were then calculated using 454 Dshaper.⁴³ The extracted shape functions and a selected region 455 of shape-corrected PDF data (40 \AA to 60 \AA) are shown in 456 Figure 3a,b. It clearly shows that the simulated PDFs and shape 457 functions are indeed very sensitive to the thickness variation up 458 to about 14 nm. The intensity change becomes subtle above 459 this value. Similar calculations were carried out to test the 460 sensitivity of plate width (*w*). Corresponding shape function 461 and corrected PDF data are shown in Figure 3c,d. It can be 462 seen that, with fixed thickness (10 nm), the calculated patterns 463 are sensitive to the width variation up to about 30 nm. It is also 464 worth noting that the simulated PDF data in the range of 465 several unit cells (Figures S6a and S7a, 0–20 \AA) are essentially 466 the same for nanocrystals with either different thickness or 467 different width in this size regime (particle sizes over 10 nm); 468 the differences in $G(r)$ becomes observable only at atomic 469 pair-pair distances larger than 20 \AA . Thus, collecting high 470 resolution experimental $G(r)$ with small dampening effect is 471 crucial for the accurate determination of the morphology of 472 these anatase TiO_2 nanocrystals. 473

Quantitative Morphology Refinement for Nano-Octahedra with a Monodisperse Morphology Model. 474 Regular Rietveld refinement with powder XRD was carried out 475 for TiO_2 nano-octahedra using the fundamental parameter 476 approach⁶⁷ with isotropic (spherical) particle shape. The 477 refinement result is shown in Figure 4a and Table S1. A 478 f4

Figure 3. Simulated shape functions for truncated TiO_2 nanocrystals with (a) variable thickness (2 to 26 nm) but fixed width (12.5 nm) and (b) with variable width (10 to 60 nm) but fixed thickness (10 nm). Corresponding shape-corrected neutron PDF data (40 \AA to 60 \AA) are shown in (c) and (d) separately. Note that shape functions and PDF data have been calculated taking the instrument resolution effects expected at the NOMAD instrument into account.

Figure 4. (a) Rietveld refinement of TiO_2 nano-octahedra against powder X-ray diffraction data (Cu $\text{K}\alpha$ radiation) using a TiO_2 bulk structure model with isotropic size broadening. (b) Structure and morphology refinement using combined differential evolution and least-squares refinement with Debye scattering equation calculation. Experimental data are shown as black dots, calculated pattern in red, tick marks indicating Bragg reflections in blue, and difference curve in green. The refined average morphologies are inserted.

is very likely caused by the slightly anisotropic particle shape. In addition, the refined atomic displacement parameters for Ti and O are negative, indicating that thermal vibration induced intensity dampening tends to compensate for the anisotropic morphology induced intensity variation. This result indicates that quantitative morphology modeling is critical for accurate atomistic structure refinement of the as-prepared TiO_2 nanocrystals.

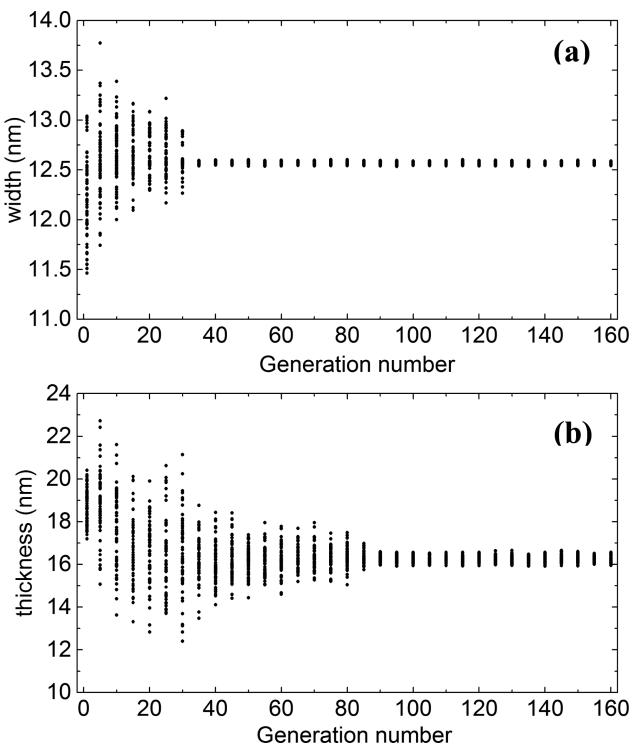
One of the greatest advantages of DSE refinement is that, theoretically, atomistic structure and morphology information can be simultaneously refined from the same data set (e.g., Bragg diffraction data or PDF). Unfortunately, the conventional least-squares minimization algorithm, which is computationally effective, cannot be directly used for the DSE refinement because of the discrete functional dependence between refinement criteria (R values or χ^2) and morphology-dependent variables (w and h here). Therefore, most reported DSE analyses are limited to qualitative simulations.⁶⁸ More recently, global minimization techniques, such as simulated annealing¹⁶ and differential evolution algorithms,¹⁵ have been successfully implemented into the DSE refinement. However, these refinement algorithms are much slower relative to the gradient least-squares minimization, further slowing the already computationally expensive DSE calculation. In a differential evolution refinement, a model progresses with a population of candidate structures. The characteristics (parameters) of the population members are evaluated against data and ranked before generating parameters for the next generation of candidate models. Since there is a whole population of structures to evaluate, it is highly desirable to limit the number of free parameters used for the global optimization. In the current study, only the structure and morphology related

reasonable agreement between the calculated pattern and experimental data has been achieved. However, intensity mismatch for the 101 (2θ around 25°) and 200 (2θ around 48°) reflections can be observed in the difference curve, which

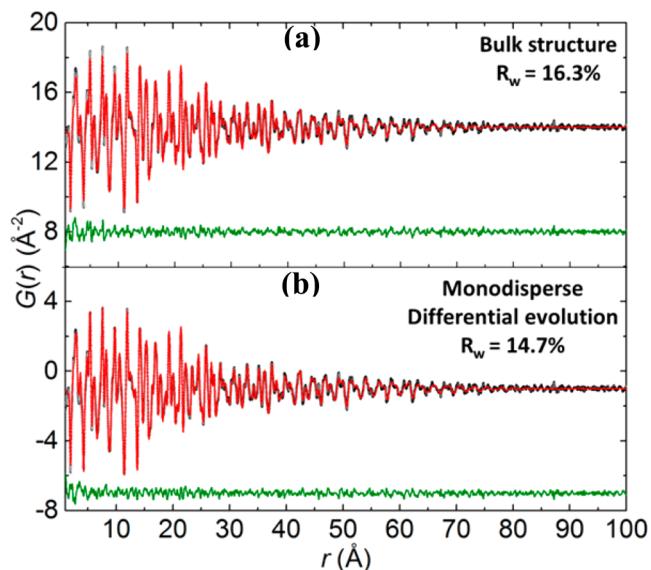
parameters, namely, lattice parameter a and c , atomic displacements of Ti and O, z -axis coordinate of O, the size in the ab -plane (w), and the size along the c -axis direction (h), are refined via the evolution algorithm (a brief introduction of the differential evolution algorithm can be found in the [Supporting Information](#) and related references⁶⁹), while other parameters such as a scale factor and background functions are refined using least-squares minimization. A detailed refinement scheme is shown in [Figure S8](#). The structure of bulk anatase TiO_2 was used as an initial model with an estimated starting w of 12.5 nm and h of 18 nm. Detailed refinement routines and boundary conditions of structural parameters can be found in the [Supporting Information](#).

