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ABSTRACT

The complex probability function is important in many
areas of physics and many techniques have been developed in an
attempt to compute it for some z quickly and efficiently. Most
prominent are the methods that use Gauss-Hermite quadrature,
which uses the roots of the n”* degree Hermite polynomial and
corresponding weights to approximate the complex probability
function. This document serves as an overview and discussion
of the use, shortcomings, and potential improvements on the
Gauss-Hermite quadrature for the complex probability function.

INTRODUCTION

The complex probability function (CPF),

w(z) = e % erfe(—iz), (1)
where z = x + iy, can be written in integral form [1],
2 2i < 2
w(z) = e (1 + —f e’ dt), )
Vi Jo

as shown in Appendix Section 1. If z’s imaginary component
y > 0, then w(z) can also be written as

i (e
w(z) = ~ f dr
T ww?—t

and subsequently separated into its real and imaginary parts
u(x,y) and v(x,y) [2], respectively, as shown in Appendix Sec-
tion 2. The results of Appendix Section 2 are summarized
below.

3)

w(x,y) = u(x,y) +iv(x, y)

where u(x,y) = f . t)2 v 4)
® e (x-1)
R O

GAUSS-HERMITE QUADRATURE

One of the most prominent attempts to efficiently integrate
the CPF for some given complex value z is by using the method
of Gauss-Hermite quadrature [3]. This technique uses the roots
of the n'" Hermite polynomial tﬁ") to approximate an integral of

the form .
f e f(t) dt ~ Z £ w

i=1

®)

where w; is a constant weight corresponding to some tg"). For
the purposes of integrating the CPF, Gauss-Hermite quadrature

can be used,
ot N w;
[y
—0 2t = Z—1

However, notice that if y = Im(z) is very small, then the inte-
grand of Eq. 6 becomes very singular and cannot be approx-
imated well using a polynomial-based approach like Gauss-
Hermite quadrature.

(6)

Error Estimate of CPF Gauss-Hermite Quadrature

To better understand impact that a small imaginary compo-
nent y value has on the reliability of Gauss-Hermite quadrature,
the error is calculated in terms of y.

Error = f

The error of Gauss-Hermite quadrature is equal to the CPF
integral shown in Eq. 3 minus the Gauss-Hermite approxima-
tion, shown in Eq. 6. This difference is found to be dependent
on n (the degree of Hermite polynomials used) and the (2n)"
derivative of f(¢) = (z — é)7! [4]. Note that in Eq. 7, & is
unknown.

To evaluate the error, first the (2n)" derivative f(&) is eval-
uated to be

p— . 2,1(2,1),f(2'”(§) (7)

@ = @)l - & Y, ®
which is then used to simplify Eq. 7 as shown below.
VT o n!\r
Error = @y = —— 31— 9
T = ),f &) = 7 ©))

To get an upper bound for the error, realize that the worst error
occurs when (z — &) is minimized, which means that z’s real
component x must approximately equal this arbitrary real value
&. Thus, the worst case error occurs when (z — &) = y. Stirling’s
approximation n! < n*%3 ¢*1 [5] is used to further simplify

the error to
nn+1/2 e—n+1 \/7_1.

<
Error - on y2n+ 1

(10)
To better understand the behavior of this maximum error, a plot
of Eq. 10 is shown in Fig. 1. Note that while the maximum error
in Fig. 1 is shown to quickly increase with sufficiently large n,
that does not indicate that the error itself will increase accord-
ingly. But it does reinforce the danger of error occurrence with
small y.
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Fig. 1: Maximum error shown in Fig. 10, with n plotted along
the x-axis and y = 1.1. Note that the maximum error begins to
drastically increase for sufficiently large n.

IMPROVED GAUSS-HERMITE QUADRATURE

To account for the aforementioned shortcomings in the
Gauss-Hermite quadrature approach to integrating the CPF, a
number of proposed solutions have been made [1, 3, 6]. For
instance, Eq. 6 can be amended to maintain a minimum positive
value in its denominator, provided that z’s imaginary component
y is non-negative. This formulation can be seen in

o+l
w(z) Z ) an
=127 Y Tt 16k

where ai"), 131(:1)’ y,(("), and 62") are all real values [3]. Note that

if 65{") is positive and z’s imaginary component y > 0, then
the positive offset in the denominator is maintained and the
aforementioned rapid, unrepresentative spike in the summation
can be avoided.

This alternative representation has restrictions however,
namely to ensure that Eq. 11 reduces to Eq. 6 in the limit of
large |z|. To do so, we require that

n

kzz; (aj{") + iﬁl(c")) = ﬁ(l +€),

where € is the assumed relative error of Eq. 11.
In another formulation, Eq. 6 can be replaced with another
rational function,

12)

ZZ:I ak(_iz)k_l
(—iz)" + X, bi(=ig)k"”

where a; and by, are both real [6].

w(2) = (13)

Minimization Techniques

In order for any of the aforementioned techniques
(Egs. 11,13) to be effective, a minimization technique must
be used to appropriately select the constants. Selection of a
certain minimization technique should account for required

accuracy in the real and imaginary components of the solution
(recall Eq. 4 that separates w(z)).

One potential option is to select the coefficients that min-
imize the squared error modulus on the real axis [1]. Alter-
natively, the coefficients may be selected such that the rela-
tive error of w(z)’s real component u(0, y) is minimized along
the imaginary half-axis (since the majority of the preceeding
discussion is limited to y > 0) [3]. This is perhaps an un-
satisfactory minimization technique for purposes particularly
concerned about the accuracy of both the real and imaginary
results (u(x,y) and v(x, y)).

