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Executive Summary

This project made substantial progress on its original aim for providing a modern user
experience for nuclear fuel cycle analysis while also creating a robust and functional next-
generation fuel cycle simulator.

The Cyclus kernel experienced a dramatic clarification of its interfaces and data model,
becoming a full-fledged agent-based framework, with strong support for third party developers
of novel archetypes. The most important contribution of this project to the the development
of Cyclus was the introduction of tools to facilitate archetype development. These include
automated code generation of routine archetype components, metadata annotations to provide
reflection and rich description of each data member’s purpose, and mechanisms for input
validation and output of complex data.

A comprehensive social science investigation of decision makers’ interests in nuclear fuel
cycles, and specifically their interests in nuclear fuel cycle simulators (NFCSs) as tools for
understanding nuclear fuel cycle options, was conducted. This included document review
and analysis, stakeholder interviews, and a survey of decision makers. This information was
used to study the role of visualization formats and features in communicating information
about nuclear fuel cycles.

A flexible and user-friendly tool was developed for building Cyclus analysis models,
featuring a drag-and-drop interface and automatic input form generation for novel archetypes.
Cycic allows users to design fuel cycles from arbitrary collections of facilities for the first
time, with mechanisms that contribute to consistency within that fuel cycle. Interacting
with some of the metadata capabilities introduced in the above-mentioned tools to support
archetype development, Cycic also automates the generation of user input forms for novel
archetypes with little to no special knowledge required by the archetype developers.

Translation of the fundamental metrics of Cyclus into more interesting quantities is
accomplished in the Cymetric python package. This package is specifically designed to
support the introduction of new metrics by building upon existing metrics. This concept
allows for multiple dependencies and encourages building complex metrics out of incremental
transformations to those prior metrics. New archetype developers can contribute their own
archetype-specific metric using the same capability. A simple demonstration of this capability
focused on generating time-dependent cash flows for reactor deployment that could then be
analyzed in different ways.

Cyclist, a dedicated application for exploration of Cyclus results, was developed. It’s
primary capabilities at this stage are best-suited to experienced fuel cycle analysts, but
it provides a basic platform for simpler visualizations for other audiences. An important
part of its interface is the ability to fluidly examine different slices of what is fundamentally
a five-dimensional sparse data set. A drag-and-drop interface simplifies the process of
selecting which data is displayed in the plot as well as which dimensions are being used for
grouping/aggregation and filtering. A purpose-built visualization was created to display flows
between different groupings of agents and interrogate those flows over time.

A remote, cloud-based execution capability, known as Cloudlus, was developed and
deployed for multiple purposes. A primary motivation of was to enable client-server operation,
thus making Cyclus available on a wider variety of platforms. Since the Cyclist user interface
was written in Java, it could run on any desktop platform and use a network connection to
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run the simulation on a cloud server. This facilitated distribution to a wider audience and
prototyped the technology necessary for support of mobile/tablet operation. This capability
also proved to be valuable for large scale automated analysis, in which a master process
submitted work to hundreds of Cloudlus execution nodes for optimization work.

Although the various thrusts of this project never achieved as tight integration as was
originally intended, important progress was made - and insights gained - in each thrust.
Changes in project scope required refocusing on fewer stakeholder groups and undermined
the ability to develop an improved user experience for a wide variety of audiences. This is
still an interesting extension of this work that can possibly be pursued in the future.
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Chapter 1

Introduction

Interest in NFCSs by the U.S. Department of Energy (USDOE) Office of Nuclear Energy
intensified in the mid-2000’s as a variety of policy issues converged to prompt a renewed
interest in advanced nuclear fuel cycles. Whereas closed fuel cycles have always been imagined
as a way to extend uranium resources, their ability to reduce the burden of radioactive waste
management was a new motivation, as was the possibility of reducing global proliferation risk
by implementing international nuclear fuel cycle services. With a richer set of possible benefits,
new tools were necessary to provide insight into the degree to which different technology
options would have an impact on these and other socio-political metrics.

The fundamental purpose of a NFCS is to track the mass flows and isotopic composition
of material as it moves among facilities in a complete nuclear fuel cycle. At a minimum,
the set of facilities should include nuclear reactors for the consumption of uranium and the
production of transuranics and fission products, but most tools include front-end facilities
including mines, enrichment facilities and fuel fabrication facilities, as well as back-end
facilities including storage and separations. As they become more sophisticated, a NFCS
will also track information about facility deployment, utilization and decommissioning, in
order to support economic assessments that are dominated by the capital costs and capacity
factors of those facilities.

A variety of such tools emerged, often developed to answer specific programmatic questions.
Most notable among these tools were Dymond[15], DANESS[16] and VISION[17] all initially
developed at national laboratories and sharing a common heritage. Although they continue
to provide value to the nuclear fuel cycle analysis community, a number of limitations
were identified in these tools, leading to a desire for a next-generation fuel cycle simulator
(NGFCS).

One limitation of the previous tools was their reliance on a systems dynamics framework.
Such frameworks were initially considered attractive because of the graphical development
environments of stocks and flows that mapped well onto the material flow modeling at the
core of a NFCS. However, the stock and flow paradigm requires all models to be expressed
in the context of a first-order ODE solved with an Eulerian approach. Many models are
not well-suited to this approach and require the implementation of alternative methods as
extensions to the systems dynamics framework using a more traditional programming interface,
thus diminishing the benefit of the graphical development environment. Systems dynamics
platforms also suffered from limitations on the size of problem they could accommodate,
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particularly early in the development of these tools. As it became necessary or desirable to
expand the number of isotopes tracked in material flows and incorporate large matrices to
represent the long term response of those material flows, limits in the total data footprint
were reached. NFCSs were often the largest models to ever be implemented in these platforms
and close collaboration with their developers led to improvements that relaxed these limits.
The systems dynamics platforms were not well-suited to collaborative development because
contributions from individual developers could only be merged manually. Finally, these
platforms required the purchase of commercial licenses for each user at each site, both costly
and an obstacle to deployment at large scales for parametric studies, sensitivity analysis
and/or optimization.

Another limitation arose from the problem-focused development path for these tools.
Because it was necessary to prioritize particular candidate fuel cycles, they each developed
depth in their modeling fidelity to support those specific fuel cycles and without sufficient
modularity to quickly incorporate novel technologies. As policy-driven interest in specific
fuel cycles waned, demand grew for these tools to analyze the fuel cycle impact of a variety
of novel nuclear energy technologies. Incorporating these technologies in the existing tools
required a steep learning curve to first learn the particular systems dynamics platform and
then understand the modeling approaches used to incorporate the complexity of real fuel
cycles. This was often beyond the scope of many small technology development efforts,
especially when crude estimates of the steady-state fuel cycle impacts were possible with
simple spreadsheet models. At the same, time each of the tools had implemented slightly
different assumptions and approximations rendering comparison a challenge and ultimately
undermining confidence in their ability to produce reliable results.

Finally, the user experience for these tools was never a focus during their development,
despite the recognized value in enabling their use by a broader set of audiences to improve
the communication of their results. The graphical nature of the systems dynamics platforms
was considered to be sufficient until the implemented models became increasingly complex.
Fuel cycle scenarios were defined by data in ever-growing spreadsheets and results stored in
even bigger spreadsheets. Visualization of both input and output data was generally limited
to the spreadsheet software’s capabilities.

Therefore, the Fuel Cycle Research & Development program chose to support the devel-
opment of a NGFCS platform with sufficient modularity to accommodate a wide variety of
audiences, use cases and developer needs. The requirements for this framework included the
modeling of discrete transactions of materials among a set of discrete facilities operating
in distinct geographic regions. All transactions would arise as the result of resolving a set
of offers and requests in a market whose transaction costs may be determined by a wide
array of economic, political and technical parameters. Most importantly, a modular plug-in
architecture would allow user-developers to introduce different models with alternative mar-
ket and facility behaviors, thereby isolating variations in modeling to single changes. The
fundamental data generated by such a framework includes a list of material transactions
and the facilities involved in such transactions, a history of the isotopic composition of each
material object, and an operating history for each facility. As additional plug-in modules
are developed, additional data will be generated related to the facility histories, material
histories, or market transactions.

