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ABSTRACT

The texture of a polycrystalline material refers to the preferred orientation of the grains within the 

material. In metallic materials, texture can significantly affect the mechanical properties such as elastic 

moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive 

manufacturing of metallic materials offer the possibility in the not too distant future of controlling the 

spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical 

performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization 

algorithm within a finite element solver (COMSOL) to optimize several engineering quantities of 

interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to 

general texture optimization, we consider the idealized case of a pure fiber texture in which the 

homogenized properties are transversely isotropic. In this special case, the only spatially varying design 

variables are the three Euler angles that prescribe the orientation of the homogenized material at each 

point within the structure. This work paves a new way to design metallic materials for tunable 

mechanical properties at the microstructure level.
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INTRODUCTION

Additive manufacturing of metallic materials, which involves layer-wise consolidation of feedstock 

materials in the form of powder, wire, or sheet using various energy sources to form complex parts, is 

undergoing significant advances. As new feedstock materials keeps growing, academic, government, 

and industrial research institutions become increasingly interested in the field of metallic additive 

manufactured materials and its applications. Compared to traditional manufacturing methods, additive 

manufacturing introduces new potential for local microstructure control by tuning process parameters in 

different parts of the build. With microstructure considerably affecting properties, such as elastic 

moduli, plastic deformation, strain hardening, and fracture toughness, control of microstructure allows 

control of material properties [1, 2]. 

Previous works have already shown that some microstructure or texture control of metallic additive 

manufactured materials can be realized using methods such as electron beam method (EBM) and 

directed energy deposition (DED) methods. Raghavan et al. recently used an innovative process control 

method that allows the operator to change melting conditions in which a build with columnar or 

equiaxed microstructure was achieved on-demand [3]. Makiewicz et al. used model-based process 

parameters with a DED technique to achieve a homogeneous microstructure that led to improved fatigue 

properties [4]. Dinda et al. reports a study using a laser-aided direct metal deposition process that can 

produce texture controlled structures on a polycrystalline substrate by adjusting the laser beam scanning 

velocity [5]. Dehoff et al. presented the growth of highly mis-oriented equiaxed grains outlining the 

letters D, O, and E through the thickness of a block comprised of columnar oriented grains made of a 

nickel base superalloy. These works on the process side in metallic additive manufacturing opens the 

possibility of optimizing the microstructure to tailor of mechanical properties for a desired application. 

To take advantage of this developing capability, spatially variable material properties must be 

considered a design variable in optimization of additive parts. 

Optimization of materials for properties such as compliance, stiffness, thermal expansion coefficient, 

and fracture toughness is widespread in literature. Various optimization methods can be divided into two 

categories: gradient based and heuristic based (genetic, greedy, simulated annealing). Most topology 

optimization works using gradient based methods focused on the larger scale material properties, rather 

than starting at the microstructure properties [7, 8]. For instance, Gaynor et al. used multiple material 

topology optimization to create compliant structures [9]. Buhl et al. used a gradient based approach of 

Method of Moving Asymptotes (MMA) to optimize for stiffness in the structure [10]. Larsen et al. used 

a numerical topology optimization method to design material structures with negative Poisson’s ratio 

(NPR) [11]. Most optimization work for fiber reinforced composites lies in optimizing the angle in 

which the plies are stacked using genetic algorithms [12, 13, 14].  However, optimization efforts that 

include spatially variable material properties, which are governed by local microstructure, as a design 

variable are so far very limited.
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Here, we use an adjoint-based gradient optimization algorithm paired with finite element solvers to find 

optimal material orientations and positions to minimize quantities of interest of a metallic additive 

manufactured structure. This work paves a new way to design metallic materials for tunable mechanical 

properties at the microstructure level. This memo is organized as follows. The finite element modeling 

(including model set up, boundary conditions, and material properties) and adjoint-based optimization 

method is described in Section 2. Results of simulation and optimization is discussed in Section 3. 