Remarkably good agreement ($R_{\text{wp}} \sim 4.50\%$) between the simulated and experimental data was reached after 350 refinement generations. However, a careful inspection of the R_{wp} values for all 60 members (the population used for differential evolution refinement) reveals that the refinement did not converge after 350 generations. Instead, it splits into two different groups, as can be seen in [Figure S9](#). This result is highly informative, which indicates that strong correlation exists among some of the refined parameters. Indeed, the atomic displacement of Ti (B_{Ti}) and O (B_{O}) is found to be strongly correlated with the morphology parameters (h and w). Therefore, the atomic displacement parameters of Ti and O were fixed to the values ($B_{\text{Ti}} = 0.45 \text{ \AA}^2$ and $B_{\text{O}} = 0.85 \text{ \AA}^2$) obtained from refinement of PDF data (details can be found in the next paragraph). The final refinement result is shown in [Figure 4b](#); an excellent fit has been achieved with $R_{\text{wp}} = 4.59\%$ and $\chi^2 = 1.81$. The evolution of refined parameters can be found in [Figure 5](#) and [Figure S10](#). The final refined structure

and morphology information are shown in [Table 1](#). The average width in the ab -plane was refined to be $13.4(5) \text{ nm}$,


Table 1. Atomistic Structure and Morphology of {101} Dominant Nano-Octahedra Refined from Powder XRD Data Using the Combined Differential Evolution and Least-Square Minimization with the Monodisperse Model^a

atom	Wyck.	x	y	z	occ.	$B_{\text{iso}} (\text{\AA}^2)$
Ti	2a	0.00	0.25	0.375	1.0	0.45
O	4f	0.00	0.25	0.1688(4)	1.0	0.85


^aWidth (w) = $13.4(5) \text{ nm}$; thickness (h) = $16.4(8) \text{ nm}$. S.G. $I4_1/AMD$; $a = 3.7866(1) \text{ \AA}$; $c = 9.4990(1) \text{ \AA}$.

and the thickness was refined to be $16.4(8) \text{ nm}$. These values differ dramatically from the qualitative estimation where width is estimated to be 12.5 nm and thickness is estimated to be 18.0 nm . This result suggests that simultaneous atomistic structure and morphology refinement is critical for accurate morphology quantification.

A similar strategy was used for the structure and morphology refinement using neutron PDF data. Noticeable improvement was achieved for the fit with differential evolution refinement relative to that of the conventional least-squares refinement, as can be seen in [Figure 6](#). The refined structure and morphology

Figure 5. Evolution of width (a) and thickness (b) parameters in the population set as a function of refinement generation using differential evolution refinement with XRD data. It can be seen that the width of the plate converges to around 13.4 nm while the thickness converges to about 16.4 nm.

Figure 6. Result of least-squares refinement (a) versus differential evolution and (b) using neutron pair distribution function. Data are shown as black circles, model fits as red lines, and difference curves as green lines offset below the data and model fit.

information are listed in [Table S2](#), and the evolution of structural parameters during refinement is shown in [Figure S11](#). Results are consistent, though far more quantitative, than observations from TEM images in [Figure S2](#). In contrast to the refinement using XRD data, no obvious correlation between B_{Ti} and B_{O} is observed, reflecting the importance of incorporating neutron total scattering into the structural analysis. In both the XRD and the neutron PDF cases, data is better fit and models are more reasonable with refinement strategies incorporating particle shape. Interestingly, refined h and w parameters were found equivalent within error in the XRD and neutron PDF analyses, though the atomic displacement parameters had to be

572 fixed in the XRD data to neutron PDF determined values. In
 573 general, it is expected that the PDF will be more sensitive to
 574 smaller nanoparticles (<20 nm dimensions) while diffraction
 575 data will be more sensitive to larger nanoparticles (with an
 576 upper limit of sensitivity that depends on the instrument
 577 resolution).

578 **Quantitative Morphology Refinement for TiO_2 Nano-
 579 plates (300 °C) with a Monodisperse Morphology
 580 Model.** Rietveld refinement with bulk anatase TiO_2 structure
 581 using XRD data of nanoplates was performed in a similar
 582 manner as that for the nano-octahedra. The results are shown
 583 in Figure 7a and Table S3. The fit is significantly worse than

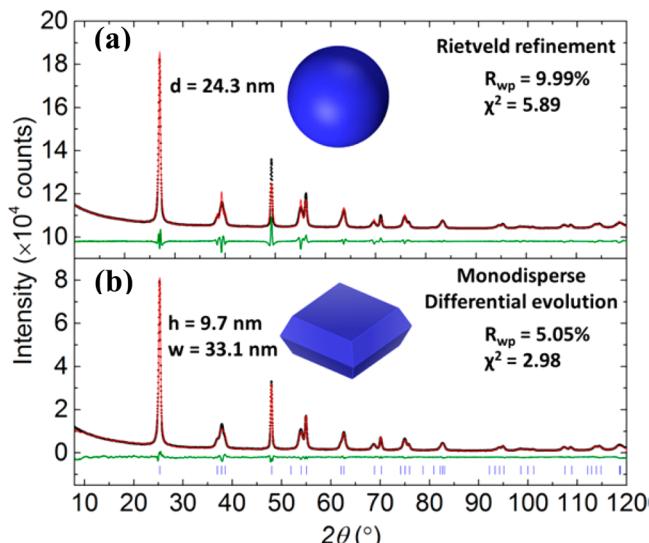
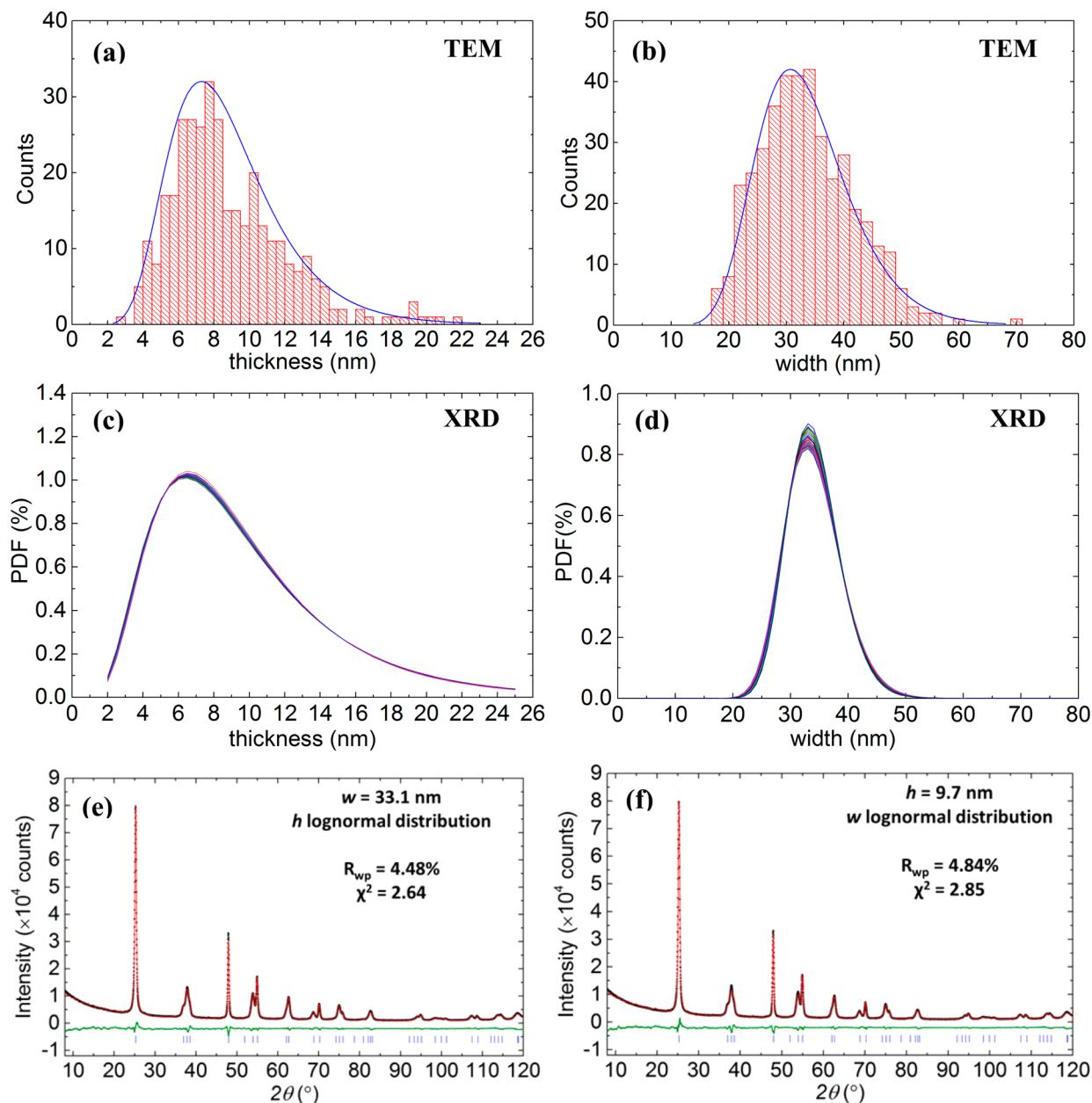


