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Executive Summary

Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on
various microstructure idealizations to achieve a large range of volume fractions with high
mesh quality. This study investigates how different microstructure idealizations and
constraints affect the apparent homogenized elastic constants in the virgin state of the
material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the
fully damaged state of the material in which all GMBs are destroyed. In the latter state, the
material behaves as an elastomeric foam. Four microstructure idealizations are considered
relating to how GMBs are packed into a representative volume element (RVE): (1) no
boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary
penetration, and (4) boundary penetration and GMB-GMB overlap. First order
computational homogenization with kinematically uniform displacement boundary
conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear
moduli for the four microstructure idealizations in the intact and fully broken GMB material
states. It was found that boundary penetration has a significant effect on the shear modulus
for microstructures with intact GMBs, but that neither boundary penetration nor GMB
overlap have a significant effect on homogenized properties for microstructures with fully
broken GMBs. The primary conclusion of the study is that future investigations into
Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or
use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation
of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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Introduction

Sylgard/GMB syntactic foam is used as an electronics potting material. In electronics
potting, a material is used to encapsulate the electrical components and protect them from
shock and vibration. The material studied here consists of a silicone matrix with glass
microballoons (GMBs) dispersed throughout. The GMBs allow the material to behave as a
crushable foam that can dissipate energy during shock and vibration. A study into this
material is important because it is extensively used in the Nuclear Weapons stockpile for
electronics potting and in component mechanical shock mitigation. Questions have also
arisen from customers as to whether they can omit the GMBs from the potting material[1].

Preliminary studies suggest that the incorporation of GMBs significantly affect mechanical
and thermal properties; however, some of these studies were based on an idealized
microstructure (needed to facilitate meshing) and structural boundary conditions applied to
the microstructure[1,2]. Studies are therefore needed to investigate the effects of these
assumptions. This study will investigate only the idealized microstructures (not the structural
boundary conditions). The primary objective of this study is to determine the effect of four
microstructure idealizations on the homogenized elastic constants of Sylgard/GMB syntactic
foam. The four idealizations are detailed below:

No Boundary Penetration or GMB-GMB Overlap (None)
GMB-GMB Overlap

Boundary Penetration

Boundary Penetration & GMB-GMB Overlap

B W N =

None Overlap Penetration Penetration &
Overlap

Figure 1. The four microstructure idealizations considered in RVEs in this work

We are interested in boundary penetration and GMB-GMB overlap because other meshing
constraints make it impossible to reach volume fractions greater than 20% unless we allow
penetration or overlap.

Methodology

The four microstructure idealizations were analyzed at various GMB volume fractions and
two material states—in-tact vs. fully broken GMBs. Previous convergence studies showed
that RVEs with 40 GMBs showed adequate size convergence such that apparent
homogenized elastic constants did not change by more than 5% when compared with larger
RVEs (60, 80, 100 GMBs). In this report, all RVEs used 40 GMBs. The simulation matrix is
presented in Table 1. Each case was repeated for five microstructure realizations to account
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for variability inherent in the microstructure. As seen from the simulation matrix, there is a
range of volume fractions that we cannot reach without allowing for boundary penetration.
The outputs of each simulation are homogenized bulk modulus and shear modulus.

Table 1. Simulation matrix used for the intact and broken GMB cases

Volume Fraction (%)
5 10 15 20 25 30

None
Overlap
Penetration
Penetration & Overlap

Microstructure
Constraints

Simulation completed
Unable to mesh

The microstructure model generation process used to obtain each RVE is detailed below:

1. The first step in the process is to generate a list of 40 GMB radii that obey the normal
distribution detailed in Figure 2 (¢ = 30 microns, 0 = 5 microns). A lower bound of 20
microns was imposed to omit the incorporation of statistically improbable GMBs that
would greatly diminish the mesh quality. The discrete distribution of radii was then
compared against the analytic normal distribution with a Kolmogorov-Smirnov test and
required to pass at 95% confidence [3].
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Figure 2. Distribution used to generate a list of GMB radii

2. The second step is to randomly place the GMBs within the volume element. This random
placement is subject to constraints required for a high-quality mesh. Specifically, GMBs
were required to be separated by a minimum spacing parameter § between each other and
between GMBs and the RVE boundary (for the non-penetrating idealizations). For this
analysis § = 4 microns was used.