Optimal material orientations spatially in a 2D system is explored and analyzed for various objective 

functions. Additionally, preliminary results of the 2D system expanded to 3D is also investigated. 

Conclusions and future work is given in Section 4.

Figure 1: Inputs into model. a) Quarter geometry used due to symmetry with dimensions labelled. The loading for the 

problem at hand is in tension with a boundary load of 1000 Pa. POI is point of interest and is considered the point of 

maximum stress. b) Local rotated orientation is specified in model to define the material orientation. c) Representative 

volume elements of the polycrystalline microstructure used to obtain homogenized elastic properties: isotropic (no texture, 

top) and transversely isotropic (pure fiber texture, bottom).

1. METHODS

To obtain spatially optimal material orientations in an AM structure, a finite element solver combined 

with optimization software is used. Comsol Multiphysics [15] is used for both optimization and 

structural finite element analysis. This software is used because of its capability to incorporate adjoints 

in its optimization methods to efficiently solve problems. This work considers a hole in a plate structure. 

The hole essentially functions as an undesirable byproduct (stress concentrator) and one goal of the 

optimization is to mitigate the maximum stress point along the hole. Another goal is to minimize the 

compliance of the structure. The methods used here could potentially be extended to look at cracks 

(edge, center) in structures which also have stress concentrations at the crack tips. 

1.1 Finite element Analysis

1.1.1 Model set-up and boundary conditions
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The model problem studied in this work is a simple two-dimensional hole in a plate geometry with 

dimensions outlined in Fig. 1. The plate is considered thin compared to the rest of the other dimensions 

so plane stress conditions are used. A quarter model is used due to symmetry where symmetry boundary 

conditions are imposed on the two boundaries. The mesh shown in Appendix Fig. A1 is chosen based on 

computational efficiency and a mesh convergence study shown in Appendix Fig. A1. A normal traction

of 1000 Pa is applied in the x-direction. Additionally, this work assumes displacements are in the linear 

elastic regime of the material. 

Table 1: Homogenized effective material properties used in model includes elastic moduli, Poisson’s ratios, and shear 

moduli. 

1.1.2 Material properties

The material considered here is an additively manufactured 304L stainless steel.  Material properties are 

obtained by performing computational homogenization of representative volume elements (RVE) based 

on microstructure features observed in AM metals and welds [16].  The RVE’s are shown in Fig. 1. A 

microstructure obtained from an electron backscatter diffraction (EBSD) image of a 304L stainless steel 

laser weld works as a basis for the RVE grain morphology (add reference). The RVE used has a <100> 

fiber texture that has been observed experimentally in weld and AM microstructures [16]. This produces 

homogenized properties that are transversely isotropic.  For comparison, we also consider a set of 

homogenized isotropic material properties obtained from a RVE containing equiaxed grains with 

uniformly random orientations (no preferred orientation and no texture) [16]. Both sets of material 

parameters are shown in Table 1. 

The material coordinate system is shown in Fig. 1, where � is the angle between the material coordinate 

system x’, y’ and the global coordinate system X,Y.  For this study, we study three optimization cases: 

1. � is varied in a spatially homogeneous material 

2. � is varied in a spatially heterogeneous material 

3. � and p is varied in a spatially heterogeneous material 
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where p is an additional parameter that varies the degree of transverse isotropy in the material stiffness 

tensor.  For this case #3, the elasticity tensor C is composed of the transversely isotropic portion (���)

and also the isotropic portion (��) as

� = � ∗ ��� + (1 − �) ∗ �� (1)

where p varies between 0 and 1 and ��� and �� are the elastic constants given in Table 1 and the 

elasticity matrices are shown in the Appendix. Note that this is a very simplified way to vary the elastic 

properties.  A more rigorous approach would be to allow the texture to vary from "none" to "pure fiber" 

and then rerun an RVE simulation to recover the homogenized elastic constants.  This would involve 

doing this for several "p" values and then fitting an interpolation curve to each elastic constant so that it 

could be used by COMSOL.

