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Abstract

Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in

3D appear many applications in science and engineering, such as vibration anal-

ysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this

work, we develop a highly scalable, parallel algorithmic and software framework

for FSI problems consisting of a nonlinear fluid system and a nonlinear solid

system, that are coupled monolithically. The FSI system is discretized by a sta-

bilized finite element method in space and a fully implicit backward difference

scheme in time. To solve the large, sparse system of nonlinear algebraic equa-

tions at each time step, we propose an inexact Newton-Krylov method together

with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse

meshes generated by a geometry preserving coarsening algorithm. Here “geom-

etry” includes the boundary of the computational domain and the wet interface

between the fluid and the solid. We show numerically that the proposed algo-

rithm and implementation are highly scalable in terms of the number of linear

and nonlinear iterations and the total compute time on a supercomputer with

more than 10,000 processor cores for several problems with hundreds of millions

of unknowns.
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1. Introduction

Numerical simulation of nonlinear fluid-structure interaction (FSI) problems

has applications in many traditional engineering fields such as vibration analy-

sis of aircrafts, automobiles, suspension bridges and so on. More recently, the

applicability of the technique has been extended to diagnosing and treatment

planning of certain medical problems such as congenital and acquired cardiovas-

cular diseases, also to the design and optimization of medical devices [1, 2, 3].

However, solving the fluid-structure interaction problems on supercomputers

with a large number of processor cores is still challenging because the coupled

nonlinear FSI system consists of elliptic, parabolic and hyperbolic components

all in one system, and most existing algorithms and software don’t scale (strong

or weak) well beyond a few hundred processor cores. In this paper, we provide

an implementation of a multilevel unstructured Schwarz preconditioned inex-

act Newton-Krylov method with isogeometric coarse meshes which improve the

parallel scalability of the method to over 104 processor cores.

The research on FSI grows rapidly [4, 5, 6, 7]. The techniques may be broadly

classified into two types: the iterative coupling approach and the monolithic cou-

pling approach. The iterative coupling approach has been successfully applied to

many engineering problems; i.e., aeroelasticity [8, 9], and hemodynamics [10, 11].

The monolithic coupling approach is also widely used [12, 13, 14, 15, 16, 17].

For example, in [16] a Newton method with exact Jacobian solves is introduced

to solve FSI problems, and the Jacobian includes the shape derivative of the

fluid variables with respect to the structural motion perturbations. In [14, 15]

a Non-Uniform Rational Basis Spline (NURBS)-based isogeometric method is

investigated for the coupled FSI problems arising from hemodynamics. Beside

these literatures, there are also other important works; i.e., the particle finite

element method [18, 19], the immersed boundary method [7, 20, 21, 22, 23], the
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extended finite element method [24, 25], the lattice Boltzmann method [26, 27],

and the meshfree method [28, 29]. For parallel simulations, in [30] a software

framework called Uintah is developed by introducing hybrid task-based paral-

lelism algorithms, and the approach scales well with up to 260K cores for struc-

tured mesh problems. But for unstructured mesh problems, it is more difficult

to achieve good scalability with a large number of processor cores. A parallel

algorithm developed in [31] scales to several hundred processor cores, and the

Newton-Krylov-Schwarz method is used in [12, 13] for 2D FSI problems with

several hundred processor cores, and in [17] for 3D problems with up to 3,000

processor cores. The scalability limitation of these approaches is the coarse

space. In this paper, a new type of preconditioning coarse spaces is developed,

and with the new coarse solver the scalability of the Newton-Krylov-Schwarz

method can be extended to more than 10,000 processor cores. To the best of

our knowledge, our paper is the first to obtain good scalability, in both strong

and weak senses, with more than 10,000 processor cores for solving the fully

coupled FSI system on unstructured 3D meshes.

Our algorithmic and software framework consists of several key ingredients:

a monolithic coupling technique for nonlinear solid and nonlinear fluid equa-

tions, a fully implicit unstructured finite element discretization, a highly scalable

Newton-Krylov-Schwarz solver with a multilevel preconditioner based on isoge-

ometric coarse meshes, a hierarchical partitioning strategy for the fine mesh,

and a well-matched partitioning approach for coarse meshes. In our approach,

the incompressible Navier-Stokes equations for the fluid is formulated in an

Arbitrary Lagrangian-Eulerian (ALE) framework [16, 32], where a linear elas-

ticity equation is employed to describe the deformation of the fluid domain.

A nonlinear elasticity equation is described in a Lagrangian framework for the

solid deformation. Three coupling conditions between the fluid and the solid

are implicitly enforced in the variational forms or in the function spaces. The

fluid and solid meshes are conforming on the wet interface. There are other ap-

proaches for coupling the solid and the fluid equations. For example, in [20, 23]

the immersed boundary method is used, and in [33, 34] the coupled momentum
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method is proposed. Compared with other approaches, the monolithic coupling

offers a more robust convergence with respect to important physics parameters

[14], and eliminates the so-called added-mass effect [35] which happens when the

densities of the fluid and the solid are very close to each other. In this paper,

to discretize the monolithically coupled FSI system, a stabilized P1 − P1 finite

element method is used for the fluid, a P1 finite element method is used for both

the solid and the fluid domain motion, and a fully implicit backward difference

scheme is adopted for the time integration. The resulting nonlinear system is

difficult to solve because of the highly nonlinear terms from the connective terms

of the incompressible Navier-Stokes equations, the nonlinear constitutive law of

the solid equation, the dependency of the fluid solution on the fluid domain

motion, and the implicitly enforced coupling conditions. To overcome these

difficulties, we use an inexact Newton method with an analytically computed

Jacobian to solve the coupled FSI algebraic system, within which a Krylov sub-

space method is employed for the solution of the corresponding ill-conditioned

Jacobian systems. There are also other choices for solving the coupled nonlinear

systems, for example, in [36, 31] the dependency of the solution on the mov-

ing fluid domain and other nonlinear terms are linearized by extrapolating the

solution from the previous time steps. We do not use the simplified approach

because it may become unstable for certain problems, for example, numerical

instabilities occur when using the iterative coupling approach [35].

The parallel scalability of the inexact Newton-Krylov method depends al-

most completely on the performance of the preconditioner, especially when the

number of processor cores is large. In [36], a dual threshold incomplete LU fac-

torization and an incomplete block-LU factorization are used as preconditioners

for the coupled FSI system. In [31], preconditioners are constructed based on

the block-structure of an approximate Jacobian system. In this work, we intro-

duce a multilevel Schwarz preconditioner with isogeometric coarse meshes that

preserve the geometry defined by the fine surface mesh of the boundary of the

computational domain and the wet interface between the fluid and the solid.

This similar idea has been successfully applied for elasticity problems [37] and
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for fluid-structure interaction problems with linear elasticity [38]. In this paper,

the nonlinear constitutive law is applied, and the algorithm has to be further

improved since the resulting coupled FSI system is more challenging to solve.

The rest of the paper is organized as follows. The coupled equations and an

implicit finite element method are presented in Section 2, and the monolithic,

implicit inexact Newton-Krylov method with a multilevel, smoothed Schwarz

preconditioner is discussed in Section 3. A geometry preserving coarsening

algorithm for generating isogeometric coarse meshes is proposed in Section 4

and some numerical results for simulating blood flows in compliant arteries are

given in Section 5. In Section 6, we offer some concluding remarks.

2. A nonlinear coupled fluid-structure interaction problem

In this section, we describe the coupled FSI system consisting of incom-

pressible Navier-Stokes equations for the fluid flow, a geometrically nonlinear

elasticity equation for the solid, a linear elasticity equation for the fluid domain

movement and three coupling conditions on the interface between the fluid and

the solid. A fully implicit stabilized finite element method is used to discretize

the coupled FSI system.

