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Abstract:

Leaf quantity (i.e. canopy leaf area index, LAI), quality (i.e. per-area photosynthetic capacity),
and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However,
these components of tropical leaf phenology are poorly represented in most terrestrial biosphere
models (TBMs). Here, we explored alternative options for the representation of leaf phenology
effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of
CO; assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper
and lower) photosynthesis model to evaluate different modeling approaches and assessed three
components of phenological variations (i.e. leaf quantity, quality, and within-canopy variation in
leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality
derived from ground based measurements within an Amazonian evergreen forest. Modeled
photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf
quality and its vertical distribution within the canopy, with markedly more sensitivity to upper
canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the
entire year, implying that seasonal changes in LAI have little impact on total canopy light
absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than
light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-
fraction leaf, two-layer canopy model which accounted for all three phenological components
was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal
variation in eddy covariance derived CO, assimilation. This work identifies a parsimonious
approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that

utilize the FvCB model of CO; assimilation, and highlights the importance of incorporating more
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49  realistic phenological mechanisms in models that seek to improve the projection of future carbon

50 dynamics in tropical evergreen forests.
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1. Introduction

Tropical evergreen forests play a dominant role in the global carbon, water, and energy
cycles (Pan ef al., 2011; Fu ef al., 2013; Stark et al., 2016). They account for around one-third of
annual terrestrial photosynthesis (Beer ef al., 2010) and a quarter of the global aboveground
carbon stock (Saatchi ef al., 2011; Aragao et al., 2014). Therefore, even small errors in model
representation of the carbon pools or fluxes in this biome will result in marked uncertainty in the
projection of future climate (Friedlingstein ef al., 2006, 2014; Cox ef al., 2013; Huntingford et
al., 2013). A key area of uncertainty is our understanding and model representation of tropical
evergreen forest seasonality, including seasonal leaf display as well as physiological function
(Saleska et al., 2003; Restrepo-Coupe et al., 2013; Guan ef al., 2015). Most Terrestrial Biosphere
Models (TBMs) have a mechanistic representation of CO, assimilation that is capable of
simulating the response of photosynthesis to global change (e.g. increasing atmospheric CO;
concentration). However, most of these models lack mechanistic representation of tropical forest
photosynthetic seasonality (de Weirdt ef al., 2012, Kim ef al., 2012; Restrepo-Coupe et al.,
2017). To improve our ability to project the impact of global change on the terrestrial carbon
cycle, we need to integrate model representation of the mechanisms that regulate tropical forest
photosynthetic seasonality with an approach that is capable of mechanistically representing the
response of photosynthesis to global change.

Within tropical evergreen forests, leaf production from field based studies (e.g. Wright &
van Schaik, 1994; Girardin et al, 2016), and canopy photosynthesis (i.e. gross primary
productivity, GPP) derived from eddy flux towers (Saleska ef al., 2003; Hutyra et al., 2007;
Restrepo-Coupe ef al., 2013) and satellites (Lee ef al., 2013; Guan ef al., 2015) consistently

show seasonal variability. Importantly, this seasonal variation is not directly related to extrinsic
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environmental variability (Bradley ef al., 2011; Guan et al., 2015; Wu et al., 2016a, 2017).
Instead, increasing evidence has shown that tropical leaf phenology is a primary mechanism
regulating seasonal carbon assimilation (Doughty & Goulden, 2008; Kim ef al., 2012; Restrepo-
Coupe et al., 2013; Wu et al., 2016a, 2017). Here phenology refers to periodic cycles of leaf
production, development and abscission within a forest canopy, which produces seasonal
variability in leaf quantity (i.e. canopy leaf area index, LAI) and leaf quality (i.e. per-area leaf
photosynthetic capacity), and includes the differential leaf turnover associated with the changes
in leaf longevity within vertical canopy profiles. Despite a modest seasonality in leaf quantity
(e.g. Doughty & Goulden, 2008; Brando ef al., 2010; Lopes et al., 2016; Saleska et al., 2016),
many tropical evergreen forests exhibit substantial leaf turnover during the dry season when
monthly precipitation is lower than the evaporative demand (Borchert, 1994; Wright & van
Schaik, 1994; Wu et al., 2016a; Lopes ef al., 2016). As a result, these forests have a strong
seasonality in leaf quality because recently mature leaves have a higher photosynthetic capacity
than the old leaves they replace (Kitajima ef al., 1997a; Doughty & Goulden, 2008; Wu ef al.,
2016a). Importantly, this seasonal variation in leaf quality was recently shown to be one of the
most important phenological mechanisms responsible for photosynthetic seasonality in tropical
evergreen forests (Wu ef al., 2016a, 2017). However, this advance (e.g. Wu et al., 2016a, 2017)
was based on a light use efficiency model that can capture tropical forest photosynthetic
seasonality but lacks the physiological and structural complexity that is necessary to project the
response to the changing climate, particularly rising CO, concentration.

In addition to leaf quality and quantity, the within canopy variation in leaf longevity has
been well documented in the tropics (e.g. Lowman, 1992; Miyaji ef al., 1997; Reich ef al., 2004).

This large within-canopy variation in leaf phenological characteristics, with understory leaves
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living two or more times longer than canopy leaves, may be attributed either to temporal niche
partitioning between canopy trees and the understory (Messier ef al., 1998; Augspurger ef al.,
2005; Richardson & O’Keefe, 2009), or to an adaptive response to large within-canopy variation
in environmental variables (Wright ef al., 2006; Stark ef al., 2012, 2015; Niinemets et al., 2015).
As such, within-canopy variation in light and associated biotic properties have also been
suggested as an important control on processes such as leaf development, energy balance, water
use, and photosynthesis (Ellsworth & Reich, 1993; Baldocchi & Amthor, 2001; Stark et al.,
2012; Morton et al., 2016).

Despite the importance of leaf phenology in regulating photosynthetic seasonality in the
tropics, the combined effects of these three phenological components on tropical forest
photosynthetic seasonality are either absent or have not been adequately represented in current
TBMs (e.g. Restrepo-Coupe et al., 2017). The majority of TBMs (e.g. Fisher e al., 2015; Rogers
et al., 2017) utilize the Farquhar, von Caemmerer and Berry (1980) (FvCB) leaf scale
mechanistic model of CO; assimilation to simulate carbon uptake together with a leaf to canopy
scaling relationship, which often represents the whole forest canopy as sunlit and shade leaf
fractions (e.g. dePury & Farquhar, 1997, Drewry et al., 2010). Several modeling attempts have
been proposed to improve the representation of photosynthetic seasonality. For example, some
TBMs have included seasonal variation in LAI driven by water availability (Baker et al., 2008;
Powell et al., 2013; Sitch et al., 2015; Xu ef al., 2016; Restrepo-Coupe et al., 2017);, however,
the representation of seasonal change in leaf quality and their vertical distribution has rarely been
explored before. As a result, these models generally fail to adequately reproduce the
photosynthetic seasonality of tropical evergreen forests, simulating a dry-season photosynthetic

decrease as a consequence of increasing dry-season water stress, with eddy covariance derived

Page 6 of 51



Page 7 of 51

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

GPP showing the opposite trend (Saleska et al., 2003; Baker ef al., 2008; de Goncalves ef al.,
2013; Restrepo-Coupe ef al., 2017). Several other attempts have shown some improvement in the
modeling performance of TBM-based photosynthetic seasonality by tuning model parameters to
allow for seasonal variation in leaf photosynthetic capacity (e.g. de Weirdt ef al., 2012; Kim et
al., 2012). However, the assumptions made in these models, such as the application of the leaf
economic spectrum to within-canopy relationships, require systematic evaluation (Messier ef al.,
2016) or compared to field based metrics of both leaf phenology (e.g. leaf production and
senescence) and GPP. The model-observation mismatch and the incomplete mechanistic
evaluation highlight need for improving current TBMs which should include a mechanistic
representation of leaf phenology effects on tropical evergreen forest photosynthesis that includes
all three phenological components of leaf quantity, quality, and differential leaf turnover within a
forest canopy.

The goal of this study was to develop an approach that would provide the sufficient
phenological representation of the three components to capture the photosynthetic seasonality of
a tropical evergreen forest in a mechanistic model framework that included the FvCB
representation of CO; assimilation and a multilayer canopy. We accomplished this by evaluating
the performance of model structures that incorporated the three different phenological
mechanisms. We asked three questions: (1) Is seasonality of tropical forest photosynthesis
reproduced by a model including leaf phenology? (2) What is the relative contribution of these
three phenological components in controlling the seasonality of photosynthesis? (3) Finally, how
do these three components regulate tropical forest photosynthetic seasonality?