The NGFCS was also expected to be a useful evaluation tool for a variety of audiences.
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Non-technical audiences would interact with the NGFCS in a way that allowed them to
express critical high-level decisions and understand the outcomes of those decisions in a set
of key metrics. At the same time, expert audiences might be interested in a quantitative
technology assessment to help motivate design improvements. Developers of the NGFCS
would need to visualize their results to ensure consistency and correctness. Given the wide
array of possible metrics and summaries, each type of user might want to gradually explore
the results with increasing depth and sophistication. At the same time, it was important
that the NGFCS allow experts to introduce new modules to capture specific physical models
or market behavior, but rely on a common infrastructure that facilitates direct comparisons
of results.

1.1 Research Plan Overview

This project was therefore designed to explore strategies and develop tools to enhance the
user experience for the NGFCS for a range of target audiences. The research plan identified
five thrusts:

1. Stakeholder, parameter and metric identification
2. User interface and model generation
3. Metric translation
4. Visualization environment
5. Efficient design of a client-server model
The work scope definition for this project referred to a NGFCS platform that would

be developed by the USDOE and requested proposals for enhancements to that platform,
explicitly prohibiting proposals that aimed to develop the platform itself. However, at the
time that this project was awarded, no such platform existed and there were no plans to
create one. Given ongoing efforts to design and implement such a platform at the lead
institution, a renegotiated scope and research plan was developed, inserting an additional
Thrust 0 that would dedicate resources to the completion of the Cyclus framework as the
NGFCS. The addition of this thrust required some scaling back of the scope of each of the
other thrusts with the ultimate research plan outlined below.

Thrust 0 was lead by nuclear engineering software developers to finalize and implement
the design of Cyclus. While most capabilities had been demonstrated in some fashion, this
project allowed for robustness and stability improvements that enable a broader adoption
and simplifying the process of extending the platform with new models.

Thrust 1 was led by experts in communication science, and specifically in the science
of communicating about controversial science. This critical project element was designed
to enhance the relevance of the NGFCS to a wider audience than the traditional nuclear
engineering audience of previous tools by identifying the metrics that address the questions and
concerns of those audiences rather than focusing on the metrics that the nuclear engineering
community values. This thrust incorporated a thorough review of prior testimony and
historical documents to identify stakeholders and the issues that they raised, interviews with
a variety of individuals representing those stakeholder groups to further identify the important
issues, a survey of a larger community of stakeholder to develop a quantitative understanding
of how those issues were related to each other, and an experiment to understand how different
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forms of visualization would communicate the results of a fuel cycle simulation. A detailed
account of the work performed under this thrust is found in Chapter 3.

The primary purpose of Thrust 2 was to develop a convenient graphical interface by which
users could define the fuel cycle scenarios of interest to them. Inspired by the drag-and-drop
promise of the systems dynamics paradigm, this interface would allow users to build high-level
graphical representation of a nuclear fuel cycle by placing and connecting individual facilities.
Particular consideration would be given to the rules for connecting facilities to reduce the
depth of nuclear engineering domain knowledge expected of users while still preserving a
physically valid flow path for material. The interface would expose varying level of detail, with
many default values hidden from users seeking a simpler experience, but available to those
users looking to control all parameters. Each of these parameters would be self-documented
by the interface allowing users to quickly learn what the valid purpose and range of each
parameter is. Chapter 4 outlines the development at testing of such an interface.

Thrust 3 focused on translating the fundamental data recorded by the NGFCS into metrics
identified by Thrust 1 as interesting to stakeholders. Since the NGFCS would operate at the
fidelity of discrete material objects, perhaps individual fuel assemblies, being transacted by
discrete facilities, a minimum amount of data would be recorded directly in its fundamental
output. This data might include, for example, the masses and compositions of individual
material objects being transacted. Although some applications may be interested in such
high-fidelity data, many applications would be integrated in integrated quantities such as
total flow rates and or inventories in the fuel cycle. Moreover, there may be interest in
quantities derived from this aggregate data such as decay heats or radiotoxicity. Finally, given
the role of modularity and extensibility in the NGFCS itself, it is important for this metric
translation capability to offer similar extensibility. Chapter 5 describes some sample metrics
and the conceptual framework embodied in an extensible metric translation capability.

The ability for user to explore their data in an organic and discovery-driven manner was
the goal of Thrust 4. Beyond simply providing simple plots to represent the output metrics
(identified in Thrust 1 and calculated in Thrust 3), the user may want to aggregate some
results over select dimensions and filter those results across other dimensions. When those
features are shared over a set of related visualizations, they form a workspace in which all
the results can be manipulated as a set. Chapter 6 describes the implementation of these
concepts as well as a custom visualization for the flow of material among different fuel cycle
components.

Although it was not clear how much computational power would be necessary to run
a single case with the NGFCS, it was likely that certain use cases would require remote
operation in order to provide sufficient computing capability, particularly if thin clients
such as tablets are imagined as ultimate user interface devices. Thrust 5 considered the
factors that would facilitate a client-server mode of operation in which the simulation itself
was operating remotely and only the visualization tools were local to the PC, tablet, or
smartphone. This resulted in the development of a cloud-like simulation capability that can
support remote execution of single simulations submitted via a website or with the graphical
interface developed in Thrust 2, as well as large scale analysis by deployment as a compute
farm.
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Chapter 2

Thrust 0: Cyclus Infrastructure
Development

Under Thrust 0, the Cyclus framework was advanced from a conceptual design to a fully
functional software tool. As this project began, the fundamental features of Cyclus were
in place, but it was far from a usable tool for fuel cycle simulation. Through the efforts of
this project, Cyclus emerged as a more usable and stable software platform for nuclear fuel
cycle analysis. The overarching goal was to provide maximum flexibility so that changes in
fuel cycle design did not require substantial retooling of the software. Specific design features
that support this flexibility include:

1. Modular design to support extensibility with runtime swappable facility models.
2. Agent-based approach to incorporate social/behavior interaction models to govern

how each facility interacts with others.
3. Individual facility modeling to allow each facility to operate in a distinct manner,

allowing modeling of startup, shutdown and other disruptions.
4. Discrete material tracking at the nuclide level to capture the effects of individual

facility performance and enable forensic tracking of material object ownership.
5. Minimal physics assumptions to enable different users to invoke low fidelity, systems

level models or high fidelity, facility level models, or anything in between.
Under this project, the Cyclus effort developed into an ecosystem composed of:
• an open source simulation kernel, known as Cyclus,
• many plug-in modules, each implementing a particular model for a facility, institution

or region, and known as archetypes, and
• an open source analysis and visualization tool, known as Cyclist.
The first section of this chapter will describe the fundamental design and implementation

of the Cyclus kernel while the following section will describe the infrastructure to support
the development of new archetypes.

2.1 Fundamental Design and Implementation

More details regarding the implementation and demonstration of the fundamental design of
the Cyclus kernel are available in ref [1].
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2.1.1 Modularity

The modular nature of Cyclus is a key element to its ability to remain flexible, and also
drives many subsequent design decisions. The main goal of this flexibility is to allow for the
computational models that represent individual agents (see Section 2.1.2) to be swapped easily,
as a user option. Two specific advantages of this choice are that (a) individual researchers
can focus their efforts on new modules that match their expertise and support their needs,
and (b) the impact of changing modeling choices can be explored in a consistent environment
by swapping only one module at a time.