Figure 7. Rietveld refinement (a) versus differential evolution refinement and (b) against XRD data (fixed B_{iso} values and atomic positions) for TiO_2 nanoplates. Experimental data are shown as black dots, calculated pattern in red, tick marks indicating Bragg reflections in blue, and difference curve in green. The refined morphologies are inserted.

584 that of the Rietveld refinement of the nano-octahedra sample
 585 due to the more anisotropic particle shape of these heavily
 586 truncated thin nanoplates. It is also worth noting that the
 587 atomic displacements of Ti and O refine to negative values,
 588 indicating that the atomic structure parameters cannot be
 589 accurately determined without quantifying the particle
 590 morphology. This inspires us to carry out the simultaneous
 591 atomistic structure and morphology refinement using the global
 592 minimization algorithm. However, since the particle size of
 593 these nanoplates is large enough ($\sim 35 \times 35$ nm in the ab -
 594 plane) to prevent fast DSE calculation,¹⁶ it is prohibitive to
 595 refine all structure and morphology parameters at the same
 596 time. In order to confine the refinement to a reasonably
 597 achievable time, only the morphology related parameters (w
 598 and h) and lattice parameters (a and c) were refined via the
 599 differential evolution method, while the z -axis coordinate of O
 600 ($z = 0.1688$) and the atomic displacements were fixed to the
 601 values from the previous refinement of nano-octahedra ($B_{\text{Ti}} =$
 602 0.45 \AA^2 and $B_{\text{O}} = 0.85 \text{ \AA}^2$). It can be seen from Figure 7 that
 603 remarkable improvements have been achieved from the
 604 differential evolution refinement relative to that from the
 605 Rietveld refinement. The weighted refinement residual drops
 606 from 9.99% (Rietveld refinement) to 5.05% (differential
 607 evolution refinement) after 50 generations.

608 The evolution of parameters during refinement is shown in
 609 Figure S12. The average width is refined to be $33.1(8)$ nm, and
 610 thickness is refined to be $9.7(3)$ nm. These quantitatively
 611 determined values from the entire powder sample are
 612 consistent with the TEM images in Figure S1. Due to the
 613 large size of the nanoplates, DSE refinement was not run
 614 against the neutron PDF data. Similar strategies have been
 615 applied to the DSE refinement of the morphology of the 500
 616 °C calcined nanoplate sample. The average width is refined to
 617 be $38.4(8)$ nm, and the thickness is refined to be $17.9(5)$ nm.
 618 The refinement results are shown in Figure S13, Table S4, and
 619 Table 2.


Table 2. Atomistic Structure and Morphology of {001} Dominant Anatase TiO_2 Nanoplates Refined from Powder XRD Data Using the Combined Differential Evolution and Least-Square Refinement with Monodisperse Model^a

Atom	Wyck.	x	y	z	Occ.	B_{eq} (Å 2)
Ti	2a	0.00	0.25	0.375	1.0	0.45
O	4f	0.00	0.25	0.1688	1.0	0.85

^aWidth (w) = $33.1(11)$ nm; thickness (h) = $9.7(3)$ nm. S.G. $I4_1$ / amd (2); $a = 3.7918(4)$ Å; $c = 9.5019(15)$ Å.

Influence of Polydispersity on the Morphology Analysis of {001} Dominant Anatase TiO_2 Nanoplates. Though tremendous efforts have been spent on pursuing monodispersed anatase TiO_2 nanocrystals in the last few decades,^{6,14,53} an effective synthetic method has not been fully achieved yet, especially for nanocrystals with dominant highly energetic {001} facets.⁴⁹ Therefore, polydispersity should be taken into consideration for accurate morphology evaluation. While the Fourier analysis of Bragg diffraction profiles have been widely used to extract the polydispersity information out of powder diffraction data,^{31,70,71} very few previous reports on polydispersity analysis using DSE can be found,^{72–76} presumably due to the discrete nature of DSE calculation/ refinement. This discrete nature means that only a numerical solution (not an analytical solution) can be used to extract the morphology distribution. For powder samples that contain large amounts of nanoparticles, it can be expected that the morphology varies nearly continuously from the smallest particle to the largest ones. Theoretically, the relationship between volumetric-based scattering power and the total scattering intensity ($I(Q)$) can be resolved if the morphology distribution function is known. This approach has been widely adapted for morphology analysis of small angle scattering data.^{17,77} However, this method cannot provide any information about the atomistic structure because it utilizes a volumetric particle scattering factor instead of atomic scattering factors in calculating the total scattering intensity. Thus, the only method available to directly correlate both atomistic structure and morphology distribution to the total scattering intensity is the DSE calculation.

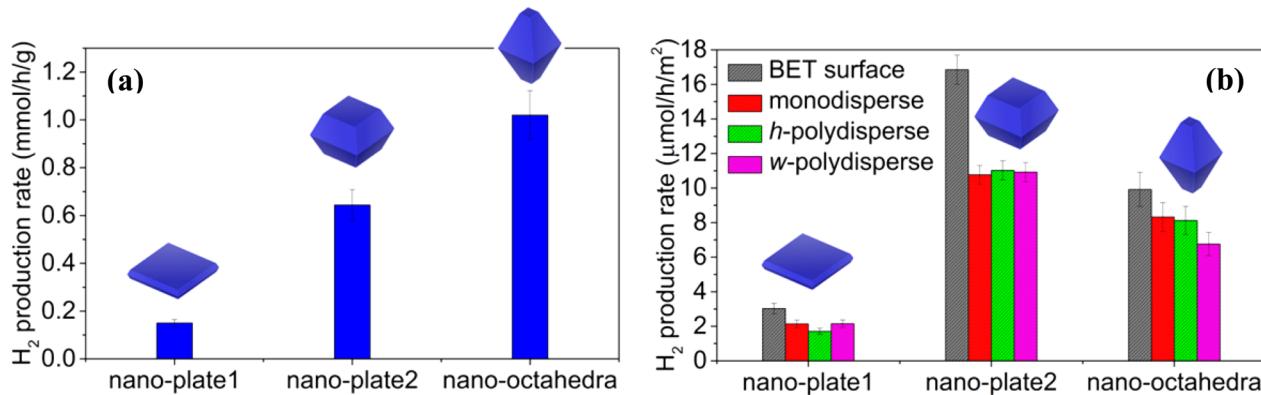
To numerically resolve the morphology distribution using DSE calculation, it is necessary to calculate X-ray diffraction patterns from a series of truncated anatase TiO_2 nano-octahedra with either fixed width (w) but variable thickness (h) or vice versa (grid points). After assigning a weighting scheme (number-based) to each calculated diffraction pattern (or grid), the morphology distribution can then be obtained by optimizing the weight of each calculated pattern using global minimization (preferred) or least-squares refinement until an

