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On the Infiltration of a Liquid Front in an Unsaturated, Fractured 
Porous Medium* 

John J. Nitao and Thomas A. Buscheck 

Earth Sciences Department 
Lawrence Liverrnore National Laboratory 

ABSTRACT 

The unsaturated zone at Yucca Mountain, Nevada, is currently under scientific investigation as a 

proposed site for the permanent storage of high-level nuclear waste. The Topopah Springs unit, in 

which die proposed repository is to be located, as well as most of the other adjacent units, consists pri­

marily of fractured tuffaceous rock. A deeper understanding of fracture-matrix interaction is needed for 

the prediction of water movement around and in the repository. For cenain idealized fracture systems 

that are dominated by fracture flow, we show that the liquid front movement can be classified into phy­

sically interprelable, distinctive flow regimes. Asymptotic solutions for the front movement are given 

for each flow period and comparisons with numerical solutions are made. In addition to applications in 

nuclear waste storage, the results of our study is relevant to hazardous waste disposal, petroleum 

recovery, and flow in soil micropores. 

* Wotk performed under UK auspices of the U.S. Department of Energy by the Lawrence Liveimore National Laboralo-
ry under contract number W-7405-ENG-48. The authors gratefully acknowledge the support from the Yucca Mountain 
Project and me Lawrence Livemtore National Laboratory Institutional R & D Program. 
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Introduction 

The unsaturated zone at Yucca Mountain, Nevada, is a proposed site of die national high-level 

nuclear waste repository. The various geological units consist primarily of tuffaceous rock with many 

of the units being highly fractured [Montazer and Wilson, 1984; Klavetter and Peters, 1986]. The 

mechanics of water infiltration into unsaturated fractured rock is, therefore, of significant practical 

importance. In particular, the assessment of waste package performance and radionuclide transport in 

the host rock require knowledge of fluid movement in the near-field environment. Moreover, the inva­

sion of drilling and mining water used during repository construction will impact on-site data gathering 

[Buscheck and Nitao, 1988a), particularly at the exploratory shaft testing facility. Characterizing the 

repository site will require the identification of physical parameters and the analysis of the fundamental 

processes governing infiltration and transport in fractured porous rock. 

Understanding multiphase fluid processes in fractured porous media is important in other fields of 

study as well The secondary recovery of petroleum from naturally fractured reservoirs through water 

fiooding is a prominent example. Our work is also applicable to heterogeneous unsaturated systems 

where there is a sharp contrast in permeability between two types of materials. For example, the flow 

in a thin layer of high-permeability rock that is sandwiched between two low-permeability layers is also 

treatable by our analysis. Another area of study related to our work is the flow of water in soil macro-

pores [Beven and Germann, 1982]. 

The Sow of water in a real-life fractured rock system is complicated by die complex geometry of 

die fractures and their spatially varying apertures. In general, die path of water may form sinuous chan­

nels, or rivulets, of fluid as it flows through a fracture. In die unsaturated zone, further complications 

arise from die interaction between die fluid in die fractures and die surrounding matrix. Flows res­

tricted to the matrix may possibly travel across fractures by way of contact points [Wang and 

Narasimhan, 1985]. Before considering these more complicated aspects of fracture flow it would be 

wise to investigate the simpler problem of flow due to die introduction of liquid at one end of a single 

fracture. We, therefore, consider a single fracture in an initially unsaturated porous medium intersecting 

a planar exposed face of the rock mass (Figure 1). Suppose that water is allowed to enter into die 
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opening of the fncture with some type of flux or head boundary condition that is uniform across the 

opening of the fracture. The resulting flow of water in the fracture and the matrix is the focus of our 

treatment. Note that a sufficient amount of water is assumed to be present at the opening in order to 

maintain the boundary condition while, at the same time, guaranteeing a continuous slug of water. For 

example, in the case of constant pressure at the opening equal to a value above ambient conditions, a 
t 

pond of water must exist at the fracture opening. 

* Under certain conditions the flux into the fracture may be sufficiently low that most of the water 

will be absorbed through matrix imbibition close to the entrance before any significant fracture flow can 

occur. Movement of the liquid front, if any, in the fracture will be small and will lag behind the front 

in the matrix, leading to what we have termed matrix-dominated flow. In other cases, the flux will be 

sufficiently high such that the fracture flow along the longitudinal direction of the fracture will advance 

ahead of that in the matrix, a situation we will call fracture-dominated flow. In this latter case, the 

speed of the front will be governed by an interaction between the driving forces in the fracture and the 

suction forces in the matrix. Relatively high fluxes are necessary for this case to occur, such as, if there 

is ponding of water at the entrance to the fracture. A real fracture system existing in the field will have 

significant spatial variabilities, and it is possible that these different types of flow conditions may occur 

simultaneously at different locations. Future work will also have to consider matrix-dominated flows as 

well as the transition between the two types of flow. 

In our treatment we are interested only in fracture-dominated flow. We treat the idealized prob­

lem of one-dimensional flow in a planar fracture with uniform aperture. In spite of these simplifications 

it will be seen ihat the analysis yields interesting results that may lead, in some cases, to techniques for 

performing bounding calculations of water movement for more complicated systems as well as an 

understanding of some fracture flow processes. 

In actual field applications the physical parameters that characterize the flow in a fractured system 

are often difficult to measure and vary significantly in space. Therefore, their values will have a high 

degree of uncertainty and variability. Thus, from a practical point of view, what can be realistically 

achieved is to understand the various physical processes present in die system and, it is hoped, to bound 
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the problem. With these goals in mind we have been able, under a class of assumptions, to reduce the 

governing equations into a single equation of motion describing the movement of the liquid from in the 

fracture. With this equation we are able to determine the asymptotic behavior of the flow. These solu­

tions are invaluable in revealing various flow processes and flow regimes that may occur and in deter­

mining the dependency of the flow on various physical parameters. 

Most theoretical work in fracture flow has been restricted to saturated conditions and, until 

recently, relatively little has been done in unsaturated fracture flow. Travis et al. [1984] have 

presented analytic solutions to the problem of a single slug of finite length traveling down a fracture in 

an unsaturated porous medium with the flux into the matrix assumed to be a constant in time. Numeri­

cal solutions were given for more realistic time-varying matrix flux condition. Martinez [1988] has also 

performed numerical calculations for a continuous slug of water and has performed parameter studies 

applied to Topopah Spring tuff. 

