

BNL-114156-2017-JA

The Phenology of Leaf Quality and its Within-Canopy Variation are Essential for Accurate Modeling of Photosynthesis in Tropical Evergreen Forests

J. Wu

Accepted for publication in Global Change Biology

May 2017

Environmental & Climate Science Dept.

Brookhaven National Laboratory

U.S. Department of Energy USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1 The phenology of leaf quality and its within-canopy variation are essential for accurate modeling 2 of photosynthesis in tropical evergreen forests 3 4 Running Head: Modeling tropical photosynthetic seasonality 5 6 Authors Jin Wu^{1*}, Shawn P. Serbin¹, Xiangtao Xu², Loren P. Albert³, Min Chen^{4,5}, Ran Meng¹, Scott R. Saleska³, Alistair Rogers¹ 7 8 9 10 Institute or laboratory of origin [1] Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, 11 New York, NY, 11973 12 [2] Department of Geosciences, Princeton University, Princeton, NJ, 08544 13 [3] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721 14 [4] Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305 15 16 [5] Joint Global Change Research Institute, Pacific Northwest National Laboratory, College 17 Park, MD, 20740 18 * Corresponding author: 631-344 3361; jinwu@bnl.gov 19 20 **Key words:** big leaf; sun/shade; multi-layer; light use efficiency; gross primary productivity; 21 22 leaf age; leaf area index; photosynthetic capacity 23 24 Type of Paper: Original Research 25

Abstract:

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Leaf quantity (i.e. canopy leaf area index, LAI), quality (i.e. per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO₂ assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e. leaf quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our twofraction leaf, two-layer canopy model which accounted for all three phenological components was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance derived CO₂ assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO₂ assimilation, and highlights the importance of incorporating more

- 49 realistic phenological mechanisms in models that seek to improve the projection of future carbon
- 50 dynamics in tropical evergreen forests.

1. Introduction

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Tropical evergreen forests play a dominant role in the global carbon, water, and energy cycles (Pan et al., 2011; Fu et al., 2013; Stark et al., 2016). They account for around one-third of annual terrestrial photosynthesis (Beer et al., 2010) and a quarter of the global aboveground carbon stock (Saatchi et al., 2011; Aragao et al., 2014). Therefore, even small errors in model representation of the carbon pools or fluxes in this biome will result in marked uncertainty in the projection of future climate (Friedlingstein et al., 2006, 2014; Cox et al., 2013; Huntingford et al., 2013). A key area of uncertainty is our understanding and model representation of tropical evergreen forest seasonality, including seasonal leaf display as well as physiological function (Saleska et al., 2003; Restrepo-Coupe et al., 2013; Guan et al., 2015). Most Terrestrial Biosphere Models (TBMs) have a mechanistic representation of CO₂ assimilation that is capable of simulating the response of photosynthesis to global change (e.g. increasing atmospheric CO₂ concentration). However, most of these models lack mechanistic representation of tropical forest photosynthetic seasonality (de Weirdt et al., 2012, Kim et al., 2012; Restrepo-Coupe et al., 2017). To improve our ability to project the impact of global change on the terrestrial carbon cycle, we need to integrate model representation of the mechanisms that regulate tropical forest photosynthetic seasonality with an approach that is capable of mechanistically representing the response of photosynthesis to global change. Within tropical evergreen forests, leaf production from field based studies (e.g. Wright & van Schaik, 1994; Girardin et al., 2016), and canopy photosynthesis (i.e. gross primary productivity, GPP) derived from eddy flux towers (Saleska et al., 2003; Hutyra et al., 2007;

Restrepo-Coupe et al., 2013) and satellites (Lee et al., 2013; Guan et al., 2015) consistently

show seasonal variability. Importantly, this seasonal variation is not directly related to extrinsic

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

environmental variability (Bradley et al., 2011; Guan et al., 2015; Wu et al., 2016a, 2017). Instead, increasing evidence has shown that tropical leaf phenology is a primary mechanism regulating seasonal carbon assimilation (Doughty & Goulden, 2008; Kim et al., 2012; Restrepo-Coupe et al., 2013; Wu et al., 2016a, 2017). Here phenology refers to periodic cycles of leaf production, development and abscission within a forest canopy, which produces seasonal variability in leaf quantity (i.e. canopy leaf area index, LAI) and leaf quality (i.e. per-area leaf photosynthetic capacity), and includes the differential leaf turnover associated with the changes in leaf longevity within vertical canopy profiles. Despite a modest seasonality in leaf quantity (e.g. Doughty & Goulden, 2008; Brando et al., 2010; Lopes et al., 2016; Saleska et al., 2016), many tropical evergreen forests exhibit substantial leaf turnover during the dry season when monthly precipitation is lower than the evaporative demand (Borchert, 1994; Wright & van Schaik, 1994; Wu et al., 2016a; Lopes et al., 2016). As a result, these forests have a strong seasonality in leaf quality because recently mature leaves have a higher photosynthetic capacity than the old leaves they replace (Kitajima et al., 1997a; Doughty & Goulden, 2008; Wu et al., 2016a). Importantly, this seasonal variation in leaf quality was recently shown to be one of the most important phenological mechanisms responsible for photosynthetic seasonality in tropical evergreen forests (Wu et al., 2016a, 2017). However, this advance (e.g. Wu et al., 2016a, 2017) was based on a light use efficiency model that can capture tropical forest photosynthetic seasonality but lacks the physiological and structural complexity that is necessary to project the response to the changing climate, particularly rising CO₂ concentration.

In addition to leaf quality and quantity, the within canopy variation in leaf longevity has been well documented in the tropics (e.g. Lowman, 1992; Miyaji *et al.*, 1997; Reich *et al.*, 2004). This large within-canopy variation in leaf phenological characteristics, with understory leaves

living two or more times longer than canopy leaves, may be attributed either to temporal niche partitioning between canopy trees and the understory (Messier *et al.*, 1998; Augspurger *et al.*, 2005; Richardson & O'Keefe, 2009), or to an adaptive response to large within-canopy variation in environmental variables (Wright *et al.*, 2006; Stark *et al.*, 2012, 2015; Niinemets *et al.*, 2015). As such, within-canopy variation in light and associated biotic properties have also been suggested as an important control on processes such as leaf development, energy balance, water use, and photosynthesis (Ellsworth & Reich, 1993; Baldocchi & Amthor, 2001; Stark *et al.*, 2012; Morton *et al.*, 2016).

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Despite the importance of leaf phenology in regulating photosynthetic seasonality in the tropics, the combined effects of these three phenological components on tropical forest photosynthetic seasonality are either absent or have not been adequately represented in current TBMs (e.g. Restrepo-Coupe et al., 2017). The majority of TBMs (e.g. Fisher et al., 2015; Rogers et al., 2017) utilize the Farquhar, von Caemmerer and Berry (1980) (FvCB) leaf scale mechanistic model of CO₂ assimilation to simulate carbon uptake together with a leaf to canopy scaling relationship, which often represents the whole forest canopy as sunlit and shade leaf fractions (e.g. dePury & Farquhar, 1997; Drewry et al., 2010). Several modeling attempts have been proposed to improve the representation of photosynthetic seasonality. For example, some TBMs have included seasonal variation in LAI driven by water availability (Baker et al., 2008; Powell et al., 2013; Sitch et al., 2015; Xu et al., 2016; Restrepo-Coupe et al., 2017); however, the representation of seasonal change in leaf quality and their vertical distribution has rarely been explored before. As a result, these models generally fail to adequately reproduce the photosynthetic seasonality of tropical evergreen forests, simulating a dry-season photosynthetic decrease as a consequence of increasing dry-season water stress, with eddy covariance derived

GPP showing the opposite trend (Saleska *et al.*, 2003; Baker *et al.*, 2008; de Goncalves *et al.*, 2013; Restrepo-Coupe *et al.*, 2017). Several other attempts have shown some improvement in the modeling performance of TBM-based photosynthetic seasonality by tuning model parameters to allow for seasonal variation in leaf photosynthetic capacity (e.g. de Weirdt *et al.*, 2012; Kim *et al.*, 2012). However, the assumptions made in these models, such as the application of the leaf economic spectrum to within-canopy relationships, require systematic evaluation (Messier *et al.*, 2016) or compared to field based metrics of both leaf phenology (e.g. leaf production and senescence) and GPP. The model-observation mismatch and the incomplete mechanistic evaluation highlight need for improving current TBMs which should include a mechanistic representation of leaf phenology effects on tropical evergreen forest photosynthesis that includes all three phenological components of leaf quantity, quality, and differential leaf turnover within a forest canopy.

The goal of this study was to develop an approach that would provide the sufficient phenological representation of the three components to capture the photosynthetic seasonality of a tropical evergreen forest in a mechanistic model framework that included the FvCB representation of CO₂ assimilation and a multilayer canopy. We accomplished this by evaluating the performance of model structures that incorporated the three different phenological mechanisms. We asked three questions: (1) Is seasonality of tropical forest photosynthesis reproduced by a model including leaf phenology? (2) What is the relative contribution of these three phenological components in controlling the seasonality of photosynthesis? (3) Finally, how do these three components regulate tropical forest photosynthetic seasonality?

Our approach was to modify existing canopy photosynthesis models to enable coupling with prescribed, field-based phenology of the leaf quantity and quality allowing us to simulate

canopy photosynthetic seasonality. In addition, we enabled representation of sun and shade leaf fractions and a two-layer canopy (upper and lower) to allow us to explore within-canopy phenological variation. As such, our model framework allowed us to assess how the three components of leaf phenology independently and jointly regulated canopy-scale photosynthetic seasonality. In order to evaluate the model performance and avoid other confounding factors in our analysis, such as seasonal and inter-annual environmental variation (Baldocchi & Amthor, 2001; Richardson *et al.*, 2007; Wu *et al.*, 2017), our target variable was GPP_{ref}, which is eddy covariance derived or modeled GPP under a reference environment. This enabled us to focus on the underlying physiological mechanisms and isolate the biological controls on GPP from seasonality in environmental variables (Wu *et al.*, 2017). The successful attribution of biological controls on tropical forest photosynthesis will not only improve modeling of photosynthesis in the tropics but also help assess the correct functional response to environmental variability.

2. Materials and Methods

2.1 Model evaluation

To evaluate model performance we used data from the Tapajós k67 eddy covariance (EC) tower site (with Fluxnet2015 ID of "BR-Sa1"; http://fluxnet.fluxdata.org/data/download-data/). The k67 EC tower site (54°58'W, 2°51'S) is located in the Tapajós National Forest, near Santarém, Pará, Brazil. Tapajós is an evergreen tropical forest on a well-drained clay-soil plateau (Rice *et al.*, 2004), with a mean upper canopy height of ~40 m (Hutyra *et al.*, 2007). Mean annual precipitation is ~2000 mm year⁻¹ with a 5-month dry season (monthly precipitation < monthly evapotranspiration) from approximately mid-July to mid-December (Hutyra *et al.*, 2007; Restrepo-Coupe *et al.*, 2013).