Figure 8. Thickness (a) and width (b) distribution of TiO_2 nanoplates (300 $^{\circ}\text{C}$ annealed) obtained from counting of TEM images. Blue curves are the log-normal fits of the observed distributions. Refined thickness (c) and width (d) distribution (number-based) of anatase TiO_2 nanoplate with XRD data (a population of 30 was chosen for the differential evolution refinement). Refinement results with thickness (e) and width (f) log-normal distribution. The calculated XRD patterns are shown in red, experimental data as black dots, and difference curves in green.

acceptable agreement between the calculated pattern and experimental data is achieved. Theoretically, it is possible to resolve both width and thickness distribution simultaneously. However, it is computationally too expensive to apply this to relatively large nanocrystals at this time. For example, if an interval of 1 nm is chosen for nanocrystals with thickness range of 25 nm and width range of 80 nm, a total of 2000 individual diffraction patterns have to be calculated. This is not practical for particles as large as tens of nanometers. In addition, no evidence of strong correlation between the plate thickness and width is observed from the TEM images (Figures S1–S3). Therefore, thickness and width distributions are refined separately (with either fixed width or fixed thickness). For width distribution refinement, the plate thickness was fixed to the average value of 9.7 nm while the width was allowed to vary

from 5 to 80 nm with an interval of 1 nm; while for the thickness distribution refinement, the width was fixed to 33.1 nm while the thickness was varied from 1 to 26 nm with an interval of 0.5 nm. Both the width and the thickness are assumed to follow a log-normal distribution, which is found to be the most common polydispersity distribution for synthetic and natural nanoparticles.⁷⁸ It is also in general agreement with the TEM observations. The refinement results are shown in Figures 8c–f, and weighted refinement residuals are shown as a function of refinement generation in Figure S12. It can be seen that the mean thickness (8.6 nm) refined with the polydisperse model is much smaller relative to that refined from the monodisperse model (9.7 nm). The thickness of the prepared nanoplates is found to span a broad range with large standard deviation, a result that is fully consistent with the distribution

689 obtained from the counting of TEM images (Figure 8a). In
690 contrast to the wide and asymmetrical distribution of the plate
691 thickness, the refined plate width distribution behaves more
692 symmetrically (close to Gaussian distribution) with smaller
693 relative standard deviation. It is also worth noting that though
694 the mean width (33.3 nm) obtained from TEM counting is
695 similar to the refinement result, the distribution from TEM
696 spans a slightly wider region relative to that obtained from the
697 refinement. This can be understood by the fact that the average
698 width of these nanoplates is large enough (over 30 nm) that the
699 sensitivity from XRD is relatively low, as can be seen from the
700 sensitivity test in Figure 1b. This is also reflected in the
701 refinement result (Figure 8e,f), where the refinement of the
702 thickness polydispersity improves the fits dramatically ($R_{wp} =$
703 4.48%) while the refinement of the width polydispersity has
704 only subtle improvements ($R_{wp} = 4.84\%$) relative to that of the
705 refinement using the monodisperse model ($R_{wp} = 5.05\%$).
706 These results demonstrate the importance of incorporating
707 polydispersity for accurate morphology analysis and highlight
708 challenges in the computational power required to do so. A
709 similar strategy was applied to investigate the morphology
710 polydispersity of the nano-octahedra and 500 °C calcined
711 nanoplates, and the refined results are shown in Figure S15 and
712 Figure S16. In contrast to the 300 °C calcined nanoplates
713 sample, where the thickness polydispersity plays the major role,
714 the width polydispersity was found to be the dominant effect
715 for morphology polydispersity of these two samples.


716 The accuracy of the polydispersity fits to the three TiO_2 data
717 were benchmarked against SANS analysis utilizing a disc model
718 for the nanoplate samples and a sphere model for the nano-
719 octahedra sample. Fits and solved polydispersity profiles of the
720 disc and sphere diameters are shown in Figure S17. Direct
721 modeling of the polydisperse nanoplate models were found
722 most accurate when using the fixed thickness, varying width
723 models. The resultant fits do not precisely correlate with the
724 results of the DSE derived analysis and TEM counting, which
725 suggests the average disc/sphere sizes are slightly smaller than
726 the corresponding atomistic/counting models. The modeling of
727 the nanoplates/octahedra as discs/sphere underestimates their
728 surface area to volume ratio as compared to the true truncated
729 octahedral nanostructures. In addition, while SANS is perhaps
730 the most sensitive diffraction probe for particle size
731 distributions, it cannot distinguish average particle size from
732 average aggregate size. Models that are more sophisticated can
733 be used to extrapolate more accurate morphology distribution
734 profiles, which falls out of the scope of the current study and
735 will be presented elsewhere.

736 **Quantitative Analysis of the Facet Dependent Photo-**
737 **catalytic Hydrogen Evolution Reactivity of Anatase TiO_2**
738 **Nanocrystals.** The anatase TiO_2 {001} facet with more
739 undercoordinated Ti_{5c} (five coordinated Ti) is generally
740 believed to be more catalytically active relative to the
741 energetically more stable {101} facet.⁴⁵ However, a number
742 of controversial results have been reported in recent years
743 where samples with higher percentages of {001} facets are
744 found to be photocatalytically less active.^{35,52} Several new
745 theoretical models, such as the face-preferred surface charge
746 carrier transfer⁷⁹ or the surface heterojunction,⁸⁰ are thus
747 proposed to address the controversial observations. Never-
748 theless, a conclusive agreement has not been achieved, in large
749 part due to the difficulty to fully separate and quantify the
750 catalytic contributions from different facets, especially for
751 nanocrystals with large surface areas for both facets. As has

752 been discovered by Gordon et al.,³⁵ the measured BET surface 753 of {001} dominant nanoplates is substantially smaller than the 753 theoretical surface area calculated from morphology simulation 754 due to significant particle stacking of nanoplates, as can be seen 755 in Figure S1. This plate stacking significantly reduces the 756 effective {001} surface but has negligible influence on the {101} 757 surface. Therefore, simply normalizing the catalytic reaction 758 rate to the BET surface often results in two possible mistakes: 759 first, if the catalytic reaction is carried out using a well dispersed 760 sample in liquids where much higher surface area is exposed 761 (e.g., photohydrogenation using the methanol–water mixture) 762 relative to the BET surface, it would result in the over- 763 estimation of the catalytic performance of the {001} dominant 764 sample; second, if the catalytic reaction is carried out in powder 765 form (such as CO_2 reduction), it would lead to the 766 underestimation of the catalytic activity of {001} facets because 767 of the serious plate stacking which heavily reduces the effective 768 {001} surface area. Thus, in either case, it is highly desirable to 769 calculate the accurate facet-specified surface areas to better 770 understand the relationship between the catalytic performance 771 and the morphology of anatase TiO_2 nanocrystals. 772