We note here that one of the problems analyzed in our treatment (pressure boundary condition) is 

mathematically identical to that considered by Philip [1968] who looked at the infiltration process in 

aggregated media. However, his treatment did not include the effect of gravity on the flow in the 

macropores (corresponds to fractures, in our study), and, moreover, we are able to snow that for frac­

tures there exists an "intermediate* flow period in addition to die two found by Philip. We also exam­

ine the effect of fracture capillarity on the solutions, and examine the effect of non-equal fracture spac­

ing. Therefore, we believe that much of our work is new. We also mention here that Davidson [1987] 

has recently considered infiltration from a fracture of finite length that is initially saturated. 

Related work has been done in obtaining solutions for contaminant transport in saturated fractured 

porous media (for example, see [Sudicky and Frind, 1982] and references therein). However, the 

governing equation for transport in the fracture for those types of problems is the linear convective-

diffusive equation. This equation is not adequate for describing the frontal movement of water in an 

unsaturated fracture. As pointed out by Philip [1968], (be equation describing frontal movement is 

equivalent to a non-linear diffusion equation with a diffusivity dial is a dclla function centered at unit 

saturation. 
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Another area where theoretical work in multiphase fracture flow has been active is the secondary 

recovery of petroleum reservoirs through water flooding. There, workers have been interested in the 

imbibition of water into a naturally fractured oil-bearing formation. Van Golf-Racht [1982] summarizes 

the work in this area. Previous analyses in the petroleum literature, however, have not given the 

behavior of the solutions, nor have they elaborated on the various time constants and length scales 

important lo the front movement process. 

Assumptions 

We consider the flow resulting from the introduction of a liquid into one end of an initially dry 

planar fracture with constant aperture. The flow inside the fracture is treated as a one-dimensional slug 

with a capillary pressure drop across the leading meniscus. The fracture aperture is assumed to be 

small enough that at each point of the fracture front liquid completely fills the space between the rock 

walls. The partially saturated rock is assumed to be at uniform initial saturation. In some cases it will 

be necessary 10 assume that the matrix diffusiviiy for capillary imbibition can be approximated by a 

constant. We will restrict ourselves to the time span of flow until the slug reaches the end of the frac­

ture. The fracture is assumed to have no intersections with other fractures. 

The arrival of the liquid front in the fracture at any given point on die fracture face will result in 

a capillary driven flux into the matrix at that point. The flow field in the matrix as a result of these 

fluxes will, in general, be multi-dimensional. However, if the flow in the system is high enough that it 

is fracture-dominated, as defined earlier, most of the flow lines in the matrix will be primarily orthog­

onal to the fracture plane. Thus, the flow into the matrix at each point on the fracture can be uncou­

pled and treated individually as that of flow into a one-dimensional sub-system. Because the permeabil­

ity of the matrix is believed to be many orders of magnitude less than the fractures [KlaveUer and 

Peters, 19861, this treatment is applicable to the various tuffaceous units found at Yucca Mountain. 

This assumption was also used by Travis et al. [1984] and Martinez [1988], and has been confirmed by 

our numerical simulations which will be presented in a future report. 
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Our analysis will not consider the effect of pressure gradients along the Icngih of the fracture 

upon the imbibition rates into the matrix. This effect will be small if the magnitude of the initial suc­

tion pressures in the matrix are large relative to the overpressure in the fracture. We will also assume 

that the initial suction forces in the matrix are large enough that for the time span of interest the 

influence of gravity on the matrix flow (but not on the fracture flow) can be neglected. 

In applying the solutions covered in our treatment one must be careful that the boundary condi­

tions are such that the resulting flow does not violate the above assumptions. In many cases the asymp­

totic solutions can be used lo give guidance concerning whether they are satisfied. Future work will 

have to be done to derive these conditions and confirm (hem through numerical simulations and, 

perhaps, laboratory experiments. An example of when the boundary conditions may be inappropriate is 

in the case of a constant flux boundary condition at the fracture opening. If this flux is too low, one 

may violate the condition of fracture-dominated flow, or the slug in the fracture may be stretched by 

gravity and may separate into more than one piece. 

The Problem 

Matrix Imbibition Flux 

We now briefly discuss the form of the imbibition flux into the matrix after passage of the liquid 

fracture front. The reader is referred to Figure 2 for the coordinate system that is used. Suppose that 

the matrix has a uniform initial saturation distribution. The equations describing the saturation field in 

the matrix are 

• f- -- V-*r„*,Vy (1) 

S(x.y,t=oy = Si 

S(x=0,y,0 = S. for y S k(l) 

S(x=0.y,t) = St for y > h(t) 

The notation is defined in the nomenclature section at the end of the paper. 
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At a given point y for y < A (I) the volumetric flux into the matrix along a single face of the 

fracture is given by 

, = -Km &• at x = 0 (2) 

In general, this flux depends on location, time, and the past history of the liquid fracture front h (x) 

wherex S i , that is, 

q = ?(y,t;A(x),TSt) (3) 

Under the assumptions described in the previous section, the imbibition flux q at a point y on the frac­

ture face will depend only on the time when the front first passes by; that is, 

q <y.t) = o i i n(y) (4) 

q<y,t) = q,(t-a(y)) I > tl(y) (5) 

where Q(y) denotes the time when the fracture front first reaches the point y. Here, q (y,() is the 

matrix imbibition flux into only one fracture wall. 

Fracture Flow 

The flow of the liquid in the fracture will be treated as being a slug except with a constant capil­

lary pressure drop at the leading meniscus. The one-dimensional fracture is assumed at any given point 

to be either completely filled with liquid or completely dry. Let A(() denote the location of the fracture 

front with respect to the entrance of the fracture. We assume that the liquid in the fracture and matrix 

is incompressible. Let u (y,I) be the liquid velocity at depth y and time ( and let b equal to the con­

stant half-aperture of the fracture. From material balance considerations 

Now, let p (y,i) be the liquid phase pressure head in the fracture. Assuming Darcy's law for flow in 

the fracture, we have 
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«(y.») = - x > ( ^ - P ) (7) 

where Kf is the fracture hydraulic conductivity and P is the cosine of the angle of inclination of the 

fracture from the vertical. The fracture can be oriented either horizontally or inclined downward rela­

tive to its opening. The fracture penetration depth h (() must satisfy the equation 

**£*• = «(*('). 0 (8) 

Note that the function fi(y) is related to h (() through the relationship 

tl(ft(l)) = / (9) 

and, hence, is the inverse function of h (I). 