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

The k67 EC site included seven-full-year flux and meteorological measurements (years 2002-2005, and 2009-2011; Wu et al., 2016a, 2017). Detailed descriptions of the instrumentation and data pre-processing protocol for the k67 EC data can be found in Hutyra et al (2007) and Restrepo-Coupe et al (2013). No gap-filling data was used in this study. Hourly EC measurements of net ecosystem exchange (NEE) was partitioned into ecosystem respiration (R_{eco}) and GPP following standard approaches (Hutyra et al., 2007; Restrepo-Coupe et al., 2013): Reco, which was averaged within monthly bins from valid nighttime hourly NEE during well-mixed periods (u* criterion: ≥0.22 m/s), was also used as an estimate of average monthly daytime respiration, and GPP was estimated as -(NEE - Reco). We did not use a temperature function to extrapolate nighttime NEE to daytime Reco, as is done at many higher latitude sites (e.g. Reichstein et al., 2005), because nighttime temperature range within most months at k67 is too small to constrain such a function (Hutyra et al., 2007). Also because Reco is composited by the two components: (1) the heterotrophic component (which is expected to have higher values in the daytime, due to higher temperature in the daytime than at night; Reichstein et al., 2005), and (2) the autotrophic component, especially the part associated with foliar respiration (which is expected to have lower values in the daytime, due to light-inhibition of mitochondrial respiration in leaves; Heskel et al., 2013; Wehr et al., 2016), therefore, without the specific information about the relative contribution of these two components, we judged that our approach (using unmodified nighttime values as estimates for daytime Reco) was conservative – especially for a study of seasonality, for which potential errors in absolute value are less important.

In this study we used the reference GPP (GPP_{ref}) as our target variable and benchmark for model evaluation. GPP_{ref} represents the CO₂ assimilation of the canopy in the absence of environmental fluctuations and thus provides the capability to evaluate the phenological impact

on canopy-scale photosynthesis independent of other sources of variation. EC-derived GPP_{ref} was calculated as the monthly average of all seven-year EC-derived GPP measurements under a reference environmental condition, following Wu *et al* (2016a, 2017). The EC-derived GPP_{ref} here scales linearly with incident light-use-efficiency under the reference environment as used in Wu *et al* (2016a, 2017) (where it was called canopy-scale photosynthetic capacity). The reference environment for GPP_{ref} was taken as narrow bins of each climatic driver: canopy-top photosynthetically active radiation (PAR_0)=1320 ± 200 µmol m⁻²s⁻¹, diffuse light fraction=0.4 ± 0.1, vapor pressure deficit (VPD)=0.87 ± 0.20 kPa, air-temperature (T_{air})=28 ± 1 °C, and solar zenith angle (SZA)=30 ± 5°, and 8.1% of all hourly EC-derived GPP measurements were selected under the reference environment (~20 measurements per month per year; almost equally distributed across months). We used the seven-year mean annual cycle of monthly EC-derived GPP_{ref} as a benchmark for model validation. The same reference environment is also used for our model simulation of canopy-scale GPP_{ref} (see "Model Framework" below).

2.2 Prescribed phenology

Three components of leaf phenology were examined in this study, including the quantity, the quality, and within-canopy variation in leaf turnover rates, all of which are tightly linked with seasonal variability in leaf production, development and abscission within a tropical forest canopy (Wu *et al.*, 2016a,b; Lopes *et al.*, 2016). Our prescribed, field-based leaf phenology data at the k67 site are the same as those used in Wu *et al* (2016a).

(1) Field data of canopy LAI, litterfall LAI, and new leaf LAI. The mean annual cycle of monthly canopy LAI (range: 5.35–6.15 m² m⁻²) was derived from tower-mounted camera image timeseries (Tetracam Agricultural Digital Camera, Tetracam, Inc., Gaomesville, FL; January

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

2010 to December 2011) using a camera-based tree inventory approach. For details about this approach, please refer to supplementary materials section 5 and Figs. S5 and S8 in Wu *et al* (2016a). The mean annual cycle of monthly litterfall LAI (range: 0.23–0.66 m² m⁻²) was derived by converting field observations of mass-based foliage litterfall (Mg biomass month¹ ha⁻¹; bi-weekly measurements from 2001 to 2005; Brando *et al.*, 2010) of the same site into area-based litterfall LAI (m² m⁻² per month), with the formula of Litterfall LAI = mass-based Litterfall×SLA, applying a mean specific leaf area (SLA) of 0.816 ha Mg⁻¹ biomass (Malhado *et al.*, 2009). The mean annual cycle of monthly new leaf LAI production (in m² m⁻² per month) was estimated by using the formula of dLAI/dt + litterfall LAI, where dLAI/dt is the average canopy LAI change in the two months centered around LAI of each month (Wu *et al.*, 2016a).

(2) Field based leaf gas exchange measurements. Leaf level photosynthetic capacity, represented by the apparent maximum carboxylation capacity of Rubisco standardized to a reference temperature of 25°C (V_{cmax25}) (Bernacchi et al., 2013), was derived from standard leaf gas exchange measurements of photosynthetic CO₂ response curves (A-C_i) for top-of-canopy sunlit leaves of five canopy trees at the k67 site (species and structural information for leaf samples are shown in Table S1; data available from are http://datadryad.org/resource/doi:10.5061/dryad.8fb47; see supplementary materials in Wu et al, 2016a for more details on these data). Briefly, the trees we targeted for A-Ci curves represent the most abundant species that account for ~24% of the local basal area (Pyle et al., 2008). Prior to gas exchange measurements, branches (of ~ 1m length) were assessed using arborist climbing methods, cut, then promptly but gently lowered to the ground with ropes, and re-cut under water at least once within 15 minutes of the initial harvest. Gas exchange was typically measured for leaves of each age category present on the branch. These sunlit leaves (n=27) were initially

classified into three age classes (Young, Mature, and Old) based on visual assessment of color, size, rigidity, and bud scars (when present) (Chavana-Bryant $et\ al.$, 2016), and then confirmed by in-situ leaf tagging and associated photographic imaging of leaves at known ages (from 10 days old up to 1 year old; see Wu $et\ al.$, 2016b for more details). These leaf age classes roughly correspond to a young age class (leaves of 1-2 months old), a mature age class (leaves of 3-5 months), and an old age class (leaves of ≥ 6 months). Very young leaves (recent leaf burst; e.g. Fig. S1 in Wu $et\ al.$, 2016b) were too small, delicate, or logistically challenging for photosynthesis measurements, therefore field derived leaf $V_{\rm cmax25}$ of the young age class (which corresponds to the young leaves of late stage, big enough for Licor measurements) was then divided by two to provide an average across the distribution of the entire young age class. The five-species mean (\pm standard deviation) $V_{\rm cmax25}$ for these top-of-canopy sunlit leaves of young, mature, and old age classes were 6.8 (± 1.4), 36.5 (± 10.7), and 23.4 (± 5.1) μ mol CO₂ m⁻² s⁻¹, respectively.

(3) The mean seasonality of leaf age demographics and leaf quality. The quality component of leaf phenology refers to per-area leaf photosynthetic capacity. At the canopy scale, leaf quality can be approximated by the age-dependency of leaf photosynthetic capacity (shown above) and the associated leaf age fraction (or leaf age-demography). Leaf age demographics were approximated by a three-LAI-age-class demography model (Wu *et al*, 2016a), with the inputs from mean annual cycles of monthly canopy LAI and new leaf LAI (calculated above). The model-derived three LAI-age demographics include the LAI for a young age class (leaves of 1-2 months old, LAI_Y), a mature age class (leaves of 3-5 months, LAI_M), and an old age class (leaves of \geq 6 months, LAI_O ; see Fig. 1), with the two optimized model parameters from Wu *et al* (2016a) which define leaf residence time at young and mature age classes respectively. The

reason we use these optimized parameters here is because these parameters were consistent with our field observations of leaf aging processes (Chavana-Bryant *et al.*, 2016; Wu *et al.*, 2016b), as well as the roughly similar time interval of mature and old leaf age classes for field-based leaf gas exchange measurements.

In sum, the leaf quality was calculated by using a three-age-class leaf demography-ontogeny model as below (Wu *et al*, 2016a).

$$Lquality = \frac{V_{cmax,Y} \times LAI_Y + V_{cmax,M} \times LAI_M + V_{cmax,O} \times LAI_O}{LAI_Y + LAI_M + LAI_O}$$
(1)

Where Lquality is leaf quality, which represents age composition weighted leaf photosynthetic capacity, and $V_{\rm cmax,Y}$, $V_{\rm cmax,M}$, and $V_{\rm cmax,O}$ represent leaf level $V_{\rm cmax}$ at young, mature and old age classes respectively.

- 2.3 Model framework
- 2.3.1 TBM-type canopy photosynthesis models (DF1997 and ML)

Sun-shade, big leaf, canopy photosynthesis models, which represent the whole forest canopy as a big leaf of the two fractions (sun versus shade), are commonly used in many TBMs, e.g. Community Land Model version 4.5 (CLM4.5; Oleson *et al.*, 2013) and the Joint UK Land Environmental Simulator version 4.5 (JULES4.5; Best *et al.*, 2011; Clark *et al.*, 2011; Harper *et al.*, 2016). Canopy photosynthesis is usually represented in these formulations by the two processes: a leaf scale mechanistic photosynthesis model and a leaf-canopy scaling relationship, which represents the whole forest canopy as sunlit and shade fractions using approaches such as dePury and Farquhar (1997; DF1997) or a multi-layer approach (Drewry *et al.*, 2010; ML). These processes are described in detail as below.

(1) A leaf scale mechanistic photosynthesis model. Here we couple a mechanistic FvCB based photosynthesis model with a stomatal conductance scheme (Medlyn *et al.*, 2011; Lin *et al.*, 2015) to simulate the leaf level photosynthesis response to the variability in both biotic (e.g. V_{cmax25}) and J_{max25}) and climatic (e.g. PAR, temperature and VPD) factors (details in Table S2). The Medlyn-type stomatal conductance model was selected because leaves/stomata respond to VPD rather than relative humidity. Therefore, the Medlyn-type stomatal conductance model will likely capture projected increases in VPD better than other alternatives (Rogers *et al.*, 2017). The only prescribed parameter of this stomatal conductance model is the stomatal slope, and here we used the value of 3.77 based on a recent meta-data analysis for tropical rainforest trees (Lin *et al.*, 2015). Additionally, we refer to Lloyd & Farquhar (2008) and Bernacchi *et al* (2013) to describe the temperature effect on leaf photosynthesis. As such, this photosynthesis model has the capability to simulate the leaf level photosynthetic response to the current environmental variability, but also to the changing environmental drivers associated with global change (i.e. rising CO₂ concentration, temperature and VPD).

(2) The leaf to canopy scaling relationship represented by the DF1997 model. DF1997 simulates canopy photosynthesis as the sum of the photosynthetic rate contributed by the sunlit fraction (GPP_{sun}) and the shade fraction (GPP_{shade}) of a forest canopy respectively (eqn. 2).

$$GPP = GPP_{sun} + GPP_{shade}$$
 (2)

The DF1997 model is operated by firstly determining the LAI, $V_{\rm cmax}$ and absorbed PAR for each canopy fraction, and then applying leaf level photosynthesis model (as above) to simulate the photosynthesis to each canopy fraction. Canopy total LAI (LAI_{tot}) is partitioned into the sunlit fraction (LAI_{sun}) and the shade fraction (LAI_{shade}), following Beer's law (eqns. 3-4; dePury & Farquhar, 1997; Chen *et al.*, 1999; Ryu *et al.*, 2011):

303
$$LAI_{sun} = \frac{1 - \exp(-\frac{k \times \Omega \times LAI_{tot}}{\cos(SZA)})}{k / \cos(SZA)}$$
(3)

$$LAI_{shade} = LAI_{tot} - LAI_{sun}$$
 (4)

where k(=0.5) is the extinction coefficient, and Ω is the clumping index; $\Omega=0.66$ for tropical evergreen forest (He *et al.*, 2012) was used in this study.