At time t ∈ (0, T ), let Ωt
f be the fluid domain, Ωt

s the solid domain, Γt
f,d

the fluid Dirichlet boundary, Γt
f,n the fluid Neumann boundary, Γt

s,d the solid

Dirichlet boundary, Γt
s,n the solid Neumann boundary, and Γt

w the wet interface.

t = 0 corresponds to the initial configuration. We first define an ALE mapping

At, as shown in Fig. 1, for describing the moving fluid domain:

At : xf = At(Xf ) = Xf + dm,xf ∈ Ωt
f ,Xf ∈ Ω0

f ,

where dm is the fluid domain displacement at time t and it is assumed to satisfy

the following linear elasticity equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · σm = 0 in Ω0
f × (0, T ),

dm = 0 on Γ0
f ≡ Γ0

f,d ∪ Γ0
f,n × (0, T ),

dm = ds on Γ0
w × (0, T ),

(1)
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Figure 1: An ALE mapping At.

where ds is the solid displacement defined in the initial configuration and σm

is the Cauchy stress tensor

σm = λmtrace (εm) I + 2μmεm, εm =
1

2

(
∇dm +∇d

T
m

)
,

where εm is the infinitesimal strain tensor and λm and μm are Lamé constants

that don’t have any physical meaning, and they are often chosen the same as

the parameters in the solid equation to be introduced shortly. More precisely,

λm = λs and μm = μs, where the parameters λs and μs are defined in (3). A

similar model for the domain movement is used in [39, 40], which shows that the

linear elasticity based model works better than the model based on the Poisson

equation when the displacement is large. The ALE-based approach together

with a mesh updating technique works well for problems with large deformations

[41] as long as the mesh is not highly distorted. The mesh of the fluid domain

may be distorted and twisted for problems involving large rotations and large

rigid body motions [42]. In this situation, an effective remeshing technique is

necessary to strength the ALE-based method. But, parallel remeshing is quite

challenging when the number of processor cores is large. To avoid frequent
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remehsing, a mesh-updating technique based on the element size was considered

in [40]. However, in this work, we do not consider such techniques because the

deformation of the fluid domain for the blood flow does not lead to highly

distorted meshes.

For the fluid, let uf and pf denote the velocity and pressure, respectively,

and the incompressible Navier-Stokes equations on a moving domain are written

as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
∂uf

∂t

∣∣∣∣
Xf

+ ρf

[(
uf −

∂dm

∂t

)
· ∇

]
uf −∇ · σf = ρfff in Ωt

f
× (0, T ),

∇ · uf = 0 in Ωt
f
× (0, T ),

uf = vd
f on Γt

f,d
× (0, T ),

σfnf = gf on Γt
f,n

× (0, T ),

uf =
∂ds(A

−1

t )

∂t
on Γt

w × (0, T ),

(2)

where gf is a traction applied to part of boundaries, usually on the outlets, vd
f

is a velocity profile often at the inlet, ff is a volumetric force per unit of mass,

ρf is the fluid density, nf is the unit outward normal vector for the fluid domain

and σf is the Cauchy stress tensor for the fluid,

σf = −pfI + 2νfεf , εf = 1/2
(
∇uf +∇uT

f

)
,

where εf is the strain rate tensor and νf is the viscosity coefficient.

We assume that the displacement ds of the solid is governed by an unsteady,

geometrically nonlinear elasticity equation [43] as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρs
∂2ds

∂t2
+ ηs

∂ds

∂t
−∇ ·Πs = ρsfs in Ω0

s × (0, T ),

Πsns = gs on Γ0
s,n × (0, T ),

ds = 0 on Γ0
s,d × (0, T ),

σsn̂s = −σfnf on Γt
w × (0, T ),

(3)

where ρs is the density, gs is a traction applied to part of the boundary, fs is

a volumetric force per unit of mass, ns and n̂s are the unit outward normal

vectors under the initial configuration and the deformed domain, respectively,

ηs∂ds/∂t is the damping term used to mimic the impact of surrounding tissues,

ηs is the damping parameter, and Πs is the nonsymmetric first Piola-Kirchhoff
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stress tensor for the Saint Venant-Kirchhoff material,

F = (I +∇ds),

E = 1/2(F TF − I),

S = λstrace(E)I + 2μsE,

Πs = FS,

where I is a 3×3 identity matrix, F is the deformation gradient tensor, E is the

Green-Lagrangian strain tensor, S is the second Piola-Kirchhoff stress tensor,

σs = ΠsF
T /det(F ) is the Cauchy stress tensor for the solid, and μs and λs are

the material Lamé constants expressed as functions of Young’s modulus, Es,

and Poisson’s ratio, νs, by

μs =
Es

2 (1 + νs)
and λs =

Esνs
(1 + νs) (1− 2νs)

.

Remark 1: Note that ns and n̂s are related by the Nanson formula [43].

Remark 2: Following [17] and [44], a mass-proportional damping coefficient

ηs is considered in this work to mimic the effect of the surrounding tissues.

Another possible approach is to apply a special boundary condition [45].

On the wet interface, three coupling conditions are imposed to couple the

solid and fluid equations. The first condition is the continuity of the velocity:

uf = ∂ds/∂t. The second condition is the continuity of the displacement:

dm = ds. Lastly, the traction forces from the fluid and the solid are the same:

σsn̂s = −σfnf . In all, the monolithically coupled FSI equations are written
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as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
∂uf

∂t

∣∣∣∣
Xf

−∇ · σf + ρf

[(
uf −

∂dm

∂t

)
· ∇

]
uf = ρfff in Ωt

f
× (0, T ),

∇ · uf = 0 in Ωt
f
× (0, T ),

uf = vd
f

on Γt
f,d
× (0, T ),

σfnf = gf on Γt
f,n

× (0, T ),

−∇ · σm = 0 in Ω0

f
× (0, T ),

dm = 0 on Γ0

f
× (0, T ),

ρs
∂2ds

∂t2
+ ηs

∂ds

∂t
−∇ ·Πs = ρsfs in Ω0

s × (0, T ),

ds = 0 on Γ0

s,d
× (0, T ),

Πsns = gs on Γ0
s,n × (0, T ),

uf =
∂ds(A

−1

t )

∂t
on Γt

w × (0, T ),

σsn̂s = −σfnf on Γt
w × (0, T ),

dm = ds on Γ0
w × (0, T ).

(4)

To discretize (4), we consider a P1 − P1 stabilized finite element method

[46, 47] for the incompressible Navier-Stokes equations and a P1 finite element

method for both the solid equation and the fluid domain moving equation.

Three coupling conditions are implicitly enforced in the variational forms or

in the function spaces. Interested readers are referred to [17] for mote details.

After the discretization in space, the corresponding semi-discretized system is a

time-dependent nonlinear system as follows

∂y(t)

∂t
+N(y(t)) = F, (5)

where F is the right-hand side and N(·) is a nonlinear function, y(·) is the time-

dependent vector of nodal values of the fluid velocity and pressure, and the solid

velocity and displacement. Using an implicit first-order backward Euler scheme,

(5) is further discretized in time as:

Mnyn + δtN(yn) = δtF +Mnyn−1, (6)

where δt is the time step size, yn is the approximation at nth time step, Mn is the

mass matrix dependent of yn since the computational fluid domain is moving.
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With a second-order backward difference formula, (5) can also be discretized as

follows:

1.5Mnyn + δtN(yn) = δtF + 2Mnyn−1 − 0.5Mnyn−2. (7)

The ALE veclotiy ∂dm/∂t is approximated by the first-order backward Euler

scheme in (6) and (7). For convenience, we rewrite (6) or (7) at the nth time

step as a nonlinear algebraic system:

F(y) = 0, (8)

where F(·) is the combination of four terms in (6) or five terms in (7), and y

(we drop the subscript n here for simplicity) is the vector of nodal values at the

nth time step.

Equation (8) is quite difficult to solve because it has high nonlinearities

from the convective term of the fluid equations, the constitutive law of the solid

equation, the dependency of fluid flows on the domain movement, the three

coupling conditions on the moving wet interface, more significantly, the three

equations have very different mathematical characteristics; i.e., the fluid system

is parabolic, the solid system is hyperbolic, and the moving domain equation

is elliptic. To overcome these difficulties, an inexact Newton-Krylov method

preconditioned by an unstructured multilevel Schwarz method with isogeometric

coarse spaces will be introduced in the next section.

3. A fully implicit Newton-Krylov-Schwarz method

To solve the nonlinear system (8), we introduce an inexact Newton [48, 49,

50] combined with multilevel Schwarz preconditioned Krylov subspace methods.

More precisely, with an initial guess y(0), each successive Newton step is carried

out in two substeps:
⎧⎨
⎩

J (y(k))δy(k) = −F(y(k)),

y(k+1) = y(k) + α(k)δy(k), k = 0, 1, 2, . . . ,
(9)

where J (y(k)) is the Jacobian matrix evaluated at Newton step k, F(y(k)) is the

residual of the nonlinear function at y(k), α(k) is the step length calculated by a
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cubic linesearch method [51], and δy(k) is a Newton correction obtained by solv-

ing the linear Jacobian system in the first substep. An analytically computed,

complete Jacobian, involving all terms of (8), often leads to a more scalable

and more robust convergence of Newton than approximately constructed Jaco-

bian using some of the terms of (8) or using a finite difference approximation.

Therefore, in this work, we use the analytic form of J (y(k)) for all the calcu-

lations even though the derivation and implementation of the analytic form is

time-consuming because the level of composition of some of the functions is high

(more than 10) due to the domain movement and the stabilization parameters

in the finite element formulation of the fluid equations. The structure of the Ja-

cobian matrix is similar to the Jacobian matrices in our previous work [12, 13].