We will consider two separate types of boundary conditions at the entrance to the fracture: pres­

sure head p0(t) and flux u0{r). The pressure head at the leading edge of the front in the fracture is 

assumed to be at zero datum. Since the equations involve only gradients in head, a non-zero constant 

capillary drop -pc across the leading edge of the front can be included by adding pc to p0. We must, 

however, be careful that the magnitude of the resulting value of po is much smaller titan the initial suc­

tion pressures in the matrix. Otherwise, significant pressure gradients would occur along the length of 

the fracture that would couple with the imbibition flux, in violation of one of our basic assumptions. 

Likewise, the flux boundary condition Uo(') must not be so large that excessive pressures develop in 

the matrix. It also must not be so small that it can not meet the the flow demanded by the suction and 

gravity forces in the fracture; otherwise, the slug will become discontinuous violating one of our 

assumptions. The question of at which critical values of u 0 will these conditions lake place will be 

considered in a later section. 

Integro-Differential Equations 

It will be shown i„ a future report that the above govexnir^ flow equations can, for each of the 

two types of boundary condition, Lc reduced io a single integro-differential equation in h(t). These 

equations arc given as 
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Flux-type boundary condition 

Pressure-type boundary condition 

HO^yp- = AT,(A{OP + Po(0) - I j f t v J - ^ A f r ) ^ 1 * (ID 

where the solution must satisfy the initial condition 

A(0) = 0 

Fracture Geometry 

In our treatment we will consider an infinite array of parallel fractures with the same aperture 

equal to 2b {see Figure 3). The spacing between these fractures alternates between distances of 2a i 

and 2a2. The no-flow symmetry lines in the matrix are therefore «i from one side of the fracture and 

a 2 from the other. The matrix blocks can also alternate, not only in their size, but also in their material 

properties, porosity t* *nd diffusivity ak (k = 1,2), as well as the initial and maximum saturations Sit 

and J , , . 

This geometry includes several special cases, such as the case of a single fracture between two 

semi-infinite matrix blocks (a{ = a2 = ^). the case of an infinite array of equally spaced fractures 

(a i = aj), and the case of two parallel fractures with a finite matrix block in between 

(O] = finite, ai = °°). 

In the analysis we will assume constant matrix ditTusivities. We will show in a future report that 

for the case of semi-infinite matrix blocks this assumption is unnecessary and the diffusivity can be a 

non-constant function of saturation. 

Flow Periods 
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Depending on whether we have a constant pressure-type or a constant flux-type boundary condi­

tion, we can show that the flow in the fracture undergoes various flow regimes, or lime periods, with 

respect to its interaction with the matrix. During each of these periods the function h(t), which 

describes the position of the front, can be shown to tend asymptotically toward approximate solutions, 

which on a log-log scale form a series of line segments giving the general location of the actual solu­

tion curve. But first we wish to introduce some relevant time constants and dimensionless groups. As a 

convention, we will label the two matrix blocks forming the two sides of the fracture as * = 1 and 

k =2. Each matrix block can have its own material properties such as porosity $* and effective 

diffusivity o , . (In our notation the diffusivity function is given by o = (Kmkr/$)dy/dS. Here, we will 

use a constant "effective diffusivity" that will be defined in a report currently under review.) The initial 

and maximum saturations Sit and S„» can also be different The fracture spacing ak was defined in 

the previous section. From these parameters we define the following relevant time constants 

Fracture storativity time constant. ftt 

. [2&/ (S„ t -S<t ) fc ] 2 i c 

(13) 

(14) 

A special case of particular interest is when the fractures are uniformly spaced (a, = ai> and the 

material properties together with the initial saturation of the two matrix blocks are the same. The 

parameters that are subscripted with respect to the matrix blocks are not required. From (12) to (14) 

one has 

[ f t /(S. -S t )» ] *n 
ft = (15) 

Average fracture storativity time constant, ft 

-L = - i - + _L 

Fracture interference time constant t,t 

t.t = Jt 



I. = ^ K (16) 

We will see later that the solutions can be characterized entirely by the time constants together 

with the conductivity and fracture orientation. To understand the physical meaning of these time con­

stants, consider a control volume that is a slab of unit thickness that is oriented orthogonal to the frac­

ture. Suppose that imbibition is allowed to occur into only one of the matrix b'ocks. If the saturation 

along the length of the imbibition front is taken as being approximately equal to unity, the length given 

by L = 2b/(Smt - &*)•*, is the distance travelled by the front when the cumulative flux into the 

matrix block equals the volume of the fracture lying within the slab. The approximate time at which 

this distance is reached is the fracture storativity time constant tbt given above. If we consider imbibi­

tion into the two matrix blocks simultaneously, t» is the approximate lime at which the sum of the two 

cumulative imbibition fluxes leaving the two walls of the fracture is comparable to the specific fracture 

volume. Note that f» in (IS) does not have Ihe factor of two multiplying b that is present in tbt since 

each of the two matrix blocks share one-half of Ihe fracture volume. The other time constants i,t are 

simply the approximate times at which die imbibition front in matrix k reaches the no-flow symmetry 

line with die respective neighboring fracture. It is interesting to note that although the definition of the 

lime constants assumes a constant or almost constant matrix diffusivity, their definitions in physical 

terms remain valid even when Ihe diffusivity is a function of saturation, and are, therefore, applicable 

even when this assumption does not Iraki 

We define the following ratios: 

Matrix-10-fracture storativity ratio, Xt 

** = V ~ 26 ( I 7 > 

Total storativity ratio, X. 

X = X, + h. (18) 
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The dimcnsionless constants X* are the ratios of the initial unsaturated pore volume of the ith 

matrix to the volume of the fracture while X. is the ratio of the total initial pore volume in the matrix to 

the fracture. When the fractures are spaced uniformly and the matrix properties are the same, we have 

from (17) and (18) that X reduces to 

x = JT = • < » , - * ) • ( 1 9 ) 

In order to simplify the discussion, suppose that die matrix blocks on both sides of the fracture 

have the same flow properties and thai we have a system of parallel fractures with equal spacing. With 

this assumption we have '. = ' . i = (.2. Analyses which will be given in a future report show that with 

boundary conditions which do not vary with lime, there will generally be three major time periods for 

the movement of the liquid fracture front These time periods can be shown to arise from the three 

sages of matrix imbibition thai can occur at any given point on the fracture face. Let us focus our 

attention on a single slice of infinitesimal thickness that is orthogonal to the fracture (Figure 4). Sup­

pose that the fracture front has just reached this slice, and imbibition begins. Stage A for this slice 

occurs when Ihe cumulative volume of liquid that has imbibed is less than the fracture volume inside 

the slice. Stage B is when the imbibed volume in the matrix has increased to an amount greater than 

die fracture volume, but before Ihe matrix front reaches the no-flow symmetry boundary of die matrix 

block due to neighboring fractures. Stage C occurs after die front reaches the matrix no-flow boundary. 