DF1997 also partitions the canopy integrated $V_{\rm cmax}$ ($V_{\rm cmax,tot}$) into the sunlit fraction ($V_{\rm cmax,sun}$) and the shade fraction ($V_{\rm cmax,shade}$) (see Table S3). Here we assumed that $V_{\rm cmax}$ declines exponentially within the canopy following Lloyd *et al* (2010) (see eqns. 5-6 below; Fig. 2).

$$V_{c_{\max,i}} = V_{c_{\max,0}} \times \exp(-k_n \times LAI_i)$$
 (5)

$$k_n = \exp(0.00963 \times V_{cmax.0} - 2.43) \tag{6}$$

where $V_{\rm cmax,0}$ is the $V_{\rm cmax}$ of leaves at the top of the canopy; and k_n describes the exponential decline of $V_{\rm cmax}$ against the given accumulated LAI from the top of the canopy (LAI_i) . By tracking PAR at the top of the canopy (PAR_0) , which is the sum of direct beam $(PAR_{b,0})$ and diffuse radiation $(PAR_{d,0})$ in the visible spectrum (i.e. 400-700 nm), DF1997 calculates its canopy absorbance by the sunlit fraction (PAR_{sun}) and by the shade fraction (PAR_{shade}) , using Beer's law and Seller's (1987) two-stream approximation for canopy radiative transfer (dePury & Farquhar, 1997; Ryu *et al.*, 2011; Tables S4-S5).

To facilitate the simulation of photosynthetic seasonality with DF1997, we prescribed top-of-canopy $V_{\rm cmax,0}$ (in eqn. 5), i.e. Lquality (eqn. 1), while assuming that vertical changes in $V_{\rm cmax}$ within a forest canopy follow a fixed exponential decline rate (as described by eqns. 5-6). The complete equation set for the DF1997 model is provided in Tables S2-S5.

(3) The leaf-canopy scaling relationship represented by the multi-layer model. ML is an alternative way to scale leaf-level function and simulate canopy photosynthesis. ML explicitly

resolves direct and diffuse radiation for sunlit and shade canopy fractions at each canopy layer using Seller's (1987) two-stream approximation for canopy radiative transfer. The number of canopy layers is prescribed as N, where initial results from a model sensitivity showed that GPP was insensitive to $N \ge 15$ (Fig. S1). We thus used N=15 for the following simulations. In addition, we calculated the LAI of the sunlit ($LAI_{sun,i}$) and the shaded ($LAI_{shade,i}$) fractions for each canopy layer i (i=1, 2, ..., N), and their corresponding per-area radiation absorbed by the sunlit fraction ($PAR_{sun,i}$) and the shade fraction ($PAR_{shade,i}$). Last, ML calculated the V_{cmax} of each canopy layer ($V_{cmax,i}$) also using eqns. 5-6.

The leaf level photosynthesis model was then used to calculate the photosynthesis rate of each canopy fraction for given layer i: per-area photosynthesis rate for the sunlit $(GPP_{sun,area,i})$ and the shade $(GPP_{shade,area,i})$. The cumulative canopy photosynthesis rate was thus equal to the sum of area weighted photosynthesis rate of each layer:

337
$$GPP = \sum_{i=1}^{N} (GPP_{sun,area,i} \times LAI_{sun,i} + GPP_{shade,area,i} \times LAI_{shade,i})$$
 (7)

To facilitate the simulation of photosynthetic seasonality with ML, we also prescribed top-of-canopy $V_{\rm cmax,0}$ (in eqn. 5), i.e. *Lquality* (eqn. 1).

It is important to note that the models (DF1997 and ML) presented here can simulate leaf phenology effects of both quantity and quality components; however, none of these models accounted for within-canopy phenological variation, and assumed a constant leaf turnover (flushing and abscission) rate throughout the canopy. Additionally, in our model simulation, we assume that leaf temperature and VPD for the sunlit and shade canopy fractions are the same as the reference environment.

2.3.2 Modified TBM representation of canopy photosynthesis to allow for within-canopy phenological variation (a two-fraction leaf, two-layer canopy model)

Many field-based studies have indicated that leaf longevity could vary greatly depending on the growth environments (e.g. Wright *et al.*, 2006; Wu *et al.*, 2016b), with understory leaves displaying longer leaf longevity than upper canopy leaves (Lowman, 1992; Miyaji *et al.*, 1997; Reich *et al.*, 2004). This suggests that the leaf turnover rate in the upper canopy should be faster than that in the lower canopy and understory. However, the within-canopy phenological variation has not been explicitly accounted for until now. To accomplish this, we modified the ML model framework (via addition of a second, lower canopy layer) to allow explicit representation of within-canopy variation in leaf turnover, in addition to the sun andshade fractions that already allow for within-canopy physiological variation.

In this new model, we divided a forest canopy into the two layers: (1) the upper canopy layer with the cumulative LAI from 0 (top-of-canopy) to 2.5 m² m⁻², and (2) the lower canopy layer including the remainder of the canopy. Both layers are assumed to have the same phenological pattern and timing, but the amount of leaf flush and litterfall that drives phenology is differentially allocated between them. This allocation between layers is specified by ftop, the fraction of observed leaf turnover (including leaf drop and flush) across the whole forest canopy attributed to leaves in the upper canopy layer, e.g. when ftop = 0.7, 70% of observed forest canopy leaf turnover (and associated amplitude of the LAI and *Lquality* variables) is attributed to the upper canopy layer and 30% to the lower canopy layer; under this case, the ratio of leaf turnover rate between upper canopy leaves and lower canopy leaves can be calculated as (ftop/LAI_up)/((1-ftop)/LAI_low)=2.8, where ftop=0.7, LAI_up (or the average LAI for the upper canopy layer)=2.5 m² m⁻², and LAI_low (or the average LAI for lower canopy layer)=3 m²

m⁻². Since leaf longevity is an inverse of leaf turnover rate, therefore the leaf longevity for the lower canopy leaves is around 2.8 times longer than the upper canopy leaves when ftop=0.7. Our differentiation of these two canopy layers (upper and lower) at the LAI cutoff of 2.5 m² m⁻² for the upper canopy is slightly arbitrary, but sensitivity analysis showed that our modeling results were largely insensitive to the LAI cutoff and exhibited only minor variation when LAI increased from 2 to 3 m² m⁻² (Fig. S2).

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

375

370

371

372

373

374

2.4 Model experiments

We used our proposed two-fraction leaf, two-layer canopy model as the main modeling testbed for assessing the effect of different phenological components on modeled canopy photosynthetic seasonality. This is because previous studies (e.g. dePury and Farquhar, 1997; Bonan et al., 2012) demonstrate that DF1997 and ML can simulate almost identical GPP fluxes at the canopy scale (which is also confirmed by our Fig. S3), and also because our proposed twofraction leaf, two-layer canopy model here is identical to ML when no within-canopy phenological variation is considered but also enables to examine the effect of within-canopy phenological variation by varying ftop. First, we ran the model parameterized by all three components, aiming to explore how well the model with all phenological mechanisms can capture EC-derived GPP_{ref} seasonality. The model inputs for these phenological components include: (1) the leaf quantity based on field measurements of the mean annual cycle of monthly LAI, (2) the leaf quality based on field-derived seasonality of *Lquality* (as calculated by eqn. 1, weighted by field-measured age dependency of V_{cmax25} and field-derived leaf age demographics), and (3) the within-canopy phenological variation, by assuming leaves of lower canopy layer had 2.8 times longer leaf longevity compared with that of upper canopy layer (or ftop=0.7), which is

consistent with the literature (e.g. Lowman, 1992; Miyaji *et al.*, 1997; Reich *et al.*, 2004). We also ran the models under two additional scenarios, aiming to explore the relative role of each phenological component on modeled photosynthetic seasonality, with that (1) the model is parameterized with the observed annual cycle of leaf quantity alone, while assuming neither within-canopy variation in leaf longevity nor seasonal variation in leaf quality, and that (2) the model is parameterized with the observed phenological cycles of leaf quantity and quality, while assuming a constant leaf turnover rate throughout the canopy. To further elucidate the mechanisms by which each phenological component regulates canopy photosynthetic seasonality, we also evaluated the GPP_{ref} sensitivity of the sunlit canopy fraction and the shade canopy fraction to the seasonal variation in leaf phenology (quantity and quality) and within-canopy variation in leaf longevity (by varying ftop from 0 to 1.0 with the increment of 0.1) respectively.

3. Results

3.1 Modeled GPP_{ref} seasonality parameterized by differential leaf phenological mechanisms

We used the two-fraction leaf, two-layer canopy model to explore how including model representation of the three different phenological components affected the ability of the models to simulate the canopy scale photosynthetic seasonality, as compared with EC-derived GPP_{ref}. Our results show that the model parameterized by all three phenological components (i.e. quantity, quality and within-canopy phenological variation) was best able to capture EC-derived photosynthetic seasonality (Fig. 3 and Table 1).

The seven-year mean annual cycle of EC-derived GPP_{ref} at the Tapajós k67 site showed an initial decline in the late wet season, and then an increase in the dry season (Fig. 3). The

models parameterized by leaf quantity alone or parameterized by both leaf quantity and quality displayed good agreement with the timing of EC-derived GPP_{ref} seasonality, but missed the depth or relative magnitude of GPP_{ref} seasonality: leaf quantity phenology alone explained only 19% of EC-derived GPP_{ref} seasonality for DF1997 (Table 1) and 17% for ML and the two-fraction leaf, two-layer canopy model (Table 1 and Fig. 3a); the modeled GPP_{ref} with both leaf quantity and quality (but no within-canopy phenological variation) explained ~80% of EC-derived GPP_{ref} seasonality for DF1997, ML, and the two-fraction leaf, two-layer canopy model (Table 1 and Fig. 3b). The modeled GPP_{ref} using the two-fraction leaf, two-layer canopy model with all three phenological components displayed the strongest agreement with the seasonal variability of EC-derived GPP_{ref} in both timing and relative magnitude (R²=0.90; Table 1 and Fig. 3c).

3.2 Differential photosynthetic sensitivity to seasonal variation in leaf phenology between the sunlit canopy fraction and the shade canopy fraction

To better understand the mechanisms that underlie canopy-scale photosynthetic seasonality, we examined the photosynthetic sensitivity of the sunlit canopy fraction and the shade canopy fraction to seasonal variation in leaf phenology (quantity and quality). We theorized that the seasonal variation in GPP_{ref} is driven by changes in both canopy absorbed PAR (affecting RuBP regeneration limited photosynthesis in the FvCB model) and canopy integrated V_{cmax} (affecting Rubisco limited photosynthesis in the FvCB model). Fig. 4 summarizes our model diagnosis of these two pathways and their respective influence on modeled GPP_{ref} seasonality.

First we examined the seasonal dynamics of canopy absorbed PAR under reference environmental conditions (absolute value in Fig. 4a and relative value in Fig. S4). Our simulations showed that the PAR absorbed by the sunlit canopy fraction (PAR_{sun}), the shade canopy fraction (PAR_{shade}), and the entire canopy ($PAR_{sun} + PAR_{shade}$) all showed consistently low seasonal variability (<6%; Fig. 4a and Fig. S4), despite modest seasonal variability in leaf quantity (~12%; Fig. 4b). This is likely because tropical evergreen forests display consistently high leaf quantity over the annual cycle (e.g. LAI range: 5.35-6.15 m² m⁻² at the k67 site), and as such annual FAPAR is typically at or near saturation.

We then investigated the seasonal dynamics of canopy V_{cmax} , which is the integrated sum of leaf level V_{cmax} weighted by the total LAI attributed to the sunlit fraction and the shade fraction respectively (see eqns 3-5). Focusing first on the sunlit fraction, Fig. 4b highlights that the LAI_{sun} is generally stable (~1.5 m² m⁻²) through the annual cycle, despite the observed modest seasonality in total canopy leaf quantity ($LAI_{tot} = LAI_{sun} + LAI_{shade}$). As a consequence, the observed higher seasonal variability (~20%) in V_{cmax} , sun (Fig. 4c) is primarily driven by leaf quality, which is associated with seasonal variation in leaf age demographics (Fig. 1 and eqn. 1). In addition, our results indicated that the higher seasonal variability (~25%) in V_{cmax} , shade (Fig. 4c) is a consequence of seasonal variability in both LAI_{shade} (Fig. 4b) and leaf age demographics (Fig. 1 and eqn. 1).

