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Abstract

Chloroplasts play a crucial role in sustaining life on
earth. The availability of over 800 sequenced chloroplast
genomes from a variety of land plants has enhanced
our understanding of chloroplast biology, intracellular
gene transfer, conservation, diversity, and the genetic
basis by which chloroplast transgenes can be
engineered to enhance plant agronomic traits or to
produce high-value agricultural or biomedical products.
In this review, we discuss the impact of chloroplast
genome sequences on understanding the origins of
economically important cultivated species and changes
that have taken place during domestication. We also
discuss the potential biotechnological applications of
chloroplast genomes.

Introduction

Chloroplasts are active metabolic centers that sustain life
on earth by converting solar energy to carbohydrates
through the process of photosynthesis and oxygen re-
lease. Although photosynthesis is often recognized as
the key function of plastids, they also play vital roles in
other aspects of plant physiology and development, in-
cluding the synthesis of amino acids, nucleotides, fatty
acids, phytohormones, vitamins and a plethora of metab-
olites, and the assimilation of sulfur and nitrogen.
Metabolites that are synthesized in chloroplasts are im-
portant for plant interactions with their environment
(responses to heat, drought, salt, light, and so on) and
their defense against invading pathogens. So, chloro-
plasts serve as metabolic centers in cellular reactions to
signals and respond via retrograde signaling [1, 2]. The
chloroplast genome encodes many key proteins that
are involved in photosynthesis and other metabolic
processes.
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The advent of high-throughput sequencing technolo-
gies has facilitated rapid progress in the field of chloro-
plast genetics and genomics. Since the first chloroplast
genome, from tobacco (Nicotiana tabacum), was se-
quenced in 1986 [3], over 800 complete chloroplast gen-
ome sequences have been made available in the National
Center for Biotechnology Information (NCBI) organelle
genome database, inciuding 300 from crop and tree ge-
nomes. Insights gained from complete chloroplast gen-
ome sequences have enhanced our understanding of
plant biology and diversity; chloroplast genomes have
made significant contributions to phylogenetic studies of
several plant families and to resolving evolutionary rela-
tionships within phylogenetic clades. In addition, chloro-
plast genome sequences have revealed considerable
variation within and between plant species in terms of
both sequence and structural variation. This information
has been especially valuable for our understanding of the
climatic adaptation of economically important crops, fa-
cilitating the breeding of closely related species and the
identification and conservation of valuable traits [4, 5].
Improved understanding of variation among chloroplast
genomes has also allowed the identification of specific
examples of chloroplast gene transfer to plant nuclear or
mitochondrial genomes, which has shed new light on
the relationship between these three genomes in plants.

In addition to improving our understanding of plant
biology and evolution, chloroplast genomics research
has important translational applications, such as confer-
ring protection against biotic or abiotic stress and the
development of vaccines and biopharmaceuticals in ed-
ible crop plants. Indeed, the first commercial-scale pro-
duction of a human blood protein in a Current Good
Manufacturing Processes (cGMP) facility was published
recently [6]. The lack of conservation of intergenic spa-
cer regions, even among chloroplast genomes of closely
related plant species, and the species specificity of regu-
latory sequences have facilitated the development of
highly efficient transformation vectors for the integration
and expression of foreign genes in chloroplasts. Because
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the published literature is rarely cross-referenced, this
review highlights the impact of chloroplast genomes on
various biotechnology applications. In addition to our
enhanced understanding of chloroplast biology, we dis-
cuss in depth the roles of chloroplast genome sequences
in improving our understanding of intracellular gene
transfer, conservation, diversity, and the genetic basis by
which chloroplast transgenes are engineered to enhance
plant agronomic traits or to produce high-value agricul-
tural or biomedical products. In addition, we discuss the
impact of chloroplast genome sequences on increasing
our understanding of the origins of economically im-
portant cultivated species and changes that occurred
during domestication.

Advances in chloroplast genome sequencing
technology

One of the important factors in the rapid advancement
of the chloroplast genomics field is improvement in se-
quencing technologies. In studies conducted before the
availability of high-throughput methods, isolated chloro-
plasts were used for the amplification of the entire chloro-
plast genome by rolling circle amplification [7-12]. An
alternative strategy is to screen bacterial artificial chromo-
some (BAC) or fosmid libraries using chloroplast genome
sequences as probes [13-20]; however, these methods are
subject to many challenges, including difficulty in con-
structing good-quality BAC or fosmid libraries, large
numbers of PCR reactions, and the possibility of contam-
ination from other organellar DNA [21-32]. The PCR ap-
proach is also difficult to apply to species that have no
relatives whose chloroplast genomes have been sequenced
or those with highly rearranged chloroplast genomes.

The development of next-generation sequencing (NGS)
methods provided scientists with faster and cheaper
methods to sequence chloroplast genomes. Moore and
colleagues [33] first reported using NGS to determine
chloroplast genome sequences, in Nandina and Platanus.
Although multiple NGS platforms are available for chloro-
plast genome sequencing [34], lllumina is currently the
major NGS platform used for chloroplast genomes
[21, 32, 35, 36] because it allows the use of rolling
circle amplification products [35, 37]. Investigators
can then use bioinformatics platforms to perform de
novo assembly without the need for reference genome
sequences; from these assemblies it is possible to
identify consensus chloroplast genome sequences [32].
A third-generation sequencer, the PacBio system which
uses single molecule real-time (SMRT) sequencing, is now
widely used in chloroplast genome sequencing [38-43].
Its advantage is long read lengths [44], which facilitate de
novo genome assembly, particularly in the four chloro-
plast junctions between the inverted repeat (IR) and
single-copy regions.
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The low accuracy (~85 % of the raw data) of the long
reads produced by the PacBio platform [45] can be cor-
rected by combining the latest chemistry with a hier-
archical genome assembly process algorithm; accuracy
rates as high as 99.999 % can be achieved after such
post-error corrections [46]. Accuracy can also be in-
creased using Illumina short reads [42]. In a study of
Potentilla micrantha, sequencing with the Illumina plat-
form produced seven contigs covering only 90.59 % of
the chloroplast genome; by contrast, using the PacBio
platform with error correction, the entire genome was
successfully assembled in a single contig [39].

Chloroplast genome structure

The chloroplast genomes of land plants have highly con-
served structures and organization of content; they com-
prise a single circular molecule with a quadripartite
structure that includes two copies of an IR region that
separate large and small single-copy (LSC and SSC) re-
gions (Fig. 1a, b). The chloroplast genome includes 120—
130 genes, primarily participating in photosynthesis,
transcription, and translation. Recent studies have iden-
tified considerable diversity within non-coding intergenic
spacer regions, which often include important regulatory
sequences [13]. Despite the overall conservation in
structure, chloroplast genome size varies between spe-
cies, ranging from 107 kb (Cathaya argyrophylla) to
218 kb (Pelargonium), and is independent of nuclear
genome size (Table 1). Certain lineages of land-plant
chloroplast genomes also show significant structural re-
arrangements, with evidence of the loss of IR regions or
entire gene families. Furthermore, there is also evidence
for the existence of linear chloroplast genomes, as illus-
trated in Fig. 1b. The percentage of each form within the
cell varies in different reports [47, 48].

Like the genes, the introns in land-plant chloroplast
genomes are generally conserved, but the loss of introns
within protein-coding genes has been reported in several
plant species [49), including barley (Hordeum vulgare) [8],
bamboo (Bambusa sp.) [28], cassava (Manihot esculenta)
[20], and chickpea (Cicer arietinum) [7]. The proteins
encoded by genes in which intron loss is known to occur
have diverse functions; they include an ATP synthase
(atpF), a Clp protease (clpP), an RNA polymerase (rpoC2),
and ribosomal proteins (rpl2, rps12, and rpsl6) [49]. The
majority of reported intron losses have been observed in
specific plant groups or species, although some examples
of intron loss (such as that in ¢/pP) occur in diverse
plant species, including monocots (Poaceae), eudicots
(Onagraceae and Oleaceae) and gymnosperms (Pinus) [49)].

Diversity of chloroplast genome sequences
At higher taxonomic levels (family level), protein-coding
regions and conserved sequences of the chloroplast
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Fig. 1 Map of the soybean (Glycine max) chloroplast genome. This genome was used to engineer biotic stress tolerance against insects and
herbicides. The quadripartite structure includes two copies of an IR region (/RA and IRB) that separate large single-copy (LSC) and small single-
copy (550) regions [18]. a Circular form. The GC content graph (gray circle inside) marks the 50 % threshold of GC content. b Linear form. Different
colors indicate genes in different functional groups. IR inverted repeat, LSU large subunit, SSU small subunit
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences

