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* Metamaterial dielectric resonators represent a promising path toward low-loss
metamaterials at optical frequencies

 We show that the introduction of perturbations of
high symmetry geometries ]
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X
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2) |IZ"SJ2 versus & on xz plane (¢ = 0)
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* Enables directional scattering, Huygens’
metasurfaces, and high-quality factor Fano
resonances
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e Ohmic currents replaced by displacement currents
* Low loss option for infrared & visible wavelengths

e High permittivity materials

» Starting Point: Mie theory = multipole resonance
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Aligning electric and magnetic Sandia
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resonances in single resonator

Normalized polarizability

Retrieve electric and magnetic polarizabilities of single scatterers using full-wave

simulations
P=0. 'Elocr m-=a 'Hloc

- 111111

Basilio et al. IEEE Antennas Wireless Propag. Lett. 10, 1567 (2011); Rockstuhl et al. Phys. Rev. B 83, 245119 (2011)
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Electric and magnetic polarizabilities can be easily engineered to overlap at a given
frequency

Quadrupole resonance is also affected and can be shifted away from the dipolar

resonances
Warne et al., PIER B 44, 1-29 (2012); IEEE Trans. Antennas Propagat. 61, 2130-2141 (2013)
Campione et al., Opt. Express 23, 2293-2307 (2015)
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Aligning resonances leads to Sandia
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directional scattering laboratories \J

* First Kerker condition can be satisfied at two frequencies

* Forward scattering only = no back scatter

M. Kerker et al., J. Opt. Soc. z /(8 z )—a
Am. 73(6), 765—-767 (1983) 0 4y T (b)

Kerker conditions
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Campione et al., Opt. Express 23, 2293-2307 (2015)
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2D array of directional scatterers: Sandia
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Huygens’ metasurface boatores N1

single particle forward scattering = array high transmission

High transmission across spectral band 27 phase shift across spectral band
1 e ——— & 200 x
R “~\~, '\% 41 /= (d)
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 Ultra thin optics
* Phase front manipulation

Campione et al., Opt. Express 23, 2293-2307 (2015)
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How do we achieve sharp resonances? fh
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Fano resonances of metasurfaces: 08 \ l - ,;'.
» First proposed for metal metasurfaces 0.6 ; \ A
The highest Q-factor DR Fano de5|gns to-date rely on /-/"
¢ multiple resonators in the unit cell “Experiment |

N

v
1 s
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errors

Can we find a one-resonator de5|gn that leads to high Q??

| Near field coupling extremely sensitive to fabrication

Quadrupole
Q~130at4 um
(experimental)

Wu, et al.
Nature Comm. 5, 3892, 2014

Q~ 100 at 1.5 um

Jain, et al.
AOM 10, 1431, 2015

A PR
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Q~500at 1.37 um
(experimental)

Yang, et al.
Nature Comm. 5, 5753, 2014
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Operating principles et {00
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dipole
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Campione et al., arxiv:1607.06469 (2016)
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Ge-based Fano metasurface design e eios A2

ly

FDTD Simulation
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a=b=4.2um
Design is scalable from NIR through RF!
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Understanding the nature of the Sandia
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“Numerical Experiment”: multipole decomposition of the resonator’s response in the array.

surface
currents
5L, M

incident plane wave

Love’s
Equivalence Principle

incident plane wave

1. Simulate array response 3. Replace resonator with surface
2. Collect tangential fields on fictitious box currents on box

N/
7
l

N

4. Calculate far-field due to surface currents on box
alone
5. Fit to multipoles — all dipole and quadrupole modes
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Multipole decomposition of resonator response
 x-polarized electric field excitation for full array
* Far-field scattering for single cube

« Extract multipole powers At the Fano resonance:

* m, dominates
* p, is extinguished

1E-11E

* p, and M,, (magnetic
1E-12 ¢ quadrupole) are excited
i Far-field 2
1E-13} lobe \Z .
: patterns X
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i z
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What about p, and M,,? Small cross Sani
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polarization of transmitted wave Laboratores N

At Fano resonance:
* both multipoles are excited
* radiated fields cancel in forward and backward directions!!

Residual imbalance of scattering by p, and M,,
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Resonant mode field profiles

'x-y plane
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Isolated resonator 3x3 array 5x5 array

* m, can’t radiate
broadside (no forward
lobe)

* near center: local
fields inhibit radiative
decay of m,

* near edges: m, can
radiate laterally

* quality factor increases
towards center

* quality factor increases
with array size

electric field vector plots
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field enhancement = 200
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ol H, for central resonator |
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Isofated 3x3 53{5 73(7 9x9
Array size

* beginning to saturate for 9x9 array
» effect arises from nearby resonators
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Experimental verification:
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Silicon-on-insulator Fano resonators (aboratories Ses

Thickness = 250 nm
Side length =~ 280 nm
Array pitch =550 nm
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* The introduction of perturbations of high
symmetry geometries

Campione et al., Opt. Express 23, 2293-2307 (2015)

o0

X

2) |IZ"5J2 versus & on xz plane (¢ = 0)
90 8x10™"?