The matrix can, therefore, be divided into three zones depending on the stage of imbibition (Figures S 

and 6) with zone I corresponding to those points dial lie on slices undergoing stage A, zone II 

corresponds to stage B, and zone III 10 stage C. These zones propagate with die liquid front as it 

proceeds into the fracture with zone I occuring near die tip of die fracture, followed by zone n, and, 

then, by zon; HI. 

Which time period is occuring depends on which of the zones is die largest At early times, 

1 < h. most or all of die fracture front lies in zone I, and die flow in die fracture is, therefore, 

influenced only weakly by matrix imbibition and is, instead, dominated by die fracture boundary 
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condition and gravity. As the fracture front proceeds, a significant part of the matrix is in zone II, i.e. 

cumulative imbibition fluxes are comparable to the fracture volume, and the front slows down. During 

this second flow period, lt < < < 1.1, there is a balance between (1) matrix suction forces and (2) 

gravity and, possibly, (3) fracture flow boundary conditions. Finally, as the matrix imbibition front 

approaches the no-flow symmetry planes, the imbibition flux begins to decline, and we enter the third 

flow period, /, < I when most of the matrix is in zone III. The front velocity during this flow 

• period approaches a constant 

We are also able to treat other cases: when the matrix blocks do not have the same material and 

initial properties, and when the fractures are not evenly spaced. In general, we then have t, j * i,2-

(In the rest of this work we can assume, without loss of generality, that ia2 > <«i- Otherwise, the 

indices 1 and 2 are interchanged in what follows.) The only difference from the equal fracture spacing 

case is that the third flow period is split into two sub-periods Ilia and mb because matrix k = 1 enters 

flow period HI while matrix k = 2 is still in period II. In particular, there is a period 

'. I < t < 1.2 corresponding to when only matrix block k = 1 is in flow period in. For later 

times, ( < 2 < ' , matrix block k = 2 is also in flow period HI. (These flow periods apply if 

'» £ ' a i < '.2. which will be true in most cases. Other less likely orderings of the time constants 

will lead to other flow periods.) 

To summarize, the flow periods are: 

Flow period I (boundary and gravity dominated) 

I < It (20) 

Flow period It. (balanced) 

h < i < i.i (21) 

Flow period Ilia (reduced matrix suction in a single matrix block) 

' . ! < < < '.I (22) 

Flow period Mb (reduced matrix suction in both matrix blocks) 
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t.2 < t (23) 

If a flow period has upper and lower rime limits that arc comparable or if the upper becomes less 

than the lower, that particular Sow period will not be present. For example, when (k is comparable to, 

or greater than t, b flow period n is non-existent 

In some situations, special degenerate cases can occur dqnrd ;>g on how the time constants arc 

ordered. For example, suppose that one of the matrix blocks bounding the fracture is much larger than 

the other but with their diffusivities being equal. That is. a 2 >> a, and a, = a 2 . It can then be seen 

that i,, « <,2. Moreover, suppose that the initial unsaturated pore volume of matrix block k = 1 is 

much smaller than the fracture pore volume, which in turn is much smaller than the initial unsaturated 

pore volume of matrix block it = 2. We then have the situation where t., << r4 << i. 2 . While in 

flow period n the total imbibition flux into block Jfc = 1 will start to decline relatively early because of 

the small matrix pore volume of this block and and will then go :Jito flow period HI. This transition 

will happen before the flux into block k = 2 has become significant enough to go into flow period II. 

The Sow in the fracture will revert to being boundary- or gravity-dominated, and instead of 

Flow period Ilia we have two periods which we call Ufa. 1 and Ilia. 2. 

Flow period IIIa.1 (revert to boundary or gravity dominated) 

t.i < i < '»2 (24) 

Flow period IIIa2 (partially reduced suction) 

'»2 < '.2 (25) 

In order for this situation to occur we must have r,, < ti2 < t«2. It is obvious that there are 

other orderings of the time constants that can lead to special flow periods not covered by those given 

here. However, in most situations, such as when both matrix sides of the fracture have nearly identical 

matrix properties and initial saturations, the three periods we have given in (20) to (23) are the only 

major ones. The other subcases can be treated, if desired, by using the techniques that will be 
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presented in a report currently under review. 

Dimensionless Groups 

It will be seen later thai a convenient definition of uimensionless lime is obtained by taking time 

to be relative to the time constant tb. Therefore, let us denote by T the dimensionless time given by 

T = t/tb (26) 

It will also be convenient to normalize the other time constants relative to tb: 

t . t = '.»/(» (27) 

%k = W * (28) 

The index i = 1,2 refers to the matrix bionics bounding the fracture. In terms of normalized time the 

Bow periods are given as follows. 

Flow period I (fracture flow boundary condition and gravity dominated) 

x < i (29) 

Flow period II (balanced) 

1 < t < T„ (30) 

Flow period Ilia (reduced matrix suction in a single matrix block) 

t . i < T < 1 . 2 (31) 

Flow period Illb (reduced matrix suction in both matrix blocks) 

x.2 < t (32) 

The fracture penetration length. A, can be made dimensionless h by dividing by Lb, which is 

defined to be the distance that would be traveled by the fracture front at time t = tb if no imbibition 

into the matrix were present These "imbibition-free" length scales Lb can be easily derived for the 

various combinalion of boundary conditions and are given in Table I. For example, in the case of 
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p 0 = 0 with gravity, liquid will travel down the fracture flow at a constant speed equal to Kf (S. Thus, 

at time t 4 it will have traveled a distance equal to £4 = Kf P / b . To understand further the meaning 

of L b , note that die gravity and boundary pressure forces including fracture capillarity will dominate 

over matrix imbibition when the fracture penetration is less than Lb since the imbibition into the matrix 

is relatively unimportant for t < !». In Table I, the last row corresponds to a pressure boundary con­

dition with gravity. There, the value of the length scale i t is computed based on the value computed 

due to gravity and with die boundary pressure p v set to zero. 