Our approach was to modify existing canopy photosynthesis models to enable coupling

with prescribed, field-based phenology of the leaf quantity and quality allowing us to simulate
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canopy photosynthetic seasonality. In addition, we enabled representation of sun and shade leaf
fractions and a two-layer canopy (upper and lower) to allow us to explore within-canopy
phenological variation. As such, our model framework allowed us to assess how the three
components of leaf phenology independently and jointly regulated canopy-scale photosynthetic
seasonality. In order to evaluate the model performance and avoid other confounding factors in
our analysis, such as seasonal and inter-annual environmental variation (Baldocchi & Amthor,
2001; Richardson et al., 2007, Wu et al., 2017), our target variable was GPP,.;, which is eddy
covariance derived or modeled GPP under a reference environment. This enabled us to focus on
the underlying physiological mechanisms and isolate the biological controls on GPP from
seasonality in environmental variables (Wu e al., 2017). The successful attribution of biological
controls on tropical forest photosynthesis will not only improve modeling of photosynthesis in

the tropics but also help assess the correct functional response to environmental variability.

2. Materials and Methods
2.1 Model evaluation

To evaluate model performance we used data from the Tapajos k67 eddy covariance (EC)
tower site (with Fluxnet2015 ID of “BR-Sal”; http://fluxnet.fluxdata.org/data/download-data/).
The k67 EC tower site (54°58°W, 2°51°S) is located in the Tapajos National Forest, near
Santarém, Para, Brazil. Tapajés is an evergreen tropical forest on a well-drained clay-soil plateau
(Rice ef al., 2004), with a mean upper canopy height of ~40 m (Hutyra ef al., 2007). Mean
annual precipitation is ~2000 mm year' with a 5-month dry season (monthly precipitation <
monthly evapotranspiration) from approximately mid-July to mid-December (Hutyra et al.,

2007; Restrepo-Coupe ef al., 2013).
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The k67 EC site included seven-full-year flux and meteorological measurements (years
2002-2005, and 2009-2011; Wu et al., 2016a, 2017). Detailed descriptions ofthe instrumentation
and data pre-processing protocol for the k67 EC data can be found in Hutyra et a/ (2007) and
Restrepo-Coupe et al (2013). No gap-filling data was used in this study. Hourly EC
measurements of net ecosystem exchange (NEE) was partitioned into ecosystem respiration
(Reco) and GPP following standard approaches (Hutyra et al, 2007; Restrepo-Coupe et al,
2013): Reco, which was averaged within monthly bins from valid nighttime hourly NEE during
well-mixed periods (u* criterion: >0.22 m/s), was also used as an estimate of average monthly
daytime respiration, and GPP was estimated as -(NEE - Reco). We did not use a temperature
function to extrapolate nighttime NEE to daytime Reco, as is done at many higher latitude sites
(e g. Reichstein et al, 2005), because nighttime temperature range within most months at k67 is
too small to constrain such a function (Hutyra et aZ, 2007). Also because Reco is composited by
the two components: (1) the heterotrophic component (which is expected to have higher values
in the daytime, due to higher temperature in the daytime than at night; Reichstein et a/, 2005),
and (2) the autotrophic component, especially the part associated with foliar respiration (which is
expected to have lower values in the daytime, due to light-inhibition of mitochondrial respiration
in leaves; Heskel et al, 2013; Wehr et al, 2016), therefore, without the specific information
about the relative contribution of these two components, we judged that our approach (using
unmodified nighttime values as estimates for daytime Reco) was conservative - especially for a
study of seasonality, for which potential errors in absolute value are less important.

In this study we used the reference GPP (GPPref) as our target variable and benchmark for
model evaluation. GPPref represents the CO? assimilation of the canopy in the absence of

environmental fluctuations and thus provides the capability to evaluate the phenological impact
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189 on canopy-scale photosynthesis independent of other sources of variation. EC-derived GPPref
190  was calculated as the monthly average of all seven-year EC-derived GPP measurements under a
191  reference environmental condition, following Wu et al (2016a, 2017). The EC-derived GPPref
192 here scales linearly with incident light-use-efficiency under the reference environment as used in
193 Wu et al (2016a, 2017) (where it was called canopy-scale photosynthetic capacity). The
194 reference environment for GPPref was taken as narrow bins of each climatic driver: canopy-top
195 photosynthetically active radiation (PARo)=1320 + 200 pmol m'V], diffuse light fraction=0.4 +
196 0.1, vapor pressure deficit (VPD)=0.87 + 0.20 kPa, air-temperature (Tair)=28 + | °C, and solar
197 zenith angle (SZA)=30 + 5°, and 8.1% of all hourly EC-derived GPP measurements were
198 selected under the reference environment (~20 measurements per month per year; almost equally
199  distributed across months). We used the seven-year mean annual cycle of monthly EC-derived
200  GPPrefas a benchmark for model validation. The same reference environment is also used for our
201  model simulation of canopy-scale GPPref (see "Model Framework” below).

202

203 2.2 Prescribed phenology

204 Three components of leaf phenology were examined in this study, including the quantity,
205  the quality, and within-canopy variation in leafturnover rates, all of which are tightly linked with
206  seasonal variability in leaf production, development and abscission within a tropical forest
207 canopy (Wu et al, 2016a,b; Lopes et al, 2016). Our prescribed, field-based leaf phenology data
208  at the k67 site are the same as those used in Wu et al (2016a).

209 (1) Field data of canopy LAI, litterfall LAI, and new leaf LAI. The mean annual cycle of

210  monthly canopy LAI (range: 5.35-6.15 ml m"2) was derived from tower-mounted camera image

211 timeseries (Tetracam Agricultural Digital Camera, Tetracam, Inc., Gaomesville, FL; January
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2010 to December 2011) using a camera-based tree inventory approach. For details about this

approach, please refer to supplementary materials section 5 and Figs. S5 and S8 in Wu et al

(2016a). The mean annual cycle of monthly litterfall LAI (range: 0.23-0.66 ml m"2) was derived
by converting field observations of mass-based foliage litterfall (Mg biomass monthl hal; bi-

weekly measurements from 2001 to 2005; Brando et al., 2010) of the same site into area-based

litterfall LAI (mlm") per month), with the formula of Litterfall LAI = mass-based

LitterfallxSLA, applying a mean specific leafarea (SLA) of 0.816 ha Mg"l biomass (Malhado et

al, 2009). The mean annual cycle of monthly new leaf LAI production (in m) m"] per month)
was estimated by using the formula of dLALdt + litterfall LAI, where dLAI/dt is the average
canopy LAI change in the two months centered around LAI of each month (Wu et a/, 2016a).

(2) Field based leaf gas exchange measurements. Leaf level photosynthetic capacity,
represented by the apparent maximum carboxylation capacity of Rubisco standardized to a
reference temperature of 25°C (I cmaxes) (Bemacchi et al, 2013), was derived from standard leaf
gas exchange measurements of photosynthetic CO? response curves (4-C,) for top-of-canopy
sunlit leaves of five canopy trees at the k67 site (species and structural information for leaf
samples are shown in Table SI; data are available from
http://datadrvad.Org/resource/doi: 10.5061/dryad.8tb47; see supplementary materials in Wu ef a/,
2016a for more details on these data). Briefly, the trees we targeted for 4-Ci curves represent the
most abundant species that account for -24% of'the local basal area (Pyle et a/, 2008). Prior to
gas exchange measurements, branches (of - 1m length) were assessed using arborist climbing
methods, cut, then promptly but gently lowered to the ground with ropes, and re-cut under water
at least once within 15 minutes of the initial harvest. Gas exchange was typically measured for

leaves of each age category present on the branch. These sunlit leaves (n=27) were initially
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235  classified into three age classes (Young, Mature, and Old) based on visual assessment of color,
236 size, rigidity, and bud scars (when present) (Chavana-Bryant et a/, 2016), and then confirmed by
237 in-situ leaftagging and associated photographic imaging of'leaves at known ages (from 10 days
238 old up to | year old; see Wu et al, 2016b for more details). These leaf age classes roughly
239 correspond to a young age class (leaves of 1-2 months old), a mature age class (leaves of 3-5
240  months), and an old age class (leaves of >6 months). Very young leaves (recent leaf burst; e g.
241 Fig. SI in Wu et al, 2016b) were too small, delicate, or logistically challenging for
242 photosynthesis measurements, therefore field derived leaf 1 cmaxzs of the young age class (which
243 corresponds to the young leaves of late stage, big enough for Licor measurements) was then
244 divided by two to provide an average across the distribution of the entire young age class. The
245  five-species mean (+ standard deviation) Icmax2s for these top-of-canopy sunlit leaves of young,
246  mature, and old age classes were 6.8 (+1.4), 36.5 (£10.7), and 23.4 (£5.1) pmol CO? m"? s'l,
247 respectively.