773 This inspired us to carry out the facet-specified surface area 773
774 calculation for three nanocrystals with different {001} to {101} 774
775 ratios: the {101} dominant nano-octahedra and {001} 775
776 dominant nanoplates as described in the previous section, 776
777 and a third sample with intermediate {001} to {101} ratio. The 777
778 detailed calculation procedure for particle surface area is 778
779 described in Figure S18. The calculation results using 779
780 monodisperse thickness (h) and width (w) polydispersity 780
781 models are shown in Figure S19 and Table S5. The theoretical 781
782 surface area of the {001} dominant 300 °C annealed nanoplate 782
783 is substantially higher than the corresponding BET surface. The 783
784 {001} surface area calculated from thickness polydispersity 784
785 (67.9 m^2/g) is significantly larger relative to the result obtained 785
786 from the monodisperse model (46.7 m^2/g), indicating the 786
787 importance of considering polydispersity for accurate surface 787
788 area quantification. Interestingly, the surface areas calculated 788
789 from width polydispersity are very similar to those obtained 789
790 from the calculation of monodisperse models, which can be 790
791 understood by the fact that the width distribution for the 791
792 synthesized TiO_2 nanoplates is relatively narrow and symmetric 792
793 (close to Gaussian distribution), as can be seen in Figure 8d. 793
794 Similarly, the theoretical surface area of {101} dominant nano- 794
795 octahedra calculated from a monodisperse model is also larger 795
796 relative to the BET surface. However, this difference is very 796
797 likely to arise from random particle aggregation instead of 797
798 oriented stacking, as can be seen in the corresponding TEM 798
799 images in Figure S1. Moreover, it is found that the width 799
800 polydispersity (instead of thickness polydispersity) becomes the 800
801 principal effect for the {101} dominant sample: the {101} 801
802 surface area calculated from width polydispersity (137.8 m^2/g) 802
803 is substantially larger relative to that obtained from the 803
804 monodisperse model (106.2 m^2/g) while the {001} surface 804
805 area only varies slightly from the monodisperse model. Similar 805
806 character has been observed for the 500 °C calcined nanoplate 806
807 sample, as can be seen in Table S5. 807

808 With the effective facet-specified surface area accurately 808
809 determined, it is now possible to quantify the surface 809
810 normalized photocatalytic hydrogen evolution reaction 810
811 (HER) rate of anatase TiO_2 nanocrystals with different {001} 811
812 to {101} ratios. After ultrasonic and under the vigorous 812
813 photocatalysis stirring condition, it is expected that the stacking 813
814 of TiO_2 nanocrystals is minimal so that the contact surface area 814

Figure 9. (a) Mass and (b) surface normalized photocatalytic HER of three anatase TiO_2 nanocrystals with different {001} to {101} facet ratios. Photocatalysis was conducted under UV irradiation (325–385 nm) with methanol as the sacrificial reagent. The apparent quantum yields (AQY) are 0.2% for nano-plate1 (300 °C), 1.7% for nano-plate2 (500 °C), and 2.1% for nano-octahedra.

815 should be close to the calculated theoretical surface area. The
 816 mass-normalized photocatalytic HER activities of the three
 817 anatase TiO_2 nanocrystals are shown in Figure 9 and Figure
 818 S20, which shows the HER activity rates in the order of nano-
 819 octahedra-300 °C > nanoplate-500 °C > nanoplate-300 °C.
 820 However, Figure 9 shows that the surface normalized HER
 821 rates follows the order of nanoplate-500 °C > nano-octahedra-
 822 300 °C ≫ nanoplate-300 °C. (The percentage of {001} facets
 823 follows the order of nanoplate-300 °C > nanoplate-500 °C ≫
 824 nano-octahedra, contradicting previous assessments about the
 825 relative photocatalytic HER reactivity of {001} and {101}
 826 facets, where {001} facets are often simply reported to be either
 827 more or less^{35,52} active relative to the {101} facets. Our
 828 observation clearly indicates that a high percentage of {001}
 829 facet (nanoplate-300 °C) does not guarantee better photo-
 830 catalytic HER performance. Similarly, samples with a high
 831 percentage of {101} facet (nano-octahedra) show slower
 832 photocatalytic HER rate than the nanoplates with an
 833 intermediate fraction of both facets (nanoplate-500 °C),
 834 indicating that a high percentage of {101} facets alone also
 835 does not guarantee better photocatalytic HER performance. In
 836 fact, the nanocrystals with an intermediate percentage of both
 837 {001} and {101} facets shows the best surface normalized
 838 photocatalytic HER reactivity. This result suggests that
 839 synergistic effect may exist between {001} and {101} facets
 840 of anatase TiO_2 , a phenomenon that has been recently
 841 observed by several groups though is based on a less
 842 quantitative analysis.^{80–83} Therefore, our quantitative surface
 843 normalized activity analysis provides further evidence to
 844 support some of these assessments. It is also worth noting
 845 that the BET surface normalized HER activities are much
 846 higher relative to the theoretical surface normalized activities,
 847 reflecting the importance of accurate surface area calculation in
 848 avoiding overestimation of the hydrogen evolution rate from
 849 faceted anatase TiO_2 nanocrystals. Moreover, according to the
 850 previous report,^{35,53} the residual surface F^- can slightly increase
 851 (not decrease) the photocatalytic HER performance of
 852 nanoplate anatase TiO_2 . Thus, the higher residual F^-
 853 concentration in the 300 °C annealed nanoplate sample
 854 (relative to the other two samples, XPS in Figure S23) is
 855 unlikely to affect the current conclusion. Finally, it is worth
 856 noting that other factors, such as the population of point
 857 defects, the absolute particle size, the surface structure, and the
 858 capability to scatter/absorb light of different nanocrystals may
 859 also affect the photocatalytic activity.^{35,84–86} Nevertheless, the

860 current method to accurately determine the surface area
 861 normalized activity rate should still be applied to better
 862 underpin and understand these complex effects.

CONCLUSION

Powder X-ray diffraction and neutron pair distribution function are demonstrated to be powerful tools to obtain both accurate average atomistic structure and morphology information on {001} and {101} faceted anatase TiO_2 nanocrystals. It is also demonstrated that the morphology (shape and size) distribution of anatase TiO_2 nanocrystals can be accurately determined through numerical analysis of powder diffraction data using the Debye scattering equation calculation. This method has been successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO_2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic HER activity. This result suggests that a synergistic effect may exist between {001} and {101} facets of anatase TiO_2 nanocrystals. It is expected that this morphology quantification technique could be generally adopted to study the relationship between morphology and functionality of other technological important nanomaterials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b01172.

TEM images, XRD patterns, simulated neutron PDF data, refinement scheme, morphology and structural parameter evolutions, refined polydispersity of nano-octahedra and thicker nanoplates, fits of SANS data, surface area calculation, mass-normalized HER reactivity, technique details, and refinement macros (PDF)

AUTHOR INFORMATION

Corresponding Authors

*(K.P.) E-mail: pagekl@ornl.gov.

*(J.L.) E-mail: liuj1@ornl.gov.