In some cases we will also need to define a dimensionless boundary pressure by 

Jo = Pa'Kfpit (33) 

Recall, that since any capillary head drop -pc across the leading edge of the fracture front can be 

included into p 0 by adding p c , this dimensionless pressure includes the fracture capillary pressure. 

Asymptotic Behavior 

Penetration Depth 

In a report currently under review, we derive the asymptotic solutions to (10) and (11) for the 

cases where the n 0 (r) or p 0 boundary conditions are constant in time. The solutions for flow periods I 

and n bold for matrix diffusivities that are general functions of saturation while in the mathematical 

analysis for flow period 111 it was necessary to assume that the diffusivity is approximately constant in 

saturation. In developing a solution for the pressure boundary case, (11), it was convenient for the pur­

poses of exposition to split the problem into (1) the case without gravity (i.e., fi = 0) and (2) the case 

with gravity. At early time for the latter case, one must also distinguish whether p 0 is zero or non-zero 

relative to ambient head. 

In Table II we have summarized the leading terms of the asymptotic expansion for the dimension­

less fracture penetration depth A for the different types of boundary conditions and for the different 

Bow regimes. The dimensionless variables used here are described in the previous section. Higher 

order terms can also be derived. Note that all expansions are powers of the dimensionless time t. 
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When the value of the upper limit of a lime period is less than the lower, that particular flow period is 

no( present (e.g., if T, j < 1, then flow period B is not observed, and if T , 2 < x a l , then Ilia is not). 

The expansions in column 2 of Table II for the pressure boundary condition case with no gravity 

(i.e., p = 0) is a special case of the general expansion given in column 4 and corresponds to the case 

of a horizontal fracture. Note that during flow period II, for this particular case, the fracture penetration 

goes as the one-quarter power in time, which is slower than the one-half power movement of the matrix 

saturation front in the direction longitudinal to the fracture. Hence, the matrix front will eventually 

overtake the fracture front unless flow period III, with its faster one-half power behavior begins 

sufficiently early. In his theoretical study of aggregated soils Philip [1968] derived asymptotic solutions 

equivalent to those in flow periods I and in (column 2 of Table II) but he did not consider the inter­

mediate flow period n, probably because this period is not of significant duration for aggregated soils 

which, because of their relatively small granules, have corresponding time constants with tb comparable 

to i . . 

The fixed pressure boundary condition with p0 = 0 given in column 3 of Table II pertains to the 

case when the pressure head at the fracture entrance is held at ambient. It is a special case of the solu­

tion given in column 4, which includes the general boundary condition in pressure. We have included 

column 3 in the table because of its simplicity relative to the more general case in column 4. The 

situation is complicated in column 4 by the interplay between gravity and the pressure boundary condi­

tion. For each of the flow periods in column 4 there are two possible expansions, one pertaining to the 

time period during which the boundary pressure dominates fracture flow and one for when gravity and 

matrix imbibition dominates. Each flow period has a dimensionless transition time x*, which we will 

define shortly. The applicable expansion is determined by the relationship of x* to the upper and lower 

limits of the respective flow period. If t* is less than the lower limit, the second expansion applies 

over the entire interval. If x* is greater than the upper limit, the first expansion is applicable, and if x° 

is between the limits, the first expansion applies for x < x* and the second for x > t*. The value of 

x* depends on the flow period and is a function of the dimensionless boundary pressure head />o,and the 

matrix-fracture storativity ratio X. From Table II we see that it is equal to p0,p0

2, po 2 ' T i2 . P<A for 
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flow periods I, II, Ilia, and nib, respectively. With one exception, the value of t* for a given p(l and X 

can be shown to lie in only one of the flow periods, and, hence, the transition occurs only once. The 

exception is if T, 2 < po < VvTcTl; in which case, the transition time is in both flow periods Ilia and 

nib. Thus, in period Ilia there can be a transition from boundary dominated to matric capillary-gravity, 

and, then, reversion to boundary dominated at the beginning of period Inb, and, finally, a return to 

matric capillary-gravity dominated flow. 

As we mentioned earlier, if t., « ii2 « '.2. then flow period Ilia is replaced by Illa.l and 

nia.2. The expansions for these two subperiods are given in Table III. 

The special case, T S | = T«2 and %, = T>2, is of interest because of its relative mathematical 

simplicity, and since it includes the equal fracture spacing case with the matrix blocks having identical 

properties. The expressions in column four of Table II can be reduced to this case by first removing 

flow period Ilia, changing flow period nib to in, and making the following substitutions: 

X, - X2 = XI2, T, j = x„2 = t , . Table IV shows the dimensionless fracture penetration for this 

case with gravity and non-zero boundary pressure conditition. As will be shown later, the dimension-

less transition time x* from boundary lo matric capillary-gravity dominated flew lies in only one of the 

time periods, and, dierefore, the transition occurs only once. 

Effects of Fracture Capillarity 

We saw earlier that the boundary condition p 0 can include the capillary pressure across the lead­

ing meniscus of die fracture front by adding the magnitude of the capillary head pc to the entrance 

pressure. Let us consider the case where the fracture entrance is kept at ambient pressure so that p0 is 

equal to pc. For a vertical fracture system (p = 0), we ask the question: When is fracture capillarity the 

dominant driving force ? Let us assume that the fractures have equal spacing and identical matrix pro­

perties so that the results of Table IV hold. From that table the transition time x from boundary dom­

inated (in this case fracture capillary pressure) to matric capillary-gravily dominated flow is seen to 

occur in flow period I if pc ILh « 1, flow period n if 1 << pc ILb « X, and flow period III if 
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X « pcILb. Here, we used the fact that t . = X2 and p0 = p0ILb. Note that these three condi­

tions on pc are mutually exclusive so thai the transition occurs at a single point in time and no rever­

sion to fracture capillary dominated flow occurs once it starts. It is also interesting to note that the 

fracture penetration A at time t = x* can be shown to be approximately equal to pc. Thus, the transi­

tion out of the fracture capillarity regime occurs when the hydrostatic head of the liquid in the fracture 

becomes comparable to the fracture capillary head. 