248 (3) The mean seasonality of leaf age demographics and leaf quality. The quality
249  component of leafphenology refers to per-area leafphotosynthetic capacity. At the canopy scale,
250  leaf quality can be approximated by the age-dependency of leaf photosynthetic capacity (shown
251  above) and the associated leaf age fraction (or leaf age-demography). Leaf age demographics
252 were approximated by a three-LAl-age-class demography model (Wu et al, 2016a), with the
253 inputs from mean annual cycles of monthly canopy LAI and new leaf LAI (calculated above).
254 The model-derived three LAl-age demographics include the LAI for a young age class (leaves of
255  1-2 months old, LAIj), a mature age class (leaves of 3-5 months, LAIM), and an old age class
256  (leaves of>6 months, LAlo, see Fig. 1), with the two optimized model parameters from Wu et al

257 (2016a) which define leaf residence time at young and mature age classes respectively. The



Page 13 of 51

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

reason we use these optimized parameters here is because these parameters were consistent with
our field observations of leafaging processes (Chavana-Bryant et a/, 2016; Wu et al, 2016b), as
well as the roughly similar time interval of mature and old leaf age classes for field-based leaf
gas exchange measurements.

In sum, the leaf quality was calculated by using a three-age-class leaf demography-

ontogeny model as below (Wu et al, 2016a).

Lquality = “cmax] x + emavM x N A/ + “emax,0 x LAI)
LAIly +LAIM +1AI

@)
Where Lquality is leaf quality, which represents age composition weighted leaf photosynthetic

capacity, and FemaxY, i cmax.M, and [ cmax.o represent leaf level Femax at young, mature and old age

classes respectively.

2.3 Model framework
2.3.1 TBM-type canopy photosynthesis models (DF1997 and ML)

Sun-shade, big leaf, canopy photosynthesis models, which represent the whole forest
canopy as a big leaf ofthe two fractions (sun versus shade), are commonly used in many TBMs,
e g. Community Land Model version 4.5 (CLM4.5; Oleson et al/, 2013) and the Joint UK Land
Environmental Simulator version 4.5 (JULES4.5; Best et a/, 2011; Clark et al, 2011; Harper et
al, 2016). Canopy photosynthesis is usually represented in these formulations by the two
processes: a leaf scale mechanistic photosynthesis model and a leaf-canopy scaling relationship,
which represents the whole forest canopy as sunlit and shade fractions using approaches such as
dePury and Farquhar (1997; DF1997) or a multi-layer approach (Drewry et al, 2010; ML).

These processes are described in detail as below.
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(1) A leaf scale mechanistic photosynthesis model. Here we couple a mechanistic FvCB
based photosynthesis model with a stomatal conductance scheme (Medlyn ef al., 2011; Lin et al.,
2015) to simulate the leaf level photosynthesis response to the variability in both biotic (e.g.
Vemax2s and Jmaxes) and climatic (e.g. PAR, temperature and VPD) factors (details in Table S2).
The Medlyn-type stomatal conductance model was selected because leaves/stomata respond to
VPD rather than relative humidity. Therefore, the Medlyn-type stomatal conductance model will
likely capture projected increases in VPD better than other alternatives (Rogers ef al., 2017). The
only prescribed parameter of this stomatal conductance model is the stomatal slope, and here we
used the value of 3.77 based on a recent meta-data analysis for tropical rainforest trees (Lin et
al., 2015). Additionally, we refer to Lloyd & Farquhar (2008) and Bernacchi ef al (2013) to
describe the temperature effect on leaf photosynthesis. As such, this photosynthesis model has
the capability to simulate the leaf level photosynthetic response to the current environmental
variability, but also to the changing environmental drivers associated with global change (i.e.
rising CO; concentration, temperature and VPD).

(2) The leaf to canopy scaling relationship represented by the DF1997 model. DF1997
simulates canopy photosynthesis as the sum of the photosynthetic rate contributed by the sunlit
fraction (GPPy,,) and the shade fraction (GPP.q4.) of a forest canopy respectively (eqn. 2).

GPP=GPP, +GPP, . 2)

The DF1997 model is operated by firstly determining the LAL Vemax and absorbed PAR
for each canopy fraction, and then applying leaf level photosynthesis model (as above) to
simulate the photosynthesis to each canopy fraction. Canopy total LAI (L.A/) is partitioned into
the sunlit fraction (L.A/u,) and the shade fraction (LAZjqq.), following Beer’s law (eqns. 3-4;

dePury & Farquhar, 1997; Chen ef al., 1999; Ryu et al., 2011):
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kxQx LAl
I—exp(————————f)
AL, = cos(SZA) 3)
k/cos(SZA)
LA] shade = LAI or LAI Sun (4)

where k(=0.5) is the extinction coefficient, and Q is the clumping index; Q=0.66 for tropical
evergreen forest (He ef al., 2012) was used in this study.

DF1997 also partitions the canopy integrated Vomax (Vemaxiot) 1nto the sunlit fraction
(Vemaxsun) and the shade fraction (Vomaxshade) (s€€ Table S3). Here we assumed that Vo, declines
exponentially within the canopy following Lloyd ef a/ (2010) (see eqns. 5-6 below; Fig. 2).

v

cmax,i

=V

cmax,0

x exp(—k, x LAI,) (5

k. =exp(0.00963x ¥/

cmax,0

-2.43) 6)
where V.. ois the Vemax of leaves at the top of the canopy; and k, describes the exponential

decline of Vomax against the given accumulated LAI from the top of the canopy (LAl). By
tracking PAR at the top of the canopy (PARy), which is the sum of direct beam (PAR; ) and
diffuse radiation (PAR;¢) in the visible spectrum (i.e. 400-700 nm), DF1997 calculates its
canopy absorbance by the sunlit fraction (PAR,,) and by the shade fraction (PAR.4.), using
Beer’s law and Seller’s (1987) two-stream approximation for canopy radiative transfer (dePury
& Farquhar, 1997; Ryu et al., 2011, Tables S4-S5).

To facilitate the simulation of photosynthetic seasonality with DF1997, we prescribed
top-of-canopy Vemaxo (in eqn. 5), i.e. Lquality (eqn. 1), while assuming that vertical changes in
Vemax Within a forest canopy follow a fixed exponential decline rate (as described by eqns. 5-6).
The complete equation set for the DF1997 model is provided in Tables S2-S5.

(3) The leaf-canopy scaling relationship represented by the multi-layer model. ML is an

alternative way to scale leaf-level function and simulate canopy photosynthesis. ML explicitly
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325 resolves direct and diffuse radiation for sunlit and shade canopy fractions at each canopy layer
326 using Seller’s (1987) two-stream approximation for canopy radiative transfer. The number of
327  canopy layers is prescribed as N, where initial results from a model sensitivity showed that GPP
328 was insensitive to N = 15 (Fig. S1). We thus used N=15 for the following simulations. In
329  addition, we calculated the LAI of the sunlit (LAL,,;) and the shaded (LA/yq.;) fractions for
330 each canopy layer i (i=1, 2,..., N), and their corresponding per-area radiation absorbed by the
331  sunlit fraction (PARy,,,) and the shade fraction (PAR.4.;). Last, ML calculated the V. of each
332 canopy layer (V,,.x;) also using eqns. 5-6.

333 The leaf level photosynthesis model was then used to calculate the photosynthesis rate of
334  each canopy fraction for given layer 7: per-area photosynthesis rate for the sunlit (GPPg,areq:)
335  and the shade (GPPpude.ares). The cumulative canopy photosynthesis rate was thus equal to the

336  sum of area weighted photosynthesis rate of each layer:

337 GPP = i(GPPm,m,i X LAL, ,+GPPy e areas * LALje;) (7
=1

338 To facilitate the simulation of photosynthetic seasonality with ML, we also prescribed

339  top-of-canopy Vemaxo (in eqn. 5), 1.e. Lquality (eqn. 1).