The Jacobian problem of the fully coupled system is very ill-conditioned, and

is solved by a Krylov subspace method; e.g., fGMRES [52], together with an

overlapping Schwarz preconditioner.

Multilevel Schwarz is a well-understood method for elliptic problems, but for

non-elliptic problems, such as (9), standard coarse spaces don’t offer the best

choices in the sense that they are not scalable either in terms of the number of

iterations or in the total compute time. Below we first describe the method itself

and then focus on a non-standard, geometry preserving, coarse space designed

particularly for the FSI problems. We assume there are L triangulations of Ω ≡

Ω0
f ∪ Ω0

s denoted from coarse to fine as Ωhi
, and their corresponding Jacobian

matrices and vectors as Jhi
, yhi

, rhi
, zhi

, i = 0, 1, ..., L− 1. We first partition

the fine mesh ΩhL−1
into np (np is the number of processor cores) subdomains

ΩhL−1,j, then the partitions Ωhi,j of the remaining L − 1 coarse meshes are

obtained according to the fine mesh partition, that is, a coarse mesh element

is allocated to the processor core that has a fine mesh element containing the

center point of the coarse mesh element (see Algorithm 3.1 for details). We refer

to this as a well-matched coarse mesh partition to be described in Algorithm 3.1.

For example, a well-matched partition with 8 subdomains is shown in Fig. 2.

Note that all meshes are monolithically partitioned so that a processor may have

both the solid and the fluid elements. The well-matched partitioning can greatly
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reduce the cross-processor data movement when performing the interpolations

and restrictions between different level of meshes.

Algorithm 3.1 Well-matched coarse mesh partition

1: Input a coarse mesh Ωhi

2: Set each member in {Ωhi,j} as a empty set, j = 0, 1, · · · , np

3: for Kc ∈ Ωhi
do

4: Compute the center point of Kc

5: Find a fine mesh element Kf in ΩhL−1
that contains the center point

6: Retrieve the fine mesh partition (see ΩhL−1,j) that Kf belongs to.

7: Put Kc into Ωhi,j

8: end for

9: Output partition {Ωhi,j}

To define a one-level Schwarz preconditioner on Ωhi
, let us denote the vector

and matrix in each subdomain Ωhi,j as yhi,j and Jhi,j , and then extend each

Ωhi,j to overlap with its neighboring subdomains by a user-specified amount δ,

and denote the overlapping subdomain as Ωδ
hi,j

, the overlapping vector as yδhi,j

and the restriction as Rδ
hi,j

which extracts the local overlapping vector yδhi,j

from the global vector yhi
, that is,

yδhi,j
= Rδ

hi,j
yhi

= (I 0)

⎛
⎝ yδhi,j

yhi
\yδhi,j

⎞
⎠ ,

where I is an identity matrix whose size is the same as yδhi,j
.

We denote R0
hi,j

as a non-overlapping restriction matrix that returns yhi,j .

A one-level restricted additive Schwarz preconditioner on Ωhi
[53] is defined as

⎧⎪⎪⎨
⎪⎪⎩

B−1
hi

=

np∑
j=1

(
R0

hi,j

)T (
J δ
hi,j

)−1
Rδ

hi,j
,

J δ
hi,j

= Rδ
hi,j

Jhi

(
Rδ

hi,j

)T
, i = 0, 1, ..., L− 1.

(10)

To describe a multilevel preconditioner, we need an interpolation operator from

Ωhi
to Ωhi+1

denoted as I
hi+1

hi
and its corresponding restriction operator as(

I
hi+1

hi

)T

. A multilevel Schwarz preconditioner [54, 55] is described as follows:
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Algorithm 3.2 Multilevel Smoothed Schwarz preconditioner

1: Input a residual rhL−1
from the outer solver

2: for i = L− 1 to 0 do

3: Let z
(0)
hi

= 0

4: for n = 0 to itri do

5: z
(n+1)
hi

= z
(n)
hi

+B−1
hi

(
rhi
−Ahi

z
(n)
hi

)

6: end for

7: Set zhi
= z

(itri)
hi

8: if i > 0 then

9: rhi−1
= (Ihi

hi−1
)T (rhi

−Ahi
zhi

)

10: end if

11: end for

12: for i = 1 to L− 1 do

13: Let z
(0)
hi

= zhi
+ Ihi

hi−1
zhi−1

14: for n = 0 to itri do

15: z
(n+1)
hi

= z
(n)
hi

+B−1
hi

(
rhi
−Ahi

z
(n)
hi

)

16: end for

17: Set zhi
= z

(itri)
hi

18: end for

19: Output a correction zhL−1
to the outer solver
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Figure 2: A sample well-matched partition into 8 subdomains. The top figure is the fine mesh

and the bottom is the coarse mesh. The subdomain may contain both fluid and solid elements.

The number of degrees of freedom per subdomain is roughly the same for load balancing. The

fine and coarse meshes have different triangulations on the surfaces and the wet interface just

for the purpose of visualization. These meshes are not used in the simulation in Section 5.

In Algorithm 3.2, itri is the number of iterations for Ωhi
. In practice, itri is

usually controlled by a tolerance or by a pre-determined maximum number of

iterations. To further improve the algorithm, Richardson procedures at line 5

and 15 can be replaced by other iterative methods, such as GMRES [56].

The performance of Algorithm 3.2 depends critically on how the coarse

meshes are constructed and how the coarse linear systems are solved. If the

fine mesh is structured, the coarse meshes can be generated easily even when

the number of processor cores is large [57]. But if unstructured meshes have to

be used for a complex geometry, the implementation of the multilevel method

is tricky, especially when number of processor cores is large because both parti-

tioning and coarsening of the fine mesh are highly nontrivial. To partition the

fine mesh, we employ a hierarchical partitioning strategy since most existing

partitioners; e.g. ParMETIS/METIS [58], do not work well when the number

of processor cores is large and the mesh is highly irregular (i.e., the degree of

the connectivity graph changes drastically from point to point). The strategy
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consists of two steps: (1) use ParMETIS/METIS to partition the fine mesh

into np1 (np1 is often the number of compute nodes) subdomains; (2) further

partition each subdomain by METIS into np2 (np2 is often the number of cores

on a compute node) smaller subdomains. We finally have np = np1 × np2 sub-

domains in total. To coarsen the fine mesh, we propose a geometry preserving

coarsening algorithm, in the next section, that produces several isogeometric

coarse meshes which keep the geometry of the fine mesh on the boundaries and

the wet interface.

4. Isogeometric coarse spaces

It is straightforward to apply Algorithm 3.2 to problems on structured meshes

since coarse meshes can be obtained using an uniform refinement or coarsen-

ing without losing the geometry of the computational domain. But it becomes

tricky when solving problems defined on unstructured meshes because the con-

struction of scalable coarse meshes is highly nontrivial. For this sake, algebraic

multigrid (AMG) is widely used [59], and it has been implemented in several

popular libraries [60, 61]. But there are definite advantages in a geometric

multilevel method [62]. We hence construct the multilevel Schwarz method ge-

ometrically by introducing a new mesh coarsening algorithm which produces

coarse meshes with preserving the geometry of the computational domain and

the wet interface. We refer to those coarse meshes as “isogeometric coarse

meshes” and the new coarsening algorithm as “geometry preserving coarsening

algorithm”. The isogeometric coarse meshes share exactly the same geometry

on the boundary and the wet interface as the fine mesh, and the geometric

features on coarse meshes are crucial for making the overall algorithm scalable.

In our experience, the algorithm is not scalable and often does not converge

for 3D FSI problems if the geometric features are not preserved on the coarse

meshes. However, isogeometric coarse meshes are not easy to produce because

preserving the geometry from the fine mesh is a harsh requirement for most

existing coarsening algorithms. To overcome this difficulty, we below describe
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Figure 3: Sample coarse meshes. Left: fine mesh; middle: isogeometric coarse mesh; right:

coarse mesh without preserving geometry. Wet interface is red.

the geometry preserving coarsening algorithm using which several isogeometric

coarse meshes are produced. An example is shown in Fig. 3, where the isogeo-

metric coarse mesh shares exactly the same geometry as the fine mesh while its

interior is much coarser than the fine mesh for saving the computational cost

on the coarse level, and the coarse mesh obtained by uniformly coarsening the

fine mesh does not preserve the geometry.