Species Common name Accession Genome size (bp) Uses Reference(s)
Crops

Acorus gramineus Sweet flag NC_026299 152849 Ornamental [169]
Agrostis stolonifera Creeping bent grass NC_008591 136584 Forage (8]
Allium cepa Onion NC_024813 153538 Vegetable [170]
Ananas comosus Pineapple NC_026220 159636 Fruit [171]
Anthriscus cerefolium Chervii NC_015113 154719 wedicinai (172
Artemisia frigida Fringed sagewort NC_020607 151076 Medicinal [173]
Atropa belladonna Belladonna MNC_004561 156687 Medicinal [174]
Brassica napus (2)* Canola NC_016734 152860 Gil [175]
Calanthe triplicata Black orchid NC_024544 158759 Flower [176]
Cannabis sativa (2) Marijuana NC_027223 153854 Fiber [177]
Capsicum annuum (2) Pepper NC_018552 156781 Vegetable [178]
Carica papaya Papaya NC_010323 160100 Fruit [179]
Catharanthus roseus Madagascar periwinkle NC_021423 154950 Flower [18G]
Cenchrus americanus Pearl millet NC_024171 140718 Cereals [181]
Cicer arietinum Chickpea NC_011163 125319 Vegetable [7]
Coix lacryma-jobi Job's tears NC_013273 140745 Cereals [29]
Colocasia esculenta Taro NC_016753 162424 \egetable [182]
Cucumis sativus (3) Cucumber NC_007144 155293 Vegetable [183]
Curcuma roscoeana Jewel of Burma NC_022928 159512 Medicinal [184]
Cymbidium tortisepalum (5) Cymbidium orchid NC_021431 155627 Flower [55]
Cypripedium formosanum (3) Formosa's lady's slipper NC_026772 178131 Flower [32]
Daucus carota Carrot NC_008325 155911 Vegetable [
Dendrobium catenatum Dendrobium orchid NC_024019 152221 Flower [56]
Dieffenbachia seguine Dumbcane NC_027272 163699 Ornamental [185]
Digitaria exilis White fonio NC_024176 140908 Cereals [181]
Echinochloa oryzicola Late barnyard grass NC_024643 139891 Cereals [186]
Ephedra equisetina Ma Huang NC_011954 109518 Medicinal [187]
Erycina pusilla Mini orchid NC_018114 143164 Flower [36]
Fagopyrum esculentum (2) Common buckwheat NC_010776 159599 Cereals [188]
Festuca arundinacea (4) Kentucky fescue NC_011713 136048 Forage [189]
Fragaria vesca (6) Wild strawberry NC_015206 155691 Fruit [190]
Glycine max (9) Soybean NC_007942 152218 Oil (18]
Glycyrrhiza glabra Common liquorice NC_024038 127943 Medicinal [74]
Gossypium barbadense (22) Sea island cotton NC_008641 160317 Fiber [69]
Guizotia abyssinica Ramtilla NC_010601 151762 Bird seed [197]
Helianthus annuus (9) Common sunflower NC_007977 151104 Oil [192]
Heliconia collinsiana Platanillo MNC_020362 161907 Ornamenial [193]
Hordeum vulgare Barley NC_008590 136462 Cereals [8]
Hyoscyamus niger Henbane NC_024261 155720 Medicinal [194]
Ipomoea batatas Sweet potato NC_026703 161303 Vegetable [195]
Ipomoea purpurea Common morning glory NC_005808 162046 Ornamental [196]
Lactuca sativa Lettuce NC_007578 152765 Vegetable [197]
Lilium superbum Turk's-cap lily NC_026787 152069 Flower [198]
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Lolium multiflorum (2)
Lotus japonicus
Manihot esculenta
Masdevallia picturata (2)
Musa textilis
Nicotiana tabacum (4)
Nuphar advena
Nymphaea alba (2)
Oncidium hybrid
Oryza sativa (6)

Panax ginseng (2)

Panicum virgatum

Paphiopedilum armeniacum (2)

Parthenium argentatum
Pelargonium (2)
Phalaenopsis hybrid (3)
Phaseolus vulgaris

Pisum sativum

Raphanus sativus
Ravenala madagascariensis
Ricinus communis
Saccharum hybrid (2)
Salvia miltiorrhiza

Secale cereale

Sesamum indicum
Solanum lycopersicum (11)
Solanum tuberosum
Sorghum bicolor (2)
Spinacia oleracea
Trifolium grandiflorum (8)
Triticum aestivum (6)
Vanilla planifolia

Vigna radiata (3)

Zea mays

Zingiber spectabile

Trees and perennial plants
Abies koreana

Actinidia chinensis (2}
Amentotaxus formosana
Araucaria heterophylla
Bambusa multiplex (4)
Bambusa oldhamii
Berberis bealei
Bismarckia nobilis

Buxus microphylla

Ryegrass
Birdsfoot trefoil
Cassava
Masdevallia orchid
Banana
Tobacco
Spatterdock
White water-lily
Oncidium

Rice

Ginseng
Switchgrass
Slipper orchid
Guayule
Geranium
Phalaenopsis orchid
Kidney bean
Pea

Radish
Traveller's tree
Castor bean
Sugarcane
Redroot sage
Rye

Sesame
Tomato

Potato
Sorghum
Spinach
Large-flower hop clover
Bread wheat
Vanilla

Mung bean
Maize

True ginger

Fir

Kiwifriut

Taiwan catkin yew
Norfolk island araucaria
Golden goddess bamboo
Green bamboo

Beale's mahonia

Bismarck palm

Japanese box

NC_019651
NC_002694
EU117376
NC_026777
NC_022926
200044
NC_008788
NC_006050
NC_014056
X15901
NC_006290
NC_015990
NC_026779
NC_013553
NC_008454
NC_007499
NC_009259
NC_014057
NC_024469
NC_022927
NC_016736
NC_005878
NC_020431
NC_021761
NC_016433
NC_007898
DQ231562
NC_008602
NC_002202
NC_024034
NC_002762
NC_026778
NC_013843
NC_001666
NC_020363

NC_026892
NC_026690
NC_024945
NC_026450
NC_024668
NC_012927
NC_022457
NC_020366
NC_009599

135175
150519
161453
157423
161347
155943
160866
159930
146484
134525
156318
139619
162682
152803
217942
148964
150285
122169
153368
166170
163161

141182
151328
114843
153324
155461

155312
140754
150725
125628
134545
148011

151271

140384
155890

121373
156346
136430
146723
139394
139350
164792
158210
159010

Lawn
Forage
Starch crop
Flower
Fruit
Tobacco
Medicinal
Flower
Flower
Cereals
Medicinal
Biofuel
Flower
Biofuel
Flower
Flower
Bean
\egetable
Vegetable
Ornamental
Qil

Sugar
Medicinal
Cereals
Qil
Vegetable
Starch crop
Cereals
\egetable
Forage
Cereals
Fruit

Bean
Cereals

Ornamental

Wood

Fruit
Timber
Timber
Ornamental
Vegetable
Ornamental
Ornamental

Ornamental

[199]
[200]
[20]
(321
[184]
[3]
[201]
[24]
[54]
[202]
[203]
[204]
[32]
[205]
[206]
[51]
(78]
(76]
[207]
[184]
[208]
[209]
(210]
[64]
[211]
(3]
[212]
8l
[213]
(74]
[63]
(321
(79]
[62]
(193]

[214)
[215]
[216]
217
[91]

(28]

[218]
(193]
[219)
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Calocedrus formosana
Calycanthus floridus
Camellia oleifera (13)
Camellia reticulata
Carludovica palmata
Castanea mollissima
Cathaya argyrophylla
Cedrus deodara
Cephalotaxus wilsoniana (2)
Chrysobalanus icaco
Citrus sinensis (2)

Cocos nucifera

Coffea arabica
Corymbia gummifera (4)
Corynocarpus laevigata
Cryptomeria japonica
Dendrocalamus latiflorus
Elaeis guineensis
Eucalyptus globulus (32)
Hevea brasiliensis
Jasminum nudiflorum
Jatropha curcas
Juniperus bermudiana (4)
Larix decidua

Licania sprucei (3)
Liquidambar formosana
Liriodendron tulipifera
Metasequoia glyptostroboides
Millettia pinnata

Morus indica (3)

Nageia nagi

Nandina domestica
Nerium oleander

Olea europaea (5)
Phoenix dactylifera
Phyllostachys edulis (4)
Picea sitchensis (3)

Pinus taiwanensis (12)
Platanus occidentalis
Podocarpus lambertii (3)
Populus alba

Prinsepia utilis

Prunus persica (6)
Pseudophoenix vinifera

Pseudotsuga sinensis

Taiwan incense-cedar
Carolina-allspice
Tea oil plant
To-tsubaki

Toguilla palm
Chestnut

Cathaya

Cedar

Wilson plum yew
Coco plum
Orange

Coconut

Coffee

Red bloodwood
Karaka nut

Sugi

Sweet giant bamboo
African oil palm
Eucalyptus

Rubber tree
Winter jasmine
Barbados nut
Bermuda juniper
European larch
Licania

Chinese sweetgum
Tulip tree

Dawn redwood
Indian beech
White mulberry
Asian bayberry
Heavenly bamboo
Oleander

Olive

Date palm

Moso bamboo
Sitka spruce
Taiwan red pine
American sycamore
Podocarpus

White poplar
Himalayan cherry
Peach

Florida cherry palm

Chinese douglas

NC_023121
NC_004993
NC_023084
NC_024663
NC_026786
NC_014674
NC_014589
NC_014575
NC_016063
NC_024061
NC_008334
NC_022417
NC_008535
NC_022407
NC_014807
NC_010548
NC_013088
NC_017602
NC_008115
NC_015308
NC_008407
NC_012224
NC_024021
NC_016058
NC_024065
NC_023092
NC_008326
NC_027423
NC_016708
NC_008359
NC_023120
NC_008336
NC_025656
NC_015604
NC_013991
NC_015817
NC_011152
NC_027415
NC_008335
NC_023805
NC_008235
NC_021455
NC_014697
NC_020364
NC_016064

127311

153337
156971

156971

158545
160799
107122
119299
136196
162775
160129
154731

155189
160713
159202
131810
139394
156973
160286
161191

165121

163856
127659
122474
162228
160410
159886
131887
152968
158484
133722
156599
154503
155862
158462
139679
120176
119741

161791

133734
156505
156328
157790
157829
122513

Timber
Medicinal
Qil

Flower
Fiber

Fruit
Timber
Timber
Timber

Fruit

Fruit

Qil
Beverage
Timber
Fruit
Timber
Vegetable
Qil

Timber
Rubber
Ornamental
Biofuel
Timber
Timber
Ornamental
Timber
Timber
Timber
Ornamental
White mulberry
Timber
Ornamental
Ornamental
Oil