Asymptotic Fracture Penetration Profiles 

h is an interesting fact that the first-order terms of all of the asymptotic expansions are powers in 

time A ~ t* and, when plotted on a log-log scale, will form a series of straight line segments with a 

corresponding slops m for each flow period. In Figures 7 to 11 we have drawn the generic "penetration 

profiles" fcr the three types of boundary conditions that were considered. The line segments arc labeled 

with their respective slopes. For simplicity, we have restricted ourselves in these diagrams to the case 

when the fracture spacings are equal. Note that in figures 7 and 8 there is a single family of dimen-

skmless curves parameterized with respect to X. For figures 9 to 11 the curves are characterized by X 

and po- Recall that the parameter p0 is the ratio of the drop in pressure head across the slug (due to 

boundary head at the entrance and the capillary head at the meniscus) to (JI t (also recall that 

Lb = Kt pi 4 ) . Figure 9 corresponds to the case when p0 < 1. The first line segment on the left 

corresponds to the flow period during which the pressure drop is small relative to the hydrostatic head. 

For the case in Figure 10 when 1 < p0 < X, the pressure drop is larger than the imbibition-free head 

so that the the boundary pressure dominated regime extends past T = 1 into the time period II, 

1 < x < t„. Figure 11 corresponds to the case where X < p 0 and is boundary pressure dominated 

until t* = p 0 X in period III, T, < t. 

These plots have the potential to become useful calculational tools, and are particularly helpful 

in visualizing the dependence of the asymptotic solutions on the various parameters. 
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Parameter Variation 

We now consider the effect of parameter variation on the fracture penetration for a particular 

geometry. Consider a vertical fracture with die boundary pressure at the entrance kept at ambient con­

ditions. Such a boundary condition would occur if a shallow pond was present at the entrance. 

Because of the vertical orientation, gravity is present The initial saturation and material properties of 

the two matrix blocks bounding the fracture are assumed to be identical. The expressions for the frac­

ture penetration h are listed in Table V and are dimensional in order to illustrate the dependence on the 

various system parameters. It is important to note that this table assumes that we stay within a single 

flow period as die parameters are varied. In some cases, because of large parameter changes, we may 

switch into a different flow period. Although these expressions are based on first-order asymptotic 

approximations, comparisons with numerical calculations indicate that they adequately represent the 

proper parameter sensitivities. We have assumed that the diffusivity a can be approximated as a con­

stant In order to separate the dependence of the diffusivity on the porosity and conductivity, we write 

The constant x is defined here to be some averaged value of k,dyldS where*, is the relative conduc­

tivity and y is the capillary head as a function of saturation. The time constants can be written as 

In Table V we see that A depends linearly on Kf for all times. We also see that the h versus Km 

dependence is significant only during flow period II. However, from (34) and (35), we see that the time 

constants which define the ranges in the flow periods, r, and lb vary as Km"K During flow period I the 

fracture penetration h is insensitive to the matrix porosity $ while it varies as tf"1 during period n. 

During period III the sensitivity to 4 becomes even more pronounced, with h varying as i))"1. Regard­

ing the initial matrix saturation $ , if the dependence of x on S,- is weak over some range of values, we 
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have that ft varies as (5„ -S,)""1 during flow periods II and III while it is insensitive to 5, during flow 

period I. As expected, only during flow period III is ft sensitive to the fracture spacing a. However, 

the time constant t, is very sensitive to a, varying as a2. 

In order to elucidate the dependence of ft on the fracture half aperture b, let us suppose that the 

saturated fracture hydraulic conductivity Kj varies as b1 in accordance with some form of the widely 

used "cubic law" as given by Pouiselle flow theory (see, for example, Huyacom and Pinder [1983]). 

Thus, the fracture penetration A varies as b2 during flow period I and as 6 J during period II. During 

period III the fracture penetration A varies a s 6 2 i f aW5m-St) «b and as fr3 if a<KS„-S () » 6. It 

is, perhaps, not surprising that A is most strongly affected by the fracture aperture b. Note also that the 

time constant r> is also strongly dependent on fracture aperture, varying as b\ Note that the 

"hydraulic" aperture used in the cubic law need not be equal to the parameter b which is the 

"volumetric" aperture. In practice, one may take the hydraulic aperture to be smaller than the 

volumetric aperture. 

Comparison with Numerical Solutions 

In this section we give a brief overview of the comparison of the asymptotic solutions with those 

obtained numerically. More details will be forthcoming in reports still under formal review. 

The asymptotic expansions were compared with two separate types of numerical solutions. The 

first approach involved comparison of the asymptotic solutions with numerical solutions of the integro-

differential equation (11). The first-order asymptotic solutions along with the numerical solution are 

given in Figure 12 for d\e case of gravity-driven flow widt the fracture entrance kept at ambient pres­

sure. Note that the asymptotic solutions adequately capture the behavior of the solution and except for 

late times and appear to be conservative upper bounds to the fracture penetration by the liquid from 

The intcgro-dilferential equation upon which the analytical theory is based was derived under the 

assumption that the flow in the matrix is orthogonal to the fracture. In actual fracture systems this 

assumption may not be exactly satisfied. Moreover, under certain conditions, the flow in the fracture 

may be belter represented as that in a porous medium rather than a slug, as we have assumed. It is 
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desirable then to compare our solutions with a two-dimensional simulation not containing these a priori 

assumptions. Therefore, die second numerical approach used in our comparison involves the two-

dimensional simulation of fracture/matrix flow using a modified version of the TOUGH integrated finite 

difference code [Preuss and Wang, 1985; Nitao, 1988]. 

The properties of the fracture used in the two-dimensional simulation are the same as those used 

by Buschsck and Nitao [1988a]. The model represents one out of an infinite set of fractures that are 

vertical and uniformly spaced. By symmetry, we need only model half the fracture and the matrix that 

it on one tide; a lateral no-flow boundary is placed down (he center of the fracture, and another down 

die center of the matrix block lo represent the symmetry ' ne with the neighboring fracture. The. frac­

ture is represented by a vertical column of grid blocks with porous media properties considered to be 

characteristic of variably saturated flow in a fracture with a nominal aperture ol 100 \m. The absolute 

permeability of die fracture is based on the "cubic law" for flow between parallel plates as given by 

Pouiselle flow theory. The fracture relative permeability curve is estimated by Wang and Narasimhan 

[1985] based on a simple conceptual model of fracture flow. The suction pressure versus saturation 

curve for the fracture was extrapolated, using the Young-Laplace equation [Adamson, 1982], from a 

curve which Wang and Narasimhan [198S] estimated on the basis of a simple conceptual model of frac­

ture Sow. One run was made with this suction curve while another run was made with suction set 

identically to zero in die fracture to see the effect of fracture capillary. In order to facilitate the 

interference between neighboring fractures to occur early in time a small fracture half-spacing of a * 

2.26 cm is assumed. 