In its purest expression, each module operates in a so-called black-box fashion. That is,
any single module has no knowledge of the internal state or behavior of any other module and
can only interact in a narrowly defined and specific way. In addition to imposing a number
of software engineering limitations on the implementation of the kernel and archetypes, this
design goal also requires careful design of that interaction interface among the modules.

Figure 2.1 illustrates this concept, indicating the different API for each type of agent, and
the possibility of different implementations in each case. Different implementations of each
type of facility, for example, may use different models to describe the physics and/or the
interaction behavior of that facility. These differences can represent small perturbations from
other implementations or entirely different approaches, including wrapping other software.
Because the modules can be swapped at runtime, without requiring the software to be
recompiled, this also facilitates different distribution modes for these modules, as shown in
Figure 2.2, including fully open source, export controlled, and/or proprietary commercially
licensed modules.

Figure 2.1: The Cyclus core provides APIs that abstract away the details in the kernel and
allow the archetypes to be loaded into the simulation in a modular fashion. [1]
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Figure 2.2: The Cyclus framework enables fully open, partially open, and fully closed
collaborations[2].

2.1.2 Agent-based Paradigm

Cyclus implements an agent-based modeling (ABM) paradigm. In addition to being a
natural consequence of the modularity described above, the ABM paradigm is more flexible
and intuitive (from both a developer and user perspective) than the system dynamic approach
used in current simulators. System dynamics is a popular approach for modeling nuclear fuel
cycles [17, 16, 18, 19]. Formally however, system dynamics models are simply a strict subset
of agent-based models [20]. That is, any system dynamics model can be translated into an
agent-based model. ABM techniques therefore enable a broader range of simulations in a
more generic fashion.

To ensure interchageability, all agents are based on a common set of object-oriented APIs
defined as part of the Cyclus kernel that define how they interact with other agents and
with the environment. These APIs standardize and simplify the implementation of required
agent behavior such as trading resources. Optional mixins are also provided in a toolkit
to provide community standards for some optional behaviors. More details on archetype
development are in Section 2.2.

Cyclus provides a novel representation of entities in the nuclear fuel cycle that reflects
the reality in international nuclear power: facilities implementing individual fuel cycle
technologies, institutions managing those facilities, and regions providing geographical and
political context for institutions and facilities. Under this paradigm, regions and institutions
are first class agents much like facilities: they can be developed as stand-alone modules
to implement different behaviors and swapped at runtime. Cyclus implements a Region-
Institution-Facility (RIF) relationship through a parent-child hierarchy where regions are
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the parents of institutions which are, in turn, the parents of facilities. In this structure,
institutions are typically responsible for making decisions to deploy and decommissioning
facilities, while regions are typically responsible for establishing an energy demand. Both
regions and institutions can have an impact on inter-facility resource flow during the resource
exchange process.

2.1.3 Discrete Objects

Implied by this ABM paradigm is that Cyclus models facilities, institutions, regions, and
resources as discrete objects, allowing for a range of modeling granularity. This is in contrast
to the fleet-based approach used in most other fuel cycle simulators, although it is possible to
implement Cyclus archetypes that represent fleets of identically behaving facilities[3]. This
discrete facility capability is necessary to enable the tracking of discrete material objects.
Examples of use cases supported by discrete material tracking include spent fuel storage,
transport and disposal models that require representation of discrete casks and the individual
isotopic compositions of their contents.

Another such use case seeks to capture system vulnerability to material diversion. Prove-
nance and trade-history of distinct materials is the fundamental information unit in such
studies, and so this type of analysis requires discrete simulation of a target facility and the
individual materials modified within it. Material risk analysis, therefore, demands that both
facilities and materials should be discretely modeled objects like those in Cyclus.

Cyclus represents these discrete tradable objects generically as resources, with a specific
implementation for materials to represent typical nuclear materials with a mass and nuclide
composition. Typical operations on material objects, e.g. splitting, combining, decay, etc.,
are tracked in detail to support simulation wide mass conservation. The history of ownership
and transfer of each object is also tracked.

Material objects in Cyclus can have compositions with an arbitrary number of nuclides
and can be optionally subject to radioactive decay, either at the discretion of the facilities
which own/manage the material, or whenever it is observed/traded in the simulation. In
large simulations, this tracking of discrete material objects can lead to many objects that
change frequently. A number of implementation details exist to minimize the impact on
system memory and output database file size.

A critical capability at the intersection of the swappable archetype and the discrete
resource object paradigms is the dynamic resource exchange (DRE) which implements a
market mechanism at each time step for matching consumer agents’ requests for material with
supplier agents’ offers for material. The DRE is described in detail in Ref [21]. Supporting
the general Cyclus philosophy, facilities are treated as black boxes and a supply-demand
communication framework is defined. The primary development of the DRE was supported
under a different project and is reported there[22].

The DRE is a novel simulation concept in the nuclear fuel cycle domain. It provides a
flexible supply-demand infrastructure, supporting dynamic flows of resources between agents,
even as those agents enter and leave the simulation, and even when those agents are defined
by archetypes of arbitrary complexity. Trading between agents can be affected by both
the proposed quality of a resource and agent relationships through the use of preferences.
Accordingly, a wide range of possible effects can be modeled, from capacity-limited fuel supply
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to international trade agreements.

2.1.4 Simulation Support

So that users and developers can build working simulations in the shortest time possible, the
Cyclus ecosystem provides fundamental building blocks: basic archetypes and a toolkit
of commonly needed functions. The Cycamore library provides a suite of fundamental
Region, Institution, and Facility archetypes, while the Cyclus toolkit provides assistance to
developers.

Cycamore [4], the Cyclus additional module repository, provides a fundamental set of
dynamically loadable libraries providing agent archetypes for basic simulation functionality
within Cyclus. Since Cyclus relies on external archetypes to represent the agents within a
simulation, Cycamore provides the basic archetypes a new user needs to get started running
simple simulations. These archetypes support a minimal set of fuel cycle simulation goals
and provide, by example, a guide to new developers who would seek to contribute their own
archetypes outside of Cycamore.

As of version 1.5, Cycamore contains one region archetype, two institution archetypes,
and eight facility archetypes. Short descriptions of these functions can be found in Table 2.1.

In addition to the core functionality of the Cyclus kernel, which is focused on the
set of capabilities needed to implement an agent-based simulation with DRE, a toolkit is
provided to assist developers and users with robust and standardized implementations of
related simulation and nuclear engineering tasks. The toolkit is an actively developed part
of Cyclus, with a primarily forward-looking focus on supporting interesting in situ metric
analysis tools. The toolkit contains methods to support demand-constrained facility agent
deployment with methods that describe different shaped curves for electricity demand, and
then assess the available capacity relative to those demand curves, deploying new facilities
when necessary. The toolkit also includes nuclear engineering specific methods, such as models
to calculate the relationship between material quantity, quality and enrichment capacity.

2.1.5 Quality Assurance

To garner the trust of a broad user and archetype developer community, the Cyclus project
must implement a strategy to assure the ongoing quality of the software it provides. Multiple
strategies, collectively known as quality assurance (QA), have been developed by the scientific
software development community to mitigate structural and algorithmic errors in software.
Cyclus has adopted the best practices of the open source software community for ensuring
software quality including:

• version control: careful control and cataloging of changes to the software with full
attribution of each change to each author,

• code review: every individual change is reviewed by another developer for many aspects,
from style to algorithmic performance to correctness, and

• continuous integration: automated testing of individual software units and integrated
solutions as each change is proposed and incorporated.

Ref [1] provides more details on each of these topics.
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Table 2.1: The Archetypes in Cycamore seek to cover a large range of simple simulation
use cases[4].