Fruit
Timber
Timber
Timber
Ornamental
Ornamental
Timber
Ornamental
Fruit
Ornamental

Timber

[220]
[23]

[221]
[222]
[198]
[14]

[223]
[223]
[224]
[225)
n2]

[226]
[10]

[227]
[37]

[228]
(28]

[229]
[230]
[231]
[232]
[233]
[234]
[224]
[225]
(30]

(235)
[236]
81

[237]
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Pyrus pyrifolia (2) Chinese pear NC_015996 159922 Fruit [245]
Quercus rubra (4) Oak NC_020152 161304 Timber [246]
Sapindus mukorossi Soapberries NC_025554 160481 Medicinal [247]
Taiwania cryptomerioides (2) Taiwania NC_016065 132588 Timber [224]
Theobroma cacao Cacao tree HO336404 160604 Beverage [14]

Vaccinium macrocarpon Large cranberry NC_019616 176045 Fruit [248]
Vitis vinifera Wine grape NC_007957 160928 Fruit [19]

Wollemia nobilis Wollemia MNC_027235 145630 Timber [249]

*The number of species in the same genus as the listed species that have sequenced and annotated chloroplast genomes is shown in parentheses

genome can be used for phylogenetic analysis and do-
mestication studies [49]. Earlier phylogenetic analyses
utilized partial chloroplast DNA sequences. The use of
variable regions or multiple DNA fragments dramatically
enhanced the utility of these analyses but there is insuffi-
cient information in these sequences to provide the
high-resolution necessary to differentiate closely related
taxa, particularly some within-species taxa whose taxo-
nomic relationships are unclear. Complete chloroplast
genome sequences are valuable for deciphering phylo-
genetic relationships between closely related taxa and
for improving our understanding of the evolution of
plant species.

In this section, we discuss several examples of compar-
isons of chloroplast genomes, within and between crop
species, that have provided unique insight into evolu-
tionary relationships among taxa. We also discuss the
origin and geographic distribution of economically im-
portant species, as well as their adaptations to different
climatic conditions and the use of genome information
in their breeding and conservation.

A key application of the chloroplast genome in agri-
culture is the identification of commercial cultivars and
the determination of their purity. DNA barcodes derived
from the chloroplast genome can be used to identify var-
ieties and in the conservation of breeding resources.
Success in breeding is determined by genetic compatibil-
ity and chloroplast genomes serve as a valuable tool for
identifying plants that are likely to be closely related
and, therefore, genetically compatible. Understanding
the genetic relationships between cultivated crops and
their wild relatives informs efforts to introduce specific
advantageous traits into cultivated crops. In the section
below, we discuss how chloroplast genomes have been
used to elucidate the evolutionary relationships and do-
mestication history of a few major crops and how this
informs breeding programs.

Breeding
The Orchidaceae is a large family that encompasses
about 6-11 % of all angiosperms [50] and is important

in floriculture. Many commercially important orchid
species belong to the subfamily Epidendroideae and
chloroplast genomes of several species from this subfam-
ily have been sequenced [51-58]. Because it is easy to
perform inter-generic crossing in orchids and because
the record of breeding is sometimes incomplete, it is
often difficult to validate the parental origin of commer-
cially important varieties [54]. Corrected parental informa-
tion is important for breeding and variety identification.
In an investigation of the Oncidiinae, a subtribe within the
Epidendroideae, PCR products derived from eight con-
served regions in 15 commercial varieties resolved their
phylogenetic relationship at the species level [54] and
helped to resolve putative errors in parental origin. Paren-
tal records had indicated that Odontoglossum ‘Violetta
von Holm; Odontoglossum ‘Margarete Holm’ and Odonto-
cidium ‘Golden Gate’ are derived from the same female
parent (Odontoglossum bictoniense) but phylogenetic ana-
lyses of “Violetta von Holm’ did not correlate with those
of ‘Golden Gate’ or ‘Margarete Holm’ [54]. A possible rea-
son for inconsistencies between the chloroplast DNA-
based phylogenetic tree and the parental record is chloro-
plast capture. Chloroplast capture is the introgression of
chloroplasts from one species into another after intragene-
ric and intergeneric hybridization [59]. Although chloro-
plast genomes provide useful information for phylogenetic
analyses involving closely related taxa, chloroplast capture
by hybridization may distort phylogenetic relationships if
captured chloroplast genomes or genes included therein
are used [60]. The use of both nuclear and chloroplast ge-
nomes can provide more complete phylogenies [4, 61].

Phylogenetic studies

There are several published chloroplast genomes from
cereals, including those from sorghum (Sorghum bicolor),
barley [8], maize (Zea mays) [62], wheat (Triticum
aestivum) [63), rye (Secale cereale) [64), and rice (Oryza
sativa) [65]. Rice is one of the world's most important
crops and is the primary carbohydrate source for the glo-
bal human population (http://www.ers.usda.gov/topics/
crops/rice.aspx). The Oryza species are classified into ten
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genome types, including six diploids (AA, BB, CC, EE, FFE,
and GG) and four allotetraploids (BBCC, CCDD, HHJJ,
and HHKK). Attempts to clarify the evolutionary relation-
ships between cultivated rice and its wild relatives remain
contentious and inconclusive [4]. For example, there are
two wild species that have an AA genome in Australia,
Oryza meridionalis (annual) and Oryza rufipogon
(perennial). Oryza sativa was domesticated from Asian
O. rufipogon 10,000 years ago [65]. Nevertheless, analysis
of complete Australian and Asian wild rice chloroplast ge-
nomes indicated that Australian O. rufipogon chloroplast
genomes are more similar to those of Australian O. meri-
dionalis than to those of Asian O. rufipogon [65-67].
Using 19 chloroplast genomes of Oryza AA genome
species, a robust phylogenetic tree was established,
which will aid in improving rice crops and in conser-
vation strategies [4, 5].

Cotton is the most important textile fiber crop and the
first cotton (Gossypium hirsutum) chloroplast genome
was published in 2006 [11]. The diploid Gessypium spe-
cies comprise eight genome groups (A to G and K
genomes). Gossypium hirsutum (upland cotton), the
most widely planted cotton species in the world, is an al-
lotetraploid of the ancestral A and D genome species
[68]. Chloroplast genome sequences are available for 22
Gossypium species and these can be used to glean in-
formation about the evolution and domestication of
this crop [11, 68, 69] (Table 1). Simple sequence re-
peat primers were used to investigate 41 species of
Gossypium, including all eight genome groups and al-
lotetraploid species [70]. The results indicated that
two modern A-genome species, Gossypium herbaceum
and Gossypium arboretum, were not cytoplasmic donors
of tetraploid (AD) species; instead, the AD genome species
originated from an extinct ancestor species of the modern
A genome [68, 70].

Domestication

Information on chloroplast genomes is useful for under-
standing the domestication of several crops, particularly
legumes [71]. The chloroplast genome structure of le-
gumes is very interesting; it contains multiple rearrange-
ments, including large inverted segments and loss of
inverted repeats [72]. An example is a 51-kb inversion
that was first identified in the soybean (Glycine max)
chloroplast genome sequence [18] before being re-
ported in most members of the subfamily Papilionoideae
[7,73-77]. A 78-kb reversion was subsequently confirmed
in Phaseolus and Vigna chloroplast genomes [78, 79].
More recently, 36-kb [80] and 5.6-kb [81] inversions in-
side the 51-kb inversion were identified. There are many
important genes within these inverted regions but no gene
is disturbed and plant survival and performance are not
affected. These unique characteristics are not only very
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useful in phylogenetic studies [82] but also provide im-
portant information for chloroplast transformation in le-
gumes. Chloroplast structure is also important for the
design of primers needed in the amplification of sequences
for further domestication and phylogenetic analysis.

Citrus is one of the most commercially important fruit
genera. In 2006, the first Citrus chloroplast genome, that
of sweet orange (Citrus x sinensis), was published [12]
and this served as a reference genome for subsequent
publications [83, 84]. Phylogenetic analysis of 34 chloro-
plast genomes of Citrus (28) and Citrus-related genera
(6) indicated that citrus fruits have the same common
ancestor [84, 85]. In four genes (matK, ndhFE ycfl, and
cesA), single-nucleotide variations and insertion/deletion
frequencies were clearly higher than average and showed
that these genes have been positively selected. The matK
gene encodes a maturase that is involved in splicing type
II introns and the matK sequence is often used in phylo-
genetic and evolutionary studies [84]. Positive selection
of matK is observed not only in citrus but is common in
several other plant species. In fact, more than 30 plant
groups have been shown to undergo positive selection of
matK genes, indicating that the gene is subject to a
number of different ecological selective pressures [86].
The ndhF gene encodes a subunit of the chloroplast
NAD(P)H dehydrogenase (NDH) complex. Chloroplast
NDH monomers are sensitive to high light stress, sug-
gesting that the ndh genes may also be involved in stress
acclimation [87]. These studies indicated that matK and
ndhF show positive selection in Australian species, po-
tentially contributing to their adaptation to a hot, dry
climate [84, 85].