340 It is important to note that the models (DF1997 and ML) presented here can simulate leaf

341 phenology effects of both quantity and quality components; however, none of these models
342  accounted for within-canopy phenological variation, and assumed a constant leaf turnover
343  (flushing and abscission) rate throughout the canopy. Additionally, in our model simulation, we
344  assume that leaf temperature and VPD for the sunlit and shade canopy fractions are the same as
345  the reference environment.

346
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2.3.2 Modified TBM representation of canopy photosynthesis to allow for within-canopy
phenological variation (a two-fraction leaf, two-layer canopy model)

Many field-based studies have indicated that leaf longevity could vary greatly depending
on the growth environments (e.g. Wright et al., 2006; Wu et al., 2016b), with understory leaves
displaying longer leaf longevity than upper canopy leaves (Lowman, 1992; Miyaji ef al., 1997,
Reich ef al., 2004). This suggests that the leaf turnover rate in the upper canopy should be faster
than that in the lower canopy and understory. However, the within-canopy phenological variation
has not been explicitly accounted for until now. To accomplish this, we modified the ML. model
framework (via addition of a second, lower canopy layer) to allow explicit representation of
within-canopy variation in leaf turnover, in addition to the sun andshade fractions that already
allow for within-canopy physiological variation.

In this new model, we divided a forest canopy into the two layers: (1) the upper canopy
layer with the cumulative LAI from 0 (top-of-canopy) to 2.5 m* m™, and (2) the lower canopy
layer including the remainder of the canopy. Both layers are assumed to have the same
phenological pattern and timing, but the amount of leaf flush and litterfall that drives phenology
is differentially allocated between them. This allocation between layers is specified by ftop, the
fraction of observed leaf turnover (including leaf drop and flush) across the whole forest canopy
attributed to leaves in the upper canopy layer, e.g. when ftop = 0.7, 70% of observed forest
canopy leaf turnover (and associated amplitude of the LAI and Lquality variables) is attributed to
the upper canopy layer and 30% to the lower canopy layer; under this case, the ratio of leaf
turnover rate between upper canopy leaves and lower canopy leaves can be calculated as
(ftop/LAIL up)/((1-ftop)/LAI low)=2.8, where ftop=0.7, LAI up (or the average LAI for the

upper canopy layer)=2.5 m* m?, and LAL low (or the average LAI for lower canopy layer)=3 m*
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m™. Since leaf longevity is an inverse of leaf turnover rate, therefore the leaf longevity for the
lower canopy leaves is around 2.8 times longer than the upper canopy leaves when ftop=0.7. Our
differentiation of these two canopy layers (upper and lower) at the LAI cutoff of 2.5 m* m™ for
the upper canopy is slightly arbitrary, but sensitivity analysis showed that our modeling results
were largely insensitive to the LAI cutoff and exhibited only minor variation when LAI

increased from 2 to 3 m? m (Fig. S2).

2.4 Model experiments

We used our proposed two-fraction leaf, two-layer canopy model as the main modeling
testbed for assessing the effect of different phenological components on modeled canopy
photosynthetic seasonality. This is because previous studies (e.g. dePury and Farquhar, 1997,
Bonan ef al., 2012) demonstrate that DF1997 and ML can simulate almost identical GPP fluxes
at the canopy scale (which is also confirmed by our Fig. S3), and also because our proposed two-
fraction leaf, two-layer canopy model here is identical to ML when no within-canopy
phenological variation is considered but also enables to examine the effect of within-canopy
phenological variation by varying ftop. First, we ran the model parameterized by all three
components, aiming to explore how well the model with all phenological mechanisms can
capture EC-derived GPPyr seasonality. The model inputs for these phenological components
include: (1) the leaf quantity based on field measurements of the mean annual cycle of monthly
LAL (2) the leaf quality based on field-derived seasonality of Lquality (as calculated by eqn. 1,
weighted by field-measured age dependency of Vemaxes and field-derived leaf age demographics),
and (3) the within-canopy phenological variation, by assuming leaves of lower canopy layer had

2.8 times longer leaf longevity compared with that of upper canopy layer (or ftop=0.7), which is
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consistent with the literature (e.g. Lowman, 1992; Miyaji ef al., 1997; Reich et al., 2004). We
also ran the models under two additional scenarios, aiming to explore the relative role of each
phenological component on modeled photosynthetic seasonality, with that (1) the model is
parameterized with the observed annual cycle of leaf quantity alone, while assuming neither
within-canopy variation in leaf longevity nor seasonal variation in leaf quality, and that (2) the
model is parameterized with the observed phenological cycles of leaf quantity and quality, while
assuming a constant leaf turnover rate throughout the canopy. To further elucidate the
mechanisms by which each phenological component regulates canopy photosynthetic
seasonality, we also evaluated the GPP;.r sensitivity of the sunlit canopy fraction and the shade
canopy fraction to the seasonal variation in leaf phenology (quantity and quality) and within-
canopy variation in leaf longevity (by varying ftop from 0 to 1.0 with the increment of 0.1)

respectively.

3. Results
3.1 Modeled GPP,.r seasonality parameterized by differential leaf phenological mechanisms

We used the two-fraction leaf, two-layer canopy model to explore how including model
representation of the three different phenological components affected the ability of the models
to simulate the canopy scale photosynthetic seasonality, as compared with EC-derived GPPyr.
Our results show that the model parameterized by all three phenological components (i.e.
quantity, quality and within-canopy phenological variation) was best able to capture EC-derived
photosynthetic seasonality (Fig. 3 and Table 1).

The seven-year mean annual cycle of EC-derived GPPy at the Tapajos k67 site showed

an initial decline in the late wet season, and then an increase in the dry season (Fig. 3). The



Page 20 of 51

416  models parameterized by leaf quantity alone or parameterized by both leaf quantity and quality
417  displayed good agreement with the timing of EC-derived GPPs seasonality, but missed the
418  depth or relative magnitude of GPP,.r seasonality: leaf quantity phenology alone explained only
419  19% of EC-derived GPP.s seasonality for DF1997 (Table 1) and 17% for ML and the two-
420 fraction leaf, two-layer canopy model (Table 1 and Fig. 3a); the modeled GPPy.r with both leaf
421  quantity and quality (but no within-canopy phenological variation) explained ~80% of EC-
422  derived GPP, seasonality for DF1997, ML, and the two-fraction leaf, two-layer canopy model
423  (Table 1 and Fig. 3b). The modeled GPP;.s using the two-fraction leaf, two-layer canopy model
424  with all three phenological components displayed the strongest agreement with the seasonal
425  variability of EC-derived GPPys in both timing and relative magnitude (R*=0.90; Table 1 and
426  Fig. 3c).

427

428 3.2 Differential photosynthetic sensitivity to seasonal variation in leaf phenology between the
429  sunlit canopy fraction and the shade canopy fraction

430 To better understand the mechanisms that underlie canopy-scale photosynthetic
431  seasonality, we examined the photosynthetic sensitivity of the sunlit canopy fraction and the
432  shade canopy fraction to seasonal variation in leaf phenology (quantity and quality). We
433  theorized that the seasonal variation in GPPyis driven by changes in both canopy absorbed PAR
434  (affecting RuBP regeneration limited photosynthesis in the FvCB model) and canopy integrated
435 Ve (affecting Rubisco limited photosynthesis in the FvCB model). Fig. 4 summarizes our
436  model diagnosis of these two pathways and their respective influence on modeled GPPi.r

437  seasonality.
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First we examined the seasonal dynamics of canopy absorbed PAR under reference
environmental conditions (absolute value in Fig. 4a and relative value in Fig. S4). Our
simulations showed that the PAR absorbed by the sunlit canopy fraction (PAR,.,), the shade
canopy fraction (PARnqq4:), and the entire canopy (PARu, +PARsna4.) all showed consistently low
seasonal variability (<6%,; Fig. 4a and Fig. S4), despite modest seasonal variability in leaf
quantity (~12%; Fig. 4b). This is likely because tropical evergreen forests display consistently
high leaf quantity over the annual cycle (e.g. LAI range: 5.35-6.15 m* m™ at the k67 site), and as
such annual FAPAR is typically at or near saturation.