Type Archetype Name Functionality
Facility EnrichmentFacility This facility enriches uranium at a specified capacity.
Facility FuelFab This facility fabricates fuel material based on separated

streams.
Facility Reactor A reactor model that handles batch refueling, based

on pre-determined recipes of compositions. It requests
any number of input fuel types and transmutes them
to static compositions upon discharge.

Facility Separations This facility separates an incoming material into speci-
fied streams.

Facility Storage This facility holds incoming material for a specified time
until before it is offered.

Facility Mixer This facility combined a set of incoming streams into a
single stream.

Facility Sink This facility is capable of accepting a finite or infinite
quantity of some commodity produced in the simulation.

Facility Source This facility generates material of the composition and
commodity type specified as input.

Institution ManagerInst The manager institution manages production of com-
modities among its facilities by building new ones as
needed.

Institution DeployInst This institution deploys specific facilities as defined
explicitly in the input file.

Region GrowthRegion This region determines whether there is a need to meet
a certain capacity (as defined via input) at each time
step.

2.2 Facilitating Archetype Developers

A principal distinguishing feature of Cyclus is the ability to introduce novel agents by
developing customized archetypes. Not only is this a departure from the structure of
most NFCS tools, but the degree of specialization that is necessary to represent different
fuel cycle facilities is a departure from many agent-based simulation frameworks. Each
agent must interact with the Cyclus kernel and other agents using a rich interface that
controls initialization of agent parameters, agent interaction with the DRE, initiation of
agent behavior between trades, decommissioning of agents, and recording of all agent data.
Correct implementation of these interactions with the kernel are necessary, in addition to
implementing the physics and interaction behaviors that are the true motivation for the new
agent archetype.

To mitigate the difficulties of writing archetypes, Cyclus aids in overcoming the hurdle
of interfacing with the kernel itself. Additionally, to the extent possible, Cyclus should also
provide tools that ease the implementation of the physics and desired behavior. A variety of
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strategies are used by Cyclus to ease archetype development:
• Automatic Model Templating: By automatically inspecting and creating portions of

archetypes, the overhead of adhering to the Cyclus API is removed. This is performed
via preprocessing archetypes and then automatically generating the necessary C++
source code to implement many parts of the necessary interface.

• Data Communication Protocol: Cyclus provides a common basis for archetypes
to store and retrieve complex data in its database. This is achieved through the
implementation of Cyclus-specific type system. This alleviates the need for archetype
developers to invent and implement custom solutions for storing the data that is
generated by the archetype.

• Metadata Annotations: Archetypes have a standard place to store and retrieve
both pre-defined and arbitrary metadata. This allows for archetype developers to
communicate relevant information to tools outside of Cyclus (such as a visualization
tool).

• Input Validation: Cyclus uses an Extensible Markup Language (XML) input file
format because it allows for a the definition of a schema that can be used to automatically
validate the input file. The schema for each archetype is automatically generated by
the Cyclus tools, relieving the developer of this burden while still allowing them to
impose automatic validation.

• Model Location: Cyclus has a packaging system for archetypes and libraries of
archetypes. This provides a standard mechanism for searching for and locating models
on a user’s system. Furthermore, all archetype developers can uniquely specify their
own archetypes without the fear of overlapping names. For example, two developers
could each have a Reactor archetype, but they would exist in different packages and
be disambiguated.

Though the above mechanisms are discussed with respect to Cyclus, they are transferable
to any agent-based modeling framework that requires modular agent archetypes. The following
subsections present greater detail regarding these strategies. Further detail and examples are
available in Ref. [5].

2.2.1 Automatic Model Templating

Every Cyclus archetype is required to implement a standard set of member functions that
control the definition of a prototype that is derived from that archetype (InfileToDb), the
life cycle of each instance of that archetype (InitFrom,Clone,InitInv), and the interaction
of the agent with the database that stores the state of each agent (Snapshot,SnapshotInv).
There are additional option functions that allow an archetype to take specific action when
it is deployed (Build, EnterNotify), when it chooses to deploy or decommission its own
children (BuildNotify,DecomNotify), or when it is decommissioned itself (Decommission).

Since each archetype is free to define a unique and independent set of member data and
behaviors, these methods must be specific to the archetype so that they can be sure to
address all the correct data members. Manually generating all of these functions is tedious,
time consuming, error prone, and may require specialized knowledge of the Cyclus kernel
that would be otherwise unnecessary. It is, however, possible to automatically generate the
code that implements the above functions based on the set of members that are defined in
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the archetype. Furthermore, with a small amount of additional metadata (see Section 2.2.3
below) for each member variable, it is also possible to automatically generate the correct
XML schema for validation of input to that archetype.

A custom pre-processor, called cycpp, has been written to read and parse the simplified
definition of an archetype and automatically generate the correct methods to implement the
above interface. The pre-processor replies on metadata that is attributed to the member data
through the use of #pragma cyclus directives. These are otherwise skipped by the compiler,
but can be used to identify special behavior.

2.2.2 Data Communication Protocol

Cyclus relies on a number of alternative storage formats for the data it generates, allowing
the user to prefer either typical Structured Query Language (SQL) databases or numerically
oriented Hierarchical Data Format version 5 (HDF5) files. Both of these systems have full
support for simple data types, but much of the data generated in a fuel cycle simulation
has more complex relationships. The Cyclus kernel has implemented an extensible system
to support complex types. This is important for archetype designers/developers because it
allows them to use a richer and more expressive set of data structures, and reduces possible
errors that might be introduced by having to transcribe those data structures in/out of
simpler forms for storage. This is also an important feature to enable automatic model
templating: cycpp is able to determine the “shape” of complex data structures and invoke
the correct tools for storage of that data.

2.2.3 Metadata Annotations

As mentioned above, automatic code generation relies on metadata that is either determined
automatically from the archetype declaration or is introduced in optional #pragma cyclus

directives.
One use of this metadata is to define the behavior of archetype member data, and provide

a high-level mechanism to invoke many low-level behaviors through the cycpp pre-processor.
For example, a simple declaration of the shape of a data type can be used to generate the
code that will invoke the correct data storage behavior in various formats.

All metadata, whether required or optional, is stored as part of the archetype and available
during a Cyclus simulation for general use. At a fundamental level, this allows for reflection
in a way that is not typical of C++ software: the archetypes are aware of their own name
and the types of their member variables.

Finally, the annotations can be particularly valuable beyond the Cyclus kernel. Cyclus
provides a mechanism to query those annotations for use in other tools that support input file
generation and output visualization. Several standard annotations are available to support
input file generation, including declaring a default value, different forms of documentation,
and physical units. Use of this data will be discussed further in Chapter 5.
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2.2.4 Input Validation

A Cyclus input file consists largely of the definition of agent prototype, each formed by
configuring an archetype with a set of parameters. In many software tools that rely on user
input, validating that the users choices for those parameters makes sense in some way can
be a substantial task. This kind of validation includes checking whether certain values are
within physical bounds, whether all values are defined with the correct type, and whether
there are enough entries for complex data types. By relying on XML as the input file format,
Cyclus is able to invoke its built-in grammar-based validation capability. A schema provides
a definition of the correct grammar against which the input file is tested.

In most cases, the schema for an archetype can be automatically generated from the
archetype declaration, with some additional information collected from annotations. This
allows archetype developers to have the full advantage of a grammar-based validation without
having to learn the details of how those grammars are defined. Grammar for the validation of
data type and structure can be derived by inspecting the type and structure of the member
variables themselves. Grammar that validates against specific semantic meanings (e.g. a
variable must be positive) requires metadata annotations. The metadata annotations also
provide a mechanism for developers to completely override the auto-generation of the schema.