Finally, we assessed the seasonal variability in GPP_{ref} as the joint response to the above two dynamics: canopy absorbed PAR and V_{cmax} . We used the FvCB model to calculate the GPP_{ref} of both fractions (sun vs. shade). Sensitivity analysis of the FvCB model (Fig. S5) showed that the canopy integrated absorbed PAR and canopy integrated V_{cmax} jointly regulated GPP_{ref}, with canopy integrated V_{cmax} dominating the GPP_{ref} response under high light condition (i.e.

PAR>800 μ mol m⁻² s⁻¹) while canopy integrated absorbed PAR dominated GPP_{ref} response under low light condition (i.e. PAR<400 μ mol m⁻² s⁻¹). Given that the sunlit fraction could consistently capture sufficient PAR to photosaturate photosynthesis (~860 μ mol m⁻² s⁻¹; Fig. 4a) over the annual cycle, the seasonal variability in GPP_{ref, sun} closely tracked the seasonality of $V_{cmax,sun}$ (Figs. 4c,d), which is mostly determined by the phenology of leaf quality (Figs. 4b,c). On the other hand, since the shade fraction typically receives sub-saturating light (~300 μ mol m⁻²s⁻¹; Fig. 4a) over the annual cycle, GPP_{ref, shade} is primarily limited by the capacity for RuBP regeneration (Fig. S5). As a result, modeled GPP_{ref, shade} seasonality is small (~7%; Fig. S6), which is comparable with the relative seasonal change in PAR_{shade} (~6%; Fig. S4), but far less than the relative seasonality in $V_{cmax, shade}$ (25%; Fig. 4c). The canopy total GPP_{ref} thus showed an intermediate seasonal variation, with the relative magnitude of annual change falling in between that of the two fractions (absolute value in Fig. 4d and relative value in Fig. S6).

3.3 Model sensitivity of canopy photosynthesis to within-canopy phenological variations

Finally, we used the two-fraction leaf, two-layer canopy model to explore the extent to which within-canopy phenological variations could affect modeled photosynthetic seasonality. We show that although the timing of the modeled GPP_{ref} seasonality follows observed LAI and LAI-age-demography (Fig. 1) and was independent of within-canopy phenological variation (i.e. ftop), the relative magnitude of the modeled GPP_{ref} seasonality is highly sensitive to ftop (Fig. 5a). As ftop increases (more leaf turnover is partitioned to the upper canopy), the relative magnitude of modeled GPP_{ref} seasonality increases (Fig. 5a). Meanwhile, the correlation between modeled and EC-derived GPP_{ref} seasonality also increases with ftop and reaches near saturation when ftop \geq 0.7 (R²=0.90; Fig. 5b). The underlying reason is associated with the

differential photosynthetic sensitivity to leaf quality allocated to the two canopy layers (upper vs. lower): as shown in Fig. 4, only the photosynthetic rate of the sunlit fraction (mostly occupied in the upper canopy layer) is predominantly Rubisco limited and therefore, the photosynthetic rate of the upper canopy layer shows high sensitivity to leaf quality.

4. Discussion

Accurate model representation of the effects of leaf phenology on ecosystem photosynthesis is a critical need for TBMs in general (Richardson *et al.*, 2012) and is essential, necessary first step for capturing the timing and magnitude of seasonal variation in tropical forest carbon fluxes (Restrepo-Coupe *et al.*, 2013, 2017; Fu *et al.*, 2013; Christoffersen *et al.*, 2014; Wu *et al.*, 2016a). Here we developed a parsimonious approach to effectively couple the effects of leaf phenology (i.e. quantity, quality and within-canopy variation) to the FvCB model for simulating canopy-level photosynthetic seasonality. Our approach could be parameterized and adopted within TBMs where it would enable improved representation and projection of the response of tropical evergreen forest photosynthesis to global change.

Our results demonstrated that the proposed model (two-fraction leaf, two-layer canopy) could effectively simulate EC-derived photosynthetic seasonality, only if the quality component of leaf phenology was incorporated (Fig. 3 and Table 1). This is also consistent with previous field-based remote sensing studies (Doughty & Goulden, 2008; Brando *et al.*, 2010; Lopes *et al.*, 2016; Saleska *et al.*, 2016), which highlight that variation in photosynthetic efficiency and the spectral reflectance properties of leaves (Roberts *et al.*, 1998; Chavana-Bryant *et al.*, 2016; Wu *et al.*, 2016a,b) may significantly contribute to explaining the satellite-detected dry season "green-up" in tropical evergreen forests. In addition, our finding supports previous work which

showed that model representation of photosynthetic seasonality could be improved by tuning model parameters to allow for seasonal variation in photosynthetic capacity, i.e. leaf quality (Kim *et al.*, 2012; de Weirt *et al.*, 2012).

Although the models with different leaf phenological components were all able to simulate the seasonal photosynthetic trend, the relative magnitude of modeled GPP_{ref} seasonality varied strongly across the models (Fig. 3). The approach of incorporating all phenological components (i.e. quantity, quality, and within-canopy variation) displayed the strongest agreement with local EC-derived GPP_{ref}, while the approaches incorporating only part of the three phenological components (e.g. leaf quantity alone in Fig. 3a and leaf quantity and quality alone in Fig. 3b) only explained around half or less of the observed relative annual change magnitude. These differences in model performance can be attributed to differential photosynthetic sensitivity of the sunlit canopy fraction and the shade canopy fraction to seasonal variation in leaf quantity, quality and within-canopy phenological variation, explained as below:

Leaf quantity. Our results show that there is only a weak effect of the quantity component of leaf phenology on GPP_{ref} (Table 1). This is because tropical evergreen forests consistently have high leaf quantity throughout the annual cycle (Myneni *et al.*, 1997; Doughty & Goulden, 2008; Brando *et al.*, 2010; Morton *et al.*, 2014; Bi *et al.*, 2015; Lopes *et al.*, 2016; Wu *et al.*, 2016a), and therefore the observed small seasonal changes in leaf quantity had little impact on FAPAR seasonality (Fig. 4a and Fig. S4), and thus had little impact on GPP_{ref} seasonality.

Leaf quality. Our results show that the phenology of leaf quality is one of the dominant drivers of canopy photosynthetic seasonality in tropical evergreen forests (Table 1), confirming recent work (Wu *et al.*, 2016a). Using an FvCB-type canopy photosynthesis model (i.e. two-fraction leaf, two-layer canopy model), we demonstrate that both light absorption and canopy

integrated $V_{\rm cmax}$ regulate canopy-scale photosynthesis rate (Fig. S5). However, only the upper, sunlit canopy fraction with sufficient light availability and absorption are limited by Rubsico (i.e. are light saturated) and show sensitivity to seasonal variation in leaf quality (i.e. $V_{\rm cmax}$; Figs. 4, S5 and S6). In contrast, the shaded canopy fraction is predominantly limited by light and not by photosynthetic capacity, and consequently, increasing photosynthetic capacity in the shaded canopy fraction has little to no impact on the modeled GPP_{ref}. In other words, our results confirm the differential photosynthetic sensitivity to leaf quality between the sunlit and shade canopy fractions. Our finding is thus not consistent with the assumption made by Doughty & Goulden (2008), who assumed constant photosynthetic rates of the sunlit and shade canopy fractions with a single scalar to account for seasonal variation in leaf quality, and may explain why the approach of Doughty & Goulden (2008) overestimates the leaf quality effect for the shade canopy fraction.

Within-canopy phenological variation. Differential photosynthetic sensitivity of the sunlit and shade canopy fractions to leaf quality (as shown in Fig. 4) suggests that the return on investment for a new leaf is far greater if that leaf is flushed in the upper, sunlit canopy than in the shade, which was subsequently confirmed by our model sensitivity analysis of ftop (Fig. 5). This model sensitivity analysis demonstrated that by allowing for differential leaf turnover rates within the canopy, especially when attributing the majority of leaf turnover to the upper canopy, our model (two-fraction leaf, two-layer canopy) could markedly improve the model representation of photosynthetic seasonality (Figs. 3, 5). Importantly, our prescribed higher leaf turnover rate in the upper canopy (i.e. ftop=0.7) is also consistent with field-based studies in the tropics which show that the longevity of upper canopy leaves is markedly shorter than that of lower canopy leaves (Lowman, 1992; Miyaji *et al.*, 1997; Reich *et al.*, 2004).

Our analysis of the two-fraction leaf, two-layer canopy model further show that when the majority of leaf turnover is allocated to the upper canopy, the whole forest tends to become more Rubisco-limited and thus approaches a simpler one-layer big-leaf assumption, such as the model presented in Wu et al (2016a). This explains why the simple model of Wu et al (2016a), which does not contain explicit representation of within-canopy physiological and phenological variation, still captured the seasonal cycle of GPP_{ref} in tropical evergreen forests. The approach of Wu et al (2016a), which is based on empirical relationships, is a valuable approach for broadscale remotely sensed monitoring of tropical forest carbon cycling but lacks the capacity to project tropical forest responses under future climates and global change. Thus a light-use efficiency approach (e.g. Wu et al., 2016a) is not as valuable for use within TBMs that typically utilize the FvCB formulation of photosynthesis to simulate leaf and canopy photosynthesis (Rogers et al., 2017). Since TBMs need to project the response of photosynthesis to rising CO₂, temperature, VPD and drought, they require more sophisticated approaches where key model inputs, such as V_{cmax} , may be derived from trait databases, remote sensing, or internally generated (i.e. prognostic) allowing coupling to biogeochemical processes (e.g. Fisher et al., 2015; Serbin et al., 2015; Ali et al., 2016). Therefore, to accurately represent canopy photosynthetic processes in tropical forests under a changing climate we advocate the use of the approach outlined here, i.e. the two-fraction leaf, two-layer canopy model coupled to an FvCB formulation with model representation of the three components of leaf phenology we identify here.

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

Our work also highlights three important directions for future advances in model representation of tropical evergreen forest photosynthesis. First, to minimize additional sources of uncertainty when exploring approaches for the modeling of tropical forest photosynthetic

seasonality we utilized observed leaf phenology (e.g. Fig. 1). However, the ultimate mechanisms that regulate seasonal variation in both tropical leaf quantity and quality are still largely unknown. An improved and prognostic understanding and model representation of the mechanisms that drive seasonal and inter-annual changes in leaf quantity and quality, i.e. the drivers of broader-scale (i.e. regional and global) tropical evergreen forest phenology, will be a key component in new models that seek to improve projections of carbon dynamics and potential climate feedbacks in the tropics (Wu *et al.*, 2016a).

Second, our demonstration of the importance of leaf phenology effects on tropical forest photosynthetic seasonality relied on modeled and EC-derived GPP_{ref}. This simplification was essential to enable us to elucidate fundamental mechanisms connecting annual patterns of leaf phenology with physiology, but is not appropriate when simulating forest responses to climate over time or in response to climatic perturbations. Since canopy photosynthesis is jointly determined by extrinsic environmental variability and changes in intrinsic photosynthetic machinery (Farquhar *et al.*, 1980; Collatz *et al.*, 1991; Sellers *et al.*, 1992; dePury & Farquhar, 1997; Baldocchi & Amthor, 2001; Dai *et al.*, 2003; Medvigy *et al.*, 2009; Wu *et al.*, 2016a; Rogers *et al.*, 2017), there is a great need to improve our understanding and model representation of the fundamental physiological responses to environmental variability, particularly rising atmospheric CO₂ concentration, temperature, VPD and changes in precipitation, but also light capture and utilization by the forest canopy (Rogers *et al.*, 2017). It will be critical to link advances in understanding of leaf phenology and physiology in future TBMs, particularly in tropical evergreen forests.