We then investigated the seasonal dynamics of canopy V..., which is the integrated sum
of leaf level V... weighted by the total LAI attributed to the sunlit fraction and the shade
fraction respectively (see eqns 3-5). Focusing first on the sunlit fraction, Fig. 4b highlights that
the LA, is generally stable (~1.5 m? m™) through the annual cycle, despite the observed modest
seasonality in total canopy leaf quantity (LAl = LAlunt+ LAlga4.). As a consequence, the
observed higher seasonal variability (~20%) in Vemax sun (Fig. 4c) is primarily driven by leaf
quality, which is associated with seasonal variation in leaf age demographics (Fig. 1 and eqn. 1).
In addition, our results indicated that the higher seasonal variability (~25%) in Vimax, shade (Fig.
4c) 1s a consequence of seasonal variability in both L.A/.q4. (Fig. 4b) and leaf age demographics
(Fig. 1 and eqn. 1).

Finally, we assessed the seasonal variability in GPPy.r as the joint response to the above
two dynamics: canopy absorbed PAR and V... We used the FvCB model to calculate the GPPrr
of both fractions (sun vs. shade). Sensitivity analysis of the FvCB model (Fig. S5) showed that
the canopy integrated absorbed PAR and canopy integrated Vomax jointly regulated GPPyr, with

canopy integrated Vomax dominating the GPPrr response under high light condition (i.e.
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PAR>800 pmol m™ s™) while canopy integrated absorbed PAR dominated GPP,f response under
low light condition (i.e. PAR<400 pmol m™s™). Given that the sunlit fraction could consistently
capture sufficient PAR to photosaturate photosynthesis (~860 umol m™ s™'; Fig. 4a) over the
annual cycle, the seasonal variability in GPPrsr «uin closely tracked the seasonality of Vemaxsun
(Figs. 4c,d), which is mostly determined by the phenology of leaf quality (Figs. 4b,c). On the
other hand, since the shade fraction typically receives sub-saturating light (<300 umol m?s™;
Fig. 4a) over the annual cycle, GPPrs shade 1s primarily limited by the capacity for RuBP
regeneration (Fig. S5). As a result, modeled GPPrer, shade Seasonality is small (~7%; Fig. S6),
which is comparable with the relative seasonal change in PAR .4 (~6%; Fig. S4), but far less
than the relative seasonality in Vomax shade (25%; Fig. 4¢). The canopy total GPPy.r thus showed an
intermediate seasonal variation, with the relative magnitude of annual change falling in between

that of the two fractions (absolute value in Fig. 4d and relative value in Fig. S6).

3.3 Model sensitivity of canopy photosynthesis to within-canopy phenological variations

Finally, we used the two-fraction leaf, two-layer canopy model to explore the extent to
which within-canopy phenological variations could affect modeled photosynthetic seasonality.
We show that although the timing of the modeled GPP;.s seasonality follows observed LAI and
LAlI-age-demography (Fig. 1) and was independent of within-canopy phenological variation (i.e.
ftop), the relative magnitude of the modeled GPP;.r seasonality is highly sensitive to ftop (Fig.
5a). As ftop increases (more leaf turnover is partitioned to the upper canopy), the relative
magnitude of modeled GPP.r seasonality increases (Fig. 5a). Meanwhile, the correlation

between modeled and EC-derived GPPy.r seasonality also increases with ftop and reaches near

saturation when ftop >0.7 (R?*=0.90; Fig. 5b). The underlying reason is associated with the
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differential photosynthetic sensitivity to leaf quality allocated to the two canopy layers (upper vs.
lower): as shown in Fig. 4, only the photosynthetic rate of the sunlit fraction (mostly occupied in
the upper canopy layer) is predominantly Rubisco limited and therefore, the photosynthetic rate

of the upper canopy layer shows high sensitivity to leaf quality.

4. Discussion

Accurate model representation of the effects of leaf phenology on ecosystem
photosynthesis is a critical need for TBMs in general (Richardson ef al., 2012) and is essential,
necessary first step for capturing the timing and magnitude of seasonal variation in tropical forest
carbon fluxes (Restrepo-Coupe ef al., 2013, 2017, Fu et al., 2013; Christoffersen et al., 2014;
Wu et al., 2016a). Here we developed a parsimonious approach to effectively couple the effects
of leaf phenology (i.e. quantity, quality and within-canopy variation) to the FvCB model for
simulating canopy-level photosynthetic seasonality. Our approach could be parameterized and
adopted within TBMs where it would enable improved representation and projection of the
response of tropical evergreen forest photosynthesis to global change.

Our results demonstrated that the proposed model (two-fraction leaf, two-layer canopy)
could effectively simulate EC-derived photosynthetic seasonality, only if the quality component
of leaf phenology was incorporated (Fig. 3 and Table 1). This is also consistent with previous
field-based remote sensing studies (Doughty & Goulden, 2008; Brando ef al., 2010; Lopes et al.,
2016; Saleska et al., 2016), which highlight that variation in photosynthetic efficiency and the
spectral reflectance properties of leaves (Roberts ef al., 1998; Chavana-Bryant ef al., 2016; Wu
et al., 2016a,b) may significantly contribute to explaining the satellite-detected dry season

“green-up” in tropical evergreen forests. In addition, our finding supports previous work which
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showed that model representation of photosynthetic seasonality could be improved by tuning
model parameters to allow for seasonal variation in photosynthetic capacity, i.e. leaf quality
(Kim ef al., 2012; de Weirt ef al., 2012).

Although the models with different leaf phenological components were all able to
simulate the seasonal photosynthetic trend, the relative magnitude of modeled GPP;.r seasonality
varied strongly across the models (Fig. 3). The approach of incorporating all phenological
components (i.e. quantity, quality, and within-canopy wvariation) displayed the strongest
agreement with local EC-derived GPP;r, while the approaches incorporating only part of the
three phenological components (e.g. leaf quantity alone in Fig. 3a and leaf quantity and quality
alone in Fig. 3b) only explained around half or less of the observed relative annual change
magnitude. These differences in model performance can be attributed to differential
photosynthetic sensitivity of the sunlit canopy fraction and the shade canopy fraction to seasonal
variation in leaf quantity, quality and within-canopy phenological variation, explained as below:

Leaf quantity. Our results show that there is only a weak effect of the quantity component
of leat phenology on GPP.s (Table 1). This is because tropical evergreen forests consistently
have high leaf quantity throughout the annual cycle (Myneni ef al., 1997; Doughty & Goulden,
2008; Brando et al., 2010; Morton et al., 2014; Bi et al., 2015; Lopes et al., 2016; Wu et al.,
2016a), and therefore the observed small seasonal changes in leaf quantity had little impact on
FAPAR seasonality (Fig. 4a and Fig. S4), and thus had little impact on GPP,r seasonality.

Leaf quality. Our results show that the phenology of leaf quality is one of the dominant
drivers of canopy photosynthetic seasonality in tropical evergreen forests (Table 1), confirming
recent work (Wu ef al., 2016a). Using an FvCB-type canopy photosynthesis model (i.e. two-

fraction leaf, two-layer canopy model), we demonstrate that both light absorption and canopy
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integrated Vomax regulate canopy-scale photosynthesis rate (Fig. S5). However, only the upper,
sunlit canopy fraction with sufficient light availability and absorption are limited by Rubsico (i.e.
are light saturated) and show sensitivity to seasonal variation in leaf quality (i.e. Vomax, Figs. 4,
S5 and S6). In contrast, the shaded canopy fraction is predominantly limited by light and not by
photosynthetic capacity, and consequently, increasing photosynthetic capacity in the shaded
canopy fraction has little to no impact on the modeled GPPy. In other words, our results confirm
the differential photosynthetic sensitivity to leaf quality between the sunlit and shade canopy
fractions. Our finding is thus not consistent with the assumption made by Doughty & Goulden
(2008), who assumed constant photosynthetic rates of the sunlit and shade canopy fractions with
a single scalar to account for seasonal variation in leaf quality, and may explain why the
approach of Doughty & Goulden (2008) overestimates the leaf quality effect for the shade
canopy fraction.