The geometry preserving coarsening algorithm consists of two steps: (1)

select a subset of vertices S to keep and (2) delete unwanted vertices D = M/S

(M represents all the vertices in the fine mesh) from the fine mesh. To preserve

the exact geometry of the fine mesh, all vertices on the curved boundary and the

wet interface are kept, and to make the coarse level problem cheap to compute,

the vertices in the interior of the fine mesh are coarsened based on the maximum

independent set algorithm (MIS) [62, 63, 64, 65]. We also keep all the vertices on

the flat boundary for simplifying the implementation of the algorithm. The mesh

quality may be degraded soon when using the MIS of the vertex connectivity

graph. To fix this issue, a better graph constructing strategy is introduced and

discussed in [64], which takes not only the topology but also the geometry of the

mesh into account. The graph construted based on this idea is called “conflict

graph”. We coarsen the interior of the fine mesh based on the conflict graph, but

follow a simpler graph constructing idea in [65]. The interested reader is referred

to [37, 64, 65] for more details. For convenience, we denote the vertices on the
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curved boundary as SC , those on the flat boundary as SF , the wet interface

vertices as SW and the interior vertices as SI . A vertex selecting algorithm is

described in Algorithm 4.1. Note that Algorithm 4.1 is different from those in

Algorithm 4.1 Vertex selecting procedure

1: S(0) = SC

2: S(1) = S(0) + SF

3: S(2) = S(1) + SW

4: Apply the MIS of conflict graph to SI to get S̃I

5: S = S(2) + S̃I

6: Output S

[62, 65]. In Algorithm 4.1, all vertices on the boundaries and the wet interface

are kept to preserve the geometry from the fine mesh exactly, while in [62, 65],

the general shape of the computational domain is considered only. Note that

Algorithm 4.1 is different from that in [37] which doesn’t consider any internal

boundary.

Based on S, there are two approaches to construct a coarse mesh. The first

one is to generate a coarse mesh, from the scratch, that includes the vertices in

S only and approximates the domain spanned by the fine mesh. This remeshing

procedure can be accomplished using standard meshing techniques, e.g. De-

launay triangulation [66], Constrained Delaunay triangulation [67]. The second

approach is to incrementally remove unwanted vertices in D one by one [62, 65].

We use the second approach because it is more robust than most existing al-

gorithms in the sense that the second approach guarantees that at least one

valid coarse mesh is produced. We refer to the second approach as “incremental

deleting algorithm”. More precisely, the incremental deleting algorithm takes

several sweeps of D, and in each sweep, we delete every removable vertex in D

using an edge-contraction operation [65]. After each sweep, a mesh-smoothing

approach [68, 69] is applied to the current coarse mesh, some unremovable ver-

tices in the current sweep may become removable after the application of the

mesh-smoothing, and they will be revisited again in the next sweep. This pro-

17



cedure repeats until all or most vertices in D have been deleted. From our

experiences, the number of left vertices is a small proportion of D even though

for problems with complex geometry.

In the incremental vertex deletion algorithm, the edge-contraction approach

is ultilized to remove unwanted vertices from the fine mesh, and the basic idea

is to delete a vertex by shrinking one of its incident edges to zero length as

shown in Fig. 4, where the left picture is the fine mesh and the right picture is

the coarse mesh produced by removing vertex v1 from the fine mesh. To delete

v1, we slide it along the edge e15 to v5. In this procedure, edges e61, e41 are

first merged to edges e65, e45, then edges e21, e31 are extended as edges e25, e35,

and then five incident elements K134, K145, K156, K162, K123 are removed and

lastly three new elements K562, K523, K534 are formed.

Figure 4: Deleting a vertex based on an edge-contraction approach.

To remove a vertex, there exists several possible edge-contractions, but not

all of them are valid. For example, if we slide v5 along e54 to v4 to delete v5, an

invalid element K614 with a negative area (which means the element is inverted)

is constructed. We hence can not delete v5 from the current mesh by this edge-

contraction, but it may be removed by another edge-contraction, for example,

sliding along e51. In this paper, the edge selection for the edge-contraction is

based on the following criteria:

1. An edge-contraction is chosen only if no inverted elements are formed in

the resulting coarse mesh.
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2. We can slide a vertex along any edge among its m incident edges. For

example in Fig. 4, we can slide v1 along e21, e31, e41, e51 or e61. We choose

the edge-contraction which leads to the highest-quality coarse submesh

among the submeshes spanned by m incident vertices.

For a vertex, if we can not find an edge-contraction which satisfies the Condition

1, we assume that the vertex can not be removed in the current sweep. But it

might be deleted in the next sweep after applying a mesh-smoothing algorithm

to improve the current mesh.

There are two approaches to improve the mesh. The first approach is to

improve the connectivity of vertices by swapping faces and edges. The second

approach is to adjust the locations of vertices. In this paper, we use the second

approach, which is often referred to as mesh-smoothing, to change locations of

interior vertices while fixing vertices on the boundary and the wet interface to

preserve the geometry. The combination of a Laplacian smoothing [68] and an

optimization-based smoothing [69, 70] is used in this paper. The basic idea of

the Laplacian smoothing is to adjust the location of a vertex v to the arithmetic

mean of its neighboring vertices Nv. More precisely, the new location ξ∗ of v is

obtained as follows:

ξ∗ =
1

sv

sv∑
i=1

ξi,

where ξi is the coordinate of vi ∈ Nv and sv is the size of Nv. In practice,

the Laplacian smoothing is cheap, but it does not guarantee that the mesh

is improved and the resulting mesh is valid. To avoid this issue, we use an

optimization-based smoothing algorithm to adjust the location of v by opti-

mizing a quality measuring function that depends on the dihedral angles, solid

angles and aspect ratios. To describe the algorithm, let us denote the incident

elements of v as Kv and the subdomain spanned by Kv as Ωv, and define a

set of dihedral angle functions for Kv as γ(ξ)i, ξ ∈ Ωv, i = 1, 2, · · · , sγ . Here

sγ is the number of dihedral angles in Kv. sγ = 6sk, where sk is the number

of elements in Kv, because there are six dihedral angles in a 3D tetrahedral
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element. The optimization problem is defined as:

max
ξ∈Ωv

min
1≤i≤sγ

sin(γ(ξ)i), (11)

which we solve by using the method of steepest descent [71], and the optimal

solution ξ∗ is used as the adjusted location of v. The new mesh-smoothing often

offers a better mesh, but solving (11) is expensive. In the actual computation,

we hence combine the Laplacian and the optimization-based smoothing, that is,

we first use the Laplacian smoothing to adjust locations, and the optimization-

based smoothing is performed if the Laplacian smoothing fails to improve Kv.

Remark 3: Mesh-smoothing is applied to interior vertices only, and no mesh-

smoothing is used to the vertices on the boundaries and the wet interface to

preserve the geometry.

The incremental deleting algorithm are summarized in Algorithm 4.2. Note

that Algorithm 4.2 is different from that in [65]. At the line 15 of Algorithm

4.2, the mesh-smoothing approach is used only, while in [65], both the mesh-

smoothing and an edge/face swapping [69] are adopted for generating a high

quality coarse mesh in the traditional sense. The quality of the coarse mesh

produced using Algorithm 4.2 is acceptable because it offers a scalable coarse

component of the preconditioner and makes the overall NKS scalable to more

than 10,000 processor cores. We also need to point out that the quality of the

coarse mesh does not affect the overall solution accuracy because the overall

solution accuracy is determined by the fine mesh only.

5. Numerical experiments

In this section, we provide two examples to test the parallel scalability of

the preconditioners with respect to different number of processor cores and the

robustness of the proposed algorithms with respect to different physics param-

eters. The first example consists of a cylinder as the fluid domain and a small

flexible cylinder inside the other cylinder as the solid domain. The second ex-

ample is a patient-specific pulmonary artery provided to us by the University of

20



Algorithm 4.2 Incremental deleting algorithm

1: Initialize ns as a large number

2: Set nd = 0

3: Set nr as the size of D

4: Set Dr = D

5: Set Dd = ∅

6: for n = 0 to ns do

7: for v ∈ Dr do

8: if v is removable then

9: Delete v using the edge-contraction algorithm

10: nd = nd+ 1

11: nr = nr − 1

12: Add v into Dd

13: end if

14: end for

15: Apply the mesh-smoothing algorithm to the current coarse mesh

16: if nd = 0 or nr = 0 then

17: Break

18: end if

19: nd = 0

20: Dr = Dr/Dd

21: Set Dd = ∅

22: end for

23: Output the current coarse mesh
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Colorado Medical School. For time discretization, an implicit backward Euler

scheme is used for the first example and a second-order backward difference

formula is chosen for the second example. The fully implicit solver and the ge-

ometry preserving coarsening algorithm are implemented based on PETSc [60]

and GRUMMP [72], respectively. The fine meshes are generated using CUBIT

[73]. The computations are carried out on an IBM iDataPlex cluster consisting

of 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge) processors, 2 GB memory per

core and FDR Mellanox InfiniBand interconnect with Bandwidth 13.6 GBps.

There are 16 processor cores per compute node, and all 16 processor cores are

used in the calculation.

The stopping conditions for the inexact Newton and the outer linear solver

are rtoln = 10−6 and rtoll = 10−4 (based on the vector L2 norm), respectively.