Finally, our study also highlights that one of the most practical challenges limiting studies in the tropics is the limited availability of observations (Schimel *et al.*, 2015). For example, there

is very little information available on the within-canopy (i.e. light-dependent vs. heightdependent) and seasonal (i.e. continuous, age-dependency) variation in leaf physiology, phenology, biochemical traits, and optical properties in the tropics (e.g. Kitajima et al., 1997b; Chavana-Bryant et al., 2016; Wu et al., 2016b); even less is known about the spatial heterogeneity in the relationship among photosynthetic capacity, leaf traits, canopy structure, phenology, and climate across broader-scale (i.e. regional and global) tropical forests (e.g. Kumagai et al., 2006; Kenzo et al., 2015; Wu et al., 2016b). As a consequence, some important physiological mechanisms might be underrepresented in current models. For example, the study presented by Kitajima et al (1997b) showed that leaf level Vcmax (at mature age class) for the same tropical tree species can vary depends on the timing (i.e. wet or dry season) when leaves are produced. This approach, also known as seasonal leaf phenotypes, suggested that leaf level photosynthetic capacity should be modeled as a function of the timing when leaves are produced, in addition to leaf age which has been explored in this paper. Our model framework has sufficient flexibility to incorporate this additional component of photosynthetic seasonality, but would require extensive field data and subsequent model evaluation to validate our approach.

614

615

616

617

618

619

620

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

Acknowledgements:

This work was supported by the Next-Generation Ecosystem Experiments–Tropics project supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research and through contract #DE-SC0012704 to Brookhaven National Laboratory. We also thank Drs. Youngryel Ryu and Chongya Jiang for sharing their code of the dePury & Farquhar (1997) model, which formed the initial base for our further coding development in this study. We also

621	thank three anonymous reviewers for their constructive comments to improve the scientific rigor
622	and clarity of the manuscript.
623	
624	Author Contributions:
625	J.W., A.R., S.P.S., and X.X. designed the research. J.W. and S.P.S. developed the Matlab and R
626	codes of canopy photosynthesis model. J.W. performed the data analysis. J.W. drafted the
627	manuscript, and A.R., S.P.S., S.R.S, X.X., L.P.A., M.C., and M.R. contributed to writing the
628	final version.
629	
630	
631 632 633 634 635	References Ali AA, Xu C, Rogers A, <i>et al.</i> (2016) A global scale mechanistic model of photosynthetic capacity (LUNA V1. 0). <i>Geoscientific Model Development</i> , 9 , 587-606. Aragão LEOC, Poulter B, Barlow JB, <i>et al.</i> (2014) Environmental change and the carbon balance of Amazonian forests. <i>Biological Reviews</i> , 89 , 913-931.
636 637 638	Augspurger CK, Cheeseman JM, Salk CF (2005) Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. <i>Functional Ecology</i> , 19 , 537-546.
639 640 641	Baldocchi DD, Amthor JS (2001) Canopy Photosynthesis: History. In: Terrestrial global productivity (eds Roy J, Saugier B, Mooney HA), pp.9-31. Academic Press, Waltham, MA
642 643 644	Baker IT, Prihodko L, Denning AS, <i>et al.</i> (2008) Seasonal drought stress in the Amazon: Reconciling models and observations. <i>Journal of Geophysical Research: Biogeosciences</i> , 113 , G00B01, doi: 10.1029/2007JG000644
645 646	Bernacchi CJ, Bagley JE, Serbin SP, et al. (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant, cell & environment, 36, 1641-1657.
647 648 649	Best MJ, Pryor M, Clark DB, <i>et al.</i> (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 1: energy and water fluxes. <i>Geoscientific Model Development</i> , 4 , 677-699.
650 651 652	Bi J, Knvazikhin Y, Choi S, <i>et al.</i> (2015) Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. <i>Environmental Research Letters</i> , 10 , 064014, doi:10.1088/1748-9326/10/6/064014.

- Bonan GB, Oleson KW, Fisher RA, Lasslop G, Reichstein M. (2012) Reconciling leaf
- physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in
- the Community Land Model version 4. *Journal of Geophysical Research:*
- *Biogeosciences*, 117, G02026, doi:10.1029/2011JG001913.
- Bradley AV, Gerard FF, Barbier N, *et al*, (2011). Relationships between phenology, radiation and precipitation in the Amazon region. *Global Change Biology*, **17**, 2245-2260.
- Brando PM, Goetz SJ, Baccini A, et al. (2010) Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 107, 14685–14690.
- Chavana-Bryant C, Malhi Y, Wu J, *et al.* (2016) Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. *New Phytologist*, doi:10.1111/nph.13853
- 665 Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through 666 temporal and spatial scaling for remote sensing applications. *Ecological modelling*, **124**, 667 99-119.
- Christoffersen BO, Restrepo-Coupe N, Arain MA, *et al.* (2014) Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. *Agricultural and Forest meteorology*, **191**, 33-50.
- Clark DB, Mercado LM, Sitch S, *et al.* (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 2: carbon fluxes and vegetation dynamics. *Geoscientific Model Development*, **4**, 701-722.
- 674 Collatz GJ, Ball JT, Grivet C, *et al.* (1991) Physiological and environmental regulation of 675 stomatal conductance, photosynthesis and transpiration: a model that includes a laminar 676 boundary layer. *Agricultural and Forest Meteorology*, **54**, 107-136.
- 677 Cox PM, Pearson D, Booth BB, *et al.* (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. *Nature*, **494**, 341-344.
- Dai Y, Zeng X, Dickinson RE, et al. (2003) The common land model. Bulletin of the American Meteorological Society, **84**, 1013-1023.
- de Gonçalves LG, Borak JS, Costa MH, *et al.* (2013) Overview of the large-scale biosphere atmosphere experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). *Agricultural and Forest meteorology*, **182**, 111-127.
- dePury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. *Plant, Cell & Environment*, **20**, 537-557.
- de Weirdt M, Verbeeck H, Maignan F, *et al.* (2012) Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model. *Geoscientific Model Development*, **5**, 1091–1108.
- Doughty CE, Goulden ML (2008) Seasonal patterns of tropical forest leaf area index and CO2 exchange. *Journal of Geophysical Research-Biogeosciences*, **113**, G00B06, doi:10.1029/2007JG000590.

- Drewry DT, Kumar P, Long S, *et al.* (2010) Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. *Journal of Geophysical Research: Biogeosciences*, **115**, G04022, doi: 10.1029/2010JG001340.
- Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. *Oecologia*, **96**, 169-178.
- Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. *Planta*, **149**, 78-90.
- Fisher RA, Muszala S, Verteinstein M, et al. (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes. Geosci. Model Dev. Discuss, 8, 3293-3357.
- Friedlingstein P, Cox P, Betts R, *et al.* (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. *Journal of Climate*, **19**, 3337-3353.
- Friedlingstein P, Meinshausen M, Arora VK, *et al.* (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. *Journal of Climate*, **27**, 511-526.
- Fu R, Yin L, Li W, et al. (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, 110, 18110–18115.
- Girardin CA, Malhi Y, Doughty CE, *et al.* (2016) Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. *Global Biogeochemical Cycles*, **30**, 700-715.
- Guan K, Pan M, Li H, *et al.* (2015) Photosynthetic seasonality of global tropical forests constrained by hydroclimate. *Nature Geoscience*, **8**, 284-289.
- Harper A, Cox P, Friedlingstein P, et al. (2016) Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4. 2) using plant trait information. Geoscientific Model Development Discussions, doi:10.5194/gmd-2016-22
- He L, Chen JM, Pisek J, *et al.* (2012) Global clumping index map derived from the MODIS BRDF product. *Remote Sensing of Environment*, **119**, 118-130.
- Heskel MA, Atkin OK, Turnbull MH, Griffin KL (2013) Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. *Ecosphere*, **4**, 1-14.
- Hutyra LR, Munger JW, Saleska SR, *et al.* (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. *Journal of Geophysical Research: Biogeosciences*, **112**, G03008, doi: 10.1029/2006JG000365.
- Huntingford C, Zelazowski P, Galbraith D, *et al.* (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. *Nature Geoscience*, **6**, 268-273.
- Kenzo T, Inoue Y, Yoshimura M, *et al.* (2015) Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. *Oecologia*, 177, 191-202.

- Kim Y, Knox RG, Longo M, *et al.* (2012) Seasonal carbon dynamics and water fluxes in an Amazon rainforest. *Global Change Biology*, **18**, 1322–1334.
- Kitajima K, Mulkey S, Wright S. (1997a) Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. *American Journal of Botany*, **84**, 702-702.
- Kitajima K, Mulkey S, Wright S (1997b) Seasonal leaf phenotypes in the canopy of a tropical dry forest: photosynthetic characteristics and associated traits. *Oecologia*, **109**, 490-498.
- Kumagai T, Ichie T, Yoshimura M, *et al.* Modeling CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. *Journal of Geophysical Research: Atmospheres*, **111**, D10107, doi:10.1029/2005JD006676.
- Lee JE, Frankenberg C, van der Tol C, *et al.* (2013) Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. *Proceedings of the Royal* Society of London B: Biological Sciences, **280**, 20130171.
- Lin YS, Medlyn BE, Duursma RA, *et al.* (2015) Optimal stomatal behaviour around the world. *Nature Climate Change*, **5**, 459-464.
- Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of
 tropical forest trees. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363, 1811-1817.
- Lloyd J, Patino S, Paiva RQ, *et al.* (2010) Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. *Biogeosciences*, 7, 1833-1859.
- Lopes AP, Nelson BW, Wu J, *et al.* (2016) Leaf flush drives dry season green-up of the Central Amazon. *Remote Sensing of Environment*, **182**, 90-98.
- Lowman MD (1992) Leaf growth dynamics and herbivory in five species of Australian rainforest canopy trees. *Journal of Ecology*, **80**, 433-447.
- Malhado AC, Costa MH, de Lima FZ, et al. (2009) Seasonal leaf dynamics in an Amazonian tropical forest. Forest ecology and management, **258**, 1161-1165.
- Medlyn BE, Duursma RA, Eamus D, *et al.* (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology*, **17**, 2134-2144.
- Medvigy D, Wofsy SC, Munger JW, et al. (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical Research: Biogeosciences, 114, G01002, doi: 10.1029/2008JG000812.
- Messier C, Parent S, and Bergeron Y. (1998) Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. *Journal of Vegetation Science*, **9**, 511-520.
- Messier J, McGill BJ, Enquist BJ, Lechowicz MJ. (2016) Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? *Ecography*, 10.1111/ecog.02006.