Within-canopy phenological variation. Differential photosynthetic sensitivity of the sunlit
and shade canopy fractions to leaf quality (as shown in Fig. 4) suggests that the return on
investment for a new leaf is far greater if that leaf is flushed in the upper, sunlit canopy than in
the shade, which was subsequently confirmed by our model sensitivity analysis of ftop (Fig. 5).
This model sensitivity analysis demonstrated that by allowing for differential leaf turnover rates
within the canopy, especially when attributing the majority of leaf turnover to the upper canopy,
our model (two-fraction leaf, two-layer canopy) could markedly improve the model
representation of photosynthetic seasonality (Figs. 3, 5). Importantly, our prescribed higher leaf
turnover rate in the upper canopy (i.e. ftop=0.7) is also consistent with field-based studies in the
tropics which show that the longevity of upper canopy leaves is markedly shorter than that of

lower canopy leaves (Lowman, 1992; Miyaji ef al., 1997; Reich et al., 2004).
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Our analysis of the two-fraction leaf, two-layer canopy model further show that when the
majority of leaf turnover is allocated to the upper canopy, the whole forest tends to become more
Rubisco-limited and thus approaches a simpler one-layer big-leaf assumption, such as the model
presented in Wu ef al (2016a). This explains why the simple model of Wu ef al (2016a), which
does not contain explicit representation of within-canopy physiological and phenological
variation, still captured the seasonal cycle of GPPy in tropical evergreen forests. The approach
of Wu et al (2016a), which is based on empirical relationships, is a valuable approach for broad-
scale remotely sensed monitoring of tropical forest carbon cycling but lacks the capacity to
project tropical forest responses under future climates and global change. Thus a light-use
efficiency approach (e.g. Wu et al., 2016a) is not as valuable for use within TBMs that typically
utilize the FvCB formulation of photosynthesis to simulate leaf and canopy photosynthesis
(Rogers et al., 2017). Since TBMs need to project the response of photosynthesis to rising COa,
temperature, VPD and drought, they require more sophisticated approaches where key model
inputs, such as V.., may be derived from trait databases, remote sensing, or internally
generated (i.e. prognostic) allowing coupling to biogeochemical processes (e.g. Fisher ef al.,
2015; Serbin et al, 2015; Ali et al., 2016). Therefore, to accurately represent canopy
photosynthetic processes in tropical forests under a changing climate we advocate the use of the
approach outlined here, i.e. the two-fraction leaf, two-layer canopy model coupled to an FvCB
formulation with model representation of the three components of leaf phenology we identify
here.

Our work also highlights three important directions for future advances in model
representation of tropical evergreen forest photosynthesis. First, to minimize additional sources

of uncertainty when exploring approaches for the modeling of tropical forest photosynthetic

Page 26 of 51



Page 27 of 51

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

seasonality we utilized observed leaf phenology (e.g. Fig. 1). However, the ultimate mechanisms
that regulate seasonal variation in both tropical leaf quantity and quality are still largely
unknown. An improved and prognostic understanding and model representation of the
mechanisms that drive seasonal and inter-annual changes in leaf quantity and quality, i.e. the
drivers of broader-scale (i.e. regional and global) tropical evergreen forest phenology, will be a
key component in new models that seek to improve projections of carbon dynamics and potential
climate feedbacks in the tropics (Wu ef al., 2016a).

Second, our demonstration of the importance of leaf phenology effects on tropical forest
photosynthetic seasonality relied on modeled and EC-derived GPPr. This simplification was
essential to enable us to elucidate fundamental mechanisms connecting annual patterns of leaf
phenology with physiology, but is not appropriate when simulating forest responses to climate
over time or in response to climatic perturbations. Since canopy photosynthesis is jointly
determined by extrinsic environmental variability and changes in intrinsic photosynthetic
machinery (Farquhar et al., 1980; Collatz et al., 1991; Sellers et al., 1992; dePury & Farquhar,
1997; Baldocchi & Amthor, 2001; Dai ef al., 2003; Medvigy ef al., 2009, Wu et al., 2016a;
Rogers et al., 2017), there is a great need to improve our understanding and model representation
of the fundamental physiological responses to environmental variability, particularly rising
atmospheric CO, concentration, temperature, VPD and changes in precipitation, but also light
capture and utilization by the forest canopy (Rogers ef al., 2017). It will be critical to link
advances in understanding of leaf phenology and physiology in future TBMs, particularly in
tropical evergreen forests.

Finally, our study also highlights that one of the most practical challenges limiting studies

in the tropics is the limited availability of observations (Schimel ef al., 2015). For example, there
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is very little information available on the within-canopy (i.e. light-dependent vs. height-
dependent) and seasonal (i.e. continuous, age-dependency) variation in leaf physiology,
phenology, biochemical traits, and optical properties in the tropics (e.g. Kitajima et al., 1997b;
Chavana-Bryant et al, 2016; Wu et al., 2016b), even less is known about the spatial
heterogeneity in the relationship among photosynthetic capacity, leaf traits, canopy structure,
phenology, and climate across broader-scale (i.e. regional and global) tropical forests (e.g.
Kumagai et al., 2006; Kenzo et al., 2015; Wu ef al., 2016b). As a consequence, some important
physiological mechanisms might be underrepresented in current models. For example, the study
presented by Kitajima er al (1997b) showed that leaf level Vemax (at mature age class) for the
same tropical tree species can vary depends on the timing (i.e. wet or dry season) when leaves
are produced. This approach, also known as seasonal leaf phenotypes, suggested that leaf level
photosynthetic capacity should be modeled as a function of the timing when leaves are produced,
in addition to leaf age which has been explored in this paper. Our model framework has
sufficient flexibility to incorporate this additional component of photosynthetic seasonality, but

would require extensive field data and subsequent model evaluation to validate our approach.
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Main Figures and Tables

Table 1. Correlations between the seasonality of eddy covariance derived GPP.¢ and the
seasonality of modeled GPP. using three different models parameterized by four different
inputs of leaf phenology. R for coefficient of determination; p, or p-value, for significance of the
test; within-canopy phenological variation for the two-fraction leaf, two-layer canopy model was
parameterized when ftop=0.7; NA for not applicable.
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Model\Phenology Quantity Quality Quantity+Quality  Quantity+Quality+Within-
Canopy Variation
DF1997 (R=0.19; p=0.041)  (R’=0.69; p<0.0001)  (R?=0.80; p<0.0001) NA
ML R?=0.17; p=0.042)  (R’=0.72; p<0.0001)  (R?=0.81; p<0.0001) NA
Two-fraction leaf, ~ (R*=0.17; p=0.042)  (R*=0.72; p<0.0001)  (R*=0.81; p<0.0001) (R?=0.90; p<0.0001)

two-layer canopy
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Caption for Main Figures

Figure 1. Mean annual cycles of monthly LAI in three age classes (three different color lines) at
the Tapajos k67 site (adapted from Fig. 3A in Wu ef al., 2016a). The three-age LAI seasonality
was modeled using the same leaf age residence time parameter as Wu ef a/ (2016a), constrained
to sum to total camera-observed LAI (black squares) at the same forest site. Shading indicates
the dry season.

Figure 2. Vertical change in leaf level Vipaxos with cumulative LAI from canopy top to forest
floor, using the eqns. 5-6, following Lloyd ef a/ (2010). Three color lines represent leaves at
three age classes (Young: 1-2 months; Mature: 3-5 months; Old: >6 months) respectively.
Vemaxzs of three age classes at the top of the canopy are derived from leaf level gas exchange
measurements at the Tapajos k67 site (n=5 tree species; also see Wu et al., 2016a).

Figure 3. Seasonal variation in EC-derived GPP.s (seven-year mean annual cycle; black
squares) and modeled GPP,.s (grey circles) incorporating different phenological components,
using the two-fraction leaf, two-layer canopy model. (a) modeled GPP.s parameterized by
seasonal variation in leaf quantity (or LAI) only; (b) modeled GPP,.s parameterized by seasonal
variation in both leaf quantity and quality, while assuming a constant leaf turnover rate
throughout the vertical canopy profile; (¢) modeled GPP,.¢ parameterized by seasonal variation in
leaf quantity and quality, and differential leaf turnover rates within a forest canopy (i.e.
ftop=0.7). Shading indicates the dry season; ftop refers to the fraction of observed leaf turnover
across the whole forest canopy attributed to leaves in the upper canopy layer.

Figure 4. Differential photosynthetic sensitivity of the canopy sunlit fraction and the canopy
shade fraction to seasonal variation in leaf quantity (Fig. 1) and leaf quality (Fig. 1 and eqn. 1) at
the Tapajos k67 site assessed by using the two-fraction leaf, two-layer canopy model under the
reference environment: (a) canopy absorbed PAR, (b) canopy LA (c) canopy integrated Vomax,
and (d) canopy GPP,t. Data are shown for total canopy (black circles), the sunlit canopy fraction
(black triangles) and the shaded canopy fraction (grey triangles); canopy-scale Vimax (of per-
ground area) is the sum of canopy LAI weighted by leaf level V.« (see Table S3 for equations),
and since the LAI of the shade canopy fraction is higher than the LAI of the sunlit canopy
fraction, as such Vgpax of the shade canopy fraction is higher than Vi, of the sunlit canopy
fraction; shading indicates the dry season.