We use δ = 1 as the subdomain overlapping size for the Schwarz preconditioner

and ILU(1) (incomplete LU factorization with one level of fill-ins) as the sub-

domain solver. fGMRES (outer linear solver) restarts at 100. The number of

GMRES iterations on the coarsest level is controlled by the maximum number

of iterations (100) or a relative tolerance 10−10, and the number of GMRES

iterations on the second coarse level (if we use the three-level method) is deter-

mined by the maximum number of iterations (10) or a relative tolerance 10−5.

We use 1 and 10 iterations of GMRES as solvers on the finest level for the first

and the second examples, respectively. “NI” denotes the averaged number of

Newton iterations per time step, “LI” denotes the averaged number of fGMRES

iterations per Newton step, “T” is the total compute time in second for the en-

tire simulation, “PSetup”, in second, is the preconditioner setup time consisting

of the construction and the ILU factorization of the subdomain matrices at all

levels. “TPrec” is the time, in second, spent on the preconditioner, consisting of

the setup and the application of the preconditioner on all levels. TPrec is part

of T, and PSetup is part of TPrec. “MEM” is the estimated memory usage per

processor core in MB, “SP” is the speedup and “EFF” is the parallel efficiency.
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Figure 5: Numerical solution at t = 4ms, 7ms for the benchmark case. Top: solid deformation;

bottom: fluid pressure.

5.1. A benchmark case

The setup of a 3D FSI benchmark problem, as shown in the top of Fig. 1,

consists of a big straight cylinder as the fluid domain with length 5cm and radius

0.5cm, and a small flexible cylinder as the solid domain with length 1cm and

radius 0.2cm, which is immersed in the fluid domain. A time dependent traction

1.33× 104 × (1− 1.5× 105 × (t− 0.0025)2)dyn/cm2 is imposed on the inlet for

5ms, and a traction-free boundary condition is applied to the outlet. The fluid

is characterized with viscosity νf = 0.001g/(cm s), and density ρf = 1.0g/cm3.

The parameters for the solid are the Young’s modulus E = 3 × 106g/(cm s2),

the Poisson ratio νs = 0.3, and the solid density ρs = 1.2g/cm3. Numerical

solution at t = 4ms, 7ms is shown in Fig. 5. δt = 10−4s is used as the time step

size in this test, unless otherwise specified. A sample isogeometric coarse mesh

is shown in Fig. 6.

(1) Impact of subdomain overlap. Let us first explore the impact

of subdomain overlap sizes. Larger overlap often leads to a faster convergence

of the Schwarz method, but at the same time it increases the computation and

communication for each iteration. To achieve an optimal convergence in terms of
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Figure 6: Left: fine mesh; right: isogeometric coarse mesh. Note that the triangulation of

the coarse mesh on the boundary (yellow) and the wet interface (red) is the same as the fine

mesh, but it is much coarser in the interior.

the total compute time, we test the parallel performance using different overlap

sizes. We use a two-level method, where the fine mesh has 1,251,813 vertices,

7,363,015 elements and 8,220,496 unknowns, and the coarse mesh has 216,380

vertices, 1,048,162 elements and 1,084,152 unknowns. The time step size is set

as δt = 10−3s, and the simulation is carried out for 10 time steps. Numerical

results are summarized in Table 1.

In Table 1, we see clearly from the eighth column (MEM) that more memory

is used when we increase the overlap because local subproblems become larger.

The number of linear iterations, LI, per Newton step decreases with the increase

of the subdomain overlap, which indicates that larger overlap size often leads to

better convergence. But this does not have to result in a better performance in

terms of the total compute time because each iteration takes more time. The

preconditioner setup time, PSetup, is often longer with larger overlap. The pre-

conditioning time, including the application and the setup of the preconditioner,

is determined by the number of linear iterations. The number of Newton itera-

tions stays as a constant for all cases. δ = 1 and δ = 2 have similar performance

in terms of the total compute time, and δ = 0 needs more linear iterations,

which results in more compute time. All cases have good parallel scalabilities in

terms of the total compute time when increasing the number of processor cores

from 128 to 1,024. We will use δ = 1 in the following tests since it uses less

memory compared with δ = 2 even though they have similar performance.

(2) Different isogeometric coarse meshes. For convenience, let
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Table 1: Impact of overlap. A coupled FSI system with 8,220,496 unknowns is solved by a two-

level Schwarz preconditioned inexact Newton-Krylov method. np is the number of processor

cores (MPI tasks), δ is the subdomain overlap size, “NI” denotes the averaged number of

Newton iterations per time step, “LI” denotes the averaged number of fGMRES iterations per

Newton step, “T” is the total compute time in second for 10 time steps, “PSetup”, in second,

is the preconditioner setup time consisting of the construction and the ILU factorization of the

subdomain matrices at all levels. “TPrec” is the time, in second, spent on the preconditioner,

consisting of the setup and the application of the preconditioner on all levels. TPrec is part

of T, and PSetup is part of TPrec. “MEM” is the estimated memory usage per processor core

in MB, “SP” is the speedup and “EFF” is the parallel efficiency.

np δ NI LI T PSetup TPrec MEM SP EFF

128 0 4 6.9 1301 159 748 521 1 100%

128 1 4 4.5 1196 177 647 596 1 100%

128 2 4 4 1190 189 641 687 1 100%

256 0 4 7.4 653 27 321 271 1.99 99%

256 1 4 4.4 574 40 244 307 2 100%

256 2 4 4 580 56 250 349 2 100%

512 0 4 7.5 368 17 201 144 3.5 88%

512 1 4 4.4 318 23 152 173 3.76 94%

512 2 4 4 367 91 200 209 3.24 81%

1,024 0 4 8 236 36 151 84 5.5 69%

1,024 1 4 4.4 210 45 124 109 5.71 71%

1,024 2 4 4.1 189 23 104 144 6.29 79%
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us denote the fine mesh as Ωh3
. We coarsen Ωh3

to produce a coarse mesh

denoted as Ωh2
which is further coarsened to generate the second coarse mesh

Ωh1
. Similarly, we get the third coarse mesh Ωh0

by coarsening Ωh1
. The fine

mesh Ωh3
has 1,251,813 vertices, 7,363,015 elements and 8,220,496 unknowns,

the first coarse mesh Ωh2
has 392,253 vertices, 2,099,948 elements and 2,296,434

unknowns, the second coarse mesh Ωh1
has 216,380 vertices, 1,048,162 elements

and 1,084,152 unknowns, and the third coarse mesh Ωh0
has 165,974 vertices,

736,561 elements and 736,529 unknowns. We combine the fine mesh Ωh3
with

Ωhi
, i = 0, 1, 2, respectively, to form three two-level methods. We compare the

performance of three two-level methods. The time step δt = 10−3 is used and

the simulation is carried out for 10 time steps in this test. Numerical results

are summarized in Table 2.

From Table 2, we see easily that all three isogeometric coarse meshes offer

a good coarse component for the two-level preconditioner in the sense that

the number of Newton iterations and the number of fGMRES iterations stay as

constants when we increase the number of processor cores. The coarse mesh Ωh1

has the best performance in terms of the total compute time. We observe that,

for this test case, the quality of the coarse mesh does not affect the performance

of the preconditioner much. For example, in Table 2, the quality of Ωh1
is worse

than Ωh2
because Ωh1

is obtained by coarsening Ωh2
, but the algorithm using

Ωh1
has a better performance than that obtained by using Ωh2

. All cases are

scalable in terms of the compute time, especially when number of processor

cores is smaller than 1,024. The problem is relatively small when using 1,024

processor cores so that the parallel efficiency is a little low. This issue will be

discussed later in the study of parallel scalability.