2.2 Optimization

2.2.1 Objective functions

Two main objective functions that are explored in this study are shown in Eq. 2. The first is strain 

energy (��), which is defined as the integral of strain energy density (��) over the entire domain. Strain 

energy balances the work done by the applied load. As a result, minimizing strain energy minimizes the 

displacement induced at the points where load is applied, effectively minimizing the compliance of the 

structure, and maximizing its stiffness. The second is the von Mises stress (��) at the point of interest 

(POI) labeled in Fig. 1, which is the maximum stress point on the hole for a general isotropic material. 

The idea behind the second objective function is to dissipate and decrease the stress at a critical point in 

the system, which is the maximum stress point. The variable we are optimizing in the problem is

�(�, �), the  local orientation of the material coordinate system, mentioned in Section 2.1.2. 

�� = � ���Ω
�

�� = ���(at POI)
(2)

2.2.2 Adjoint-based gradient method 

To optimize our system, we use a gradient-based method from the Comsol optimization toolbox called 

Method of Moving Asymptotes (MMA). This is an iterative method that generates and solves a convex 

subproblem within each iteration [17]. This method uses upper and lower moving asymptotes to adjust 

the curvature of the approximate functions, with the selection of the moving asymptotes as largely 

heuristic. Additionally, adjoint methods are necessary to solve for values of �(�, �) that are allowed to 

vary spatially within the structure [15, 18]. The adjoint method is a numerical method for efficiently 

computing the gradient of a function or operator in a numerical optimization problem. It formulates the 
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gradient of a function towards its parameters in a constraint optimization form. The optimization 

problem requires:

��

��
= 0

(3)

where Q is the objective function (two of which are mentioned in Eq. 2) and � is the angle variable in 

the optimization problem as shown in Fig. 1. Therefore the equation that is needed to be solved is

��

��
=

��

��

��

�� (4)

where u is the position of all the angles. Now, we introduce an adjoint variable defined as

�� =
��

��
���(�) →

��

��
= ���(�)

(5)

where � is the adjoint variable and � is the stiffness matrix. Now that we have the equation for 
��

��
, we 

now need to solve for 
��

��
. We know that 

�(�)� = �
(6)

where F are the forces applied to the system.  Differentiating Eq. 6, we get

�(�)
��

��
+

��(�)

��
� =

��

��
= 0

(7)

This means that 

��

��
= −�(�)��

��(�)

��
�

(8)

Now, the components from Eq. 5 and Eq. 8 can be combined into Equation 4 to result in

��

��
=

��

��

��

��
= (���(�)) ∗ (−���

��(�)

��
�) = −��

��(�)

��
�

(9)

This is the method of adjoints used in the Comsol manual [15] which we use to solve for spatially 

varying material orientations. The adjoint method aided in eliminating the inverse stiffness matrix (K), 

which is very expensive to solve for computationally. 
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Figure 2: Parametric sweep of material orientations. Strain energy and von Mises stress varies with material orientations. 

Von Mises stress plots for material orientations at locations A (15 degrees) and B (150 degrees) shown on the right depicts 

differences in stress contours with orientation.

3. RESULTS

3.1 Parametric sweep

To demonstrate the effects of material orientation on mechanical properties, a parametric sweep study of 

various material angles (�) is performed. The same angle is assumed for all positions in the structure 

and a forward analysis of various material orientations is executed.  Results are shown in Fig. 2. It can 

be seen that both the properties of strain energy (Q1 from Eq. 2) and von Mises stress (Q2 from Eq. 2) 

vary with material orientation. The curve for strain energy is very symmetric while the curve for von 

Mises stress at the selected point of interest is not. The reason for this is that the equation for solving 

strain energy is an integral over the entire material domain while the von Mises stress objective is taken 

from just a point. This knowledge of symmetry is critical for the optimization step in which for strain 

energy the angles should be constrained from 0 to 90 degrees while for von Mises, the angles should be 

constrained from 0 to 180 degrees. Additionally, it can be seen that for both properties, � = 0 and � = 

180 output the same answer, which is true because they are essentially in the same plane. Two points on 

the von Mises curve are compared, A and B, with A at � = 15 degrees and B at � = 150 degrees. 

