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Outline of the talk 

• Metamaterial dielectric resonators represent a promising path toward low-loss 
metamaterials at optical frequencies

• We show that the introduction of perturbations of 
high symmetry geometries

• Enables directional scattering, Huygens’ 
metasurfaces, and high-quality factor Fano
resonances
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Dielectric Resonator Metamaterials

• Ohmic currents replaced by displacement currents

• Low loss option for infrared & visible wavelengths

• High permittivity materials

• Starting Point: Mie theory  multipole resonance

Electric field patterns

Magnetic
Resonance

Electric
Resonance

Circulating E-
field: 
displacement 
current loop

Linear E-field: 
displacement 
current line

1.7 m Te cube array
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Aligning electric and magnetic 
resonances in single resonator

Basilio et al. IEEE Antennas Wireless Propag. Lett. 10, 1567 (2011); Rockstuhl et al. Phys. Rev. B 83, 245119 (2011)

• Retrieve electric and magnetic polarizabilities of single scatterers using full-wave 
simulations

• Electric and magnetic polarizabilities can be easily engineered to overlap at a given 
frequency

• Quadrupole resonance is also affected and can be shifted away from the dipolar 
resonances

Warne et al., PIER B 44, 1-29 (2012); IEEE Trans. Antennas Propagat. 61, 2130-2141 (2013) 
Campione et al., Opt. Express 23, 2293-2307 (2015)
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Aligning resonances leads to 
directional scattering

• First Kerker condition can be satisfied at two frequencies
• Forward scattering only  no back scatter
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M. Kerker et al., J. Opt. Soc. 
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2D array of directional scatterers: 
Huygens’ metasurface
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High transmission across spectral band 2 phase shift across spectral band

single particle forward scattering  array high transmission

• Ultra thin optics 
• Phase front manipulation

Campione et al., Opt. Express 23, 2293-2307 (2015)
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How do we achieve sharp resonances?

Fano resonances of metasurfaces:
 First proposed for metal metasurfaces
 Interference of “bright” and “dark” excitations
 Can lead to sharp spectral features

Now technologically important:
 Sensors, detectors, lasers, nonlinear optics, modulators

Yang, et al.
Nature Comm. 5, 5753, 2014

Q ~ 500 at 1.37 um
(experimental)

Wu, et al.
Nature Comm. 5, 3892, 2014

Q ~ 130 at 4 um
(experimental)

Jain, et al.
AOM 10, 1431, 2015

Q ~ 100 at 1.5 um

The highest Q-factor DR Fano designs to-date rely on 
multiple resonators in the unit cell

Near field coupling extremely sensitive to fabrication 
errors

Can we find a one-resonator design that leads to high Q??
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Operating principles

Campione et al., arxiv:1607.06469 (2016)
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Ge-based Fano metasurface design
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Understanding the nature of the 
Fano mode

“Numerical Experiment”: multipole decomposition of the resonator’s response in the array.

1. Simulate array response
2. Collect tangential fields on fictitious box

3. Replace resonator with surface 
currents on box

=
Love’s 
Equivalence Principle

4. Calculate far-field due to surface currents on box 
alone

5. Fit to multipoles – all dipole and quadrupole modes

surface 
currents
J, M

incident plane wave

incident plane wave
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Understanding the nature of the 
Fano mode

Multipole decomposition of resonator response
• x-polarized electric field excitation for full array
• Far-field scattering for single cube
• Extract multipole powers
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What about py and Mzx? Small cross 
polarization of transmitted wave

At Fano resonance:
• both multipoles are excited
• radiated fields cancel in forward and backward directions!!

Residual imbalance of scattering by py and Mzx

small cross-pol 
transmission
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Resonant mode field profiles
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Array effect on the magnetic dipole
minmax

Isolated resonator 5x5 array

9x9 array7x7 array

3x3 array

• mz can’t radiate 
broadside (no forward 
lobe)

• near center: local 
fields inhibit radiative 
decay of mz

• near edges: mz can 
radiate laterally

• quality factor increases 
towards center

• quality factor increases 
with array size

electric field vector plots
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Field enhancement vs. array size

Isolated 3x3 5x5 7x7 9x9
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Hz for central resonator

field enhancement  200

• beginning to saturate for 9x9 array
• effect arises from nearby resonators
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Experimental verification: 
Silicon-on-insulator Fano resonators
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Conclusion