ORCID

Jue Liu: 0000-0002-4453-910X

Shuo Qian: 0000-0002-4842-828X

Beth S. Guiton: 0000-0002-9478-9190

901 Zili Wu: 0000-0002-4468-3240

902 Katharine Page: 0000-0002-9071-3383

903 Notes

904 The authors declare no competing financial interest.

905 ■ ACKNOWLEDGMENTS

906 This work was principally supported through the U.S.
 907 Department of Energy, Office of Science, Office of Basic
 908 Energy Sciences, Early Career Research Program, Award No.
 909 KC040602, under Contract No. DE-AC05-00OR22725.
 910 Research conducted at the NOMAD beamline at ORNL's
 911 Spallation Neutron Source and High Flux Isotope Reactor was
 912 sponsored by the Scientific User Facilities Division, Office of
 913 Basic Sciences, U.S. Department of Energy. Bio-SANS is
 914 operated by Center for Structural Molecular Biology (FWP-
 915 ERKP291), sponsored by DOE's Office of Biological and
 916 Environmental Research. Research at the 11-ID-B beamline
 917 used resources of the Advanced Photon Source, a U.S.
 918 Department of Energy (DOE) Office of Science User Facility
 919 operated for the DOE Office of Science by Argonne National
 920 Laboratory under Contract No. DE-AC02-06CH11357. Photo-
 921 catalysis work was conducted at the Center for Nanophase
 922 Materials Sciences, which is a DOE Office of Science User
 923 Facility. Partial salary support (L.Y.) was provided by the
 924 National Science Foundation under OIA 1355438. Materials
 925 synthesis and laboratory characterization were supported by the
 926 U.S. Department of Energy, Office of Science, Basic Energy
 927 Sciences, Chemical Sciences, Geosciences, and Biosciences
 928 Division. This manuscript has been authored by UT-Battelle,
 929 LLC, under Contract No. DE-AC05-00OR22725 with the U.S.
 930 Department of Energy. The Department of Energy will provide
 931 public access to these results of federally sponsored research in
 932 accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

934 ■ REFERENCES

- 935 (1) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.;
 936 Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous Molybdenum
 937 Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution.
Chem. Mater. **2014**, *26*, 4826–4831.
- 938 (2) Bastus, N. G.; Merkoci, F.; Piella, J.; Puntes, V. Synthesis of
 939 Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to
 940 200 nm: Kinetic Control and Catalytic Properties. *Chem. Mater.* **2014**,
 941 *26*, 2836–2846.
- 942 (3) Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.;
 943 Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-Wrapped Fe_3O_4 Anode
 944 Material with Improved Reversible Capacity and Cyclic Stability for
 945 Lithium Ion Batteries. *Chem. Mater.* **2010**, *22*, 5306–5313.
- 946 (4) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for
 947 Rechargeable Lithium Batteries. *Angew. Chem., Int. Ed.* **2008**, *47*,
 948 2930–2946.
- 949 (5) Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis,
 950 Properties, Modifications, and Applications. *Chem. Rev.* **2007**, *107*,
 951 2891–2959.
- 952 (6) Liu, Y. D.; Tang, A. W.; Zhang, Q.; Yin, Y. D. Seed-Mediated
 953 Growth of Anatase TiO_2 Nanocrystals with Core-Antenna Structures
 954 for Enhanced Photocatalytic Activity. *J. Am. Chem. Soc.* **2015**, *137*,
 955 11327–11339.
- 956 (7) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.;
 957 Cheng, H. M.; Lu, G. Q. Anatase TiO_2 Single Crystals with A Large
 958 Percentage of Reactive Facets. *Nature* **2008**, *453*, 638–641.
- 959 (8) Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.
 960 J.; Jiang, Y.; Wang, Y.; Tsung, C. K. Shaped Pd-Ni-Pt Core-Sandwich-
 961 Shell Nanoparticles: Influence of Ni Sandwich Layers on Catalytic
 962 Electrooxidations. *ACS Nano* **2014**, *8*, 7239–7250.
- 963 (9) Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-
 964 Mediated Synthesis of Shape-Controlled Cesium Lead Halide
 965 Perovskite Nanocrystals via Reprecipitation Process at Room Temper-
 966 ature. *ACS Nano* **2016**, *10*, 3648–3657.
- 967 (10) Sohn, K.; Kim, F.; Pradel, K. C.; Wu, J. S.; Peng, Y.; Zhou, F. M.;
 968 Huang, J. X. Construction of Evolutionary Tree for Morphological
 969 Engineering of Nanoparticles. *ACS Nano* **2009**, *3*, 2191–2198.
- 970 (11) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. Direct
 971 Electrodeposition of Tetrahedahedral Pd Nanocrystals with High-
 972 Index Facets and High Catalytic Activity for Ethanol Electrooxidation.
J. Am. Chem. Soc. **2010**, *132*, 7580–7581.
- 973 (12) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of
 974 Tetrahedahedral Platinum Nanocrystals with High-Index Facets and High
 975 Electro-Oxidation Activity. *Science* **2007**, *316*, 732–735.
- 976 (13) Jun, Y. W.; Choi, J. S.; Cheon, J. Shape Control of Semiconductor
 977 and Metal Oxide Nanocrystals Through Non-
 978 hydrolytic Colloidal Routes. *Angew. Chem., Int. Ed.* **2006**, *45*, 3414–
 981 3439.
- 982 (14) Yin, Y.; Alivisatos, A. P. Colloidal Nanocrystal Synthesis and
 983 The Organic-Inorganic Interface. *Nature* **2005**, *437*, 664–670.
- 984 (15) Hua, X.; Liu, Z.; Bruce, P. G.; Grey, C. P. The Morphology of
 985 TiO_2 (B) Nanoparticles. *J. Am. Chem. Soc.* **2015**, *137*, 13612–13623.
- 986 (16) Andreev, Y. G.; Panchmatia, P. M.; Liu, Z.; Parker, S. C.; Islam, M. S.;
 987 Bruce, P. G. The Shape of TiO_2 -B Nanoparticles. *J. Am. Chem. Soc.* **2014**,
 988 *136*, 6306–6312.
- 989 (17) Beaucage, G.; Kammler, H. K.; Pratsinis, S. E. Particle Size
 990 Distributions from Small-Angle Scattering Using Global Scattering
 991 Functions. *J. Appl. Crystallogr.* **2004**, *37*, 523–535.
- 992 (18) Iijima, S.; Ichihashi, T. Structural Instability of Ultrafine Particles
 993 of Metals. *Phys. Rev. Lett.* **1986**, *56*, 616–619.
- 994 (19) Ajayan, P. M.; Marks, L. D. Experimental-Evidence for
 995 Quasimelting in Small Particles. *Phys. Rev. Lett.* **1989**, *63*, 279–282.
- 996 (20) Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi,
 997 H.; Domen, K. GaN: ZnO Solid Solution as A Photocatalyst for
 998 Visible-Light-Driven Overall Water Splitting. *J. Am. Chem. Soc.* **2005**,
 999 *127*, 8286–8287.
- 1000 (21) Polking, M. J.; Han, M. G.; Yourdkhani, A.; Petkov, V.;
 1001 Kisielowski, C. F.; Volkov, V. V.; Zhu, Y. M.; Caruntu, G.; Alivisatos,
 1002 A. P.; Ramesh, R. Ferroelectric Order in Individual Nanometre-Scale
 1003 Crystals. *Nat. Mater.* **2012**, *11*, 700–709.
- 1004 (22) Rietveld, H. M. A Profile Refinement Method for Nuclear and
 1005 Magnetic Structures. *J. Appl. Crystallogr.* **1969**, *2*, 65–71.
- 1006 (23) Thompson, P.; Cox, D. E.; Hastings, J. B. Rietveld Refinement
 1007 of Debye-Scherrer Synchrotron X-Ray Data from Al_2O_3 . *J. Appl. Crystallogr.* **1987**, *20*, 79–83.
- 1009 (24) Vondreele, R. B.; Jorgensen, J. D.; Windsor, C. G. Rietveld
 1010 Refinement with Spallation Neutron Powder Diffraction Data. *J. Appl. Crystallogr.* **1982**, *15*, 581–589.
- 1012 (25) Warren, B. E. *X-ray Diffraction*; Courier Corporation: 1969.
- 1013 (26) Laue, M. V. Eine quantitative Prüfung der Theorie für die
 1014 Interferenzerscheinungen bei Röntgenstrahlen. *Ann. Phys.* **1913**, *346*,
 1015 989–1002.
- 1016 (27) Scherrer, P. Bestimmung der inneren Struktur und der Größe
 1017 von Kolloidteilchen mittels Röntgenstrahlen. *Kolloidchemie Ein
 1018 Lehrbuch*; Springer: 1912; pp 387–409.
- 1019 (28) Langford, J. I.; Wilson, A. J. C. Scherrer after 60 Years - Survey
 1020 and Some New Results in Determination of Crystallite Size. *J. Appl. Crystallogr.* **1978**, *11*, 102–113.
- 1022 (29) Stokes, A.; Wilson, A. A method of calculating the integral
 1023 breadths of Debye-Scherrer lines. *Mathematical Proceedings of the
 1024 Cambridge Philosophical Society*; Cambridge University Press: 1942; pp
 1025 313–322.
- 1026 (30) Warren, B.; Averbach, B. The Effect of Cold-Work Distortion
 1027 on X-ray Patterns. *J. Appl. Phys.* **1950**, *21*, 595–599.
- 1028 (31) Scardi, P.; Leoni, M. Whole Powder Pattern Modelling. *Acta
 1029 Crystallogr., Sect. A: Found. Crystallogr.* **2002**, *58*, 190–200.
- 1030 (32) Hall, B. D. Debye function analysis of structure in diffraction
 1031 from nanometer-sized particles. *J. Appl. Phys.* **2000**, *87*, 1666–1675.
- 1032