Bamboo is an economically and ecologically important
forest plant in Asia [88]. Bamboo grows quickly and new
culms are regenerated from the rhizome after harvesting,
making it a sustainable and ecologically and environ-
mentally friendly crop. The first two bamboo chloroplast
genomes have been published [28] and many more bam-
boo chloroplast genomes are now available [88-93].
Bamboo has a long juvenility and it is difficult to obtain
flowers for taxonomic studies; consequently the taxo-
nomic relationships of bamboo have proven challenging
to unravel on the basis of traditional reproductive organ
morphology. Furthermore, the extremely low rate of se-
quence divergence meant that the taxonomic and phylo-
genetic relationships of temperate woody bamboos at
lower taxonomic levels proved difficult to resolve [88].
These relationships were eventually resolved with high-
resolution phylogenetic trees using 25 bamboo chloro-
plast genomes ({93]. In addition to woody bamboos,
chloroplast genomes have also been published for herb-
aceous bamboo [88, 92]. An interesting phenomenon
identified in herbaceous bamboo chloroplast genomes is
that of gene transfer from the mitochondrial genome to
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the chloroplast genome. This was an unusual observa-
tion, as the chloroplast genome is thought to be nearly
immune to the transfer of DNA from nuclear and mito-
chondrial genomes [88, 92, 94]. A possible reason for
this recalcitrance to DNA transfer is the lack of an effi-
cient DNA uptake system [94]. Prior to its observation
in herbaceous bamboo, this phenomenon was only ob-
served in two eudicot chloroplast genomes [94] and in
monocots [88, 92].

Transfer of chloroplast genes to nuclear or
mitochondrial genomes

There are three distinct genomes in plant cells: nuclear,
mitochondrial, and plastid. Mitochondria are believed to
have evolved from a single endosymbiotic event by the
uptake of a proteobacterium, whereas chloroplasts
evolved from endosymbiosis of a cyanobacterium, after
which there was a massive transfer of genes from the
chloroplast to the nucleus [95]. There are distinct trans-
lation systems in these organelles: nuclear-encoded
genes are translated in the cytosol and the protein prod-
ucts are then transported to the locations in which they
function, including chloroplasts [96], whereas chloroplast-
encoded proteins are directly synthesized within the
chloroplast. Multi-subunit functional protein complexes
that are involved in photosynthesis or protein synthesis
are also assembled within chloroplasts.

Gene content, number, and structure are conserved in
the chloroplast genome sequences of most autotrophic
land plants [97, 98] but some protein-encoding genes
are absent in specific species [49]. The loss of genes such
as infA, rpl22, and ndh from the chloroplast genome
and their intracellular transfer to the nuclear or mito-
chondrial genomes provide valuable information for
phylogenetic analyses and evolutionary studies. It is very
easy to identify the chloroplast origin of genes in plant
mitochondrial or nuclear genomes [99, 100] by intra-
cellular gene transfer [32], but this could also lead to
erroneous phylogenic relationships when short se-
quences are used instead of complete chloroplast gen-
ome sequences.

The chloroplast translation initiation factor 1 (infA) is
a homolog of the essential gene infA in Escherichia coli
[101, 102]. This gene initiates translation in collabor-
ation with two nuclear-encoded initiation factors to
mediate interactions between mRNA, ribosomes, and
initiator tRNA-Met [102]. Many parallel losses of
chloroplast-encoded infA have occurred during angio-
sperm evolution [102] (Fig. 2). Nuclear-encoded infA
genes have been identified in Arabidopsis thaliana, soy-
bean, tomato (Solanum lycopersicum), and ice plant
(Mesembryanthemum crystallinum) [102]. Protein se-
quences of nuclear-encoded infA in these four species
contain chloroplast transit peptides. Studies using soybean
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and A. thaliana infA-GFP proteins have shown that
nuclear-encoded infA genes are translated in the cytosol
and transported into chloroplasts [102]. Many more
chloroplast-encoded infA deletions have been identified
recently (Fig. 2).

There are 57 chloroplast genomes in 26 genera in
which the essential gene rp/22 is reported to have
been deleted from the chloroplast and transferred to
the nuclear genome (Fig. 2) [14, 103]. Nuclear-
encoded rpl22 contains a transit peptide that is pre-
dicted to deliver this protein from the cytosol to
chloroplasts. These peptides are diverse, suggesting
that there were two independent rpl22 transfers in
the Fabaceae and the Fagaceae [14]. Similar transfer
to the nucleus has also been observed for rp/32 dele-
tion from chloroplast genomes [104-106].

Eleven chloroplast genes encode ndh subunits, which
are involved in photosynthesis. The ndh proteins assem-
ble into the photosystem I complex to mediate cyclic
electron transport in chloroplasts [107, 108] and facili-
tate chlororespiration [109]. Some autotrophic plants
lack functional ndh genes in their chloroplast genomes
[36, 51, 54, 55, 110-115] (Fig. 2). Unlike the single gene
losses described previously, the entire family of ndh
genes has been deleted in these plants. Seven orchid
chloroplast genomes indicated at least three inde-
pendent ndh deletions [32]. Some orchid ndh DNA
fragments were identified in the mitochondrial gen-
ome but the complete ndh genes required to translate
putative functional protein complexes are absent [32].
In the nuclear genome of Norway spruce, only non-
functional plastid ndh gene fragments are present
[116]. Normal photosynthesis is observed in these
ndh-deleted species [32, 117]. Furthermore, ndh-de-
leted transformants are autotrophic and produce car-
bohydrates through photosynthesis [107, 118-121].

Many more chloroplast-gene deletions have been ob-
served, including deletions of accD, ycfl, ycf2, ycfd, psal,
rpoA, rpl20, rpl23, rpl33, and rpsl6; many unique gene
deletions have been identified in only one or a few spe-
cies (psb], rps2, rpsi4, and rps19) (Fig. 2). The functions
of these genes, phenotypes of their knock-out mutants,
and evidence for their transfer are summarized in
Additional file 1. Most essential genes that have been
lost from chloroplast genomes have been transferred to
the nucleus to maintain the plant's photosynthetic cap-
acity, with the exception of ycfI and ycf2.

In summary, chloroplast genome sequences are
most valuable for understanding plant evolution and
phylogeny. Databases of not only plant genomes but
also plant transcriptomes will be useful in investigat-
ing deletion events or the transfer of chloroplast
genes to other organellar genomes to complement
such deletions.
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Advances in chloroplast genome engineering

In the past century, desirable agronomic traits, including
yield enhancement and resistance to pathogens or abi-
otic stress, were achieved by breeding cultivated crops
with their wild relatives. As explained above, chloroplast
genome sequences are very useful in the identification of
closely related, breeding-compatible plant species. With
the advent of modern biotechnology, desirable traits
from unrelated species can now be readily introduced

into commercial cultivars. Such genetically modified crops
have revolutionized agriculture in the past two decades,
dramatically reducing the use of chemical pesticides and
herbicides while enhancing yield. For most commercial
cultivars, herbicide- or insect-resistance genes are intro-
duced into the nuclear genome. There are, however, a few
limitations for nuclear transgenic plants, including low
levels of expression (<1 % total soluble protein (TSP)) and
potential escape of transgenes via pollen.
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Engineering the introduction of foreign genes into
the chloroplast genome addresses both of these con-
cerns. Just two copies of transgenes are typically in-
troduced into the nuclear genome, whereas up to
10,000 transgene copies have been engineered into
the chloroplast genome of each plant cell, resulting in
extremely high levels of foreign gene expression
(>70 % TSP) [122]. Most importantly, chloroplast ge-
nomes are maternally inherited in most cultivated
crops, minimizing or eliminating transgene escape via

pollen [123].
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The basic process of chloroplast engineering is ex-
plained in Fig. 3a, b. Chloroplast genome engineering is
accomplished by integrating foreign genes into inter-
genic spacer regions without disrupting the native
chloroplast genes (Fig. 3a). Two chloroplast genes are
used as flanking sequences to facilitate integration of
transgene cassettes. Transgene cassettes include a select-
able marker gene and gene(s) of interest, both regulated
by chloroplast gene promoters and untranslated regions
(UTRs; Fig. 3a). Chloroplast genome sequences are es-
sential to build transgene cassettes because they provide
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both flanking and regulatory sequences. Transgene cas-
settes that are inserted into bacterial plasmids are called
chloroplast vectors and they are bombarded into plant
cells using gold particles and a gene gun (Fig. 3b). Be-
cause of the presence of chloroplast DNA in the nuclear
or mitochondrial genome, transgene cassettes may inte-
grate via homologous or non-homologous recombin-
ation events; but any transgenes that are integrated
within the nuclear or mitochondrial genome will not be
expressed because chloroplast regulatory sequences are
not functional in other genomes. If such integration oc-
curs, the transgenes could be easily identified by evalu-
ation of their integration site and eliminated [124].

One of the challenges of creating chloroplast trans-
genic (transplastomic) plants is the elimination of all
untransformed copies (>10,000 per cell) of the native
chloroplast genome and replacing them with transformed
genomes that contain integrated transgene cassettes. The
absence of the native chloroplast genome and the pres-
ence of only the modified genomes is referred to as the
homoplasmic state, which is typically achieved after two
or three rounds of selection (Fig. 3b). The most effective
selectable marker used is the aadA gene, which confers
resistance to streptomycin and spectinomycin. These anti-
biotics bind specifically to chloroplast ribosomes and dis-
rupt protein synthesis without interfering with any other
cellular process. Efforts to transform the chloroplast gen-
ome of cereal crops have been mostly unsuccessful. This
could be due to the instability of chloroplast DNA in the
mature leaves of cereals [47] or to a requirement for better
selectable markers [125].

Table 2 provides the first global, comprehensive sum-
mary of the power of chloroplast genetic engineering,
utilizing valuable information generated by the sequen-
cing of chloroplast genomes described in previous sec-
tions. This table includes the most complete list of
chloroplast genomes that have been engineered for en-
hanced agronomic traits or the production of different
bio-products, including biopolymers, industrial enzymes,
biopharmaceuticals, and vaccines. Within Table 2, trans-
genes are grouped according to their functions and are
organized according to their site of integration. The effi-
ciency of transgene expression is also included in Table 2,
providing important information about the regulatory
sequences used to express the transgenes.