As in Buscheck and Nitao [1988a], die matrix properties, including the characteristic curves 

which are non-linear, are based on measurements made by Peters aid outers [1984] on sample G4-6 (a 

sample of Topopah Spring densely welded tuff cored at a depth of 1158 feet within die repository inter­

val at Yucca Mountain). The matrix porosity and initial saturation are taken to be 20 and 65 percent, 

respectively. 

Table VI is a summary of the fracture and matrix properties used in the two-dimensional model. 

The first six properties apply to die two-dimensional model. The last two, a and (*, are parameters 
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required in the comparison with the asymptotic approximation. Recall that tt is the approximate time 

at which the cumulative matrix imbibition flux is comparable to the specific fracture volume. For early 

times ( « / , . it can be shown that the first-order asymptotic approximation of the instantaneous 

specific volumetric imbibition flux, q, Is given in terms of lb and b by 

Integrating (36) with respect lo time, we get the cumulative imbibition flux 

ft.- 26V/7/7 (37) 

By setting t = tb in (37), we find that 

0 . - 2 6 (38) 

One practical way of determining t» is as follows. From a one-dimensional matrix imbibition 

model (where the upstream boundary condition is maintained at 100 percent saturation), the imbibition 

penetration depth of the saturation front into the matrix, dM is plotted against time. The front position 

can be taken to be the point where the saturation is equal to the average of die maximum and initial 

saturations. The time that corresponds to d^, = 2&/(4>(S„-Sj)) is equal to tb. The effective matrix 

diffusivity, a, is obtained by applying this value of /j, to equation (IS). We applied this procedure to 

our example using the plot of log d^ versus log I found in Buscheck and Nitao [1988a]. Another 

method would be to plot the cumulative imbibition flux. The time at which the flux equals 

2 6 / ( W . - S i ) ) i s r k . 

In comparing the plots of log h versus log x obtained from the first-order asymptotic approxima­

tion and the two-dimensional numerical model (Figure 13), we find the two methods agreeing reason­

ably well. The figure shows two numerical solutions, one with fracture capillary, the other without. 

The asymptotic solutions given for these two cases are different only for early times t « pa when 

fracture capillarity dominates. Since the two-dimensional numerical model treats the fracture flow 

characteristics as a porous medium with a saturation-dependent capillary suction curve, it is not 
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immediately obvious which value of capillary pressure drop pc to use in the expression for the non-

dimensional pressure drop term pa (= pc IK/tb) needed in the asymptotic expansions. In column 4 of 

Table II we see that the lowest-order contribution of the suction during flow period II is a constant term 

2p 0 / ( j t -2) so lhat the difference between a simulation with and without fracture capillarity will enable 

us to solve for this quantity. This fact was confirmed in our simulations. The value we obtained from 

this procedure, po - 0.3, w * s used in obtaining the asymptotic expansion for i < pa shown in Figure 

13. 

During flow period II (T 4 < t < t 4 ) , the asymptotic approximations and the two-dimensional 

model both result in a slope of m « 0.5. The small reduction in fracture penetration predicted by the 

two-dimensional model relative to the asymptotic solution is primarily the result of relative permeability 

effects in the fracture. It appears on the logarithmic plot as an almost constant downward shift in the 

two-dimensional model curve. Recall that while the asymptotic solution assumes slug flow in the frac­

ture, the two-dimensional model utilizes a relative permeability curve for fracture flow. The 26 percent 

reduction in fracture penetration corresponds to a fracture relative permeability, k, = 0.74. Based on 

the fracture relative permeability curve, K = 0.74 corresponds to a fracture saturation of 95 percent 

Accordingly, Buscheck and Nitao [1989b] found that for much of the wetted interval during flow period 

II, the fracture saturation is close to 95 percent During flow period III (t„ < i) , the two methods agree 

very well, with bom methods yielding a slope of m = 1. Because for much of wetted interval of the 

matrix is fully saturated, capillary equilibrium between the matrix and fracture (in the two-dimensional 

model) results in the fracture being fully saturated (corresponding to k, = 1). Consequently, saturation 

conditions in the fracture (in the two-dimensional model) result in slug flow and there is no reduction in 

fracture penetration (relative to the asymptotic solution) as was observed during flow period II. 

This numerical simulation with its two-dimensional description of matrix flow with gravity and 

saturation dependent diffusivity function serves to confirm the validity of our basic assumptions under­

lying our simplified governing equations. Percentage deviation between numerical and approximate 

analytical solutions is greatest in the transition between flow period 1 and II and is about 50 percent 

Although using higher-order terms may decrease this figure somewhat, we recall from the previous 
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section that the problem is highly sensitive to various parameters such as the fracture aperture that are 

difficult to measure and are found to have high variability in the field. Thus, we feel that for most 

applications it is inappropriate and of dubious value to seel more complex solutions of higher accuracy. 

Conclusions 

We have analyzed the various physical processes involved during one-dimensional fracture-

dominated flow conditions in an unsaturated porous medium. Such a hydrological condition 

corresponds most likely to relatively high fluxes such as under ponding conditions at the fracture 

entrance. For various constant boundary conditions, approximate solutions to the movement of the 

liquid fracture front were derived. They show that the flow undergoes three major time periods charac­

terized by physically interpretable time constants. The first time constant tb is the time required for (he 

matrix to imbibe a volume equal to that of the fracture storativity. The second is the time '„ for the 

imbibition front to reach the no-flow symmetry line of the neighboring fracture. The first time period 

occurs when t << ib, the second when lb « i « t„ and the third for l„ « t. Transition 

periods occur between these main periods. The flow in the matrix can be divided into zones 

corresponding to the three major flow periods. In many cases it can be shown that, for sufficiently 

large time, the front in the matrix lags behind the fracture front at a fixed distance. Asymptotic solu­

tions were given which show that the approximate quantitative behavior of the liquid from can be con­

veniently represented by line segments when plotted on a log-log scale. The solutions can be used to 

understand the dependence on various physical parameters. 

Comparison between the asymptotic and numerical solutions confirm the validity of the approach. 