- 770 Miyaji K, Silva WS, Paulo TA (1997) Longevity of leaves of a tropical tree, Theobroma cacao, 771 grown under shading, in relation to position within the canopy and time of emergence. *New* 772 *Phytologist*, **135**, 445-454.
- Morton DC, Nagol J, Carabajal CC, *et al.* (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. *Nature*, **506**, 221-224.
- Morton DC, Rubio J, Cook BD, *et al.* (2016) Amazon forest structure generates diurnal and seasonal variability in light utilization. *Biogeosciences*, **13**, 2195-2206.
- Myneni RB, Yang W, Nemani RR, et al. (2007) Large seasonal swings in leaf area of Amazon rainforests. *Proceedings of the National Academy of Sciences*, **104**, 4820-4823.
- Niinemets Ü, Keenan TF, and Hallik L. (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. *New Phytologist*, **205**, 973-993.
- Oleson KW, Lawrence DM, Bonan GB, et al. (2013) Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+ STR. National Center for Atmospheric Research, Boulder, CO, 422 pp. doi: 10.5065/D6RR1W7M, 2013.
- Pan Y, Birdsey RA, Fang J, *et al.* (2011) A large and persistent carbon sink in the world's forests." *Science*, **333**, 988-993.
- Powell TL, Galbraith DR, Christoffersen BO, *et al.* (2013) Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

 New Phytologist, **200**, 350–365.
- Pyle EH, Santoni GW, Nascimento HE, et al. (2008) Dynamics of carbon, biomass, and structure
 in two Amazonian forests. Journal of Geophysical Research: Biogeosciences, 113,
 G00B08, doi:10.1029/2007JG000592.
- Reich PB, Uhl C, Walters MB, *et al.* (2004) Leaf demography and phenology in Amazonian rain forest: a census of 40 000 leaves of 23 tree species. *Ecological Monographs*, **74**, 3-23.
- Restrepo-Coupe N, da Rocha HR, Hutyra LR, *et al.* (2013) What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. *Agricultural and Forest Meteorology*, **182**, 128–144.
- Restrepo-Coupe N, Levine N, Christoffersen BO, *et al.* (2017) Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. *Global Change Biology*, **23**, 191-208.
- Rice AH, Pyle EH, Saleska SR, *et al.* (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. *Ecological Applications*, **14**, 55-71.
- Richardson AD, Hollinger DY, Aber JD, *et al.* (2007) Environmental variation is directly responsible for short-but not long-term variation in forest-atmosphere carbon exchange. *Global Change Biology*, **13**, 788-803.
- Richardson AD & O'Keefe J. (2009) Phenological differences between understory and overstory. In *Phenology of ecosystem processes* (pp. 87-117). Springer New York.

- Richardson AD, Anderson RS, Arain MA, *et al.* (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. *Global Change Biology*, **18**, 566-584.
- Roberts DA, Nelson BW, Adams JB, *et al.* (1998) Spectral changes with leaf aging in Amazon caatinga. *Trees*, **12**, 315-325.
- Rogers A, Medlyn BE, Dukes JS, *et al.* (2017) A Roadmap for improving the representation of photosynthesis in Earth System Models. *New Phytologist*, **213**, 22-42.
- 816 Ryu Y, Baldocchi DD, Kobayashi H, et al. (2011) Integration of MODIS land and atmosphere
- products with a coupled-process model to estimate gross primary productivity and
- evapotranspiration from 1 km to global scales. *Global Biogeochemical Cycles*, **25**, GB4017, doi:10.1029/2011GB004053.
- Saleska SR, Miller SD, Matross DM, *et al.* (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science, **302**, 1554–1557.
- Saleska SR, Wu J, Guan K, *et al.* (2016) Brief Communications Arising: Dry season greening of Amazon forests. *Nature*, **531:** E4-E5.
- Saatchi SS, Harris NL, Brown S, *et al.* (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. *Proceedings of the National Academy of Sciences*, **108**, 9899-9904.
- Schimel D, Pavlick R, Fisher JB, *et al.* (2015) Observing terrestrial ecosystems and the carbon cycle from space. *Global change biology*, **21**, 1762-1776.
- Sellers PJ (1987) Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity of their interdependence. *Remote sensing of Environment*, **21**, 143-183.
- Sellers PJ, Berry JA, Collatz, *et al.* (1992) Canopy reflectance, photosynthesis, and transpiration.

 III. A reanalysis using improved leaf models and a new canopy integration scheme. *Remote sensing of environment*, **42**, 187-216.
- Serbin SP, Singh A, Desai AR, *et al.* (2015) Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy. *Remote Sensing of Environment*, **167**, 78-87
- Sitch S, Friedlingstein P, Gruber N, *et al.* (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. *Biogeosciences*, **12**, 653-679.
- Stark SC, Leitold V, Wu JL, *et al.* (2012) Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. *Ecology letters*, **15**, 1406-1414.
- Stark SC, Enquist BJ, Saleska SR, *et al.* (2015) Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. *Ecology letters*, **18**, 636-645.
- Stark SC, Breshears DD, Garcia ES, *et al.* (2016) Toward accounting for ecoclimate teleconnections: intra-and inter-continental consequences of altered energy balance after vegetation change. *Landscape Ecology*, **31**, 181-194.

- Wehr R, Munger JW, McManus JB, *et al.* (2016) Seasonality of temperate forest photosynthesis and daytime respiration. *Nature*, **534**, 680-683.
- Wright IJ, Leishman MR, Read C and Westoby M. (2006) Gradients of light availability and leaf traits with leaf age and canopy position in 28 Australian shrubs and trees. *Functional Plant Biology*, **33**, 407-419.
- Wright SJ, Van Schaik CP (1994) Light and the phenology of tropical trees. *American Naturalist*, **143**, 192-199.
- Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, *et al.* (2016a). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests." *Science*, **351**, 972-976.
- Wu J, Chavana-Bryant C, Prohaska N, *et al.* (2016b). Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests. *New Phytologist*, doi:10.1111/nph.10451.
- Wu J, Guan K, Hayek M, *et al.* (2017) Partitioning the extrinsic and intrinsic controls on gross ecosystem productivity at hourly to inter-annual time scales in an Amazonian evergreen forest. *Global Change Biology*, **3**, 1240-1257.
- Xu X, Medvigy D, Powers JS, *et al.* (2016) Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. *New Phytologist*, **212**, 80-95.

Main Figures and Tables

Table 1. Correlations between the seasonality of eddy covariance derived GPP_{ref} and the seasonality of modeled GPP_{ref} using three different models parameterized by four different inputs of leaf phenology. R² for coefficient of determination; p, or p-value, for significance of the test; within-canopy phenological variation for the two-fraction leaf, two-layer canopy model was parameterized when ftop=0.7; NA for not applicable.

Model\Phenology	Quantity	Quality	Quantity+Quality	Quantity+Quality+Within-
				Canopy Variation
DF1997	$(R^2=0.19; p=0.041)$	$(R^2=0.69; p<0.0001)$	$(R^2=0.80; p<0.0001)$	NA
ML	$(R^2=0.17; p=0.042)$	$(R^2=0.72; p<0.0001)$	$(R^2=0.81; p<0.0001)$	NA
Two-fraction leaf,	$(R^2=0.17; p=0.042)$	$(R^2=0.72; p<0.0001)$	$(R^2=0.81; p<0.0001)$	$(R^2=0.90; p<0.0001)$
two-layer canopy				

Caption for Main Figures

- Figure 1. Mean annual cycles of monthly LAI in three age classes (three different color lines) at
- the Tapajós k67 site (adapted from Fig. 3A in Wu et al., 2016a). The three-age LAI seasonality
- was modeled using the same leaf age residence time parameter as Wu et al (2016a), constrained
- to sum to total camera-observed LAI (black squares) at the same forest site. Shading indicates
- the dry season.
- Figure 2. Vertical change in leaf level V_{cmax25} with cumulative LAI from canopy top to forest
- floor, using the eqns. 5-6, following Lloyd et al (2010). Three color lines represent leaves at
- three age classes (Young: 1-2 months; Mature: 3-5 months; Old: ≥6 months) respectively.
- V_{cmax25} of three age classes at the top of the canopy are derived from leaf level gas exchange
- measurements at the Tapajós k67 site (n=5 tree species; also see Wu et al., 2016a).
- 887 Figure 3. Seasonal variation in EC-derived GPP_{ref} (seven-year mean annual cycle; black
- squares) and modeled GPP_{ref} (grey circles) incorporating different phenological components,
- using the two-fraction leaf, two-layer canopy model. (a) modeled GPP_{ref} parameterized by
- seasonal variation in leaf quantity (or LAI) only; (b) modeled GPP_{ref} parameterized by seasonal
- 891 variation in both leaf quantity and quality, while assuming a constant leaf turnover rate
- throughout the vertical canopy profile; (c) modeled GPP_{ref} parameterized by seasonal variation in
- 893 leaf quantity and quality, and differential leaf turnover rates within a forest canopy (i.e.
- 894 ftop=0.7). Shading indicates the dry season; ftop refers to the fraction of observed leaf turnover
- across the whole forest canopy attributed to leaves in the upper canopy layer.
- 896 **Figure 4.** Differential photosynthetic sensitivity of the canopy sunlit fraction and the canopy
- shade fraction to seasonal variation in leaf quantity (Fig. 1) and leaf quality (Fig. 1 and eqn. 1) at
- the Tapajós k67 site assessed by using the two-fraction leaf, two-layer canopy model under the
- reference environment: (a) canopy absorbed PAR, (b) canopy LAI, (c) canopy integrated V_{cmax},
- and (d) canopy GPP_{ref}. Data are shown for total canopy (black circles), the sunlit canopy fraction
- 901 (black triangles) and the shaded canopy fraction (grey triangles); canopy-scale V_{cmax} (of per-
- ground area) is the sum of canopy LAI weighted by leaf level V_{cmax} (see Table S3 for equations),
- and since the LAI of the shade canopy fraction is higher than the LAI of the sunlit canopy
- 904 fraction, as such V_{cmax} of the shade canopy fraction is higher than V_{cmax} of the sunlit canopy
- 905 fraction; shading indicates the dry season.
- 906 Figure 5. Assessing the effect of within-canopy phenological variation (i.e. ftop) on canopy
- 907 photosynthetic seasonality using the two-fraction leaf, two-layer canopy model. (a) Modeled
- annual cycles of GPP_{ref} (relative to annual maxima) under different ftop values from 0.2 to 1.0;
- and (b) R² between modeled and EC-derived GPP_{ref} seasonality plotted against ftop. Shading
- 910 indicates dry season; ftop refers to the fraction of observed leaf turnover across the whole forest
- canopy attributed to leaves in the upper canopy layer.

913 Caption for Supplementary Figures and Supplementary Tables Figure S1. The sensitivity of modeled canopy-scale GPP using the multi-layer model (ML) to 914 the number of layers used for model simulation, under (a) highly cloudy environment (PAR 915 $_{b,0}$ =10.1 µmol m⁻² s⁻¹ vs. PAR $_{d,0}$ =260.3 µmol m⁻² s⁻¹), (b) intermediate cloudy environment (PAR $_{b,0}$ =743.9 µmol m⁻² s⁻¹vs. PAR $_{d,0}$ =268. µmol m⁻² s⁻¹), and (c) clear sky environment 916 917 $(PAR_{b,0}=1850.5 \mu mol m^{-2} s^{-1} vs. PAR_{d,0}=173.7 \mu mol m^{-2} s^{-1})$. For model simulation, PAR _{b,0} for 918 canopy surface direct beam and PAR d.0 for canopy surface diffuse beam; solar zenith angle=30°. 919 LAI=6 m²m⁻², leaf temperature=28°C; ambient CO₂ concentration=380 ppm; V_{cmax25}=40 µmol 920 $CO_2 \text{ m}^{-2} \text{ s}^{-1}$. 921 922 Figure S2. The sensitivity analysis of LAI cutoff (which divides the canopy into upper and lower 923 924 canopy layers) on modeled canopy-scale GPP_{ref} seasonality parameterized by field derived leaf 925 quantity and quality by using the two-fraction leaf, two-layer canopy model under three different ftop values: (a) ftop=0.4, (b) ftop=0.6, and (c) ftop=0.8. Three color lines represent different LAI 926 cutoff. Shading indicates the dry season. 927 Figure S3. Cross model comparisons for canopy-scale GPP-PAR relationship between DF1997 928 (red line) and ML (black line). For model simulation, solar zenith angle=30°, LAI=6 m²m⁻², leaf 929 temperature=28°C; ambient CO₂ concentration=380 ppm; V_{cmax25}=40 µmol CO₂ m⁻² s⁻¹. 930 931 Figure S4. Average annual cycle of modeled FAPAR (relative to annual maxima) using the two-932 fraction leaf, two-layer canopy model at the Tapajós k67 site under three scenarios: whole 933 934 canopy (black circles), the sunlit canopy fraction (black triangles), and the shade canopy fraction 935 (grey triangles). Shading indicates the dry season. 936 Figure S5. GPP-PAR relationship simulated by the FvCB model under each given V_{cmax25} (in 937 umol CO₂ m² s⁻¹; represented as different color lines). 938 Figure S6. Average annual cycle of GPP_{ref} (relative to annual maxima) at the Tapajós k67 site 939 under four scenarios: eddy covariance derived GPP_{ref} (red line), and modeled GPP_{ref} by using the 940 two-fraction leaf, two-layer canopy model for the whole canopy (black circles), for the canopy of 941 942 sunlit fraction (black triangles), and for the canopy of shade fraction (grey triangles). Shading indicates the dry season. 943

Table S1. Individual canopy trees for leaf gas exchange measurements of top-of-canopy sunlit leaves in 2012 campaign at the Tapajós k67 site (adapted from Wu *et al.*, 2016a). Species represented by these individuals account for 23.7% of basal area of vegetative community at the k67 site. NA for not applicable.