2.2.5 Model Location

The final capability provided to archetype developers is a standardized way to declare the
location of a specific archetype. Since archetypes are dynamically loadable, it is necessary for
the Cyclus kernel to find each archetype at runtime. The simplest strategies for finding
archetypes rely on them all being named in a standard way in a standard location in the
file system. This is both constraining and presumes a level of coordination among archetype
developers that undermines the flexibility of the plugin archetypes. Instead, an archetype
specification mechanism has been developed to allow both flexibility and disambiguation of
archetypes at runtime. The specification allows a user to define where in the file system a
plugin library is located, the name of that library, and the name of the archetype within that
library. This means that different developers can choose the same name for their library of
archetypes, as long as it is stored in a different location. Similarly, they can have similar
names for their individual archetypes without worrying about name collision.

This set of tools and capabilities not only lowers the barrier to the development of new
archetypes, allowing developers to focus on the specific physical and behavior models of
interest to them. The software development tasks of agent instantiation, data persistence,
and input validation are handled automatically. This allows the Cyclus ecosystem to use
advanced technologies for these purposes without raising the cognitive burden on archetype
developers to learn all of those technologies.

2.3 Summary

This project enabled the Cyclus effort to develop into a robust tool for fuel cycle simulation,
meeting its primary design goals while also facilitating contributions from a wide set of
archetype developers. This product of Thrust 0 was a next-generation fuel cycle simulation
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framework suitable for the user experience extensions studied in the other thrusts of this
project.
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Chapter 3

Thrust 1: Stakeholder Engagement

One of the aims of this project was to make fuel cycle simulation and analysis accessible to
a broader audience of users by designing different user experiences for different categories
of users. Doing so requires that the interests and use cases of those different categories be
sufficiently understood. The overarching goal of Thrust 1 was to determine the specific kind
of information that various users and stakeholders would like to learn from a nuclear fuel cycle
simulator to support their application of such a tool. This thrust was born from a recognition
that different categories of users would be interested in different kinds of information, possibly
different from the set of information traditionally provided by the fuel cycle experts who
typically study such systems. Moreover, the fidelity and nuance surrounding that information
may vary across groups of users.

One of the innovative aspects of this project was the incorporation of social science
research as a full partner. This thrust was led by Prof. Dominique Brossard of the Life
Science Communication Department at the University of Wisconsin-Madison. This thrust
incorporated established methods of social science research to study both the kind of informa-
tion that users would be interested in learning, as well as the impact of different visualization
modes on their understanding of that information. More details about the studies described
in this chapter can be found in the PhD dissertation of Dr. Nan Li [6].

The first task in this thrust was to identify different communities of stakeholders and the
issues that are most important to those communities. Informed, in part, by this information,
the second task assessed how different aspects of a data visualization affected the integration
of that data by different stakeholder audiences.

3.1 Stakeholder and Issue Identification

This task followed a well-established social science research protocol for identifying and
characterizing stakeholder groups and their most important issues, beginning with a thorough
review of documents related to nuclear fuel cycles, continuing with a round of qualitative
research in which a set of stakeholders was interviewed, and concluding with quantitative
research in the form of a survey of a larger set of those stakeholders.

Because the NGFCS was not sufficiently advanced at the beginning of the research project
to support a wide variety of stakeholders, the scope of this thrust was narrowed to focus
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on federal decision makers: Congressional staff, employees of federal agencies, and national
think-tanks and non-profits.

3.1.1 Document Review & Analysis

The starting point of this research was to collect and review a wide array of publicly available
documents related to public policy and public engagement around the nuclear fuel cycle.
These documents came from many sources, with a large fraction coming from public testimony
before various panels and committees. The most recent set of documents, for example, came
from testimony and contributions to the Blue Ribbon Commission on America’s Nuclear
Future, that had concluded its review just as this project began.

This kind of review is a critical step for establishing first a fundamental knowledge of
the vocabulary and terminology, and then using that to identify the different categories
of stakeholders. For each category of stakeholder, this analysis also helped to identify the
important issues when they consider existing or potential future nuclear fuel cycles. The
primary outcome of this phase was the development of an list of potential interviewees and a
script to conduct those interviews.

3.1.2 Stakeholder Interviews

Interviews were were conducted with 12 individuals from the nuclear energy policy community,
with two purposes. Individuals were identified by reviewing all the public hearing records
found by searching for “nuclear” in the ProQuest Congressional Publications database between
May 2009 and March 2012. From these documents spanning topics from waste management
to profliferation to safety, a cohort of policy experts with varying professional backgrounds,
experiences and interests was recruited.

First, the content of these interviews would provide a more nuanced understanding of
the issues identified in the document review in order to formulate survey questions for a
larger sample. Figures 3.1 and 3.2 show the issue categories identified through this process
for nuclear energy in general and advanced fuel cycles in specific. Interviewees were also
solicited for specific recommendations of information that a NFCS might be able to provide
to help inform their understanding and decision making around nuclear fuel cycles. These
specific recommendations were allocated to seven categories:

1. General,
2. Environmental and Health Safety,
3. Waste Management,
4. Cost and Economic Issues,
5. Resource Utilization,
6. Sustainability, and
7. Non-proliferation.
Each category contained at least seven (Sustainability) and up to 38 (Cost and Economic

Issues) specific recommendations. Two categories (Environmental and Health Safety and
Cost and Economic Issues) had six recommendations that were mentioned by more than one
interviewee.
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Figure 3.1: Main Issues Related to Nuclear Energy Identified by Qualitative Interviews

Figure 3.2: Main Issues Related to Advanced Fuel Cycles Identified by Qualitative Interviews
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The second purpose of these interviews was to perform semantic computational analysis
of the language in the transcripts of those interviews. The CATPAC II software was used
to detect patterns and correlations between different conceptual words that appear in the
transcripts by recording their frequency of occurring together in a moving 5 word window.
The fundamental measures of connection between concepts can be analyzed with a number of
techniques, including a multidimensional scaling (MDS) analysis. The MDS analysis results
can be visualized in a 2D or 3D space to identify emergent meanings and dominant themes.
Figure 3.3 shows such a visualization for the terms identified in the transcripts of the six
interviews conducted with government policymakers.

Figure 3.3: 2D Representation of Unique Concepts for Government Policymaker Interviewees.

A similar analysis for the six interviews conducted with non-profit/think-tank experts
showed that different clusters emerge, suggesting nuanced differences in how policymakers
and think-tank experts characterize the most important issues facing the development of the
nuclear fuel cycle.

3.1.3 Stakeholder Survey

A survey was constructed with seven questions specifically related to nuclear energy, advanced
fuel cycles, and NFCSs, followed by three questions that assess the respondents’ beliefs on
the relationships between science, the media and policy, and five demographic questions (see
Appendix B of Ref [6]). Two central questions asked respondents about possible output
metrics from a NFCS, specifically asking them to judge both the importance of the metric
and the level of confidence with which they believed that metric could be calculated.

The survey was sent to 557 policy stakeholders including:
1. 404 attendees of the public hearings documented above,
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2. 63 former members of Congress or their staff that focused on energy issues determined
from reviewing the directories of the 109th through 111th Congress, and

3. 90 state and local stakeholders determined by reviewing the public meetings held by
the Blue Ribbon Commisison for America’s Nuclear Future in 2011.

After a number of rounds of reminders, a total of 137 completed surveys (27.4% response
rate) were returned and analyzed.

One type of analysis sought to test a hypothesis identified in the interview analysis that
the institutional identity of a respondent would influence their perception of the importance
of different issues, as well as their view of the role of science as a driver of policy. This
analysis found that industry and advocacy groups were less likely to think that environmental
health and safety should be taken into account when developing advanced nuclear fuel cycles,
whereas academic stakeholders were less likely to consider nuclear waste management as an
important issue for advanced fuel cycle development.

