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ABSTRACT

Hydrogen diffusion rates are important for hydrogen storage applications. In atomistic simulations, diffusion energy barriers are usually calculated for each
atomic jump path using a nudged elastic band method. Practical materials often involve thousands of atomic jump paths not known a priori. It is also unclear
how thousands of energy barriers relate to an overall diffusion behavior seen in experiments. Here we demonstrate that the overall diffusion energy barrier and
pre-exponential factor can be accurately determined from Arrhenius equation constructed through molecular dynamics simulations of mean square diffusion
distances at different temperatures. This progress will enable complex diffusion problems to be readily and reliably studied in the future. Preliminary application
of this method has already begin the elucidate the experimental hydrogen diffusion data in aluminum and palladium.

1. Molecular dynamics simulations are performed for 0.88 ns;
2. Hydrogen positions are recorded every 0.0088 ps;
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dynamics simulations
convincingly predict that the
Arrhenius plot is linear at low
compositions and non-linear at
high compositions.
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Statistical errors are too large for the results to be useful.

Error Reduction
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Arrhenius Plots 1: X. W. Zhou, F. EI. Gabaly, V. Stavila, and M. D. Allendorf, J. Phys. Chem. C, 120, 7500 (2016).
(b ) Arrhenius plot 2: R. R. Arons, H. G. Bohn, and H. Lutgemier, Solid State Comm., 14, 1203 (1974).

00 —— - - | - Acknowledgements
Q =|slope| =0.43 eV |

Mean Square Displacement

(a) mean square displacement vs. time

12.0 700 K -
4 1.0 F

| /;K‘ ol e S Sandia National Laboratories is a multiprogram laboratory managed and operated by
~ 80T / : :; | '\-\.\ Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
f 60 | / /650IK E T "~ the US Department of Energy’s National Nuclear Security Administration under
v . =Ee - Contract No. DE-AC04-94AL85000. This work was also performed under Laboratory

4.0 - :g/ \

20 | %’ ﬁr | ' Directed Research and Development (LDRD) project 173121. RMD is greatly

ol :/j{%’g | appreciated for providing samples used in this work.

0.0 2.0 4.0 6.0 8.0
t (ps)

o 16I.O 1;.0 2(I).0 2;.0 2;1.0 CO 1! CI Uus i ons

kKT eV
dt =0.001 ps, At=4.4 ps, ty;p = 13.2 ns

Robust molecular dynamics simulation methods allow confident
determination of the overall diffusion energy barrier and pre-exponential
factor from Arrhenius equation. Preliminary work has begun to elucidate the
experimental data measured for aluminum and palladium.

Highly converged molecular dynamics simulations convincingly indicate
that the energy barrier for a single hydrogen atom diffusion in bulk
aluminum is 0.43 eV.