Impact of sequence diversity in the chloroplast
genome on transgene integration

Figure 3a shows examples of transplastomic genomes
that have been transformed with either an endogenous
or a heterologous flanking sequence. Every single nu-
cleotide change in the heterologous sequence was subse-
quently edited out and corrected to achieve 100 %
homology to the native sequence within the intergenic
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spacer region (Fig. 3a). The repetitive editing process
significantly reduces the efficiency of transgene integra-
tion when using heterologous flanking sequences. This
challenge is made even more difficult by inadequate con-
servation of intergenic spacer regions, even within the
same family. Figure 3c shows comparisons of 21 of the
most variable intergenic spacer regions; only four of
the >150 spacer regions, including the trnl/trnA spa-
cer region, are conserved among members of the
Solanaceae. Among grass chloroplast genomes, not a
single intergenic spacer region is conserved [8]. This
necessitates construction of species-specific chloroplast
vectors using endogenous flanking sequences and under-
scores the need to sequence the chloroplast genomes of
economically important crop species.

Ideal sites in the chloroplast genome for
transgene integration

The selection of a suitable intergenic spacer region from
among more than 100 sites found in each chloroplast
genome is a major concern. Statements on the lack of
positional effects in the transplastomic literature are
common and are used to contrast chloroplast genetic
engineering with nuclear transgene integration, which is
often associated with profound differences in the expres-
sion of transgenes dependent on their site of integration.
Evidence shows, however, that there are also positional
effects within the chloroplast genome (Table 2). IR re-
gions are found in duplicate in most chloroplast ge-
nomes; therefore, transgenes should be inserted within
the IR region instead of the SSC or LSC regions because
this should double the copy number of transgenes. Inte-
gration of a transgene cassette into one copy of the IR
facilitates integration into the other copy, thereby enhan-
cing selection pressure to achieve homoplasmy through
this copy correction mechanism, a characteristic feature
of the chloroplast genome [126—128]. Therefore, the site
of integration plays a crucial role in transgene expression
level and in enhancing homoplasmy under selection by
antibiotics. Most importantly, in all sequenced chloro-
plast genomes within a single plant species, the DNA se-
quence in one copy of the IR is identical to that in the
other copy, without any exception (Table 1).

An early controversy in the chloroplast genetic engin-
eering field was the suitability of transcriptionally silent
spacer regions, where native genes (for example, rbcL/
accD) are located on opposite strands of the chloroplast
genome, or transcriptionally active spacer regions, where
native genes (for example, trnA/trnl) are located within
operons on the same strand. After a herbicide resistance
gene was introduced into the transcriptionally active spa-
cer region for the first time [129], most subsequent studies
preferentially used this site of integration (Table 2). The
integration of transgenes into the transcriptionally active
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Table 2 Engineering the chloroplast genome for biotechnology applications
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Site of integration Transgenes Regulatory Efficiency of expression Engineered traits or products Reference(s)
sequences

Insect or pathogen tolerance

trnl/trnA Bgl-1 5'psbA/3'psbA >160-fold enzyme Resistance against whitefly and aphid ~ [141]

trnl/ArnA Pta 5'psbA/3'psbA 7.1-92 % TSP Broad-spectrum resistance against [142]
aphid, whitefly, Lepidopteran insects,
bacterial and viral pathogens

trnl/trnA PelB1, PelD2 5'psbA/3'psbA ~242 units mg~' FW Resistance against Erwinia soft rot [150]

trnl/trnA RC1011, PG12 5'psbA/3' 17-38 % TSP Resistance to Erwinia soft rot and [140]
tobacco mosaic virus

trnl/trnA cpo Prrn/psbA/psbA NR Resistance to fungal pathogens [251]
in vitro (Aspergillus flavus, Fusarium
verticillioides, and Verticillium dahliae)
and in planta (Alternaria alternata)

trnl/trnA Bt cry2Aa2 operon Prrn/ggagg/psbA 453 % TSP 100 % mortality of cotton bollworm, [137]
beet armyworm; cuboidal Bt crystals
formation

trnl/trnA Bt cry9Aa2 Prrn/ggagg/rbcl ~10 % of TSP Resistance to Phthorimaea operculelia [252]

trnl/trnA msi-99 Prm/ggagg/psbA 21-43 % TSP Resistance to in planta challenge of [253]
Pseudomonas syringae, Aspergillus
flavus, Fusarium moniliforme,
Verticillium dahlia, and Colletotrichum
destructivum

trnl/trnA sporaminl, CeCPI2, Prr/TpsbA 0.85-1 % TSP Resistance against Spodoptera litura [254]

and chitinase? and Spodoptera exigua leaf spot,

as well as soft rot diseases

trnl/trA MSI-99 Prm/Trps16 89.75 ug g ' FW Resistance against rice blast fungus [255]

trn\V/rps12/7 crylA(c) Prrn/rbcl/rps16 3-5 9% of TSP Resistance to larvae of Heliothis [256]
virescens, Helicoverpa zea, and
Spodoptera exigua

tnV/rps12/7 crylAb Prr/T7genel0/rbcl  NR Resistance to caterpillar of Anticarsia [145]
gemmatalis

rbcl/accD cry2Aa2 Prr/ggagg/psbA 2-3 9% of TSP Resistance to Heliothis virescens, [257]
Helicoverpa zea, and Spodoptera
exigua

Abiotic stress tolerance

trnl/trnA tpsl Prrn/ggagg/psbA >169-fold transcript Drought tolerance: growth in 6 % [258]
polyethylene glycol and rehydration
after 24 days of drought

trnl/trnA merA/merB Prrn/ggagg/psbA NR Phytoremediation: high level [259]
tolerance to the organomercurial
compounds, up to 400 pM
phenylmercuric acetate

trnl/ArnA badh Prr/T7 g10/rps16 93-101 UM g~ FW Salt tolerance: carrot plants survived [135]
up to 400 mM NaCl

trnl/trnA y-TMT Prrn/T7g 10/TpsbA  >7.7 % TSP Increased salt and heavy metal [153]
tolerance, enhanced accumulation
of a-tocopherol in seeds

trnl/trnA mt1 Prr/T7 g10/Trps16  NR Phytoremediation: resistant to [260]
mercury, up to 20 pm

trnV/rps12/7 b-bar1 Prrn/Trbcl >7 % TSP Resistance to the herbicide [261]
phosphinothricin

tnV/rps7/12 EPSPS Prm/Trps16 >10 % TSP Resistance to the herbicide [262]
glyphosate

rbcl/accD EPSPS/aroA Prrn/ggaga/psbA NR Resistance to glyphosate (>5 mM) [129]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)
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rbcl/accD

rbcl/accD

rbcl/rbcl
rbcl/accD
trnfM/AmG

prs14/trnG

mALS

Bar

Hppd
panD

lycopene B-cyclase

HTP, TCY, TMT

Other agronomic traits

trnl/trnA
trnl/trnA

rbcl/accD

rbcl/accD

trnV/orf708
trnV/3'rps12

trnfM/AmG

trnl/trnA

tnl/trnA

trnl/trnA

trnl/trnA

trnl/trnA

tnl/trnA

trnl/trnA
trnfM/trnG

phaA
RbcS

Cy -TMT

CrtZ, CrtW

BicA

Trx £, Trx m

CV-N

Bgl-1

ubiC

man 1

cutinase or swollenin

bgl1

swol

xyn2

Acetyl sylan esterase
celD

celO

Lipase

Cutinase

PMK, MVK, MDD, AACT,
HMGS, HMGRt; IPP, FPP,
ADS, CYP71AV1, AACPR

CelbA,Cel6B

bgl1C, cel6B, cel9A,
xeg’4

PpsbA/TpsbA

Prrn/rbcl/psbA

psbA/psbA/3'rbel
Prrn/rbcl 3'
atpl/rps16

Prrn/T7 g10/Trbcl

Prrn/psbA/psbA
T7910 or psbA

PpsbA/Trsp16

Prm/Trps16

psbA/psbA/psbA
prm T7G10/rps12

Prrn/T7g10/TatpA

5'psbA/3'psbA

5'psbA/3'psbA

5'psbA/3'psbA

5'PsbA/3'PsbA

5'psbA/3'psbA

Prrn/PpsbA

Prrm/rbcl/rbcl
Prr/T7g10/Trbcl

NR

NR

5% TSP
>4-fold B-alanine

028 mg g~' DW

NR

14.71B-ketothiolase mg ™' FW/
>150-fold RbcS transcript

3nmol h ' mg™' FW
NR

~0.1 % TSP
NR

~03 % TSP

444 units Bgll g~' FW

25 % DW

25 units g~ ' FW

47.7 % reduction of MGDG
and DGDG in cutinase and
68.5 % in swollenin

14 units mg™' FW
NR

421 units mg~' FW
NR

493 units mg~' FW
442 units mg~' FW
NR

15 units mg~' FW
01mgg ' FW

2-4 % TSP
5-40 9% TSP

Tolerant to pyrimidinylcarboxylate,
imidazolinon, and sulfonylurea/
pyrimidinylcarboxylate herbicides

Herbicide resistance: up to 25 pg ml™'
glufosinate

Resistance to herbicide
Tolerance to high-temperature stress

Herbicide resistance and triggers
conversion of lycopene

Increase in vitamin E in fruit;
cold-stress tolerance

Engineered cytoplasmic male sterility

Restoration of RuBisCO activity in
rbcS mutants

Vitamin E accumulation in tobacco
and lettuce

Accumulation of astaxanthin fatty
acid esters in lettuce

CO, capture within leaf chloroplasts

Starch synthesis/chloroplast redox
regulation

Increased mRNA stability and protein
stability with the expression of CV-N
in chloroplasts