One of the important results of the survey was to sort the issues related to advanced
nuclear fuel cycles by their perceived importance as metrics for a NFCS and by the perceived
confidence in being able to calculate such metrics. Of the thirteen issues that were ranked
with high importance, five of them were also ranked with high confidence while the remaining
eight were ranked with low confidence.

• High Importance, High Confidence:
– fuel types and reactor types needed
– long-term nature of nuclear fuel cycle
– impact of nuclear fuel cycle on energy generation
– waste volumes
– waste types

• High Importance, Low Confidence:
– operating costs
– costs of entire nuclear fuel cycle
– cost of waste disposal space
– amount of sustained funding
– probability of accidental release
– impacts on local economies
– attractiveness to utility companies
– public acceptance

• Low Importance, High Confidence:
– amount of uranium needed
– amount of mining

• Low Importance, Low Confidence:
– availability of uranium resource
– cost of building public support
– carbon price

The most important issues should be identified as priorities for implementation in a
NGFCS and those that are also deemed low confidence should bre identified as research
priorities in an effort to reduce their uncertainty and raise confidence in being able to present
such metrics.
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3.2 Assessing Visualization Efficacy and Credibility

The second major component of Thrust 1 was to assess the effectiveness of different visualiza-
tion modes for communicating information from a NFCS. Because the Cyclus simulator
was not sufficiently advanced, a surrogate set of visualizations was used for testing. Because
both were indicated as important in the prior work, the visualization testing used mock data
for costs and waste management. Experiments were constructed in which a respondent was
shown a visualization of this data and asked to respond to a set of questions regarding both
the data itself and the visualization that was used to communicate the data.

A total of 517 valid responses to the experiment were collected from undergraduate students
at the University of Wisconsin-Madison from a variety of disciplines and backgrounds. They
were divided roughly evenly between science & engineering (28.7%), social sciences (32.9%),
and the humanities (31.9%), and were almost all (98%) between the ages of 18-24. The
majority (64%) were females and about the same fraction were either freshman or sophomores.

In each case, the respondents were first asked a series of questions about themselves,
designed to probe the following:

• familiarity with nuclear energy issues
• perceived credibility of different information sources
• self-assessment of numeracy and graph literacy
Each respondent was then shown one visualization of mock data related to nuclear fuel

cycles. A number of characteristics of the visualizations were varied across the sample of
respondents:

• area chart vs bubble chart
• static chart vs interactive chart
• cost vs mass
• government attribution vs academic attribution

Figures 3.4 and 3.5 show two of the sixteen possible combinations.
After viewing one of the sixteen possible variations, respondents were asked a series of

questions about the data they had seen. Some questions tested how accurately the respondents
could interpret the data, both in absolute terms by asking for specific values, and in relative
terms by asking for comparisons. Related questions tested the quality of decision making by
asking respondents to identify the best option given particular goals. Other questions tested
the opinions of the respondents with regards to the perceived credibility and the perceived
effectiveness of the visualization.

Finally, a set of questions was used to further probe the numeracy of the respondent,
both in terms of their self reported perceived numeracy and by asking a series of questions
about unrelated data.

3.2.1 Graph Comprehension

Statistical regression analysis was used to determine the contribution of each control variable
in explaning the observed variance in graph comprehension, as measured by the respondents
ability to indicate quantitative results from the visualized data. The biggest contributor
to comprehension was the format of the visualization, with respondents performing better
when viewing the bubble chart. The next largest contributor was the interactivity of the
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Figure 3.4: Static area chart depicting fuel cycle costs for three different options over time.
The interactive version allowed the viewer to query the values at any year.

Figure 3.5: Interactive bubble chart depicting the mass of waste for three different options
over time. The slider in this version allowed the viewer to see the mass of waste at different
years. The static version showed only three specific years for each case.
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visualization, with respondents performing better when they viewed an interactive graph,
although only for the area charts. While general graph literacy was positively correlated to
comprehension, specific domain knowledge did not have an impact.

3.2.2 Decision Quality

Another regression analysis was used to determine the quality of decisions made by respondents,
as measured by their ability to identify the best option from among three fuel cycles. Despite
the indications that respondents had a better quantitative understanding of bubble charts
over area charts, those respondents who viewed area charts were better able to select the
option that correpsonded to the requested optimum. Numeracy skills and graph literacy also
resulted in better likelihood of success in identifying an optimum.

3.2.3 Credibility

The final analysis considered the perceived credibility of the data shown in the visualizations[7,
8]. The perceived credibility was not impacted by the format of the chart, although respondents
did perceive the static charts are slightly more credible than the interactive charts. The
visualizations attributed to an academic source were perceived as more credible overall.
This was mediated by the respondents’ predisposition to trust academic sources relative
to governmental sources. Those respondents who reported a higher trust for academic
sources perceived more credibility in the data attributed to an academic source, while those
respondents who reported a higher trust for governmental sources did not perceive more
credibility in the data attributed to a government source. Overall, younger respondents were
more skeptical of the data. Regarding the visualization itself, the respondents’ evaluation
of the quality of the visualization, and their own ability to read and use graphical tools in
general, were more important for supporting credibility than their measured comprehension
of the data.

3.3 Summary

A rigorous social science study of the issues surrounding nuclear fuel cycles was carried out
to understand the role of a NFCS in decision making. While a number of stakeholder groups
were identified, the bulk of the study focused on federal decision makers and think tank
experts. A combination of document review and a dozen interviews were used to identify a
set of issues that formed the basis of a survey instrument that was sent to 517 individuals,
receiving 137 responses. A principal outcome of the survey was to identify which issues
that had been raised earlier were considered important for a NFCS, and separately, which
issues the respondents believed could be credibly produced by a NFCS. Two metrics that
represented the important issues were used to create a visualization experiment in order to
study how different aspects of the visualization impacted the comprehension of the data, the
quality of decision making based on that data, and the credibility of the information. While
this last step did not use Cyclus visualizations directly, it did provide information about
the future direction of visualization of NFCS results.
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Chapter 4

Thrust 2: User Interface and Model
Generation

With the flexibility afforded by the Cyclus ecosystem, it is important to provide tools that
allow users to take advantage of this flexibility while describing a novel fuel cycle. Without a
priori knowledge of the archetypes that will be used in a simulation, there are three main
challenges: (a) ensuring that the fuel cycle represents a physically valid arrangement of
facilities, (b) providing a graphical user interface for arbitrary sets of archetype parameters,
and (c) allowing for different levels of detail as new archetypes are introduced to avoid
overwhelming the user.

A fundamental requirement of this interface is that it presents the design of a nuclear fuel
cycle as a user task. Prior NFCSs require the intervention of a developer to introduce novel
flows of material between facilities and users are left only with choices of parameters that may
distribute material over those flows. In the Cyclus ecosystem, the ad-hoc introduction of
new archetypes can enable new flow paths through the system that should be easily realizable
as user input. At the same time, a mechanism must exist to prevent or discourage a user
from forming fuel cycle flow paths that are not physically realistic. The existence of the DRE
mitigates some of the concern for unrealistic flow paths, while a drag-and-drop interface can
be implemented to enable the flexible design of fuel cycles.

Thrust 2, led by Dr. Erich Schneider at the University of Texas - Austin, tackled these
questions in the development of a user interface for building simulation models. Working
closely with the Thrust 4 team, the Java platform was chosen for this capability. A number
of design decisions were made to facilitate user interaction, and testing of this interface was
carried out. The user input tool was originally referred to as Cycic, but was ultimately
incorporated into the broader user interface that also handled output visualization, known
as Cyclist[9]. Throughout this chapter, the graphical user capability for building analysis
models will be referred to as Cycic.

4.1 Platform Choice

Some consideration was given to the use of Javascript for this functionality and its implemen-
tation within a standard web browser. Early prototyping was promising and suggested that
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it would be possible to support the core functionality being considered for this tool. However,
a desire for integration with the data visualization capability ultimately drove the decision to
switch to the Java programming language, based on considerations discussed in Chapter 6.