Our solutions have the potential for estimating the front movement in many practical applications. In 

addition they present a better quantitative and qualitative understanding of (he flow in a fracture in 

unsaturated porous media. These solutions may be helpful in the verification of numerical models of 

fracture Bow. 
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Further work needs to be done to determine the range of validity of the approximate analytical 

solutions. We also need to find what new effects are present in two-dimensional fracture flow, and to 

extend the analytical model, where possible, to fracture networks. 

Notation 
a one-half the distance between adjacent parallel fractures 
b one-half the fracture aperture width 
4 M matrix imbibition penetration depth 
h penetration of the liquid front into the fracture measured from the fracture entrance 
Kj fracture-saturated hydraulic conductivity 
Km matrix-saturated hydraulic conductivity 
kr matrix relative permeability function 
Lt length that the fracture front would travel during time lb 

if there were no matrix imbibition 
p pressure in units of liquid head along the fracture 
p , capillary pressure head at liquid fracture front meniscus 
p a pressure in units of liquid bead at the fracture entrance 
PD dimensionaless pressure head at the fracture entrance 
q specific volumetric flux into the matrix 
qi specific imbibition volumetric flux function into the matrix 
Qm cumulative specific volumetric flux into (be matrix 
x dummy variable of integration 
S liquid saturation in the matrix 
St initial liquid saturation in the matrix 
S„ maximum liquid saturation in the matrix limited by air entrainmenl 
i time 
l« fracture interference time constant, approximate time for matrix front to reach 

the no-flow boundary 
it fracture slorativity time constant, approximate time for cumulative matrix imbibition 

flux to become comparable to the volume in the fracture 
u liquid velocity along the fracture 
«o liquid velocity at the fracture entrance 
x coordinate distance normal to the fracture 
y coordinate distance longitudinal to the fracture 
Z flow region length 

P 
X 

the cosine of the angle of inclination of the fracture from the vertical 
k,dyldS 
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X fracture storauvity ratio, the initial unsaturated pore volume of the matrix 
relative to the volume of the fracture 

il function B(y) denoting the time at which the fracture front 

first reaches point y 
$ matrix porosity 

IJI matrix capillary pressure head 

o matrix diffusivity, or effective matrix diffusivity 

T dimensionless time equal to I / tk 

1 . i. lib 
Tn » « / & , * = 1,2 
x' dimensionless transition time from boundary dominated flow to 

flow dominated by gravity and matrix capillary forces 
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Figure 1. Idealized Fracture 
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Figure 3. Geometry of Parallel Fracture System 
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Figure 7. Asymptotic Profiles for Flux Boundary Condition (Log-Log) 

Figure t. Asymptotic Profiles for Pressure Boundary Condition, No Gravity (Log-Log) 
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Table I. Fracture Penetration Length Scale L b 

Boundary Condition U 

flux b.c. "o't 

pressure b.c 
no gravity 

V2K>p0'» 

pressure b,c 
with gravity 

K,Vit 

Tabk n . Leading Term of Expansion for Dimensionlesc Penetration h 

1 2 3 

flow period 
(range of high 

accuracy) 

I 
( T « l ) 

flux 

«<>'» 

pressure b.c 
no gravity 

pressure b.c 
Po = 0. gravity 

A 

v>^7* 
k = 

*>P»» 

pressure b.c 
Po * 0, gravity 

K,ph 

t" 2 'V^o. * « P o 
2 
— t , T»p0 > 0 

T, pg =0 

(1 « T < < T 4 l ) 

A^l/i ^ 2\i — tm. t « Co 

^W^"*' 
ma 

( * . l « T « T . j ) 

^ ( T ^ T ) 1 0 VI (x«x)" fet)" (t»2t)'". t"=<P0 ' T t 2 

( T » ^ + - g | ^ - , T » ^ / T t 2 

inb 
(T.2<<T) 

T*T •ir V& T" 2, • K < p „ ( l + « 

1 + jL 
[ i + A t i n ] , t » p 0 ( l + X ) 



Table m . Leading Term of Expansion for Dimensionless Penetration h (special subcase) 

1 2 3 4 

flow period 
(range of high 

accuracy) 

flux 

k 
uah 

pressure b.c 
no gravity 

A 

pressure b.c 
pa = 0, gravity 

h 

pressure b.c 
Po * 0, gravily 

h 

flow period 
(range of high 

accuracy) 

flux 

k 
uah •<2ptK/h 

pressure b.c 
pa = 0, gravity 

h 

pressure b.c 
Po * 0, gravily 

h 

Ilia.! 

( t , , <<T<<T»2> 

T7ir T 
1 T w 7nrT TTITIT + Ilia.! 

( t , , <<T<<T»2> 

T7ir T 7nrT TTITIT + 

I" 2 

ii> 1 

HIa.2 

( T k 2 < < T « t . 2 ) 

same as for 
period Ilia 
of Table II 

same as for 
period Ilia 
of Table H 

same as for 
period Ilia 
of Table II 

same as for 
period Ilia 
of Table II 

Table IV. Leading Term of Expansion for Dimensionless Penetration h 

whenT f l j = T a j a n d T d l = Zbl 

flow period 
(range of high 

accuracy) 

pressure b.c. 
Pa * 0, gravity 

I E - - * -
" *7fc 

I 
( t « l > 

T " 2 - ^ . T«Pa 

y t . * » P o 
T, po = 0 

II 

(1 < < T < < T ^ , 

2-y/^t", x « p „ 2 

.„ (2p 0 - l ) . i 
Z + (n-2) • T > > " ° 

in 

( t . « i ) y-L-lT + At" 2 ] . T»po(l+X) 
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Table V. Dependence of Fracture Penetration on Parameters (p 0 = 0, equal matrix properties); 

Flow Period 1. 
0 < < < \ 

h ~ K,i 

Flow Period n. h _ *>* . / ~ r - M Flow Period n. 
* s.-s, V»*. z ' 

Flow Period HI. ft - Kf : Flow Period HI. \ + a${Sm -S,)lb ' 

<*VVm - i l l 

h - K, t if a$(Sm -S,) << 6 

Table VI. Fracture and Matrix Properties Used in the Two-Dimensional Fracture/Malrix Model 

b 45|un 
a 2.26 cm 
*r 8.17x10-' mis 
K. 1.86x10-" mis 
* 20 percent 
s, 65 percent 
sm 

100 percent 
It 41.9 s 
a 3.10x10"* m*ls 