1033 (33) Debye, P. Zerstreuung von röntgenstrahlen. *Ann. Phys.* **1915**, 1034 351, 809–823.

1035 (34) Egami, T.; Billinge, S. J. *Underneath the Bragg Peaks: Structural 1036 Analysis of Complex Materials*; Elsevier: 2003; Vol. 16.

1037 (35) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. 1038 T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO_2 1039 Nanocrystals Using TiF_4 to Engineer Morphology, Oxygen Vacancy 1040 Concentration, and Photocatalytic Activity. *J. Am. Chem. Soc.* **2012**, 1041 134, 6751–6761.

1042 (36) Bertolotti, F.; Dirin, D. N.; Ibáñez, M.; Krumeich, F.; Cervellino, 1043 A.; Frison, R.; Voznyy, O.; Sargent, E. H.; Kovalenko, M. V.; 1044 Guagliardi, A.; Masciocchi, N. Crystal Symmetry Breaking and 1045 Vacancies in Colloidal Lead Chalcogenide Quantum Dots. *Nat. 1046 Mater.* **2016**, 15, 987–994.

1047 (37) Shoemaker, D. P.; Li, J.; Seshadri, R. Unraveling Atomic 1048 Positions in An Oxide Spinel with Two Jahn–Teller Ions: Local 1049 Structure Investigation of CuMn_2O_4 . *J. Am. Chem. Soc.* **2009**, 131, 1050 11450–11457.

1051 (38) Page, K.; Stoltzfus, M. W.; Kim, Y.-I.; Proffen, T.; Woodward, P. 1052 M.; Cheetham, A. K.; Seshadri, R. Local Atomic Ordering in BaTaO_2N 1053 Studied by Neutron Pair Distribution Function Analysis and Density 1054 Functional Theory. *Chem. Mater.* **2007**, 19, 4037–4042.

1055 (39) Page, K.; Hood, T. C.; Proffen, T.; Neder, R. B. Building and 1056 Refining Complete Nanoparticle Structures with Total Scattering 1057 Data. *J. Appl. Crystallogr.* **2011**, 44, 327–336.

1058 (40) Liu, J.; Huq, A.; Moorhead-Rosenberg, Z.; Manthiram, A.; Page, 1059 K. Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode 1060 $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$. *Chem. Mater.* **2016**, 28, 6817–6821.

1061 (41) Farrow, C. L.; Billinge, S. J. L. Relationship between the atomic 1062 pair distribution function and small-angle scattering: implications for 1063 modeling of nanoparticles. *Acta Crystallogr., Sect. A: Found. Crystallogr.* 1064 **2009**, 65, 232–239.

1065 (42) Cargill, G. S. Influence of Neglected Small-Angle Scattering in 1066 Radial Distribution Function Analysis. *J. Appl. Crystallogr.* **1971**, 4, 1067 277–283.

1068 (43) Olds, D.; Wang, H. W.; Page, K. DShaper: An Approach for 1069 Handling Missing Low-Q Data in Pair Distribution Function Analysis 1070 of Nanostructured Systems. *J. Appl. Crystallogr.* **2015**, 48, 1651–1659.

1071 (44) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at 1072 a Semiconductor Electrode. *Nature* **1972**, 238, 37–38.

1073 (45) Gong, X.-Q.; Selloni, A. Reactivity of Anatase TiO_2 Nano- 1074 particles: The Role of the Minority {001} Surface. *J. Phys. Chem. B* 1075 **2005**, 109, 19560–19562.

1076 (46) Lazzari, M.; Vittadini, A.; Selloni, A. Structure and Energetics of 1077 Stoichiometric TiO_2 Anatase Surfaces. *Phys. Rev. B: Condens. Matter* 1078 *Mater. Phys.* **2001**, 63, 155409.

1079 (47) Selloni, A. Crystal growth - Anatase shows its reactive side. *Nat. 1080 Mater.* **2008**, 7, 613–615.

1081 (48) Diebold, U. The Surface Science of Titanium Dioxide. *Surf. Sci. 1082 Rep.* **2003**, 48, 53–229.

1083 (49) Liu, S.; Yu, J.; Jaroniec, M. Anatase TiO_2 with Dominant High- 1084 Energy {001} Facets: Synthesis, Properties, and Applications. *Chem. 1085 Mater.* **2011**, 23, 4085–4093.

1086 (50) Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. 1087 Synthesis of Titania Nanosheets with a High Percentage of Exposed 1088 {001} Facets and Related Photocatalytic Properties. *J. Am. Chem. Soc.* 1089 **2009**, 131, 3152–3153.

1090 (51) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; 1091 Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing 1092 Hierarchical Spheres from Large Ultrathin Anatase TiO_2 Nanosheets 1093 with Nearly 100% Exposed {001} Facets for Fast Reversible Lithium 1094 Storage. *J. Am. Chem. Soc.* **2010**, 132, 6124–6130.

1095 (52) Pan, J.; Liu, G.; Lu, G. M.; Cheng, H. M. On the True 1096 Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase 1097 TiO_2 Crystals. *Angew. Chem., Int. Ed.* **2011**, 50, 2133–2137.

1098 (53) Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. 1099 M. Titanium Dioxide Crystals with Tailored Facets. *Chem. Rev.* **2014**, 1100 114, 9559–9612.

1100 (54) Minella, M.; Faga, M. G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Coluccia, S.; Martra, G. Effect of Fluorination on the Surface Properties of Titania P25 Powder: an FTIR Study. *Langmuir* **2010**, 26, 2521–2527.

1101 (55) Yang, X. H.; Li, Z.; Sun, C. H.; Yang, H. G.; Li, C. Z. Hydrothermal Stability of {001} Faceted Anatase TiO_2 . *Chem. Mater.* **2011**, 23, 3486–3494.

1102 (56) Proffen, T.; Neder, R. B. DISCUS: A program for Diffuse Scattering and Defect-Structure Simulation. *J. Appl. Crystallogr.* **1997**, 30, 171–175.

1103 (57) Neufeld, J.; Feygenson, M.; Carruth, J.; Hoffmann, R.; Chipley, K. K. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS. *Nucl. Instrum. Methods Phys. Res., Sect. B* **2012**, 287, 68–75.

1104 (58) Coelho, A.; Chater, P.; Kern, A. Fast Synthesis and Refinement of the Atomic Pair Distribution Function. *J. Appl. Crystallogr.* **2015**, 48, 869–875.