Comparing the von Mises plots for both points shown in Fig. 2, it can be seen that the stress plots are 

very different for the two angles. At point B, there is higher stress and a larger stress concentration 

around the hole compared to point A. This parametric sweep of the forward analysis shows that material 

orientation has a significant effect on the objective functions. 
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Figure 3: Optimization with spatially homogeneous properties. Objective value as a function of iteration number in the 

simulation is shown for a) strain energy, b) von Mises stress at POI, and c) both strain energy and von Mises stress at POI 

(multi-objective optimization using equal weighting). Optimal angles for all three scenarios are shown in the plot. 

3.2 Optimization with spatially homogeneous properties

Next we perform an optimization study to determine the optimal material orientation for the structure 

with spatially homogeneous properties and constant material stiffness.  For the first objective function of 

strain energy, � is constrained from 0 to 90 degrees due the symmetry in the parametric sweep. From the 

parametric sweep, it can be seen that the minimal point is around � = 40 degrees (Fig. 2). After 

optimization, starting with an initial point of � = 0, we discover that the optimal angle is � = 38 degrees. 

This helps to verify that the optimization method is working correctly and within the results of our 

forward analysis. Fig. 3 shows the objective value of strain energy decreasing with each iteration and 

eventually converging into a solution. For the second objective of von Mises stress, we constrain � from 

0 to 180 degrees. From the parametric sweep, it can be seen that the minimal point is around 110 

degrees. Fig. 3 shows the objective value decreasing with each iteration and eventually converging into 

a solution of � = 106 degrees. 

In addition to studying these two objectives optimized separately, we study multi-objective optimization 

for applications that need to have optimal values for both objectives. In order to do multi-objective 

optimization, we use a sum of the objectives using equal weighting, denoted as � = �� + ��. The 

properties are first normalized to prevent any bias from the magnitude of the properties with different 

units using solutions from � = 0. Fig. 3 shows the objective value versus iteration and converging for 

both properties. It can be seen that in the beginning, both properties were able to decrease, however, at 
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some point the objective function for von Mises stress had to increase to allow for even more decrease in 

strain energy, which consistently decreases with iteration. This shows that tradeoffs are needed to find 

an optimal value most beneficial to the system. The optimal angle for the multi-objective problem is � = 

24 degrees. It is important to note that for different applications, this equal weighting can be adjusted to 

fit a certain application that may require better performance in one of the objectives. 

Figure 4: Optimization with spatially heterogeneous properties. a) Optimal angle color plot spatially is shown for strain 

energy and von Mises at POI. b) Objective value as a function of iteration number is minimized and converged for strain 

energy and von Mises at POI. c) Before optimization and after optimization von Mises plots optimized to minimize von 

Mises at POI shows much lower stress for the after optimization stage. 

3.3 Optimization with spatially heterogeneous properties

The previous section discussed an optimal material angle that is uniform in the entire structure. 

However, allowing the material orientation angle to vary spatially will better suit the evolving capability 

of additive manufacturing to produce point-wise material control within a printed structure. Using the 

method of adjoints allows us to efficiently solve for optimal angles at each point in the geometry 

(Section 2). For the strain energy objective function, Fig. 4 shows a colorplot of the optimal angles in

degrees. It can be seen that most parts of the geometry far away from the hole area is in the regime of �

= 40 degrees, which is very close to the optimal angle obtained from the optimization of spatially 

homogeneous properties of � = 38 degrees. Near the hole, the angles seem to vary much more to 

decrease the strain energy of the system and mitigate the effects of the hole. Also shown in Fig. 4 is the 

strain energy objective value decreasing with iteration and eventually converging to a value. 