Java provides native support for many of the user interactions necessary to develop a
tool such as this, including file input/output, a standard array of user interface widgets,
drag-and-drop capability, and dynamic arrangement of visual elements within the window.

4.2 Design and Layout

The bulk of the activity in this thrust focused on the design of different user interface elements
to provide the necessary flexibility, operability and robustness. While the visible layout is
important, the most important contributions of this thrust are particular capabilities that
are embedded into that layout to support the user experience. Each of the following sections
highlights one of those features.

4.2.1 Archetype Discovery

Since each user is free to collect and deploy plugin modules independently, it is necessary
for the user interface to have a mechanism for discovering which archetypes are available for
any given simulation. This capability is related to the Thrust 0 work highlighted in section
2.2.5. While a user is free to place their archetypes anywhere in their filesystem and refer to
them through the fully formed specification, Cyclus is also able to catalog all the available
archetypes in a standard location, and report their full specification. When Cycic is started,
it may not be aware of any archetypes at all, but can invoke the Cyclus command-line tool
to discover which archetypes are available.

Cycic is also able to perform this function using remote execution servers as will be
described in Chapter 7. In this case it connects to the remote server and invokes its copy of
Cyclus to query which archetypes are available on that server. This allows users to easily
switch to different execution servers, including their local computer or any other publicly
accessible remote server, and determine what kind of archetypes are available.

Once the list of archetypes is discovered, the user interface itself is updated. A drop-down
list of all available archetypes is populated with the information that is returned from these
queries, forming a catalog of possible archetypes that a user can choose to include in their
model.

4.2.2 Drag & Drop

To use a particular archetype, the user first selects it from the catalog of discovered/available
archetypes, placing an icon for that archetype in a “corral” that is then available for inclusion
in the model. Simply selecting an archetype is only the first step since the same archetype can
be configured in multiple ways to produce different prototypes, each with the same underlying
behavior but different parameters. A fuel cycle design is populated with prototypes. For
each prototype, the appropriate archetype is added by dragging and dropping its icon from
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the corral into the fuel cycle design canvas. Once dropped, these prototypes can be moved
around by dragging and dropping to improve the visual layout of the developing fuel cycle.

To configure a prototype, a double-click will open a window that contains widgets for the
input of each parameter that must be defined for that archetype, including a name that allows
for that prototype to be distinguished from other prototypes of the same archetype. Since
Cycic has no prior knowledge of archetype definitions, this must be generated automatically,
as described in the next section.

The default representation of archetypes and prototypes is a colored circle, in which the
color is automatically determined from the archetype specification. This leads to unique
colors for each archetype that permits easy identification of the archetypes being used at
any time. It is also possible to define sets of icons that will be used to represent different
archetypes and prototypes as they are assigned to specific niches in the fuel cycle.

4.2.3 Automated Input Generation

An important feature related to the automated discovery of archetypes is the ability to auto-
matically generate graphical user interface capability for each archetype. This functionality
relies heavily on the metadata discussed in section 2.2.3. Specific metadata annotations
have been defined for use by the user interface to enable this. Some of these annotations
allow the archetype developer to specify strings that will be displayed as part of the user
interface as documentation(e.g. alias, uilabel, units, doc, tooltip), while others
provide semantic information:

• type describes the C++ implementation of this data type and can be used to arrange
input widgets in the window for complex data types. For example, if the input quantity
is a std::map< int key, double value>, the input can be represented as a lists of
pairs of input boxes, in which each pair represents a single key/value pair, and button
to add more pairs as necessary.

• uitype provides a hint about how this variable should be displayed for user input. Some
of these indicate that user input for this variable should be a drop-down list populated
by other elements of the model: incommodity, outcommodity, facility, prototype,
etc. combobox specifies a more generic drop-down list that will be populated by items
specified in the categorical metadata, while range specifies that this input element
should be selected from a continuous variable between the values specified in the range

metadata.
• range provides the valid range for an input quantity, allowing archetype developers to

ensure that only valid quantities are given.
• categorical provides the list of discrete quantities that are valid when the uitype is

specified as combobox, allowing archetype developers to constrain the possible choices
of a variable to those that are consistent with the models implemented in the archetype.

• default provides a default quantity for the input data, allowing the input widget for
this variable to already be populated with that value. The user can still choose to
change the value, but immediately sees the default.

• internal indicates that this variable should not appear in the user input or Cycic
interface. This is reserved for quantities that are otherwise stored in the database, but
are initialized indirectly from other user input quantities or default values.
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Cycic implements code that makes specific design choices based on the values specified in
this metadata. It is able to query this metadata using the Cyclus command-line, whether
the archetypes reside on the local computer or on a remote execution server.

Expert Level

One additional metadata annotation is used to provide a specific target capability: varying
levels of complexity for users with varying sophistication. The userlevel data is an integer
from 0 to 10. The user can select their user level, from 0 (simplest) to 10 (most complex),
and will only see input widgets that correspond to variables with that user level or lower.
All variables with a user level greater than 0 must have a default value. This feature allows
archetype developers to encode reasonable defaults for some variables and only allows users
to change those values if they have made a conscious decision to access a higher user level.

At this time, the overall design and layout of Cycic does not change with the user level,
but this would also be possible. This would allow a completely different look and feel for
different user levels in addition to, and possibly informed by, the different set of input data
that users are asked to provide.

4.2.4 Commodity Connections

Both conceptually and graphically, prototypes are connected in a nuclear fuel cycle via the
commodities that they share. By definition, a commodity does not have any particular
quality/composition in Cyclus, but serves to define the markets in which each agent will
participate. A user gets to decide which prototypes will serve as consumers and/or suppliers
for each commodity in the problem. Cyclus uses the notion of commodity to partition
the DRE into smaller network flow problems that can be solved independently and more
efficiently. These commodities also result in visual information in the form of arrows that
connect prototypes in the fuel cycle design canvas.

In an effort to ensure that the user designs a viable fuel cycle, this information also
provides hints to the users about the allowable flows of material among the prototypes that
they are placing into the model. It is important to recognize that these are only hints as it
doesn’t prevent the user from designing a fuel cycle that violates physics. It is, however, up
to the agency defined in each facility’s archetype to manage its interactions with the DRE,
and prevent unphysical results from arising.

4.2.5 Sample

Figure 4.1 shows a partially defined fuel cycle that includes a mine, an enrichment facility
and a reactor, using a set of icons based on USDOE graphics for fuel cycles[23]. In this case,
the available archetypes have been discovered on the remote Cyclus execution server at
the address http://cycrun.fuelcycle.org. The uranium mine, enrichment facility and
reactor are based on the Source, Enrichment, Reactor archetypes, respectively, provided by
the Cycamore library. At the right is the auto-generated user input panel, at user level
0, for the reactor prototype with the name “ALWR”. The commodity “U-ore” is produced
by the mine and consumed by the enrichment facility while “Fresh-UOX-Fuel” is produced
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by the enrichment facility and consumed by the reactor. Note that this latter commodity
does not have a specific composition, but that the reactor facility defines a specific recipe,
“Fresh-UOX-Fuel-4” that it will request to satisfy this commodity need.

Figure 4.1: A screenshot of the Cycic user interface in the middle of defining a simple fuel
cycle.

4.3 User Experience Testing

The Thrust 2 team embarked on user experience testing to determine how well the implemented
design of Cycic met the needs of users working to design nuclear fuel cycles. More details of
this work can be found in Ref. [10].

The first round of testing relied on a group of graduate students in nuclear engineering.
The users were given a tutorial consisting of a brief introduction to the concepts of Cyclus
while demonstrating how they were represented in the Cycic user interface. Most users viewed
this tutorial once as a group and again individually immediately prior to testing their user
experience.