3. An automatic meshing tool called Sculpt [4,5] was then used to generate an eight-node
uniform gradient hex mesh for the Sylgard matrix. The smallest element size is roughly
the size of a 4 micron cube. This element size has been determined to produce mesh-
converged results for the homogenized elastic constants through previous studies that
considered various element size/ § ratios. Four node Belytschko-Tsay shell elements
were used for the GMBs with 1 micron thickness [6]. The GMB to matrix interface was
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modeled as a perfectly bonded contact. Shell elements were used for the GMBs to better
represent bending deformation and to reduce the model size. Because the radius to
thickness ratio of the GMBs is approximately 30, the shell element idealization is
justified. For the fully broken GMB cases, the shell elements were removed from the
model.

4. Finally, a linear viscoelastic material model was assigned to the Sylgard matrix [7] and a
linear elastic model was assigned to the borosilicate glass GMBs. Borosilicate glass
properties of Young’s modulus = 61.0 GPa and Shear Modulus = 25.6 GPa were used
[8.9].

Figure 3 illustrates the homogenization process used in this study. We are ultimately
interested in the effective elastic constants of a macroscale material (left). As the
Sylgard/GMB material satisfies necessary scale separation requirements for homogenization
[10] (also see Fig. 3), we calculate these from a RVE of the material (middle) where the
microscale constituents are explicitly resolved. We perform finite element analysis on the
RVE (right) under a suite of boundary value problems (BVP) to calculate the homogenized

apparent macroscale elastic constants of the material.
Homogenization
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Figure 3. Conceptual overview of computational first order homogenization showing the 3 characteristic length
scales required to be substantially different from one another [10]. This scale separation is easily satisfied for the
Sylgard/GMB material such that first order homogenization is a viable approach to interrogate the apparent
moduli of the macroscale composite.

The boundary conditions imposed on the RVE can take one of several forms: kinematically
uniform (KUBCs), statically uniform (SUBCs), or periodic (PBCs). We chose to use
KUBCs because current tools available in the Sierra SM finite element analysis suite do not
allow us to use periodic boundary conditions and because there is a theoretical issue with
homogenizing the void space within the GMBs using SUBCs. Specifically, one cannot
volume average the strain within the GMB void space since the strain field is not defined
there.

Figure 4 shows how the homogenized elastic constants converge for the three types of BCs.
It has been shown that the apparent elastic properties obtained using SUBC give a lower
bound on the effective properties, apparent elastic properties obtained using KUBC give an
upper bound, and periodic BC produce apparent properties that fall between these two
bounds [10,11,12]. The discrepancy between properties obtained from each type of BC is
reduced with increasing volume element size, and for a volume sufficiently large to be
considered an RVE all types of BC will yield the effective material properties within some
tolerance [12]. As stated previously, past studies showed that a RVE with 40 GMBs (studied
with 20% volume fraction) shows adequate size convergence within 5% of properties
obtained with larger RVEs.
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Figure 4. Homogenized apparent property convergence with respect to different types of BCs applied to the

RVE/[13].

The homogenization procedure is detailed below. All finite element analysis is conducted
using the Sierra SM code suite [6].

1.

Apply six independent average strains, (€), to the RVE. This is accomplished by
conducting six Boundary Value Problems (BVPs): three independent uniaxial strain
BVPs and three independent pure shear BVPs. In each case, we apply a strain with
magnitude of 1x10° to ensure the small strain assumptions inherent in the
homogenization theory we use are met. The displacement BC {u} required to achive the
uniform strain state in each BVP are determined from the expression

{u} = [E]{x},
where components of {x} are the nodal coordinates. The matrix [E] describes the desired
macroscale strain state for the BVP. These displacement conditions are imposed at every
node on all the boundaries of the volume element.

Volume-average the stress response for each BVP by post-processing the finite element
solution obtained in (1) as shown below, where 6(x) is the local stress at every point
within the RVE, Q is the domain of the RVE, and (o) is the volume averaged stress over
the entire RVE domain.

1
(o) = af o(x)dQ
Q

Obtain the apparent stiffness tensor, (C), from the applied average strain, (€), and the
volume-averaged stress response, (g), via Hooke’s law.

(o) = (C)(e)

The analysis is designed such that each BVP recovers a separate column of the stiffness
tensor. The calculated average stiffness tensor may be slightly anisotropic, but such
deviations from known macroscale isotropy in the material are generally much smaller than
the recovered values for the isotropic constants [12].
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4. Reduce the slightly anisotropic stiffness tensor into an isotropic stiffness tensor by
eliminating components that are nearly zero and averaging the other components to
obtain a matrix in the standard form seen below, where K is the bulk modulus and u is
the shear modulus. The bulk and shear moduli are then easily calculated from the
standard relations for isotropic materials.