1105 (59) Heller, W. T.; Urban, V. S.; Lynn, G. W.; Weiss, K. L.; O'Neill, H. M.; Pingali, S. V.; Qian, S.; Littrell, K. C.; Melnichenko, Y. B.; Buchanan, M. V.; Selby, D. L.; Wignall, G. D.; Butler, P. D.; Myles, D. A. The Bio-SANS instrument at the High Flux Isotope Reactor of Oak Ridge National Laboratory. *J. Appl. Crystallogr.* **2014**, 47, 1238–1246.

1106 (60) Arnold, O.; Bilheux, J.-C.; Borreguero, J.; Buts, A.; Campbell, S. I.; Chapon, L.; Doucet, M.; Draper, N.; Leal, R. F.; Gigg, M.; et al. Mantid—Data Analysis and Visualization Package for Neutron Scattering and μ SR Experiments. *Nucl. Instrum. Methods Phys. Res., Sect. A* **2014**, 764, 156–166.

1107 (61) Ilavsky, J.; Jemian, P. R. Irena: Tool Suite for Modeling and Analysis of Small-Angle Scattering. *J. Appl. Crystallogr.* **2009**, 42, 347–353.

1108 (62) Moore, P. B. Small-Angle Scattering - Information-Content and Error Analysis. *J. Appl. Crystallogr.* **1980**, 13, 168–175.

1109 (63) Olds, D. P.; Duxbury, P. M. Efficient Algorithms for Calculating Small-Angle Scattering from Large Model Structures. *J. Appl. Crystallogr.* **2014**, 47, 1077–1086.

1110 (64) Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. *Nat. Methods* **2012**, 9, 671–675.

1111 (65) Barnard, A. S.; Curtiss, L. A. Prediction of TiO_2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. *Nano Lett.* **2005**, 5, 1261–1266.

1112 (66) Williamson, G. K.; Hall, W. H. X-Ray Line Broadening from Filed Aluminium and Wolfram. *Acta Metall.* **1953**, 1, 22–31.

1113 (67) Cheary, R. W.; Coelho, A. A Fundamental Parameters Approach to X-Ray Line-Profile Fitting. *J. Appl. Crystallogr.* **1992**, 25, 109–121.

1114 (68) Petkov, V.; Cozzoli, P. D.; Buonsanti, R.; Cingolani, R.; Ren, Y. Size, Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair Distribution Functions: A Comparative Study of $\gamma\text{-Fe}_2\text{O}_3$ Nanosized Spheres and Tetrapods. *J. Am. Chem. Soc.* **2009**, 131, 14264–14266.

1115 (69) Storn, R.; Price, K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. *J. Global Optim.* **1997**, 11, 341–359.

1116 (70) Scardi, P.; Leoni, M. Diffraction Line Profiles from Polydisperse Crystalline Systems. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2001**, 57, 604–613.

1117 (71) Kril, C. E.; Birringer, R. Estimating Grain-Size Distributions in Nanocrystalline Materials from X-ray Diffraction Profile Analysis. *Philos. Mag. A* **1998**, 77, 621–640.

1118 (72) Bertolotti, F.; Moscheni, D.; Migliori, A.; Zucchini, S.; Cervellino, A.; Guagliardi, A.; Masciocchi, N. A Total Scattering Debye Function Analysis Study of Faulted Pt Nanocrystals Embedded in A Porous Matrix. *Acta Crystallogr., Sect. A: Found. Adv.* **2016**, 72, 632–644.

1119 (73) Longo, A.; Sciortino, L.; Giannici, F.; Martorana, A. Crossing the Boundary Between Face-Centred Cubic and Hhexagonal Close Packed: the Structure of Nanosized Cobalt is Unraveled by A Model Accounting for Shape, Size Distribution and Stacking Faults, Allowing Simulation of XRD, XANES and EXAFS. *J. Appl. Crystallogr.* **2014**, 47, 1562–1568.

1170 (74) Cervellino, A.; Frison, R.; Bertolotti, F.; Guagliardi, A.
1171 DEBUSSY 2.0: the New Release of a Debye User System for
1172 NanoCrystalline and/or Disordered Materials. *J. Appl. Crystallogr.*
1173 **2015**, *48*, 2026–2032.

1174 (75) Cervellino, A.; Giannini, C.; Guagliardi, A. DEBUSSY: a Debye
1175 User System for Nanocrystalline Materials. *J. Appl. Crystallogr.* **2010**,
1176 *43*, 1543–1547.

1177 (76) Frison, R.; Cernuto, G.; Cervellino, A.; Zaharko, O.; Colonna,
1178 G. M.; Guagliardi, A.; Masciocchi, N. Magnetite–Maghemite Nano-
1179 particles in the 5–15 nm Range: Correlating the Core–Shell
1180 Composition and the Surface Structure to the Magnetic Properties.
1181 A Total Scattering Study. *Chem. Mater.* **2013**, *25*, 4820–4827.

1182 (77) Kammler, H. K.; Beauchage, G.; Mueller, R.; Pratsinis, S. E.
1183 Structure of Flame-Made Silica Nanoparticles by Ultra-Small-Angle X-
1184 ray Scattering. *Langmuir* **2004**, *20*, 1915–1921.

1185 (78) Kiss, L. B.; Soderlund, J.; Niklasson, G. A.; Granqvist, C. G. The
1186 Real Origin of Lognormal Size Distributions of Nanoparticles in Vapor
1187 Growth Processes. *Nanostruct. Mater.* **1999**, *12*, 327–332.

1188 (79) Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for Crystal-
1189 Face-Dependent TiO₂ Photocatalysis from Single-Molecule Imaging
1190 and Kinetic Analysis. *J. Am. Chem. Soc.* **2011**, *133*, 7197–7204.

1191 (80) Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced
1192 Photocatalytic CO₂-Reduction Activity of Anatase TiO₂ by Coexposed
1193 {001} and {101} Facets. *J. Am. Chem. Soc.* **2014**, *136*, 8839–8842.

1194 (81) Liu, X. G.; Dong, G. J.; Li, S. P.; Lu, G. X.; Bi, Y. P. Direct
1195 Observation of Charge Separation on Anatase TiO₂ Crystals with
1196 Selectively Etched {001} Facets. *J. Am. Chem. Soc.* **2016**, *138*, 2917–
1197 2920.

1198 (82) Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y.
1199 Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient
1200 TiO₂ Nanocrystals for Enhanced CO₂ Photoreduction Under Visible
1201 Light. *ACS Catal.* **2016**, *6*, 1097–1108.

1202 (83) Xiong, Z.; Luo, Y.; Zhao, Y.; Zhang, J.; Zheng, C.; Wu, J. C.
1203 Synthesis, Characterization and Enhanced Photocatalytic CO₂
1204 Reduction Activity of Graphene Supported TiO₂ Nanocrystals with
1205 Coexposed {001} and {101} Facets. *Phys. Chem. Chem. Phys.* **2016**, *18*,
1206 13186–13195.

1207 (84) Wenderich, K.; Mul, G. Methods, Mechanism, and Applications
1208 of Photodeposition in Photocatalysis: A Review. *Chem. Rev.* **2016**, *116*,
1209 14587–14619.

1210 (85) Zhou, P.; Zhang, H.; Ji, H.; Ma, W.; Chen, C.; Zhao, J.
1211 Modulating the Photocatalytic Redox Preferences between Anatase
1212 TiO₂ {001} and {101} Surfaces. *Chem. Commun.* **2017**, *53*, 787–790.

1213 (86) Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A Selectively
1214 Exposed Crystal Facet-Engineered TiO₂ Thin Film Photoanode for
1215 the Higher Performance of the Photoelectrochemical Water Splitting
1216 Reaction. *Energy Environ. Sci.* **2015**, *8*, 3646–3653.