Campione et al., Opt. Express 23, 2293-2307 (2015)

• The introduction of perturbations of high 
symmetry geometries

• Enables directional scattering, Huygens’ 
metasurfaces, and high-quality factor Fano
resonances

Campione et al., arxiv:1607.06469 (2016)
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Back-up slides
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Aligning the dipole resonances: 
split-cubes

6 8 10 12 14 16

0.0

1.0x10
-17

2.0x10
-17

3.0x10
-17

4.0x10
-17

 gap=0 nm
 gap=50 nm
 gap=100 nm
 gap=150 nm

P
o

la
ri

z
a

b
ili

ty
 (

m
3
)

wavelength (m)

Magnetic Polarizabilities Electric Polarizabilities

=32
k

H

E

gap=0 gap=50nm gap=100nm gap=150nm

1.53 m

4 6 8 10 12 14 16 18
0.0

2.0x10
-17

4.0x10
-17

6.0x10
-17

8.0x10
-17

1.0x10
-16

P
o
la

ri
z
a
b

ili
ty

 (
m

3
)

wavelength (m)

 gap=0 nm
 gap=50 nm
 gap=100 nm
 gap=150 nm

 6/k
0

3

Warne et al., PIER B 44, 1-29 (2012); IEEE Trans. Antennas Propagat. 61, 2130-2141 (2013) 
Campione et al., Opt. Express 23, 2293-2307 (2015)



Salvatore Campione – sncampi@sandia.gov – EMTS 2016, August 18, 2016 Slide 21 of 18

What about py and Mzx?

At Fano resonance:
• both multipoles are excited
• radiated fields cancel in forward and backward directions!!
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Array suppression of scattering
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Multipolar expansion

The total far field can be decomposed to multipolar components as
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Top-L-cube – Electric field maps at Fano 
resonance 10.77 um x-y plane
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Top-L-shape – Polarization at Fano resonance 
– E field at T monitor at 27.8314THz

|Ex| |Ey|

|Ez| |E|
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Extracting Resonator Polarizabilities:
Isolated Particle Simulation and Moments (IPSaM)

 fast, efficient, compatible with optimization
 general shapes: SRRs, dipoles, metals, DRs



p

m

L. I. Basilio, et al., IEEE Antennas and Wireless Propagation Letters, 10, 1567, 2011
Rockstuhl, et al., PRB 83, 245119 (2011)

Claussius Mossotti

Simulate isolated 
particle scattering

Transform to far-
field patterns

Extract equivalent 
dipoles & 

polarizabilities

Estimate effective 
parameters
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E-Drive and H-Drive incidence

• Electric drive shows signature of the Fano resonance at 27.8314 THz only

• Magnetic drive shows signature of the Fano resonance at 31.43 THz only

• This agrees with our predictions so far
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CAM

200mm
focal length

19mm
focal length

Collection fiber, 50um diameter, NA 0.22

40mm
focal length

Source fiber
62.5um diameter, NA 0.275

Incandescent light source

Glan Taylor polarizer
5mm clear aperture

10x objective: Motic, NA 0.28, 12mm back aperture
20x objective: Mitutoyo, NA 0.4, 8mm back aperture

Beam splitter BSW29
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• Extremely low loss below bandgap

• Crystalline

Comparison of Si and GaAs absorption
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DRs are now possible in III-V semiconductors
New process for (Al)GaAs resonators

n  3.5
n  1.6 
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oxide
GaAs

GaAs Cylindrical Resonators

• height = 300 nm
• diameter varies near 300 nm

measured

simulated

reflectivity exceeds gold at several 
wavelengths
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Epitaxially grown multi-layer 
GaAs/AlGaAs

GaAs 
Substrate

Etch Mask

GaAs 
Substrate

Etch Mask

Oxidation

AlGaAsGaAs AlGaO

Multilayer III-V Dielectric Metamaterials

Same processing can be 
used with multiple epilayers
to produce 3D dielectric 
metamaterials.

3-layer GaAs dielectric 
metasurface

Broad spectral bands of near perfect reflectivity!
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GaAs Fano Resonators: Q  600!
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• GaAs is direct bandgap  lower absorption losses
• GaAs has a large (2)  nonlinear devices (SHG, down-conversion, etc.)
• Can incorporate InGaAs quantum wells for gain and photon detection

Highest DR Q-factor 
reported to date

SEM of GaAs Fano resonators


