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Static event trees can oversimplify
severe accidents 

Models the firetruck driving 
to the house.

Accounts for possible traffic 
jams, car accidents, etc. that 
may effect arrival time. 

Assumes the firetruck will 
arrive in 30 minutes. 

Static Dynamic

Initiating Event: Fire
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When and Where to Prune? 
The key choice that must be made is when to stop the growth of  a 
branch. 

Pruning can be performed at any branch point in a dynamic event tree. We 
propose a pruning algorithm that uses density peaks clustering with DTW. 

• Cluster centers will be determined 
at each branch point. 

• Branches from clusters will be 
pruned. 

• The number of  branches pruned 
will be related to user-defined 
acceptable amount of  fidelity 
reduction in the final tree. 



Density Peaks Clustering Algorithm
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Steps: 

1) Create a pairwise distance matrix for two time series. 

2) For each point in the matrix, calculate the number of data points 
within a user-determined distance, ��.

3) Then, for each point, calculate the distance of the closest data point 
of higher density, �� .    

4) Cluster centers are defined as those points that have the highest values 
of �� x ��	.

Cluster 
centers



How to Create a Distance Matrix? 
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• Dynamic Time Warping (DTW) calculates the pairwise distance between 
all points in two time series. 

• DTW is superior to the Euclidean distance as it can identify similarities 
in two time series even if there is a time lag.

Clustering using Euclidean Distance Clustering using DTW 
More Intuitive Clustering



Preliminary Results of DP with DTW
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Discussion 
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Further Work Needed

Time Complexity
Parameter 
sensitivity

Pruning Metric
Real-Time 
Algorithm 

Benefits of  Clustering Algorithm 

Arbitrary Clusters
User-Defined 

Parameters
Multi-Dimensional 

Data
Noisy Data



Conclusion
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• A pruning algorithm could help drastically reduce the 
computation time needed to run a large severe 
accident simulation. 

• The clustering of  time series can also be used as a tool 
for regression analysis. 

• Future work is needed to refine the algorithm and 
implement it into real-time tree growth.
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