If accuracy of the imaginary component v(x,y) is espe-
cially desired, then a potentially attractive option could be to
minimize v(x, 0) error along the real axis [1]. This could po-
tentially lead to significant errors of the real component u(x, y)
near the y = 0 axis, and [1] suggests possible solutions.

ALTERNATIVE TO GAUSS-HERMITE QUADRATURE

Gauss-Hermite quadrature is an attractive option for solv-
ing the CPF because it makes use of the exponential in the
integrand of Eq. 3 and has bounds of (—o0, c0). That being said,
an alternative to this approach is presented below, using finite
integration bounds and allowing the tails of the distribution to
be counted as error.

o 2 2 2
e e e
f dt = f dt + f dt
—0 21 —aZ—1 |t|>aZ_t

So assume for instance that the integral over [—a,a] in
Eq. 14 can be evaluated rather well for some a. The error
term, in which case, is of significant interest to determine the
legitimacy and validity of this technique. Appendix Section 3
shows that the absolute value of such an error is constrained to
some maximum value,

2
e
| f dt
l>a T — 1

This maximum error illustrates that a small y value can be
appropriately compensated by choosing large a. A large a
value is likely feasible if |z| is sufficiently large, such that the
singular region does not appear in the integral from —a to a.

(14)

1
< —e (15)
ya

RESTRICTION TO THE IMAGINARY HALF-AXIS

This entire discussion since Eq. 3 has been subject to the
requirement that z’s imaginary component y must be greater
than or equal to zero. This argument can, however, be easily
extended to all z values, spanning the entire complex plane [7].
Consider again Eq. 1, which defines the CPF.

w(z) = e erfe(—iz) (1)

This definition of w(z) is shown in Appendix Section 4 to obey
the following relationship:

-2

w(z) = 2¢”*

- w(-2) (16)



which, when presented in terms of z’s complex components,
appears as

W(x + iy) = 2e” Y _yp(—x — dy). (17)

Thus, if given some z with a negative imaginary component
y, the sign of y can be easily flipped by using some offset
dependent on z. Note that the sign of the real component x is
flipped as well, but this presents no conflict since there are no
constraints on the sign of x.



APPENDIX
1 - CPF Relation

w(z) = e < erfe(~iza) (A1)
We use the standard error function identities:
erfc(—iz) = 1 — erf(-iz), (A.2)
i erfi(—z) = erf(-iz), (A.3)
2 =, 2 <,
erfi(—z) = —f e di=—-—— 1] ¢ dr (A4)
Vi Jo vr Jo
Combining Eq. A.2, Eq. A.3, and Eq. A.4, we find that
erfe(—iz) = 1 + 2= f “e dr (A.5)
Vi Jo '
which, when used in Eq. A.1, illustrates that
w(z) = e (1 + —f e dt) (A.6)

2 - w(z) Real and Imaginary Parts

Recall Eq. 3, which illustrates an alternate definition of
w(z) subject to its imaginary component y > 0,

2

. oo o
W(Z)=if " 3)
T w21
i (e e
== £ 4 A7
w(x,) ﬂImx+iy—tt (A7)
P e xX—t—1iy
W(x’y):— — X - dt (AS)
T X—t+iy x—t—1iy
1 (e (ix—it+y)
=1t Xty A9
vz [ Tl 69
w(x )—lfoo e’y f e (ix - e’ Gx—in)
Y= _oo(x—t)2+y (x—t)2+y
(A.10)
2 2
y [ e’ i e (x-1)
W=z | — @+~ ——
w(x,y) nj:m(x—t)2+y2 Hﬂ co (X =12 +y?
(A.11)
w(x,y) = u(x,y) + i v(x,y) (A.12)

where u(x,y) is the Voigt function, which is a convolution of
Gauss and Lorentzian profiles [2].

3 - Bound for tails of integral

Consider the absolute value of the error term in Eq. 14,
which is never greater than the integral of its absolute value,
ZZ

P _
Error = ‘ f ¢ ar|< f ° _a. (A.13)
[f>a &~ t ltI>a |Z - tl

This can be further bounded by considering instead the maxi-
mum value of the |z — #|~! term,

1
Error < f e"zmax( ) dt.
li>a lz -1

Notice that the maximum value of the above fraction occurs
when z and ¢ are closest to each other. This corresponds to a
situation where z’s real component x is equal to 7, meaning that
|z — 7| is equal to y. Left with the integration of a symmetric
function, the integration now considers only one tail.

1 2
Error < f e~ dt = —f e dt
ltI>a y Y Jrsa

To estimate the size of this Gaussian tail, the integrand is first
multiplied by ¢/a, which is still valid as an upper bound since
t/a > 1 (all values of f considered are chosen such that ¢ > a).

2
Errors—f —e” =—f te” dt
Y Jsa @

At this point, a substitution is made where u = 2 and du = 2t dt

(A.14)

(A.15)

(A.16)

1
eldu=—e
ya

1
Error < —
ya

(A.17)

u>a?
4 - Relating w(z) to w(—z)

Consider Eq. 1 for both positive and negative argument z.

w(=z) = e erfe(iz) (1)

w(z) = e % erfe(—iz) (A.18)

w(=2) + w(2) = e~ (erfe(iz) + erfe(—iz)) (A.19)
w(=2) +w(z) = e (1 —erfli) + 1 - erf(=iz))  (A.20)

w(—z)+w(z)=ez(2——f dt——f )

(A21)
w(—z)+w(z)=ez(2——f -+ dt+—f -+ dt)

(A.22)

W(=2) + w(z) = 2% (A.23)
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