Figure 5. Assessing the effect of within-canopy phenological variation (i.e. ftop) on canopy
photosynthetic seasonality using the two-fraction leaf, two-layer canopy model. (a) Modeled
annual cycles of GPP;¢ (relative to annual maxima) under different ftop values from 0.2 to 1.0;
and (b) R? between modeled and EC-derived GPPyt seasonality plotted against ftop. Shading
indicates dry season; ftop refers to the fraction of observed leaf turnover across the whole forest
canopy attributed to leaves in the upper canopy layer.
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Caption for Supplementary Figures and Supplementary Tables

Figure S1. The sensitivity of modeled canopy-scale GPP using the multi-layer model (ML) to
the number of layers used for model simulation, under (a) highly cloudy environment (PAR
p0=10.1 pmol m? s vs. PAR 44=260.3 umol m™ s™"), (b) intermediate cloudy environment
(PAR},(=743.9 pmol m? s™'vs. PARy(=268. umol m™ s™), and (c) clear sky environment
(PARp,=1850.5 pmol m™ s™' vs. PARy¢=173.7 umol m? s™). For model simulation, PAR  for
canopy surface direct beam and PAR 4, for canopy surface diffuse beam; solar zenith angle=30°,

LAI=6 m’m™, leaf temperature=28°C; ambient CO; concentration=380 ppm; Vimax25=40 umol
CO, m2st

Figure S2. The sensitivity analysis of LAI cutoff (which divides the canopy into upper and lower
canopy layers) on modeled canopy-scale GPPys seasonality parameterized by field derived leaf
quantity and quality by using the two-fraction leaf, two-layer canopy model under three different
ftop values: (a) ftop=0.4, (b) ftop=0.6, and (c¢) ftop=0.8. Three color lines represent different LAI
cutoff. Shading indicates the dry season.

Figure S3. Cross model comparisons for canopy-scale GPP-PAR relationship between DF1997
(red line) and ML (black line). For model simulation, solar zenith angle=30°, LAI=6 m’m, leaf
temperature=28°C; ambient CO; concentration=380 ppm; V¢max2s=40 pmol CO, mZst

Figure S4. Average annual cycle of modeled FAPAR (relative to annual maxima) using the two-
fraction leaf, two-layer canopy model at the Tapajos k67 site under three scenarios: whole
canopy (black circles), the sunlit canopy fraction (black triangles), and the shade canopy fraction
(grey triangles). Shading indicates the dry season.

Figure S5. GPP-PAR relationship simulated by the FvCB model under each given Vipmaxs (in
umol CO, m”s™'; represented as different color lines).

Figure S6. Average annual cycle of GPP, (relative to annual maxima) at the Tapajos k67 site
under four scenarios: eddy covariance derived GPP, (red line), and modeled GPP,¢ by using the
two-fraction leaf, two-layer canopy model for the whole canopy (black circles), for the canopy of
sunlit fraction (black triangles), and for the canopy of shade fraction (grey triangles). Shading
indicates the dry season.
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945  Table S1. Individual canopy trees for leaf gas exchange measurements of top-of-canopy sunlit
946  leaves in 2012 campaign at the Tapajos k67 site (adapted from Wu ef al., 2016a). Species

947  represented by these individuals account for 23.7% of basal area of vegetative community at the
948 k67 site. NA for not applicable.

Scientific name Family Maximum  Basal area Leaf age Number of Vomax2s
canopy abundance class leaves (umol CO,
height (m) m~s?)
Erisma uncinatum Vochysiaceae 40 10.1% Young 3 15.1
Warm.

Mature 3 26.3

0Old 3 21.1

Chamaecrista Leguminosae- 27 4.47% Young 1 11.2

scleroxylon (Ducke) Cacsalpinioideae
H.S.Irwin &
BarnebyChamaecrista

xinguensis

Mature 1 35.8

0Old 1 17.9

Manilkara huberi Sapotaceae 37 6.54% Young 1 13.7

(Ducke) A.Chev.

Mature 1 346

0Old 1 33.0

Tachigali eriopetala Leguminosae- 44 1.55% Young 2 14.0

(Ducke) L.G.Silva & Cacsalpinioideae

H.C.Lima

Mature 2 56.7

0Old 2 232

Ocotea sp. Lauraceae 38 1.06% Young NA NA

Mature 2 29.0

0Old 4 21.4

949
950



951
952
953
954
955

956
957

Table S2. Modified equations of the Farquhar, von Caemmerer and Berry (FvCB; Farquhar e?
al., 1980) leaf photosynthesis model, coupled with Medlyn type stomatal conductance scheme
(Medlyn et al., 2011). Symbols of constant are defined in Table S6, and values of the Rubisco

parameters are given in Table S7.
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Equations Definition No. | Ref.
GPPz =min{ AV, Aj, AS }— Rz Leaf level gross prirglall'y productivity 1 A
(GPP, umol CO, m™s™)
C-T Rubisco-limited photosynthesis (umol 2 A
A, =max{l,,, x=—,0} Co,m>s")
’ T C+K
KoK a O ) Effective Michaelis-Menten Constant 3 A
= c X + —
KO
C -T, Electron-transport limited rate of 4 A
A, =max{J x 1 (Cl T 0} photosynthesis (umol CO, m™s™)
x(C,+2x1,
Je = q)PSH g X O X ,B X Q Thze rlate of whole electron transport (umol | 5 C
’ m-s’)
2 The rate of electrons through the thylakoid | 6 A
AT N+ na) =4X0 xS, <o | mombrane (umol COs m £
2x0
AS =0.5x% chax Triose phosphate export limitg:d 1rate of 7 B
photosynthesis (umol CO, m s ™)
(T, —298)x AH , Temperature functions for parameters that | 8 C
Parameter = Parameter,; x exp( RxT. %208 ) | are based on Rubisco kinetic properties
Xl X and do not have an optimum within a
biologically significant temperature range
(K¢, Ko, T, Ry, and in most cases V.oo0s)
o Temperature function for maximum 9 C.D
Q lectron transport rate, J,
e T clec P > Y max
oo = s X
max max 25-T,
()
0
e T
QT =11.6+0.18x Topt Soefficient for temperature function of 10 | C,D
Jmax 05 = 1.67 x chaxzs Linear scaling relationship between 11 | EF
Jmax25 and I/cmax25
TK = Tl +273.15 Leaf temperature in Kelvin 12
Rzzs =0015xV 55 Leaf dark respiration at 25°C 13
cmax (umol CO, m™s™)
g GPP Use optimal stomatal model to estimate 14 |G
g =lox(1+——==)x ! internal CO; concentration (C;) from
\/ VPD C, atmospheric CO, concentration (C,) and
GPP =g x(C —C) vapor pressure deficit (VPD)
! K a i
1
=C =C x(1- )
16x (14—

NVPD

A: Farquhar ef al., 1980; B: Ryu et al., 2011; C: Bernacchi et al., 2013; D: June et al., 2004;

E: Bonan et al., 2014; F: Medlyn et al., 2002; G: Medlyn et al., 2011.
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958  Table S3. Modified equations of Vmax for the canopy of sunlit and shade fractions. Symbols of
959  constant are defined in Table S6, and values of the Rubisco parameters are given in Table S7.
960
Equations Definition No. | Ref.
o il Canopy total Ve (umol CO, m™s™) 15 | A
cmax,fot —X (l - eXp ? o )
v chaX)O x O (1 eXp(f(k"%”XQ)XLA [m)) gc(,),,;,x rflozr st}llf canopy of sunlit cohort (umol | 16 | A, B
’ k,+k, <xQ
14 =V - V max fOT the canopy of shade cohort (umol | 17 | A, B
cmax, shade cmax,fot cmax, sun C 02 1’1’1_2 S_l)
k= exp(0-00963ngmm{,o—2-43) Coefficient of .. decline within a forest | 18 H
" canopy
05 Beam radiation extinction coefficient of 19 | A
5 COS(SZA) the canopy
961  A:Farquharetal., 1980; B: Ryu et al., 2011; H: Lloyd et al., 2010.
962