A B B 0 0 O
B A B 0 0 O P
B B A O0O0O =K+gu
(C) = 00 0 u 0 0,where ;
B=K—-—-u
0 0 0 0 pu O 3
0 0 0 0 0 pl
5. Ensemble average the bulk and shear moduli from the 5 independent microstructure
realizations.
Results

Response with In-tact GMBs

The intact GMB bulk modulus results are detailed in Figure 5. The results are grouped by
GMB volume fraction and each constraint case is represented by a unique color (as specified
in the legend). The error bars in the plot represent the standard of deviation of five
microstructure realizations. The key finding that we can extract from Figure 5 is that overlap
and penetration independently decrease bulk modulus. This is believed to be caused by the
fact that intersecting and partial GMBs are structurally less stiff than perfectly spherical
GMBs. The bulk modulus reduction effect is more apparent at higher volume fractions
because there is a greater probability of overlap and penetration. GMB-GMB overlap
degrades the apparent bulk modulus more than the boundary penetration.

5 10 15 20

GMB Volume Fraction (%)

1000
H None
M Overlap
B Penetration
M Penetration & Overlap
975

Bulk Modulus (MPa)

Figure 5. Intact GMB apparent bulk modulus results averaged over 5 independent realizations for all cases
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The intact GMB shear modulus results are detailed in Figure 6. The shear modulus plot is
laid out in a similar way as the bulk modulus plot. The key finding from Figure 6 is that the
boundary penetration greatly increases the apparent shear modulus.
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B Penetration
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Figure 6. Intact GMB shear modulus results averaged over 5 independent realizations for all cases
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This result emerges because the KUBCs excessively deform the GMBs along the boundary.
This can be seen clearly in Figure 7 where the GMBs along the boundary are significantly
more stressed than those within the matrix. The penetration effect on the shear modulus
dominates the bulk modulus effect; the largest variation in bulk modulus presented in Figure
5 is roughly 5% while the largest variation in shear modulus presented in Figure 6 is roughly
500%. This difference is sensible as the bulk behaviors of the matrix phase and in-tact GMB
shells is of a similar magnitude while the GMBs are considerably stiffer in shear compared
with the Sylgard matrix.
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Figure 7. GMB von Mises stress contour plotted on the deformed configuration
for the intact GMB case with 20% volume fraction and penetration. The red circles on the boundary show shell
elements with artificially high von-Mises stress invariants compared with anything inside the RVE. This result
demonstrates an acute boundary effect that stiffens the homogenized stress response and apparent shear
modulus.
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It should be noted that this effect is specifically related to allowing the stiff inclusion phase
(in this material, GMBs) to intersect the RVE boundary while imposing KUBCs. Use of
periodic BCs would mitigate this effect by imposing that GMBs intersecting a boundary
move in conjunction with their periodic counterpart on the opposite boundary, thus imposing
motion that is effectively similar to the GMBs in the RVE interior.

Additionally, we note that the case where both GMB-GMB overlap and boundary penetration
are not allowed (“None”) produces bulk and shear moduli that are closest to the values and
trends predicted previously with analytic composite theory [1,2]. Thus we consider this case
to be the most representative of true material behavior. The above results show that when
using KUBCs for computational homogenization, the microstructure idealizations of GMB-
GMB overlap and boundary penetration produce substantial deviations from this response.

Response with Broken GMBs

The fully broken GMB bulk and shear moduli results are detailed in Figure 8 and Figure 9,
respectively. The plots are laid out in the same manner as for the intact GMB cases. The key
finding from these plots is that neither boundary penetration nor overlap have a significant
effect on the bulk or shear moduli for the fully broken GMB case. This is believed to be due
to the fact that there is no hard phase present.
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Figure 8. Fully broken GMB bulk modulus results
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Figure 9. Fully broken GMB shear modulus results

Conclusions

The primary conclusions of the study are listed below:

e Periodic BCs should be implemented for future studies to eliminate the effect of
boundary penetration. An alternate approach is to restrict the synthetic
microstructures to follow the “None” case (not allowing either GMB-GMB overlaps
or boundary penetration), but this is only feasible for GMB volume fractions less than
~20%. Many materials currently in applications of interest have GMB volume
fractions much larger than this, so periodic BCs would be necessary to accurately
study materials with these higher volume fractions. The implementation of periodic
BCs necessitates the improvement of existing tools and may include collaboration
with the development team.

e The fully broken GMB cases are relatively insensitive to any of the four
microstructure idealizations studied.
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