(3) Robustness with respect to physical parameters. The fluid-

structure interaction problem consists of the fluid, the solid and the fluid domain

motion equations that have important parameters including the fluid density

ρf , Poisson ratio νs, Young’s modulus Es and the solid density ρs, Poisson

ratio νm and Young’s modulus Em for the fluid domain movement. In the

simulations, we set νm = νs and Em = Es. In [35], it is reported that the
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Table 2: Different isogeometric coarse meshes. A coupled FSI system with 8,220,496 un-

knowns is solved by three two-level Schwarz preconditioned inexact Newton-Krylov methods,

respectively. np is the number of processor cores (MPI tasks), “mesh” represents the coarse

mesh of the two-level method, “NI” denotes the averaged number of Newton iterations per

time step, “LI” denotes the averaged number of fGMRES iterations per Newton step, “T” is

the total compute time in second for 10 time steps, “PSetup”, in second, is the preconditioner

setup time consisting of the construction and the ILU factorization of the subdomain matrices

at all levels. “TPrec” is the time, in second, spent on the preconditioner, consisting of the

setup and the application of the preconditioner on all levels. TPrec is part of T, and PSetup

is part of TPrec. “SP” is the speedup and “EFF” is the parallel efficiency.

np mesh NI LI T PSetup TPrec SP EFF

128 Ωh2
4 3.4 1239 94 584 1 100%

128 Ωh1
4 4.4 1065 83 420 1 100%

128 Ωh0
4 12 1389 83 730 1 100%

256 Ωh2
4 3.4 652 44 325 1.9 95%

256 Ωh1
4 4.4 574 40 244 1.85 92%

256 Ωh0
4 12 748 37 417 1.86 93%

512 Ωh2
4 3.5 363 28 202 3.4 85%

512 Ωh1
4 4.4 318 23 152 3.35 84%

512 Ωh0
4 12 440 24 273 3.16 79%

1,024 Ωh2
4 3.7 233 47 149 5.3 66%

1,024 Ωh1
4 4.4 210 45 124 5.1 64%

1,024 Ωh0
4 12.7 308 45 223 4.5 56%
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convergence becomes more difficult to achieve if the densities of the fluid and

the solid are close, when a loosely coupled approach is used. Conversely, the

ALE-based monolithic coupling algorithm has no such issues and features a good

convergence under the same conditions, which is verified numerically in Table 3.

We test the robustness of the proposed algorithm with respect to νs, Es, ρs, and

ρf . The same coarse and fine meshes used in the study of Schwarz overlap are

chosen, and the experiment is run on 1,024 processor cores. ILU(2) is used as

the subdomain solver on the fine level when we test the robustness with respect

to νs and Es, and ILU(1) is chosen for other tests. Numerical results on the

parameters νs, Es, ρs, and ρf are summarized in Table 3.

In the first part of Table 3, the number of Newton iterations decreases and

the number of fGMRES iterations increases when we increase νs from 0.3 to

0.48. The corresponding TSetup stays close to some constants because the

decrease of the number of Newton iterations is small, and meanwhile the TPrec

increases due to the increase of the number of linear iterations. T increases

when we increase Poisson’s ratio because the corresponding problems become

more difficult to solve. The proposed approach works well even when νs is

close to 0.5, and the performance in terms of the compute time is maintained

when using different Poisson ratios. Both numbers of Newton iterations and

fGMRES iterations increase first and then decrease a little when increasing

Young’s modulus from 103 to 108. The compute times are similar except Es =

105 and Es = 106, where more compute time is spent on solving nonlinear and

linear systems. TPrec and PSetup times are similar except at Es = 105 and

Es = 106, where more compute time is required because of the increase of the

number of linear iterations. The algorithm is quite robust with respect to Es

because the coupled FSI systems corresponding to a wide range of Es is solved

well. When ρf increases from 0.1 to 10, fewer Newton iterations are required and

the number of fGMRES iterations is a constant except when ρf = 10, where the

number of fGMRES iterations is almost doubled. The compute time decreases

until ρf = 5, and it is increased a little when ρf = 10. When we increase ρf ,

PSetup decreases because of the reduction of the number of Newton iterations,
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Table 3: Robustness with respect to physical parameters. A coupled FSI system with 8,220,496

unknowns is solved by a two-level Schwarz preconditioned inexact Newton-Krylov method.

νs is the Poisson’s ratio, Es is the Young’s modulus, “NI” denotes the averaged number of

Newton iterations per time step, “LI” denotes the averaged number of fGMRES iterations per

Newton step, “T” is the total compute time in second for 10 time steps, “PSetup”, in second,

is the preconditioner setup time consisting of the construction and the ILU factorization of the

subdomain matrices at all levels. “TPrec” is the time, in second, spent on the preconditioner,

consisting of the setup and the application of the preconditioner on all levels. TPrec is part

of T, and PSetup is part of TPrec.

νs Es NI LI T PSetup TPrec

0.3 106 2.8 6.3 175 38 115

0.4 106 2.7 7.6 184 37 127

0.45 106 2.6 10.8 210 36 154

0.46 106 2.6 11.6 217 36 161

0.47 106 2.5 12.6 219 34 164

0.48 106 2 16.8 211 28 167

0.3 103 2.2 3.5 117 30 69

0.3 104 2.3 3.4 121 32 71

0.3 105 2.5 13.4 230 35 175

0.3 106 2.8 6.3 174 38 115

0.3 107 2 4.3 112 28 68

0.3 108 2 4.5 113 28 70

ρf ρs NI LI T PSetup TPrec

0.1 1.2 3.4 5.8 194 38 123

0.5 1.2 3.1 4.4 160 34 95

1 1.2 2.8 4.4 146 31 86

5 1.2 2.1 4.8 114 23 68

10 1.2 2 9.3 143 22 99

1 0.1 2.7 4.7 144 30 86

1 0.5 2.8 4.3 144 31 85

1 1 2.8 4.5 146 31 87

1 5 2.8 4.8 149 31 89

1 10 2.8 4.7 148 31 89
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and TPrec decreases as well because the reduction of the number of linear

iterations except at ρf = 10, where TPrec is increased to 99 seconds because

the corresponding number of linear iterations is almost doubled. With using

different ρs, both the number of Newton iterations and the number of fGMRES

iterations are kept as constants so that the compute time is almost a constant.

The algorithm is not sensitive to ρs in this test, and TPrec and PSetup stay

close to some constants. Note that the algorithm works well even when the

densities are the same.

In all, the proposed approach is very robust with respect to these important

physical parameters in terms of the numbers of Newton iterations and fGMRES

iterations, and the total compute time.

(4) Strong scalability. There are many choices of subdomain solvers for

the multilevel Schwarz preconditioner. The most popular choice is an incomplete

LU (ILU) factorization. We can use different levels of fill-ins which often affect

the convergence of the algorithm. With different subdomain solvers, we test the

parallel scalability of the propose approach with up to 10,240 processor cores.

A three-level Schwarz preconditioner is used in this test. The fine mesh has

53,789,339 vertices, 320,283,584 elements and 365,890,690 unknowns, the first

coarse mesh has 854,079 vertices, 5,004,431elements and 5,575,441 unknowns,

and the coarsest mesh has 160,951 vertices, 774,998 elements and 797,453 un-

knowns. The two coarse meshes are much coarser than the fine mesh in order to

save the compute times on the coarse levels. 10 iterations of GMRES is used as

a solver on the second coarse level. Poisson ratio νs = 0.4 and Young’s modulus

Es = 107 are chosen as solid parameters in this test. The parallel scalability is

shown in Table 4, and the corresponding speedups and the parallel efficiencies

are plotted in Fig. 7.

In Table 4, the speedups and the parallel efficiencies are calculated using the

compute time of the best subdomain solver as a basis when we use 4,096 pro-

cessor cores, because it is straightforward to show the performance difference of

different subdomain solvers. ILU(1) is better when we are using 4,096 processor

cores since ILU(2) require too much memory, which makes the algorithm slow
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Table 4: Parallel scalability with up to 10,240 processor cores. A coupled FSI system with

365,890,690 unknowns is solved by a three-level Schwarz preconditioned inexact Newton-

Krylov method. np is the number of processor cores (MPI tasks), “subsolve” represents the

subdomain solve on the fine mesh, “NI” denotes the averaged number of Newton iterations per

time step, “LI” denotes the averaged number of fGMRES iterations per Newton step, “T” is

the total compute time in second for 10 time steps, “PSetup”, in second, is the preconditioner

setup time consisting of the construction and the ILU factorization of the subdomain matrices

at all levels. “TPrec” is the time, in second, spent on the preconditioner, consisting of the

setup and the application of the preconditioner on all levels. TPrec is part of T, and PSetup

is part of TPrec. “MEM” is the estimated memory usage per processor core in MB, “SP” is

the speedup and “EFF” is the parallel efficiency.

np subsolve NI LI T PSetup TPrec MEM SP EFF

4,096 ILU(1) 2.9 10.9 1112 46 423 905 1.00 100%

4,096 ILU(2) 2.3 14.2 1672 111 1090 1271 – –%

6,144 ILU(1) 2.9 16.5 853 30 379 703 1.30 87%

6,144 ILU(2) 2.8 8.8 803 88 350 870 1.38 92%

8,192 ILU(1) 2.9 12.5 625 23 255 555 1.78 89%

8,192 ILU(2) 2.6 9.5 598 61 264 724 1.86 93%

10,240 ILU(1) 2.7 15.8 535 20 251 516 2.08 83%

10,240 ILU(2) 2.8 7.9 508 53 227 590 2.19 88%
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Figure 7: Speedup and parallel efficiency using different subdomain solvers for the benchmark

case.
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in terms of the compute time. Continuing increasing the number of processor

cores can resolve this memory issue. Hence, the performance of ILU(2) in terms

of the compute time is better when we use 6,144, 8,192 and 10,240 processor

cores. For ILU(1) and ILU(2), the number of Newton iterations and the num-

ber of fGMRES iterations remain as constants when increasing the number of

processor cores from 4,096, 6,144, 8,192, to 10,240, which indicates that the

approach is mathematically scalable. PSetup and TPrec are also scalable in

the sense that they are proportionally reduced when we increase the number of

processor cores. An important conclusion is that in order to make the overall

algorithms scalable, all critical components of the algorithm have to be scalable.