B-Glucosidase increased enzyme
cocktail efficiently to release sugar
from paper, citrus peel, and wood

250-fold higher pHBA polymer
accumulation than nuclear
transgenic lines

Mannanase increased enzyme
cocktail released sugar from paper,
citrus peel, and wood

Swollenin enlarged and irreversibly
unwound cotton fiber; cutinase
showed esterase and lipase activity;
used in enzyme cocktails

Enzyme cocktails produced glucose
from filter paper, pine wood,
or citrus peel

Artemisinic acid for several isoprenoid
products

Hydrolyzed crystalline cellulose

Cell wall-degrading enzyme activity

[263]

(268
[136]

[269]

[270]

[271]
[272]

[273]

[141]

[149]

[274]

[275]

(1501

[276]

[277]
[278]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

rbcl/accD phbC, phbA, phbB Prrn/rbcl 3' 0.16 % DW Polyhydroxybutyrate (PHB) [279]
accumulation in leaves

rbcl/accD crtZ, crtW Prrn/Trps16 >0.5 9% DW Astaxanthin accumulation [280]

trnV/rps7 EGPh psbA/psbA/Trps16 25 % TSP Chloroplast-derived -1 4-endoglucanase [281]

(EGPh) was recovered from dry leaves
and digested carboxymethyl cellulose
(CMC) substrate
nd :Inr..!;n [‘Iﬁ.l"ﬂ

trnl/trn A EX4 PpsbA/TpsbA 143 % TSP CTB-EX4 showed increased insulin
secretion similar to the commercial
injectable EX4 in pancreatic B-cells
and in mice fed with cells expressing
EX4 in chloroplasts

trnl/trn A MBP PpsbA/TpsbA 2 9% TSP Amyloid loads were reduced in ex vivo  [162]
studies in human Alzheimer's brain and
in vivo in Alzheimer's mice fed with
bio-encapsulated CTB-MBP. Abeta was
also reduced in retinae and loss of
retinal ganglion cells was prevented

trnl/trn A FVIll PpsbA/TpsbA 370 mg g~' FW Feeding of the HC/C2 antigen mixture  [282]
substantially suppressed T-helper cell
responses and inhibitor formation
against FVIII in hemophilia A mice

trnl/trn A HSA PpsbA/TpsbA 26 % TSP In vitro chaperone activity of Trx m [283]
and Trx f
trnl/trn A EDA PpsbA/TpsbA 2.0 % TSP The vaccine adjuvant EDA from [284]

fibronectin retains its proinflammatory
properties when expressed in tobacco
chloroplasts

trnl/trn A Proinsulin PpsbA/TpsbA 47 % TSP in tobacco, Oral delivery of proinsulin in plant cells  [285]
53 % TLP in lettuce lowered glucose levels comparably to

injectable commercial insulin

trnl/trn A HSA psbA/psbA/psbA ~11 9% TSP First report of human blood protein in -~ [286]
chloroplasts; function not evaluated

trnl/trn A IGF psbA/psbA/psbA 327 % TSP Promoted growth of cultured HU-3 [287]
cells in a dose-dependent manner

trnl/trnA FIX PpsbA/TpsbA 1mg g™ DW (056 % TLP)  Oral delivery of CTB-FIX lettuce cells [6]

suppressed inhibitor formation against
FIX in hemophilia B mice

trnl/trnA FIX Ppsba/TpsbA 38%TSP; 04 mg g ' FW  Tolerance induction via complex [288]
immune regulation, involving
tolerogenic dendritic and T-cell subsets

trnl/trnA GAA Ppsba/TpsbA 57mgg ' DW Reduced toxic antibody responses in [289]
enzyme replacement therapy in
Pompe mice
trnl/trnA ACE2 PpsbA/TpsbA CTB-ACE2: 2.14 % TLP Oral delivery of ACE2 and Ang (1-7) [161]
Ang-(1-7) CTB-Ang1-7: 8.7 % TLP significantly improved cardiopulmonary

structure and functions, decreased the
elevated right ventricular systolic blood
pressure and improved pulmonary
blood flow in animals with induced
pulmonary hypertension

trnl/trn A BACE Prrn/TpsbA 20 % TSP Immunogenic response against the [290]
BACE antigen in mice
trnl/trmn A IFNa2b Prr/TpsbA 3mg g™ FW Protected cells against VSV CPE and [291]

HIV; increased MHC | antibody on
splenocytes and total number of
natural killer cells and protected mice
from a highly metastatic lung tumor
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

trnl/trn A CTB-pins Prrn/T7g10/TpsbA 16 % TSP in tobacco, CTB-proinsulin-fed non-obese diabetic  [128, 292]
and rps16 72 9% TLP in lettuce mice significantly decreased
inflammation (insulitis); insulin-producing
B cells in pancreatic islets were highly
protected, increased in insulin
production with lower blood or urine
glucose levels; increased expression of
immunosuppressive cytokines

rbcl/accD IFN-y PpsbA/TpsbA 6 % TSP Protection of human lung carcinoma [293]
cells against infection by
encephalomyocarditis virus

rbcl/accD hTrx PpsbA/Trps16 1 % TSP Protected mouse from hydrogen [294]
peroxide

rbcl/accD ATAT PpsbA/Trbcl 2 % TSP Binds to porcine pancreatic elastase [295]

rbcl/accD TGFB3 Prr/T7g910/psbC 12 % TLP Inhibits mink lung epithelial cell [296]
proliferation

trnV/3'rps12 hCT-1 Prr/G10L/Trps16 59% TSP Biologically active on human [297]
hepatocarcinoma cell line

trnV/rps7/12 hST PpsbA or Prr/G10L/ 0.2-7.0 % TSP Promotes growth of Nb2 cells in a [298]

Trps16 dose-dependent manner
trnfM/trnG pal, cpl-1 Prr/T7g10/TpsbA  ~30 % TSP Bacteriolytic activity and kills [299]

Streptococcus pneumoniae,
the causative agent of pneumonia

trnl/trmn A ESAT-6 5'psbA/3'psbA ~7.5 % TSP Hemolysis of red blood cells and [165]
GM1 binding
trnl/trn A AMAT 5'psbA/3'psbA 7.3 % TSP in tobacco, Long-term immunity against cholera [164]
13.2 % TSP in lettuce challenge; inhibition of malarial
trnl/trn A MSPT 5'psbA/3'psbA 10.1 % TSP in tobacco, Fa/_:a;::g Iprg]tectlon correlated with
6.1 % TSP in lettuce 9 9
tnl/trn A 2121 5'psbA/3'psbA 6.0 % TSP
trnl/trn A Pag 5'psb/3'psbA ~29.6 % TSP Macrophage lysis assay, systemic [300, 301]

immune response, toxin neutralization
assay, mice survived (100 %) challenge
with lethal doses of anthrax toxin

trnl/trn A L1 PpsbA/TpsbA 20-26 % TSP Induced systemic immune response [302]
and produced neutralizing antibodies
in mice

trnl/trnA RA4 PpsbA/T psbA 0.2 % TLP Oral administration elicited both [303]

mucosal and systemic Th1/Th2
responses to reduce Toxoplasma
parasite load

trnl/ArmnA rFaeG PpsbA/Trbcl >1 9% DW Transplastomic plants expressing the [304]
rFaeG protein could possibly be used
for delivery of an oral vaccine against
porcine F4+ ETEC infections

trnl/trn A F1-v Prrn/TpsbA 14.8 % TSP Orally immunized mice heavily [305]
challenged with plague (Yersinia pestis)
were protected better than those
given IP injections

trnl/trn A CTB-2 121 PpsbA/TpsbA 31.1 9% TSP Immunogenic in mice following IP or  [306]
oral administration

trnl/trnA Vp8* psbA/psbA/Trps16 600 pg g~ FW Induced strong immune response and  [307]
virus neutralization

trnl/trn A CtxB Prrn/ggagg/TpsbA 4.1 % TSP Efficient GM1 ganglioside-binding [308]

trnl/trn A LTB Prrn/ggagg/TpsbA 2.5 9% TSP GM1 ganglioside-binding assay [309]

trnl/trn A LecA Prrm/T7Q10/TpsbA 7 9 TSP Systermnic immune response in mice [310]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

trnl/trn A BACE Prrn/TpsbA

rbcl/accD OspA, OspA-T PpsbA/TpsbA

trnN/trn R LTB Prrn/T7g10/Trbel

trnN/trmR DPT Prrn/T7g10/Trbcl

trnN/trnR C4v3 Prrn/T7910/Trbcl

trnN/trnR LT Prr/TrbclL

trnfM/trnG p24 Prr/T7g10/Trbel

trnGtrnfM HEV E2 Prrn/psbA/TpsbA

trnH/trnK CSFV E2 Prrn/TpsbA

m16/rps12/7 TetC Prrn/T7 g10/Trbcl

atpB/Trbcl

rm16/trnl E7 PpsbA/Trps

20 % TSP

1-10 % TSP

2.3 9% TSP

0.8 9% TSP

~15ug mg~' DW

>2 % of TSP

~4 % TSP
109 ng ug ' TSP
1-2 % TSP

10-25 % TSP

3-8 % TSP

Immunogenic response against the [290]

BACE antigen in mice

Systemic immune response and [311]
protection against Borrelia burgdorferi

(Lyme disease)

GM1 ganglioside-binding assay; oral
immunization partially protected mice
from cholera toxin challenge