For the von Mises objective function, Fig. 4 shows a colorplot of the optimal angles and it can be seen 

that near the POI, the angles start to deviate following the region of maximum shear stress that follows a 
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45 degree angle from the hole, trying to lower the stress at the point. Additionally, the von Mises stress 

plot before optimization is shown for � = 150 degrees compared to the von Mises stress plot with 

optimal angles after optimization. It can be viewed that with optimization, all the stress that was near the 

hole is dissipated and the stress is much more distributed in the material, lessening the effects of the 

hole. 

Figure 5: Optimization of variable elastic properties. Optimal angle and variable P (degree of isotropy discussed in 

Methods section) spatially in material, and resulting von Mises stress plot is shown for the objective function of a) strain 

energy and b) von Mises stress at POI. 

3.4 Optimization with variable elastic properties

The three previous studies have assumed constant stiffness properties; however, the AM process 

potentially offers the capability to vary both stiffness properties and material orientation throughout a 

printed structure.  Thus, another variable is added to consider material variation in the system. We 

introduce another variable p to take into account the degree of isotropy present in the stiffness matrix 

(Eq. 1).  So if p = 0, the material is isotropic, and if p = 1, then the material is the transversely isotropic 

solution representative of a pure fiber texture. p in between those two regimes allows for intermediate 

materials in between those two extremes. Now for this problem, there are two variables, � and p.

For the objective of strain energy, optimal angles and p spatially is shown in Fig. 5; it can be seen that 

the angles plot look similar to the previous spatially heterogeneous properties plot. For p spatially, the 

optimal value is p = 0 everywhere in the geometry, meaning it obtains the isotropic solution. Since strain 

energy is correlated to stiffness and since the isotropic solution has high values for elastic modulus in 

most of the directions, this solution makes sense. For the von Mises objective, it can be seen that the 
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solution for angles look quite similar as before in section 3.3. As for p, the variation in p also lies around 

the 45 degree angle between the hole and the edge of the plate. The von Mises stress plot shows more 

dissipated stress from the hole where maximum stress originally was located. 

Figure 6: Varying objective functions for von Mises stress. Optimal angle and variable p (degree of isotropy discussed in 

Methods section) spatially in material, resulting von Mises stress plot, and objective value with iteration number is shown for 

the objective function of integrating the square of von Mises stress a) over the entire domain and b) over an annulus around 

the hole.

3.5 Variation of von Mises objective functions

In the previous section, the von Mises objective function was solved at a point. This method works in 

applications where it is necessary to dissipate the stress at a point. However, in some applications, 

average stress over a domain is more important. Here, we study two additional cases, an averaged von 

Mises stress over the entire domain and an averaged von Mises stress over an annulus with radius 0.1 m 

around the hole (shown in Appendix Fig. A2). For the entire domain objective function, we integrate the 

square of von Mises over the entire geometry. The results are shown in Fig. 6. For this objective 

function, the band of angles along the 45 degree line between the hole and plate edge is no longer there, 

and the same applies for the variable P. Looking at the von Mises stress plot, there still exists very high 

stress around the hole, meaning that the stress is not dissipated. Additionally, it can be seen that with 

iteration, the objective value does not decrease much for this objective value. From this analysis, it looks 

like the angle effects just cancel each other out when integrating over the entire domain rather than a 

region of interest. For the average von Mises stress around an annulus, we integrate the square of von 

Mises stress over a region one radius value larger than the radius of the hole. Results for this objective 

function is shown in Fig. 6. It can be seen that the angle profile is shifted from before when von Mises 

stress was defined at a point. This average method helps to shift the stress away from the region of 



Distribution - 12 - August 10, 2017

interest instead of just the point of interest. It can also be seen that with iteration, the objective value is 

decreasing and from the von Mises stress profile the high stress values near the region of interest 

disappears. Differences occur when looking at the entire domain.

Figure 7: Optimal Euler angle orientations for strain energy. a) Top view b) 3D view and c) Sliced view for cross-

sectional angles. 