In summary, both subdomain solvers lead to a scalable approach in terms of the

compute time and the numbers of Newton iterations and fGMRES iterations.

The corresponding speedups and parallel efficiencies are also plotted in Fig. 7.

To further understand the algorithm, the compute times spent on different lev-

els of the three-level preconditioner, interpolation/restriction and outer solvers

are drawn in Fig 8. “level 0” is the coarsest level, “level 1” the second coarse

level and “level 2” is the fine level. Compute times on the outer solvers and

the fine level are scalable, and the second coarse and the coarsest levels are not

scalable when we use 10,240 processor cores. Fortunately, the compute times on

the coarsest and the second coarse levels take only a small portion of the total

compute time. This phenomena implies that more levels may be required if we

continue increasing the number of processor cores from 10,240. The compute

time on the interpolation/restriction accounts only a small portion of the total

compute time, which indicates that the well-matched partitioning approach is

effective on minimizing the data movement between different levels.

(5) Weak scalability. We test the weak scaling of the three-level Schwarz

preconditioner. In the tests, the number of elements of the mesh is increased

proportionally to the number of processor cores. Note that, for unstructured

meshes, it is not always possible to maintain the exact proportionality, for ex-

ample, the number of elements of the larger mesh is approximately twice the

number of elements of the old mesh when we double the number of processor
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Figure 8: Compute times on different levels of the multilevel preconditioner and outer solvers

for the benchmark case when we use ILU(1). “level 0” is the coarsest level, “level 1” is the

second coarse level and “level 2” is the fine level. “outer” represents the outer solver including

the nonlinear and the linear solver. “interp” denotes the interpolation/restriction.

cores. For this test, we assume the base problem is defined on a base mesh with

21,927,384 elements and solved with 2,048 processor cores. Let us denote the

ratio of the number of elements of the large mesh to the base mesh as “RoE”,

and the weak scaling parallel efficiency (EFF) is adjusted according to RoE. For

example, in Table 6, RoE for 4,096 processor cores is defined as the ratio of the

number of elements using 4,096 processor cores, 51,664,992, to the number of

elements using 2,048 processor cores, 21,927,384. EFF is computed using the

formula (Tnp × np)/(T2,048 × 2048)× 1/RoE, where Tnp is the total compute

time using np processor cores and T2,048 is the total compute time using 2, 048

processor cores and subdomain solver ILU(1). We denote nehi
, nnhi

and nuhi

as the numbers of elements, nodes and unknowns for mesh Ωhi
, respectively.

Here Ωh2
is the fine mesh, Ωh1

the second coarser mesh, and Ωh0
the coarsest

mesh. The mesh details are shown in Table 5, and the performance results are

summarized in Table 6.

In Table 6, the numbers of Newton and fGMRES iterations stay close to

constants when we increase the number of processor cores and the number of

elements of the mesh. The total compute time does not increase much when

more processor cores are used, which indicates that the algorithm is weakly
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Table 5: Mesh details for different processor counts. nehi
, nnhi

and nuhi
, i = 0, 1, 2 are the

numbers of elements, nodes and unknowns, respectively. np is the number of processor cores.

np = 2,048 4,096 8,192 12,288

neh2
21,927,384 51,664,992 92,829,280 131,295,840

nnh2
3,716,553 8,722,691 15,631,513 22,071,078

nuh2
24,857,471 58,634,167 105,370,077 151,002,482

neh1
2,740,923 6,458,124 11,603,660 16,411,980

nnh1
470,272 1,099,509 1,965,430 2,768,811

nuh1
3,046,055 7,204,971 12,972,702 18,599,152

neh0
392,208 948,989 1,464,760 1,941,788

nnh0
86,040 196,228 300,497 394,122

nuh0
393,859 979,754 1,515,808 2,054,874

Table 6: Weak scaling with up to 12,288 processor cores. A three-level Schwarz precondi-

tioned inexact Newton-Krylov method is used. np is the number of processor cores (MPI

tasks), “RoE” denotes the ratio of the number of elements of the large mesh to the base

mesh, “subsolve” represents the subdomain solve on the fine mesh, “NI” denotes the averaged

number of Newton iterations per time step, “LI” denotes the averaged number of fGMRES it-

erations per Newton step, “T” is the total compute time in second for 10 time steps, “PSetup”,

in second, is the preconditioner setup time consisting of the construction and the ILU factor-

ization of the subdomain matrices at all levels. “TPrec” is the time, in second, spent on the

preconditioner, consisting of the setup and the application of the preconditioner on all levels.

TPrec is part of T, and PSetup is part of TPrec. “MEM” is the estimated memory usage per

processor core in MB, “SP” is the speedup and “EFF” is the parallel efficiency.

np RoE subsolve NI LI T PSetup TPrec MEM EFF

2,048 1 ILU(1) 2.8 5.5 165 10 86 175 100%

2,048 1 ILU(2) 2.8 5.8 191 20 111 217 –%

4,096 2.36 ILU(1) 2.5 5.2 188 20 102 201 104%

4,096 2.36 ILU(2) 2.4 5.5 203 33 120 243 96%

8,192 4.23 ILU(1) 2.5 4.7 208 26 125 213 84%

8,192 4.23 ILU(2) 2.4 5.3 193 30 113 260 90%

12,288 5.99 ILU(1) 2.5 6.4 201 13 119 212 82%

12,288 5.99 ILU(2) 2.5 6.8 210 26 126 259 78%
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scalable. ILU(1) is almost always better than ILU(2) in terms of the total

compute time. The time for the preconditioner setup stays close to constants

in most cases, and it takes about 10% of the total compute time. The weak

scaling efficiency (EFF) is computed using the compute time obtained on 2,048

processor cores with ILU(1) as the base. According to EFF, the three-level

Schwarz preconditioner is quite scalable in the weak sense.

5.2. A complex pulmonary artery

In this section, we consider a complex pulmonary artery, as shown in Fig. 10,

from a biplane angiography image of the pulmonary artery of a patient. The

density ρs = 1.2g/cm3, Poisson ratio νs = 0.48, and Young’s modulus Es =

7.5×105g/(cm s2) are used as parameters of the arterial wall. For the fluid, the

density is 1.0g/cm3 and the viscosity is 0.035g/(cm s). The arterial wall thick-

ness is assumed to be 10% of the arterial diameter. To mimic the surrounding

tissue effects on the arterial wall, a damping parameter η = 107 is used. A

velocity profile with a period of 0.6s, shown in the right figure of Fig. 12, is

imposed on the fluid inlet. All fluid outlets are traction free. For the arterial

wall and the fluid domain motion, the inlet and outlets are all fixed. A time

step δt = 10−3 is used in this test case. Numerical solution at t = 0.66s is

shown in Fig. 9. A sample isogeometric coarse mesh is shown in Fig. 10. For

the performance study, the numerical simulation is carried out for 10 time steps

with δt = 10−3, that is, from 0s to 0.01s. The solution, shown in Fig. 9, is

obtained by running the simulation for two heart beats, that is, from 0s to 1.2s.

(1) Different isogeometric coarse meshes. We similarly test the

performance of two-level methods with two isogeometric coarse meshes. The

fine mesh is denoted as Ωh2
, and two isogeometric coarse meshes from fine to

coarse are denoted as Ωh1
and Ωh0

. We combine Ωh1
and Ωh0

with the fine

mesh Ωh2
to form two two-level methods. The fine mesh has 1,508,759 vertices,

8,513,471 elements and 9,730,852 unknowns, the first coarse mesh has 764,106

vertices, 3,926,952 elements and 4,831,774 unknowns, and the second coarse has

569,960 vertices, 2,701,881 elements and 3,556,941 unknowns. Numerical results

35



Figure 9: Numerical solution at t = 0.66s for the complex artery case. Top: arterial wall

deformation and blood pressure; bottom: streamlines viewed at two different angles.

are summarized in Table 7.

In Table 7, both coarse meshes offer good scalability when using different

number of processor cores. For Ωh1
, the number of Newton iterations stays as

a constant and the number of fGMRES iterations increases a little when we

increase the number of processor cores. The numbers of linear and nonlinear

iterations are kept as constants for different numbers of processor cores when we

use Ωh0
. The parallel speedup of using Ωh0

is a little better than that obtained

by using Ωh1
. The performance of the algorithm with Ωh0

is better than that

with Ωh1
in terms of the total compute time. Again, we observe that, in this

test, the quality of the coarse mesh does not affect the performance because the

quality of Ωh0
is lower than that of Ωh1

, but the performance obtained using

Ωh0
is better than that obtained using Ωh1

.