Scientific name	Family	Maximum canopy	Basal area abundance	Leaf age class	Number of leaves	$V_{ m cmax25}$ (µmol CO ₂
		height (m)				$m^{-2} s^{-1}$
<i>Erisma uncinatum</i> Warm.	Vochysiaceae	40	10.1%	Young	3	15.1
				Mature	3	26.3
				Old	3	21.1
Chamaecrista scleroxylon (Ducke) H.S.Irwin & BarnebyChamaecrista xinguensis	Leguminosae- Caesalpinioideae	27	4.47%	Young	1	11.2
0.4.4				Mature	1	35.8
				Old	1	17.9
<i>Manilkara huberi</i> (Ducke) A.Chev.	Sapotaceae	37	6.54%	Young	1	13.7
,				Mature	1	34.6
				Old	1	33.0
Tachigali eriopetala (Ducke) L.G.Silva & H.C.Lima	Leguminosae- Caesalpinioideae	44	1.55%	Young	2	14.0
				Mature	2	56.7
				Old	2	23.2
Ocotea sp.	Lauraceae	38	1.06%	Young	NA	NA
•				Mature	2	29.0
				Old	4	21.4

Table S2. Modified equations of the Farquhar, von Caemmerer and Berry (FvCB; Farquhar *et al.*, 1980) leaf photosynthesis model, coupled with Medlyn type stomatal conductance scheme (Medlyn *et al.*, 2011). Symbols of constant are defined in Table S6, and values of the Rubisco parameters are given in Table S7.

Equations	Definition	No.	Ref.
*	Leaf level gross primary productivity	1	A A
$GPP_{l} = \min\{A_{v}, A_{j}, A_{s}\} - R_{l}$	(GPP, µmol CO ₂ m ⁻² s ⁻¹)	1	A
$A_{v} = \max\{V_{c\max} \times \frac{C_{i} - \Gamma_{*}}{C_{i} + K'}, 0\}$ $K' = K_{C} \times (1 + \frac{O}{K_{O}})$	Rubisco-limited photosynthesis (μ mol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$)	2	A
$K' = K_C \times (1 + \frac{O}{K_O})$	Effective Michaelis-Menten Constant	3	A
$A_{j} = \max\{J \times \frac{C_{j} - \Gamma_{*}}{4 \times (C_{j} + 2 \times \Gamma_{*})}, 0\}$	Electron-transport limited rate of photosynthesis (μmol CO ₂ m ⁻² s ⁻¹)	4	A
$J_e = \Phi_{PSII, \max} \times \alpha \times \beta \times Q$	The rate of whole electron transport (μ mol m ⁻² s ⁻¹)	5	С
$J = \frac{J_e + J_{\text{max}} - \sqrt{(J_e + J_{\text{max}})^2 - 4 \times \Theta \times J_e \times J_{\text{max}}}}{2 \times \Theta}$	The rate of electrons through the thylakoid membrane (μ mol CO_2 m ⁻² s ⁻¹)	6	A
$A_s = 0.5 \times V_{c \text{max}}$	Triose phosphate export limited rate of photosynthesis (μmol CO ₂ m ⁻² s ⁻¹)	7	В
$Parameter = Parameter_{25} \times \exp(\frac{(T_K - 298) \times \Delta H_a}{R \times T_K \times 298})$	Temperature functions for parameters that are based on Rubisco kinetic properties and do not have an optimum within a biologically significant temperature range $(K_C, K_O, \Gamma_*, R_l, \text{ and in most cases } V_{cmax25})$	8	С
$J_{\text{max}} = J_{\text{max 25}} \times \frac{e^{-(\frac{T_L - T_{opt}}{\Omega_T})}}{e^{-(\frac{25 - T_{opt}}{\Omega_T})}}$	Temperature function for maximum electron transport rate, J_{max}	9	C, D
$\Omega_T = 11.6 + 0.18 \times T_{opt}$	Coefficient for temperature function of J_{max}	10	C, D
$J_{\max 25} = 1.67 \times V_{c \max 25}$	Linear scaling relationship between $J_{\mathrm{max}25}$ and $V_{\mathrm{cmax}25}$	11	E, F
$T_K = T_l + 273.15$	Leaf temperature in Kelvin	12	С
$R_{l25} = 0.015 \times V_{cmax 25}$	Leaf dark respiration at 25°C (μmol CO ₂ m ⁻² s ⁻¹)	13	Е
$g_s = 1.6 \times (1 + \frac{g_1}{\sqrt{VPD}}) \times \frac{GPP_l}{C_a}$ $GPP_l = g_s \times (C_a - C_i)$	Use optimal stomatal model to estimate internal CO_2 concentration (C_i) from atmospheric CO_2 concentration (C_a) and vapor pressure deficit (VPD)	14	G
$\Rightarrow C_i = C_a \times (1 - \frac{1}{1.6 \times (1 + \frac{g_1}{\sqrt{VPD}})})$			

A: Farquhar et al., 1980; B: Ryu et al., 2011; C: Bernacchi et al., 2013; D: June et al., 2004;

E: Bonan et al., 2014; F: Medlyn et al., 2002; G: Medlyn et al., 2011.

 Table S3. Modified equations of V_{cmax} for the canopy of sunlit and shade fractions. Symbols of constant are defined in Table S6, and values of the Rubisco parameters are given in Table S7.

Equations	Definition	No.	Ref.
$V_{c_{\max,tot}} = \frac{V_{c_{\max,0}}}{k_n} \times (1 - \exp^{(-k_n \times LAI_{tot})})$	Canopy total V_{cmax} (µmol CO ₂ m ⁻² s ⁻¹)	15	A
$V_{c \max, sun} = \frac{V_{c \max, 0} \times \Omega}{k_n + k_b \times \Omega} \times (1 - \exp^{(-(k_n + k_b \times \Omega) \times LAI_{tot})})$	V_{cmax} for the canopy of sunlit cohort (µmol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$)	16	A, B
$V_{c \max, shade} = V_{c \max, tot} - V_{c \max, sun}$	V_{cmax} for the canopy of shade cohort (µmol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$)	17	A, B
$k_n = \exp^{(0.00963 \times V_{c \max, 0} - 2.43)}$	Coefficient of V_{cmax} decline within a forest canopy	18	Н
$k_b = \frac{0.5}{\cos(SZA)}$	Beam radiation extinction coefficient of the canopy	19	A

A: Farquhar et al., 1980; B: Ryu et al., 2011; H: Lloyd et al., 2010.

Table S4. Modified equations of absorbed photosynthetically active radiation (PAR) by the canopy of sunlit and shade fractions. Symbols of constant are defined in Table S6, and values of the Rubisco parameters are given in Table S7.

Equations	Definition	No.	Ref.
$Q_{tot} = (1 - \rho_{cb}) \times PAR_{b,0} \times (1 - \exp^{-k_b' \times LAI_{tot} \times \Omega})$	Canopy absorbed total radiation (μmol m ⁻² s ⁻¹)	20	A, B
$+ (1 - \rho_{cd}) \times PAR_{d,0} \times (1 - \exp^{-k_d \times LAI_{tot} \times \Omega})$			
$Q_{b,sun} = PAR_{b,0} \times (1 - \sigma) \times (1 - \exp^{-k_b \times LAI_{tot} \times \Omega})$	The absorbed incoming beam radiation by sunlit leaves (µmol m ⁻² s ⁻¹)	21	A, B
$Q_{d,sum} = PAR_{d,0} \times (1 - \rho_{cd}) \times (1 - \exp^{-(k_d' + k_b) \times LAI_{tot} \times \Omega})$	The absorbed incoming diffuse radiation by sunlit leaves (µmol m ⁻² s ⁻¹)	22	A, B
$Q_{s,sum} = PAR_{b,0} \times [(1 - \rho_{cb}) \times (1 - \exp^{-(k_b' + k_b) \times LAI_{tot} \times \Omega}) \times \frac{k_b'}{k_b' + k_b}$	The absorbed incoming scattered radiation by sunlit leaves (µmol m ⁻² s ⁻¹)	23	A, B
$-(1-\sigma)\times(1-\exp^{-2\times k_b\times LAI_{tot}\times\Omega})\times\frac{1}{2}]$			
$Q_{sun} = Q_{b,sun} + Q_{d,sun} + Q_{s,sun}$	Canopy absorbed total radiation for sunlit leaves (µmol m ⁻² s ⁻¹)	24	A, B
$Q_{shade} = Q_{tot} - Q_{sun}$	Canopy absorbed total radiation for shade leaves (µmol m ⁻² s ⁻¹)	25	A, B
$k_b' = \frac{0.46}{\cos(SZA)}$	Beam and scattered beam radiation extinction coefficient	26	A
$k_d = 0.719$	Diffuse and scattered diffuse radiation extinction coefficient	27	A

A: Farquhar et al., 1980; B: Ryu et al., 2011.

974

Table S5. Equations to calculate incoming photosynthetically active radiation (PAR) over a canopy. R_{short} denotes total short-wave radiations from in-situ observations. P denotes observed air pressure and P_0 denotes standard air pressure.

Equations	Definition	No.	Ref.
$R_{b,vis} = \frac{600 \times e^{-0.185 \times \frac{P}{P_0} \times m}}{m}$	Expected beam visible radiation under clear sky (W m ⁻²)	28	N
$R_{d,vis} = \frac{0.4 \times (600 - R_{b,vis} \times m)}{m}$	Expected diffuse visible radiation under clear sky (W m ⁻²)	29	N
$R_{b,nir} = \frac{720 \times e^{-0.06 \times \frac{P}{P_0} \times m} - w}{m}$	Expected diffuse visible radiation under clear sky (W m ⁻²)	30	N
$R_{d,vis} = \frac{0.4 \times (600 - R_{b,vis} \times m)}{m}$ $R_{b,nir} = \frac{720 \times e^{-0.06 \times \frac{P}{P_0} \times m} - w}{m}$ $R_{b,nir} = \frac{720 \times e^{-0.06 \times \frac{P}{P_0} \times m} - w}{m}$	Expected diffuse near-infrared radiation under clear sky (W m ⁻²)	31	N
$f_{PAR} = \frac{R_{b,vis} + R_{d,vis}}{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}}$	The fraction of total PAR over total incoming radiation (f_{PAR})	32	N
$\begin{split} f_{PAR} &= \frac{R_{b,vis} + R_{d,vis}}{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}} \\ f_{PAR,b} &= \frac{R_{b,vis}}{R_{b,vis} + R_{d,vis}} \\ &\qquad \qquad 0.9 - \frac{R_{short}}{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}} \\ &\qquad \qquad \times (1 - (\frac{R_{b,nir} + R_{d,nir} + R_{b,vis} + R_{d,vis}}{0.7})^2) \end{split}$	The fraction of beam PAR over total PAR $(f_{PAR,b})$	33	N
$PAR_{b,0} = R_{short} \times f_{PAR} \times f_{PAR,b}$	The canopy top photosynthetically active	34	N
$PAR_{d,0} = R_{short} \times f_{PAR} \times (1 - f_{PAR,b})$	radiation in beam light $(PAR_{b,\theta})$ The canopy top photosynthetically active radiation in diffuse $(PAR_{d,\theta})$ light	35	N
$w = 1320 \times 10^{-1.195 + 0.4459 \times \log_{10} m - 0.0345 \times (\log_{10} m)^2}$	Expected water absorbance of near-infrared radiation in the atmosphere (W m ⁻²)	36	N
$m = \cos(SZA)^{-1}$	Parameter calculated from solar zenith angle (SZA)	37	N

N: Weiss & Norman, 1985.