[312]

Immunogenic in orally inoculated mice [313]
with freeze-dried chloroplast-derived

multi-epitope DPT protein

Plant-derived C4V3 has elicited both
systemic and mucosal antibody
responses in mice, as well as CD4+ T
cell proliferation responses

[314]

Proper folding and display of
conformational epitopes for L1 in the
fusion protein by antigen capture ELISA

Induced strong CD4+ and CD8+ T-cell
responses in mice

[315]

(316]

Immune response in mice against
hepatitis E virus

[317]

Immune response in mice against [318]

swine fever

Mice developed systemic immune [319]
response and survived the tetanus

toxin challenge

Several therapeutic HPV-specific [320]
F7-based vaccine formulations have
been tested in animal models and

some have advanced into clinical trials

Abbreviations: Ang (1-7) Angiotensin (1-7), BACE human b-site APP cleaving enzyme, Bgl B-glucosidase, CPE carbapenemase-producing Enterobacteriaceae, CTB
cholera toxin B subunit, DGDG digalactosyldiacylglycerol, DPT diphteria, pertussis, tetanus, DW dry weight, EDA extra domain A-fibronectin, ELISA enzyme-linked
immunosorbent assay, ETEC enterotoxigenic Escherichia coli, EX4 exendin-4, FVIIl coagulation factor VIIl, FW fresh weight, HPV human papilloma virus, IP intraperitoneal,
MBP myelin basic protein, MGDG monogalactosyldiacylglycerol, NR not recorded, RbcS small subunit of RuBisCO, RuBisCO ribulose-1,5-bisphosphate
carboxylase/oxygenase, TLP total leaf protein, TSP total soluble protein, VSV vesicular stomatitis virus

spacer region (trnl/trnA) has led to 25-fold higher expres-
sion of transgenes compared with the transcriptionally si-
lent spacer region (rbcl/aceD) [130], possibly due to the
presence of multiple promoters (heterologous and en-
dogenous) that enhance transcription. Introns present
within trul/trnA genes (used as flanking sequences) also
provide efficient processing of native or foreign tran-
scripts. The trnA gene intron includes a chloroplast origin
of replication and produces more copies of the template
(chloroplast vectors) for integration of the transgene cas-
sette [131]. In fact, among 114 transgenes in different
plant species in Table 2, 71 are integrated at the trnA/trnl
site of the chloroplast genome, confirming the unique
advantages of this site [127, 129, 130].

Role of chloroplast genome regulatory sequences
in transgene expression

In addition to the site of integration, regulatory se-
quences located upstream (promoter, 5° UTR) and

downstream (3" UTR) of transgenes play a major role in
determining their expression level. The psbA regulatory
region, first used almost 25 years ago [131], still appears
to be the best option for use in an expression cassette,
as the psbA gene encodes the most highly translated
protein in the chloroplast [132] and it can also mediate
light-induced activation of translation [128]. Indeed, al-
most all highly expressed transgenes (>70 % TSP, >25 %
dry weight) utilize the pshA regulatory region; among
114 transgenes expressed via the chloroplast genome, 84
use the psbA regulatory sequence (Table 2). Other en-
dogenous regulatory sequences that are used include
rbcL and atpA, which result in lower transgene expres-
sion levels than the psbA promoter/5" UTR.

Using regulatory regions from photosynthetic genes
has the advantage of light regulation, making them ideal
for transgene expression in photosynthetic organs
(leaves; Fig. 3d, e). However, when the lettuce psbA regu-
latory region was used in tobacco chloroplasts or vice
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versa, transgene expression was dramatically reduced
(Fig. 3d, e) [128]. Nucleotide differences within the psbA
5" UTR between tobacco and lettuce (Lactuca sativa)
resulted in changes that decreased the interaction of
RNA-binding proteins and produced variation in the size
of the stem, bulge, and terminal loop of the UTR [128].
In addition, most regulatory proteins (including sigma
factors that bind to the promoter region) are nuclear
encoded and transported to chloroplasts. This under-
scores a caveat associated with using regulatory se-
quences for transgene expression: the need to make
species-specific chloroplast vectors to accommaodate
highly specific regulatory region-binding proteins.
Heterologous regulatory sequences are necessary for
transgene expression that is independent of cellular con-
trol, especially in non-photosynthetic organs such as
fruits and edible roots, where chloroplast protein synthe-
sis is poor [133]. A heterologous UTR (T7 genel0) was
first evaluated for expression in leaves [127, 134] and
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was subsequently tested in non-green tissues. When the
expression of BETAINE ALDEHYDE DEHYDROGENASE
(BADH) was regulated by the T7 genel0 UTR in carrot
(Daucus carota) plants, 75 % of the expression level in
leaves was observed in non-green edible roots, conferring
the highest level of salt tolerance (400 mM NaCl) found in
the published literature (Fig. 4i, j) [135]. Although T7
genel0 has been successfully used to engineer salt toler-
ance in non-green tissues, its expression level is not as
high as that of the psbA regulatory sequence in leaves
[136]. The only other heterologous UTR that expressed
transgenes at high levels is that from the Bacillus thurin-
giensis (Bt) operon [137]. Use of this operon produced the
highest level of insecticidal toxin protein (52 % TLP) ever
reported in the published literature [137]. These high
levels of toxin accumulation in chloroplasts could result
from the combination of high-level expression and protein
stability; the Bt protein formed cuboidal crystals within
chloroplasts (Fig. 4e) due to co-expression of a chaperone

Fig. 4 Engineering the chloroplast genome to confer biotic/abiotic stress tolerance or expression of high-value products. a—d Industrial production of
blood clotting factor X (FIX) bioencapsulated in lettuce plants in a hydroponic cGMP facility. a Biomass production of FIX-expressing plants. b-d Steps
in capsule preparation. After harvesting and lyophilization of fresh leaves, freeze-dried FIX-accumulating leaves were powdered and prepared
as capsules [6]. e-g Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to the formation of the Bt insecticidal crystal protein. In
bioassays with the Helicoverpa zea, f eating the transplastomic leaf kills the caterpillar, while g the control leaf is consumed by the growing
caterpillar [137]. h Ultrastructure of the chloroplast envelope membrane of transplastomic y-tocopherol methyltransferase (y-TMT) tobacco
plants shows the formation of multiple layers of inner envelope membranes as the result of y-TMT overexpression [153]. i, j Expression of
BETAINE ALDEHYDE DEHYDROGENASE (BADH) in carrot plants. i Transgenic carrot plants thrived in soil irrigated with 400 mM sodium chloride,
whereas untransformed carrot plants showed retarded growth in the presence of salt. j Carrot roots from transplastomic plants [135]. k Phenotypes of
tomato fruits from transplastomic tomato plants expressing lycopene B-cyclase transgenes compared with wild-type plants. Fruits were harvested at
different ripening stages. Orange color of ripe fruits indicates efficient conversion of red lycopene into orange B-carotene (provitamin A) [154]
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that facilitates folding. When fed, transplastomic leaves,
cotton bollworm (Helicoverpa sp.) were killed with a sin-
gle bite of leaf and insects that had 40,000-fold increased
resistance to Bt were also killed (Fig. 4f, g). Nevertheless,
expression of this transgene in tomato fruit is very poor
[133, 138, 139] and further research is needed to enhance
transgene expression in fruits.

Engineering the chloroplast genomes for
biotechnology applications

Conferring stress tolerance

In the past decade, chloroplast genetic engineering has
focused primarily on the overexpression of target genes
with the potential to enhance biotic stress tolerance,
which is very important for plant protection and yield
enhancement. Yield loss due to insect pests can be very
serious in many countries. In addition to cotton boll-
worm resistance conferred by hyper-expression of Bt
protein in chloroplasts [137], there are many other strik-
ing recent examples of improved biotic stress tolerance.
Retrocyclin-101 and Protegrin-1 protect against Erwinia
soft rot and tobacco mosaic virus (TMV), which result
in yield loss in several cultivated crops [140]. Whitefly
and aphid resistance has been accomplished by express-
ing B-glucosidase [141], which releases insecticidal sugar
esters from hormone conjugates. Multiple resistances
against aphids, whiteflies, lepidopteran insects, and bac-
terial and viral pathogens were achieved by expressing
the Pinellia ternata agglutinin (PTA) gene in the chloro-
plast genome [142]. More than 40 transgenes have been
stably integrated into and expressed within the chloro-
plast genome, conferring important agronomic traits,
including insect resistance in edible crops cabbage
(Brassica oleracea) [143], soybean [144, 145], and egg-
plant (Solanum melongena) [146].

More recently, scientists have begun to explore new
strategies to downregulate specific target genes. One
such approach is to express double-stranded RNAs
(dsRNAs) within the chloroplast genome and to use
RNA interference (RNAi) to confer the desired agro-
nomic traits, mainly resistance to insects that cause
severe yield loss. This strategy has been demonstrated
by expressing long or short dsRNAs that activate
RNAi and disrupt target genes in insects, providing
efficient protection against insects without the need
for chemical pesticides. One such example is the sup-
pression of three essential proteins required for insect
survival—lepidopteran chitin synthase (Chi), cytochrome
P450 monooxygenase (P450), and V-ATPase—using
dsRNAs in the tobacco chloroplast system [147]. Each
dsRNA was expressed independently in chloroplasts and
leaves were fed to insects. The transcription level of target
genes in Helicoverpa insects decreased to almost un-
detectable levels in the midgut, resulting in a significant
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reduction in the net weight of larvae and in pupation rate
[147]. Transplastomic potato plants producing S-actin-
targeting long dsRNA were lethal to Colorado potato
beetle (Leptinotarsa decemlineata) larvae, providing yet
another crop protection mechanism [148].