3.6 Preliminary three-dimensional model results

We extend our method of adjoints and gradient optimization to study a three-dimensional (3D) system 

with a hole, with dimensions shown in Appendix Fig. A3. The height is 2 meters long, width is 2 meters 

wide, and thickness is 0.2 meters. A 3D model allows the study of the three Euler angles in a material 

system, with Euler angle notation from Comsol manual [15] shown in Appendix Fig. A4. This 

optimization problem has three design variables, which are denoted as �(�, �, �), �(�, �, �), and 

�(�, �, �). The same optimization approach and objective functions as the 2D system is used for the 3D 

system. The main difference is that the 2D system has one design variable, while the 3D system has 

three. A forward analysis of the 3D system is shown in Appendix Fig. A4. It can be seen that in the 

location near the hole there is high stress concentration similar to the 2D case but through the thickness 

direction. Running the optimization scheme with this problem, there will be three colorplots to look at 

with optimal �, �, and � angles shown in Fig. 7 for strain energy objective function. Different views of 

the colorplot is shown in Fig. 7, one of which is the capability of Comsol to view the optimal angles 

along a cross-section in different slices of the material. Appendix Fig. A5 shows the strain energy as a 

function of optimization iteration number. Fig. 8 compares the displacement along the top of the 
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material between the forward analysis without optimization and after optimization. It can be seen that 

the maximum displacement has reduced by approximately half using the optimized Euler angles shown 

in Fig. 7. Total displacement is used here to visualize strain energy reduction because as mentioned in 

the Methods section, strain energy is correlated to compliance and this problem seeks to minimize 

compliance of the system. 

Figure 8: Before and after displacement field for minimizing strain energy

Von Mises stress objective function is solved for using an annulus around the hole. The von Mises stress 

at a point objective function cannot apply here as the model now includes a thickness. From the 2D 

model, we realize that integrating the von Mises stress over the entire domain does not improve the 

objective function very much. As a result, for the 3D case, we integrate an annulus domain around the 

hole to solve for the von Mises objective function. Optimized Euler angle solutions are shown in Fig. 9.

The lines in the optimization stress field shows the annulus domain where integration took place. 

Appendix Fig. A4 shows the von Mises stress as a function of optimization iteration number. We 

compare the before optimization von Mises stress plot around the hole area to after optimization and can

see that most of the stress through the thickness is mitigated. Extending our problem to 3D shows that 

after optimization, the material thickness area has a heterogeneous angle profile. 
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Figure 9: Euler angle solutions for minimizing von Mises stress. a) Euler angle solutions b) Before (Left) optimization von 

Mises stress plot around the hole thickness is compared to after (Right) optimization solution. 

4. CONCLUSIONS AND FUTURE WORK

In this work, we present a technique to optimize material orientations of polycrystalline materials using 

a combination of finite element analysis and gradient-based optimization. To efficiently solve for the 

optimal material orientations, an adjoint based design optimization method is used. Optimal material 

angles for a spatially homogeneous and spatially heterogeneous material are optimized for quantities of 

interest, such as compliance and von Mises stress. Additionally, we look into a combination of stiffness 

tensor and material orientation variables effect on optimized structures, as the AM processes potentially 

offers the capability to vary both. The methods and framework proposed here can be extended to study 

other structures and designs and offers a tool to create optimized geometries with varying material 

orientations. It is worth mentioning that for this study, we considered a linear elastic model and 

optimized behavior in the small-strain regime. An expansion of this work could be to extend the 

approach to explore nonlinear behavior, such as plasticity. Another extension can be to combine material 

orientation with topology optimization. 
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Appendix

Fig. A1: Meshing details. a) Mesh used in study b) Mesh convergence study for the two objective functions.

Fig. A2: Annulus domain used for averaged von Mises stress calculation

Fig. A3: Forward analysis for 3D model. a) Dimensions of model b) Von Mises stress profile from top view c) Von 

Mises stress profile zoomed in the hole thickness area
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Figure A4: Schematic of Euler angles α, β, and γ where lowercase xyz represents the original coordinate system and 

uppercase XYZ represents the rotated coordinate system. 

Figure A5: Objective value as a function of iteration number of 3D model for a) Strain energy and b) Von Mises 

stress. 
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