Table S6. Table of constants used in leaf and canopy level photosynthesis model.

Symbols	Definition	Values	Ref.
C_i	Inter-celluar CO ₂ concentration (=0.7*ambient CO ₂ concentration; μmol mol ⁻¹)	266	A
0	Oxygen concentration (mmol mol ⁻¹)	205	A
α	Leaf absorbance	0.85	A, C
β	Fraction of photosystem II to photosystem I	0.5	A, C
$\Phi_{PSII,\max}$	Maximum quantum efficiency of PSII photochemistry	0.7	С
Θ	Curvature term	0.7	A, E
R	Universal gas constant (J mol ⁻¹ K ⁻¹)	8.314	A
$V_{c \max 25}$	Maximal carboxylation rate at 25°C (μmol/m²/s)	Observation	K
T_{opt}	Optimal leaf temperature for J_{max} (°C)	35	I
$V_{c \max, 0}$	Maximal carboxylation rate for leaves at canopy surface (μmol CO ₂ m ⁻² s ⁻¹)	Observation	K
Ω	Clumping index	0.66	J
LAI_{tot}	Canopy total leaf area index (m ² / m ²)	Observation	K
$ ho_{cb}$	Canopy reflection coefficient for beam radiation	0.029	A
$ ho_{\scriptscriptstyle cd}$	Canopy reflection coefficient for diffuse radiation	0.036	A
σ	Leaf scatting coefficient of radiation	0.15	A
g1	Slope for stomatal conductance model	3.77	L

A: Farquhar et al., 1980; C: Bernacchi et al., 2013; E: Bonan et al., 2014; I: Lloyd & Farquhar, 2008; J: He et al., 2005; K: Wu et al., 2016a; L: Lin et al., 2015.

 Table S7. The values for c and ΔH_a (activation energy) describing the temperature response of the five parameters used to predict CO₂ uptake by leaves during Rubisco-limited photosynthesis in leaf level FvCB model (see Table S4) (reference: M: Bernacchi *et al.*, 2001).

Parameter	Value at 25°C	c (dimensionless)	ΔH_a (kJ mol ⁻¹)
R_{l} (µmol/m²/s)	R_{l25}	18.72	46.39
$V_{c max} (\mu mol/m^2/s)$	$V_{c\max 25}$	26.35	65.33
$\Gamma_* (\mu \text{mol/m}^2/\text{s})$	42.75	19.02	37.83
K_{C} (µmol/m²/s)	404.9	38.05	79.43
$K_O \text{ (mmol/m}^2\text{/s)}$	278.4	20.30	36.38

References

989

- 990 [A] Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. *Planta*, **149**, 78-90.
- 992 [B] Ryu Y, Baldocchi DD, Kobayashi H, *et al.* (2011) Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. *Global Biogeochemical Cycles*, **25**, GB4017, doi:10.1029/2011GB004053.
- 996 [C] Bernacchi CJ, Bagley JE, Serbin SP, *et al.* (2010) Modelling C3 photosynthesis from the chloroplast to the ecosystem. *Plant, cell & environment*, **36**, 1641-1657.
- 998 [D] June T, Evans JR, Farquhar GD. (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Functional plant biology, **31**, 275-283.
- 1001 [E] Bonan GB, Williams M, Fisher RA, *et al.* (2014) Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. *Geoscientific Model Development*, 7, 2193-2222.
- 1004 [F] Medlyn BE, Dreyer E, Ellsworth D, *et al.* (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. *Plant, Cell & Environment*, **25**, 1167-1179.
- 1007 [G] Medlyn BE, Duursma RA, Eamus D, *et al.* (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology*, **17**, 2134-2144.
- 1009 [H] Lloyd J, Patino S, Paiva RQ, *et al.* (2010) Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. *Biogeosciences*, 7, 1833-1859.
- 1012 [I] Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. *Philosophical Transactions of the Royal Society B: Biological Sciences*, **363**, 1811-1817.
- [J] He L, Chen JM, Pisek J, et al. (2012) Global clumping index map derived from the MODIS
 BRDF product. Remote Sensing of Environment, 119, 118-130.
- 1017 [K] Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, *et al.*1018 (2016a). Leaf development and demography explain photosynthetic seasonality in Amazon
 1019 evergreen forests." *Science*, **351**, 972-976.
- 1020 [L] Lin YS, Medlyn BE, Duursma RA, *et al.* (2015) Optimal stomatal behaviour around the world. *Nature Climate Change*, **5**, 459-464.
- [M] Bernacchi CJ, Singsaas EL, Pimentel C, A *et al.* (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. *Plant, Cell & Environment*, **24**, 253-259.
- [N] Weiss, A., and J. M. Norman. 1985. Partitioning solar radiation into direct and diffuse, visible and near-infrared components. *Agricultural and Forest Meteorology*, **34**, 205–213.

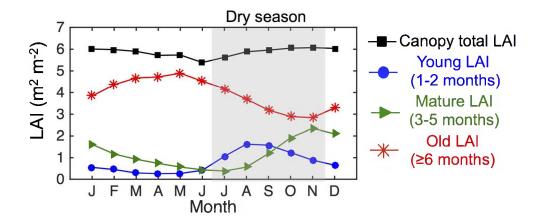


Figure 1. Mean annual cycles of monthly LAI in three age classes (three different color lines) at the Tapajós k67 site (adapted from Fig. 3A in Wu et al., 2016a). The three-age LAI seasonality was modeled using the same leaf age residence time parameter as Wu et al (2016a), constrained to sum to total camera-observed LAI (black squares) at the same forest site. Shading indicates the dry season.

144x62mm (300 x 300 DPI)

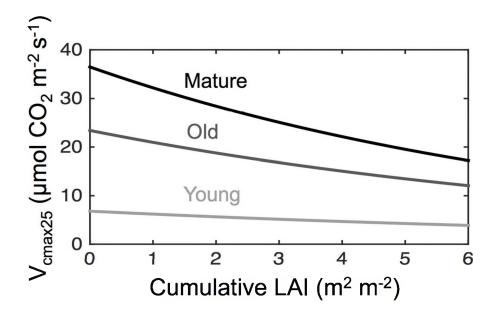


Figure 2. Vertical change in leaf level Vcmax25 with cumulative LAI from canopy top to forest floor, using the eqns. 5-6, following Lloyd et al (2010). Three color lines represent leaves at three age classes (Young: 1-2 months; Mature: 3-5 months; Old: ≥6 months) respectively. Vcmax25 of three age classes at the top of the canopy are derived from leaf level gas exchange measurements at the Tapajós k67 site (n=5 tree species; also see Wu et al., 2016a).

112x65mm (300 x 300 DPI)

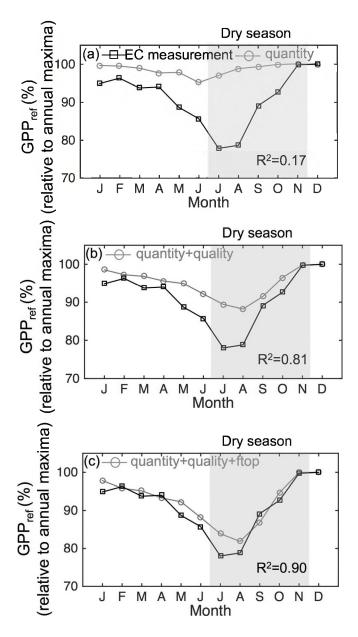


Figure 3. Seasonal variation in EC-derived GPPref (seven-year mean annual cycle; black squares) and modeled GPPref (grey circles) incorporating different phenological components, using the two-fraction leaf, two-layer canopy model. (a) modeled GPPref parameterized by seasonal variation in leaf quantity (or LAI) only; (b) modeled GPPref parameterized by seasonal variation in both leaf quantity and quality, while assuming a constant leaf turnover rate throughout the vertical canopy profile; (c) modeled GPPref parameterized by seasonal variation in leaf quantity and quality, and differential leaf turnover rates within a forest canopy (i.e. ftop=0.7). Shading indicates the dry season; ftop refers to the fraction of observed leaf turnover across the whole forest canopy attributed to leaves in the upper canopy layer.

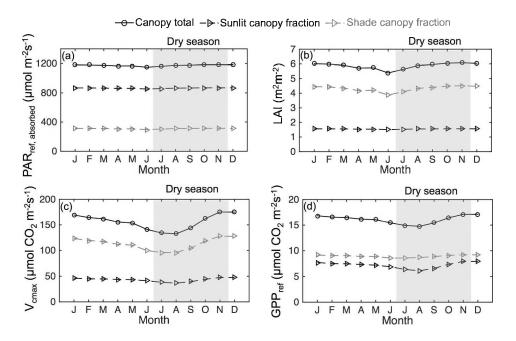


Figure 4. Differential photosynthetic sensitivity of the canopy sunlit fraction and the canopy shade fraction to seasonal variation in leaf quantity (Fig. 1) and leaf quality (Fig. 1 and eqn. 1) at the Tapajós k67 site assessed by using the two-fraction leaf, two-layer canopy model under the reference environment: (a) canopy absorbed PAR, (b) canopy LAI, (c) canopy integrated Vcmax, and (d) canopy GPPref. Data are shown for total canopy (black circles), the sunlit canopy fraction (black triangles) and the shaded canopy fraction (grey triangles); canopy-scale Vcmax (of per-ground area) is the sum of canopy LAI weighted by leaf level Vcmax (see Table S3 for equations), and since the LAI of the shade canopy fraction is higher than the LAI of the sunlit canopy fraction, as such Vcmax of the shade canopy fraction is higher than Vcmax of the sunlit canopy fraction; shading indicates the dry season.

219x137mm (300 x 300 DPI)

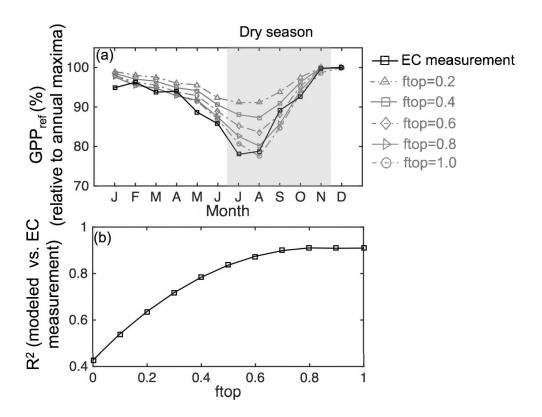


Figure 5. Assessing the effect of within-canopy phenological variation (i.e. ftop) on canopy photosynthetic seasonality using the two-fraction leaf, two-layer canopy model. (a) Modeled annual cycles of GPPref (relative to annual maxima) under different ftop values from 0.2 to 1.0; and (b) R2 between modeled and EC-derived GPPref seasonality plotted against ftop. Shading indicates dry season; ftop refers to the fraction of observed leaf turnover across the whole forest canopy attributed to leaves in the upper canopy layer.

157x120mm (300 x 300 DPI)