963




964
965
966
967

968
969
970
971

Table S4. Modified equations of absorbed photosynthetically active radiation (PAR) by the

canopy of sunlit and shade fractions. Symbols of constant are defined in Table S6, and values of
the Rubisco parameters are given in Table S7.
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Equations Definition No. | Ref.
: Ve Z
0, =(1-p,)xPA Rb,o « (1-ex p—kbeAItoth) gfa)nopy absorbed total radiation (umol m™ | 20 | A, B
+ (1= p.,)x PAR, , x (1—exp ' %)
= PAR. x(1-0)x(1—exp e The absorbed incoming beam radiationby | 21 | A, B
Qb’”’” b0 ( »<( P ) sunlit leaves (umol m™~s™)
_ B B kgt <AL, <0 | The absorbed incoming diffuse radiation 22 | AB
Qdasu" - PARdaO x(1-p ed )x(1-exp ) by sunlit leaves (umol m=s™)
Rk LAL X kb The absorbed incoming scattered radiation | 23 A B
e = PAR, o x[(1= piy ) x (1—exp )X © &4 | by sunlit leaves (umol m?s™)
b b
_ (1 _ J) % (1 _ eXp72><kb><LA1m><Q) % %]
Qm = Qb ot Qd ot QS o Canopy absorbezd t?tal radiation for sunlit | 24 | A, B
’ ’ ’ leaves (umol m™s™)
Q e = Qt = Q Canopy absorbed total radiation for shade | 25 | A,B
sade =1 o leaves (umol m~s™)
046 Beam and scattered beam radiation 26 | A
b M extinction coefficient
k'd —-0719 Diffuse and scattered diffuse radiation 27 | A

extinction coefficient

A: Farquhar ef al., 1980; B: Ryu et al., 2011.
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972  Table S5. Equations to calculate incoming photosynthetically active radiation (PAR) over a
973  canopy. Ry, denotes total short-wave radiations from in-situ observations. P denotes observed
974  air pressure and P, denotes standard air pressure.
Equations Definition No. | Ref.
01855 s Expected beam visible radiation under 28 [N
600xe clear sky (W m™)
Rb vis =
’ m
0.4 x (600 — R, . x m) Expected diffuse visible radiation under 29 N
R, = " ’ clear sky (W m™)
006 F wm Expected diffuse visible radiation under 30 | N
720xe " —w clear sky (W m™)
Rb nir =
’ m
006 L m Expected diffuse near-infrared radiation 31 [N
P 720xe D _yw under clear sky (W m™)
b, nir m
R The fraction of total PAR over total 32 |N
Foun = bis " dvis incoming radiation (/)
Rb,nir + Rd,m'r + Rb,vis + Rd,vis
_ The fraction of beam PAR over total PAR | 33 | N
Joars = e Upars)
Rb,vis d,vis
O 9 _ short
' +R, +R_+R,
X(l _ ( b,nir d,nir b,vis d,vis )2)
0.7
PAR =R x % The canopy top photosynthetically active 34 |N
b0 " short "V PAR Y PARD radiation in beam light (PAR3, )
PAR =R % % (1— The canopy top photosynthetically active 35 |N
40 short ~ < PAR ( fP ARJ’) radiation in diffuse (PAR ) light
_ _1.195+0.4459xl0g; o m—0.0345x(log; o m)* Expected water absorbance of near- 36 | N
w=1320x10 N N infrared radiation in the atmosphere
(W m™)
_ ~1 Parameter calculated from solar zenith 37 | N
m= COS(S ZA) angle (SZA)
975 N: Weiss & Norman, 1985.




976
977

978
979
980

981

Table S6. Table of constants used in leaf and canopy level photosynthesis model.
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Symbols | Definition Values Ref.
C; Inter-celluar CO, concentration (=0.7*ambient CO, concentration; pmol mol™) 266 A
0 Oxygen concentration (mmol mol™) 205 A
o Leaf absorbance 0.85 AC
ye) Fraction of photosystem II to photosystem I 0.5 A C
@, ... | Maximum quantum efficiency of PSII photochemistry 0.7 C
® Curvature term 0.7 A E
R Universal gas constant (J mol K™) 8.314 A
chax 5 Maximal carboxylation rate at 25°C (umol/m*/s) Observation | K
To " Optimal leaf temperature for J,,,, (°C) 35 I
chax o Maximal carboxylation rate for leaves at canopy surface (umol CO, m™s™) Observation | K
(@) Clumping index 0.66 J
LA ]mt Canopy total leaf area index (m*/ m°) Observation | K
o Canopy reflection coefficient for beam radiation 0.029 A
Lo Canopy reflection coefficient for diffuse radiation 0.036 A
o Leaf scatting coefficient of radiation 0.15 A
gl Slope for stomatal conductance model 3.77 L

A: Farquhar et al., 1980; C: Bernacchi ef al., 2013; E: Bonan et al., 2014; 1. Lloyd & Farquhar,
2008; J: He et al., 2005; K: Wu et al., 2016a; L: Lin et al., 2015.
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982  Table S7. The values for c and AH, (activation energy) describing the temperature response of

983 the five parameters used to predict CO; uptake by leaves during Rubisco-limited photosynthesis
984  in leaf level FvCB model (see Table S4) (reference: M: Bernacchi et al., 2001).

985
Parameter Value at 25°C ¢ (dimensionless) AH , (k) mol™)
R, (umol/m*/s) Ry»s 18.72 4639
V max (umol/m/s) V. s 2635 65.33
I'. (umol/m%/s) 42.75 19.02 37.83
K. (umol/m*s) 404.9 38.05 7943
K, (mmol/m%s) 278.4 20.30 36.38
986
987

988
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Figure 1. Mean annual cycles of monthly LAI in three age classes (three different color lines) at the Tapajos

k67 site (adapted from Fig. 3A in Wu et al., 2016a). The three-age LAl seasonality was modeled using the

same leaf age residence time parameter as Wu et al (2016a), constrained to sum to total camera-observed
LAI (black squares) at the same forest site. Shading indicates the dry season.
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Figure 2. Vertical change in leaf level Vemax25 with cumulative LAI from canopy top to forest floor, using
the eqns. 5-6, following Lloyd et al (2010). Three color lines represent leaves at three age classes (Young:
1-2 months; Mature: 3-5 months; Old: >6 months) respectively. Vemax25 of three age classes at the top of

the canopy are derived from leaf level gas exchange measurements at the Tapajos k67 site (n=5 tree
species; also see Wu et al., 2016a).
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Figure 3. Seasonal variation in EC-derived GPPref (seven-year mean annual cycle; black squares) and
modeled GPPref (grey circles) incorporating different phenological components, using the two-fraction leaf,
two-layer canopy model, (a) modeled GPPref parameterized by seasonal variation in leaf quantity (or LAI)

only; (b) modeled GPPref parameterized by seasonal variation in both leaf quantity and quality, while

assuming a constant leaf turnover rate throughout the vertical canopy profile; (¢) modeled GPPref
parameterized by seasonal variation in leaf quantity and quality, and differential leaf turnover rates within a
forest canopy (i.e. ftop=0.7). Shading indicates the dry season; ftop refers to the fraction of observed leaf
turnover across the whole forest canopy attributed to leaves in the upper canopy layer.
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Figure 4. Differential photosynthetic sensitivity of the canopy sunlit fraction and the canopy shade fraction to
seasonal variation in leaf quantity (Fig. 1) and leaf quality (Fig. 1 and eqn. 1) at the Tapajos k67 site
assessed by using the two-fraction leaf, two-layer canopy model under the reference environment: (a)
canopy absorbed PAR, (b) canopy LAl (c) canopy integrated Vecmax, and (d) canopy GPPref. Data are
shown for total canopy (black circles), the sunlit canopy fraction (black triangles) and the shaded canopy
fraction (grey triangles); canopy-scale Vemax (of per-ground area) is the sum of canopy LAI weighted by
leaf level Vemax (see Table S3 for equations), and since the LAI of the shade canopy fraction is higher than
the LAI of the sunlit canopy fraction, as such Vcmax of the shade canopy fraction is higher than Vemax of
the sunlit canopy fraction; shading indicates the dry season.
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Figure 5. Assessing the effect of within-canopy phenological variation (i.e. ftop) on canopy photosynthetic
seasonality using the two-fraction leaf, two-layer canopy model, (a) Modeled annual cycles of GPPref
(relative to annual maxima) under different ftop values from 0.2 to 1.0; and (b) R2 between modeled and
EC-derived GPPref seasonality plotted against ftop. Shading indicates dry season; ftop refers to the fraction

of observed leaf turnover across the whole forest canopy attributed to leaves in the upper canopy layer.
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