(2) Parallel scalability with a large number of processor cores. We

test the parallel scalability of a three-level Schwarz preconditioned inexact Newton-

Krylov method for the complex artery. Three meshes are used to construct

the three-level Schwarz preconditioner. The fine mesh has 43,423,859 vertices,

254,939,008 elements and 280,044,566 unknowns, the second coarser mesh has

721,102 vertices, 3,983,422 elements, 4,656,812 unknowns, and the coarsest mesh
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Figure 10: Left: fine mesh, right: isogeometric coarse mesh. Here h0 and h1 correspond to the

coarse and the fine meshes, respectively. Triangulations at Γ0

w,h0
, Γ0

s,h0
, Γ0

f,h0
are identical

to their counterparts of the fine mesh.
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Table 7: Different isogeometric coarse meshes. A coupled FSI system with 9,730,852 un-

knowns is solved by two two-level Schwarz preconditioned inexact Newton-Krylov methods,

respectively. np is the number of processor cores (MPI tasks), “mesh” denotes the coarse

mesh for the two-level method, “NI” denotes the averaged number of Newton iterations per

time step, “LI” denotes the averaged number of fGMRES iterations per Newton step, “T” is

the total compute time in second for 10 time steps, “PSetup”, in second, is the preconditioner

setup time consisting of the construction and the ILU factorization of the subdomain matrices

at all levels. “TPrec” is the time, in second, spent on the preconditioner, consisting of the

setup and the application of the preconditioner on all levels. TPrec is part of T, and PSetup

is part of TPrec. “SP” is the speedup and “EFF” is the parallel efficiency.

np mesh NI LI T PSetup TPrec SP EFF

128 Ωh1
2 5.6 1043 57 765 1 100%

128 Ωh0
2 3 677 55 399 1 100%

256 Ωh1
2 6.8 616 34 476 1.69 85%

256 Ωh0
2 3.7 382 32 245 1.77 89%

512 Ωh1
2 6.9 358 21 281 2.9 73%

512 Ωh0
2 3.7 222 18 139 3.1 78%

1,024 Ωh1
2 7.7 218 18 178 4.78 60%

1,024 Ωh0
2 3.8 132 17 93 5.12 64%
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has 406,382 vertices, 2,041,063 elements and 2,571,102 unknowns. To maintain a

linear scalability with more than 10,000 processor cores, the two coarse meshes

are much smaller than the fine mesh to save the compute time spent on the

coarse levels because the coarse solves are often not scalable. 10 iterations of

GMRES are used as a solver on the second coarse level. Numerical results are

summarized in Table 8.

Note that, in Table 8, the parallel efficiency and speedup are calculated by

comparing with the compute time obtained by using 2,048 cores so that it is

easier to understand which subdomain solver is better. ILU(1) and ILU(2) do

not work when we use 2,048 processor cores because there is no enough memory.

ILU(0) is the best subdomain solver in this test. For all subdomain solvers, the

number of Newton iterations stays as a constant when we increase the number of

processor cores. The number of fGMRES iterations varies with different number

of processor cores, and it impacts the efficiency and speedup but not much. For

ILU(0), the efficiency is more than 77%, and at least 63% efficiency is obtained

for two other subdomain solvers. The corresponding speedups and efficiencies

are also plotted in Fig. 11. To further understand the three-level Schwarz

method, the compute times, when using ILU(0), spent on different levels of the

preconditioner, interpolation/restriction, and outer nonlinear and linear solvers

are plotted in the left figure of Fig. 12. “level 2” is the fine level, “level 1” is the

second coarse level, and “level 0” is the coarsest level. The compute times spent

on levels 1 and 0 are not quite scalable, but they are only a small portion of the

total compute time. Level 2 is scalable except at 8,192 cores, which occasionally

happens for complicated problems. However, we still have a parallel efficiency

of 77% with 8,092 cores. Outer solvers scale well with up to 10,240 cores. The

compute time spent on the interpolation/restriction is so small that we can not

clearly see it in the picture.

Finally, we mention that for practical applications of multilevel methods for

unstructured mesh problems, one of the main difficulties is the generation of the

multiple coarse meshes. This is done off-line using a single processor since its

parallel version is yet to be developed. For our test problems, the time spent on
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Table 8: Parallel scalability with up to 10,240 processor cores. A coupled FSI system with

280,044,566 unknowns is solved by a three-level Schwarz preconditioned inexact Newton-

Krylov method. np is the number of processor cores (MPI tasks), “subsolve” represents the

subdomain solve on the fine mesh, “NI” denotes the averaged number of Newton iterations per

time step, “LI” denotes the averaged number of fGMRES iterations per Newton step, “T” is

the total compute time in second for 10 time steps, “PSetup”, in second, is the preconditioner

setup time consisting of the construction and the ILU factorization of the subdomain matrices

at all levels. “TPrec” is the time, in second, spent on the preconditioner, consisting of the

setup and the application of the preconditioner on all levels. TPrec is part of T, and PSetup

is part of TPrec. “MEM” is the estimated memory usage per processor core in MB, “SP” is

the speedup and “EFF” is the parallel efficiency.

np subsolve NI LI T PSetup TPrec MEM SP EFF

2,048 ILU(0) 2 11.8 1512 18 864 1099 1 100%

2,048 ILU(1) - - - - - -

2,048 ILU(2) - - - - - -

4,096 ILU(0) 2 8.5 698 10 363 591 2.17 108%

4,096 ILU(1) 2 11.3 907 23 570 716 1.67 83%

4,096 ILU(2) 2 5.5 793 72 460 932 1.91 95%

6,144 ILU(0) 2 10 536 8 297 431 2.82 94%

6,144 ILU(1) 2 8 545 21 307 516 2.77 92%

6,144 ILU(2) 2 6.2 599 58 363 671 2.52 84%

8,192 ILU(0) 2 14.5 491 7 313 333 3.08 77%

8,192 ILU(1) 2 12.5 526 14 347 392 2.88 72%

8,192 ILU(2) 2 7.4 489 38 313 509 3.09 77%

10,240 ILU(0) 2 8.5 325 6 180 302 4.65 93%

10,240 ILU(1) 2 14.3 481 12 333 358 3.14 63%

10,240 ILU(2) 2 7.7 414 32 268 459 3.65 73%
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Figure 11: Speedup and parallel efficiency using different subdomain solvers for the complex

branching artery case.
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Figure 12: Left: Compute times on different levels of the multilevel preconditioner and outer

solvers when using ILU(0); right: velocity profile of the inflow. “level 0” is the coarsest level,

“level 1” is the second coarse level and “level 2” is the fine level. “outer” represents the

outer solver including the nonlinear and the linear solver. “interp” denotes the interpola-

tion/restriction.
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generating two coarse meshes is less than the time spent on the generation of

the fine mesh. Once the meshes are created, the Jacobian matrices have to be

computed at all levels. This part of the computation is perfect for accelerators,

such as GPU, but we are not exploring the possibility in this paper. Measuring

the parallel performance of the proposed algorithm involves many individual

components, and we only report some of them separately, including the total

compute time, and the time for preconditioning, and do not individually report

some of them such as Jacobian evaluations because their parallel scalability are

known to be linear. Note that the time for Jacobian evaluations on all levels is

included in T, and the time for Jacobian evaluations on coarse levels is included

in TPrec.

6. Concluding remarks

Amonolithically coupled, fully implicit Newton-Krylov solver preconditioned

by a highly scalable multilevel Schwarz method was proposed for the coupled

system of partial differential equations consisting of the incompressible Navier-

Stokes equations for the fluid, a nonlinear elasticity equation for the solid and a

linear elasticity equation for the moving fluid domain. The coupled FSI system

is discretized by a stabilized finite element method in space and a fully implicit

backward difference scheme in time. The coupled algebraic system is solved

by an inexact Newton method with an analytically computed Jacobian, and a

Krylov subspace method together with a multilevel Schwarz preconditioner is

used for the solution of the Jacobian systems. To speed up the convergence,

a geometry preserving coarsening algorithm was introduced to produce several

isogeometric coarse meshes that offer scalable coarse components of the multi-

level preconditioner. To minimize the communication cost across different level

of meshes, a hierarchical partitioning algorithm was proposed for partitioning

the fine mesh and a well-matched partitioning approach was used for the parti-

tion of the coarse meshes according to the partition of the fine mesh. Numerical

experiments with a patient-specific complex artery were carefully studied, and

42



it turns out the proposed algorithm is highly scalable, in terms of both strong

and weak scalabilities, with more than 10,000 processor cores for problems with

hundreds of millions of unknowns on 3D unstructured meshes.
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