 Enables directional scattering, Huygens’
metasurfaces, and high-quality factor Fano
resonances
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Campione et al., arxiv:1607.06469 (2016)
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Aligning the dipole resonances:
split-cubes
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Warne et al., PIER B 44, 1-29 (2012); IEEE Trans. Antennas Propagat. 61, 2130-2141 (2013)
Campione et al., Opt. Express 23, 2293-2307 (2015)
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What about p, and M,,? @ Netlone
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At Fano resonance:
* both multipoles are excited
* radiated fields cancel in forward and backward directions!!

|E|2 on the x-z plane |E|? on the y-z plane

] 1
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scattering scattering scattering scattering
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p = aEloc a~ Radiation damping term

k3 Tretyakov and Viitanen

Eloc — Einc/_|_<’[§] ﬁ = Re(ﬁ) + ia Sipe and Van Kranendonk
Simovski
Interaction constant
1 k3 . 1 1 k3
——i——Re =EM¢ bt —=Rel=|+ i—
P (a 61 ('B)> - a ¢ (a) T l67r

1 -k -k3 inc
p Re<5)+1 — i n—Re(,B) =FE
o

radiation local field
term term

B Einc
P (a)z — wi — Re(ﬁ))

non-radiating dipole
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The total far field can be decomposed to multipolar components as

E:EED +EMD +EEQ +EMQ +EEO +EM0+...

2 ikr 2 ikr .23 ikr
ck” e . . k= ™ . ick” ™ .
Erp=2Zy— rxpxr Eyp=-2Zy,——rxm Epp=—2 rxQproxr
ED 0 47'[ v p MD 0 A r EQ 0 2471' EQ
3 ikr .
ik e ~ 4 ikr 4 ikr
Eo=2Zy———Fx _ g ke . KoM,
MQ 02471_ Py QMQ EEO ZO Ar r rXOonr EMO =ZO_47I. P rXOMO
2w
II(Eg’FEénultlpole n qu’FEqrbnultlpole )sin 0d0d
Weight = 00

Normalization factor * Coefficient in front of multipoleabove

1
i~ 2—20
Expansion up to quadrupolar terms will be enough...

2 .
|El~| * Normalization factor
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Top-L-cube — Electric field maps at Fano @ eborarores
resonance 10.77 um x-y plane
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Extracting Resonator Polarizabilities: @ ﬁgt'}gﬁal
Isolated Particle Simulation and Moments (IPSaM) Laboratories

L. I. Basilio, et al., IEEE Antennas and Wireless Propagation Letters, 10, 1567, 2011
Rockstuhl, et al., PRB 83, 245119 (2011)

v

Claussius Mossotti

mm) &.u

v

Extract equivalent Estimate effective
dipoles & parameters
polarizabilities

Simulate isolated

. . Transform to far-
particle scattering

field patterns

» fast, efficient, compatible with optimization
» general shapes: SRRs, dipoles, metals, DRs
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Multipole decomposition H-Drive 2

Power

18
1 O [ [ [
7 28 29 30 31 32
Frequency (THz)

* Dominating electric dipole pz
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E-Drive and H-Drive incidence

1
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= . = H-drive
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Frequency (THz)

* Electric drive shows signature of the Fano resonance at 27.8314 THz only
* Magnetic drive shows signature of the Fano resonance at 31.43 THz only

 This agrees with our predictions so far
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10 Dominating magnetic dipole mz — pX
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Dominating electric dipole pz — pX
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40mm
focal length
Incandescent light source

Sandia
200mm National _
focal length Laboratories

Collection fiber, 50um diameter, NA 0.22

3

Source fiber
62.5um diameter, NA 0.275

19mm
focal length

Beam splitter BSW29

Glan Taylor polarizer
5mm clear aperture

10x objective: Motic, NA 0.28, 12mm back aperture
20x objective: Mitutoyo, NA 0.4, 8mm back aperture
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Comparison of Si and GaAs absorption @ ol

* Extremely low loss below bandgap

e Crystalline
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DRs are now possible in IlI-V semiconductors@ eberaeores

New process for (Al)GaAs resonators

Deposit SiO,+ Deposit Ni+
Spin PMMA+ 7 lift-off+dry
F| E-beam etch SiO,

Iithographi

Oxidation ICP etch

n~=3.5
n= 1.6
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measured
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Gold mirror
* height =300 nm ]
. . E
* diameter varies near 300 nm 5
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Multilayer I1lI-V Dielectric Metamaterials National
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Broad spectral bands of near perfect reflectivity!
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1.0 . .
0.9 M Mot ]
p af " 1,*‘ 1y
M~ N (1 :A' Wy VN "7~""‘L‘ - 7
0.8 3 VIV -
' A vww«;w‘ .
2"’ ’ .
T 06k
> 0.6 FWHM=1.6 nm ,
= 0.5} Q600
%}
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0.2F 4
900 950 1000 105(
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* GaAs is direct bandgap = lower absorption losses
* GaAs has a large %2) = nonlinear devices (SHG, down-conversion, etc.)
e Can incorporate InGaAs quantum wells for gain and photon detection
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