Synthesis of enzymes and biomaterials

In addition to improved resistance against both biotic
and abiotic stress, the chloroplast genome has been
engineered to produce useful enzymes, biomaterials, and
biofuels, or even to enhance biomass. The first report of
metabolic engineering using chloroplast genomes pro-
duced the highest level of the poly(p-hydroxybenzoic
acid (pHBA) polymer (25 % dry weight) in normal
healthy plants despite the diversion of a major metabolic
intermediate {149]. The first use of plani-derived enzyme
cocktails for the production of fermentable sugars from
lignocellulosic biomass was accomplished recently [150].
Unlike the single biofuel enzymes previously expressed
in chloroplasts, nine different genes from bacteria or
fungi were expressed in E. coli or tobacco chloroplasts
using a new technique that enabled the insertion of fun-
gal genes with several introns, eliminating the need to
prepare cDNA libraries. Industrial fermentation systems
are currently limited by high cost and low production
capacity; chloroplast-derived enzyme cocktails offer sev-
eral striking advantages, including significantly reduced
cost, improved stability of chloroplast-derived enzymes,
and no need for enzyme purification. Interestingly, ex-
pression of p-glucosidase released hormones from con-
jugates, resulting in elevated phytohormone levels and
increased biomass [141], an unexpected outcome of en-
zyme expression.

Enhancing nutrition

Seed oils, such as those from soybean, rapeseed (Brassica
napus), and maize, are the major dietary source of vitamin
E. They have very low a-tocopherol content but relatively
high levels of y-tocopherol. Only a few seed oils, such as
sunflower (Helianthus annuus) seed oil, contain high
levels of a-tocopherol, an important precursor of vitamin
E [151]. y-Tocopherol is the biosynthetic precursor of a-
tocopherol, suggesting that the a-tocopherol biosynthetic
pathway catalyzed by y-tocopherol methyl transferase
(y-TMT) is the rate-limiting step [152]. Engineering
of the y-tmt gene into the chloroplast genome re-
sulted in the formation of multiple layers of the inner
chloroplast envelope (Fig. 4h) due to y-TMT overex-
pression, with around tenfold higher conversion of y-
tocopherol to a-tocopherol in seeds [153]. Likewise,
introducing lycopene f-cyclase genes into the tomato
plastid genome increased the conversion of lycopene
into provitamin A (B-carotene), with obvious pheno-
typic changes (Fig. 4k) [154].
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Biopharmaceuticals

At present, protein drugs are extremely expensive; for
example, >90 % of the global population cannot afford
insulin, a drug needed to treat the global diabetes epi-
demic. The high cost of protein drugs is due to their
production in prohibitively expensive fermentation sys-
tems (which cost more than $450-700 million to build
depending on their capacity [155, 156]), prohibitively ex-
pensive purification from host proteins, the need for re-
frigerated storage and transport, and the short shelf-life
of the final product. Protein drugs made by plant chioro-
plasts overcome most of these challenges because they
do not require expensive fermentation systems and are
produced in federal drug administration (FDA)-approved
hydroponic greenhouses (Fig. 4a) [157]. Lettuce leaves
expressing protein drugs are lyophilized and stored in-
definitely at ambient temperature without losing their
efficacy (Fig. 4b—d) [6]. The plant cell wall protects pro-
tein drugs from acids and enzymes in the stomach be-
cause human enzymes do not digest plant cell wall
glycans. Human gut microbes, however, have evolved to
break down every glycosidic bond in the plant cell wall
and therefore release the protein drug into the gut
lumen, directing its delivery to the blood or immune
system [158, 159].

Oral delivery of several human therapeutic proteins
expressed in chloroplasts is highly efficacious in the
treatment of several human diseases, including diabetes,
cardiovascular disease, pulmonary hypertension, and
Alzheimer’s disease. Most proteins were expressed in to-
bacco chloroplasts for initial evaluation and were subse-
quently expressed in lettuce chloroplasts for advancing
them to the clinic. Oral delivery of exendin-4, which
modulates the secretion of insulin in a glucose-
dependent manner, lowered glucose in diabetic animals
by stimulating the production of insulin in a manner
similar to that of the injectable drug [160]. Oral delivery
of angiotensin-converting enzyme 2 (ACE2) and angio-
tensin (Ang) (1-7) significantly improved cardiopulmo-
nary structure and function, decreased elevated right
ventricular systolic blood pressure, and improved pul-
monary blood flow in animals with induced pulmonary
hypertension [161]. Oral delivery of plant cells express-
ing ACE2 and Ang (1-7) also reduced endotoxin-
induced uveitis (EIU) and dramatically decreased cellular
infiltration and retinal vasculitis, as well as damage and
folding in experimental autoimmune uveoretinitis [158].
It is also possible to orally deliver protein drugs across
the blood-brain barrier to the Alzheimer’s brain to re-
move plaques [162].

The first industrial-scale production of human blood
clotting factor in a ¢cGMP facility was reported recently
[6] (Fig. 4a—d). In a 1000 ft* hydroponic cGMP facility,
it is possible to produce up to 30,000 doses for a 20-kg
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pediatric patient. Clotting factor made in lettuce was
stable for up to 2 years when lyophilized cells were
stored at ambient temperature, completely eliminating
the need for the cold chain. This enables the first com-
mercial development of an oral drug and addresses the
extremely expensive purification, cold storage and trans-
portation, and short shelf-life of current protein drugs.
Oral delivery of a broad dose range was effective in the
prevention of antibody formation after injection of clot-
ting factor IX (FIX), further facilitating human clinical
studies.

Vaccines against infectious diseases

The current iteration of vaccines, using attenuated bac-
teria or viruses, offer protection against major infectious
diseases but they also present major challenges. For ex-
ample, the oral polio vaccine that is used around the
globe has caused severe polio resulting from mutations
and recombination with other viruses [163]. In addition,
all current vaccines require cold storage and transporta-
tion, making distribution in developing countries a
major challenge. Many of these challenges can be over-
come by using chloroplasts.

One successful chloroplast-derived vaccine conferred
dual immunity against cholera and malaria in animal
studies [164]. Cholera is a major disease causing high
mortality, with the only licensed vaccine being not only
expensive but also limited in its duration of protection.
No vaccine is currently available for malaria. The cholera
toxin-B subunit (CTB) of Vibrio cholerae was fused to
the malarial vaccine antigen apical membrane antigen-1
(AMA1) and merozoite surface protein-1 (MSP1) and
expressed in lettuce or tobacco chloroplasts. While no
suitable models exist to test human malaria, a cholera
toxin challenge using mice immunized with chloroplast-
expressed CTB was highly effective and provided the
longest duration of protection in the published literature
[164]. These early results show that chloroplasts are
ideal for producing low-cost booster vaccines against
several infectious diseases [165] for which the global
population has been primed previously (Table 2), but
lack of an oral priming strategy is still a major limitation
in this field.

Moving forward

It is amazing that the chloroplast genome can express
>120 foreign genes from different organisms, including
bacteria, viruses, fungi, animals, and humans. The in-
sertion of commercially useful traits, including herbi-
cide and insect resistance, into soybean resulted in
high-level expression and superior transgene contain-
ment, with no antibiotic selectable markers; but even
so, these lines were not developed commercially.
Nevertheless, recurring concerns about insect resistance
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against biopesticides have resulted in new USDA re-
quirements on planting Bt corn [122], which may
eventually require utilization of the transplastomic ap-
proach to confer agronomic traits. The nuclear trans-
genic approach is inadequate to develop products
when higher-level transgene expression is a require-
ment. Thus, chloroplast transformation has a unique
advantage in advancing the field of molecular farming
for the production of vaccines, biopharmaceuticals, or
other bio-products.

Although products with high-level expression have
now advanced to the clinic or are in commercial devel-
opment, a better understanding of chloroplast transla-
tion is required to improve several other gene products.
The availability of chloroplast genome sequences should
help in the development of codon optimization pro-
grams using highly expressed chloroplast genes, but
among the ~3000 cultivated crops, sequenced chloro-
plast genomes are available for crops from fewer than 70
genera. Major funding agencies have not supported crop
chloroplast genome sequence projects because of the
misconception that all chloroplast genomes are similar,
as evidenced by the publication of fewer than ten crop
chloroplast genome sequences between 1986 and 2004.
This review illustrates the importance of sequencing
more crop chloroplast genomes for various biotechnol-
ogy applications. Furthermore, new selectable markers
are needed to transform the chloroplast genomes of ce-
reals, which has been elusive for the past two decades.

Chloroplast genome sequences will be valuable assets
in herbal medicine. Most medicinal plants are rare spe-
cies and very little information is available to confirm
their identity. DNA barcodes derived from chloroplast
genomes will be useful for identifying varieties and re-
sources; this concept is also valuable in the identification
of the origin of cultivated crops and their close relatives
to enhance breeding or transfer of useful traits. Molecu-
lar techniques to sequence the genomes of single chloro-
plasts could help to eliminate chloroplast-like sequences
that are present in the mitochondrial or nuclear genome.
The ability to sequence chloroplast genomes using
minimal leaf materials could help us to understand
variations in different segments of a variegated leaf in
horticultural crops. Further, determining complete
chloroplast genome sequences from fossils or recently
extinct plants could shed more light on chloroplast
genome evolution; help us to understand these spe-
cies’ inadequate fitness to cope with environmental
changes; and help us to build new phylogenetic trees.
The technology for isolating DNA from fossils is
already available [166—168]. All of these goals can be
accomplished with less expensive and more accurate
genome sequences, utilizing longer read sequencing
technology and new bioinformatics tools.
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