Users were given a task to complete using the software and their actions were tracked by an
observer while they also narrated their actions and decisions. The technique of self-narration
allows users to comment on things that might not arise in questioning, and also allows the
user to complete the task without the interruption of questions. The primary data recorded
by the observer was the amount of time and number of mouse clicks required by the user in
each step of the task.

Each participant was to construct a simple fuel cycle consisting of three prototypes -
a source, a reactor and a sink - and add other components necessary for a full Cyclus
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simulation: an institution and a region. Following the task each participant was asked four
questions and invited to make additional comments. These four questions focused on specific
contrasts that were introduced during the task phase:

• text-based prototype creation vs drag-and-drop
• corral view of regions vs text form of institutions
• the benefit of choosing a low user level
• the clarity of presenting defaults for advanced user level data
The two principal findings of the observations and self-narration were that (a) users were

confused about the difference/relationship between institutions and regions, and (b) the
text-based institution view was more challenging to understand than the corral-based view
of the region interface. While the first of these is a core Cyclus concept and not specific
to the user interface, the user interface could be modified to explicitly support a better
understanding of the RIF hierarchty. The second finding suggests that the manipulation of
institutions should be modified to be more like the region corral view. Two additional, more
minor findings were that new prototypes should have a default name, rather than no name
at all, and that a better mode for connecting facilities via commodities would be valuable.

Regarding the specific follow up questions, the majority of users (10/13) preferred the
drag-and-drop method for adding prototypes, and some of those who indicated a preference
for text entry acknowledged that drag-and-drop may be preferred for learning a new tool.
Nearly all of the users (12/13) preferred the corral view for regions over the text form for
institutions. All users found the presence of user levels made the tool easier to use, reducing
clutter and preventing information overload. All users felt that it was clear that values that
populated the input widgets when the user level was increased constituted default values.

The software was updated prior to a second round of testing. Specifically, the institution
view was updated to behave similarly to the region view, both now relying on an updated
corral view with drag and drop capability from available archetypes. In addition, the region
view now also includes a list of unassociated institutions to reinforce the relationship between
regions and institutions. Tooltips (small documentation that appears when the mouse hovers
over an input widget) were added to the region and institution views, and popup help windows
were implemented with longer documentation for most windows and widgets.

A similar tutorial was given prior to the user experience testing in this second round. The
task again required users to build a fuel cycle model, but this time with more complexity.
The facility prototypes consisted of three sources, a fuel fabrication plant, a reprocessing
plant, two different reactors, and sink. The institution was configured to build reactors of
each kind at three different points in time. This more complex scenario was constructed to
provide more time for observation and self-narration. In addition observing the time spent
and number of clicks in each view, the observer also recorded the number of times that the
user switched between two open views.

Fifteen users were again asked a series of questions following the exercise. For those users
who had participated in the previous test, they were asked to rate the changes. Those users
new to Cycic were asked to rate the same features as in the first test, as well as the new
features represented by the software changes. All participants were asked how each view
helped to understand Cyclus itself and to rate different widget choices. Finally, participants
were solicited for any improvements that they wold recommend.

The average time to complete the task was about 20 minutes (range: 16-30 minutes),
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nearly 2 times longer than an expert user as represented by the software developer. The
majority of this time (12 min) was spent in the configuring the facilities in their respective
form views, but the range of times was narrowest, with the slowest user only taking 72%
longer than the fastest. The recipe view provided the most challenge, in this respect, with
the slowest user spending nearly 6 times longer than the fastest person.

The most significant difference between the expert time to complete and the users was
with the institution form. While the ratio of 3.7 was similar to that in the region view (3.8),
the time spent in the institution view represented a substantial larger fraction of the total
(3.5 min vs 1 min). Through questioning, the users indicated that the specific purpose of this
institution archetype was unclear and thus the requested data was also unclear.

Combining the observed interactions with the responses to the post-exercise questions,
much of the feedback of the second round of testing was consistent with the first round.
Returning users recognized the improvements in the institution view but still considered
one of the least clear parts of the problem definition. The addition of tooltips was not well
received since the value of information was deemed too low considering the time delay for
the tooltip to appear.

4.4 Summary

A number of design choices were implemented in the Cycic model building interface to satisfy
the need for supporting a flexible plugin ecosystem. These tools have been demonstrated
to support the construction of complex fuel cycle models. Testing of the user experience
resulted in software improvements that have been favorably received.
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Chapter 5

Thrust 3: Metric Translation

The standard output of a NFCSs, in general, consists of material inventories and flows, each
with a composition that may change over time, and possibly facility deployment histories
including time varying capacity factors. Most users of these tools, however, are interested
in quantities that are derived from these fundamental data. In the simplest case, such as
decay heat and radiotoxicity, the metrics of interest may be easily derived from the material
inventories and flows using tabulated data. In more complicated cases, however, it may be
necessary to perform more complex post-processing. Many socioeconomic metrics, including
economic analysis, require this kind of approach.

Thrust 3 was led by Paul Wilson at the University of Wisconsin-Madison, to provide a
mechanism to translate the fundamental data stored by Cyclus into metrics of interest to a
broad set of users. This thrust was impacted by the change in scope to include Thrust 0, and
only a basic demonstration of this capability was accomplished.

Since the output data from Cyclus is even more obscure than the material inventories
and flows common in other tools, the first step in this thrust was to make that conversion.
With that information available, an extensible tool was developed that allowed users and
analysts to introduced new complex metrics by defining their dependency on simpler metrics.
The Cymetric tool, described below, supported the automatic resolution of metric dependency
all the way to the fundamental simulation data. This thrust also informed a handful of metric
translations for inclusion in Cyclist as described in Chapter 6. Finally, some exploratory
work for economic analysis of transitions was completed using the Cymetric tool.

5.1 Fundamental Data

The fundamental output of Cyclus is optimized to correspond to the discrete data and
discrete facility paradigm: a list of material transactions as a function of time in which
the composition of each material object is stored separately in order to reuse compositions
where appropriate. While this format leads to more compact output databases from Cyclus
simulations, it is not a natural way to analyze fuel cycle performance.

Converting a stream of transactions to inventories and flows is relatively straightforward.
Conceptually, each transaction that involves a given facility represents a material addition or
subtraction to the inventory at that facility. A separate database query is necessary to access
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to composition of that transaction, or possibly multiple compositions if multiple discrete
objects were traded. Combining the quantity and composition of each object involved in
the transaction allows the overall composition of the inventory to be updated. For some
facilities, material objects are created and/or destroyed according to the physics models that
they represent. These actions are recorded in separate database tables that must also be
tallied to get an accurate accounting of the inventories in any facility at any point in the
simulation. In summary, each material object is tracked from its creation to its destruction,
adding or subtracting it from the inventory of the appropriate facility as each operation and
transaction occurs.

This capability was implemented in a stand-alone tool known as Cyan[11]. In addition to
deriving the time-dependent inventories in each facility, it tallied cumulative flows among
facilities and can produce graphical representations of the fuel cycle indicating the flows of
material along the commodity arcs between facilities.

After experience with Cyclus on a number of problems, it became clear that the com-
plexity of performing this operation robustly during post-processing was overly burdensome
compared to the cost of extending the fundamental Cyclus database to contain this informa-
tion. An option was added to the Cyclus command-line tool to automatically accumulate
the inventories in each facility as a function of the simulation time.

5.2 Cymetric

In the spirit of the extensible nature of the Cyclus ecosystem, the post-processing tools
were also designed to be extensible. This extensibility is valuable for possible future metrics
that are derived from the generic data stored in a Cyclus output database, as well as for
metrics that might be based on custom tables that are associated with a particular archetype.
The goal of this thrust does not include the visual representation of metrics, so focuses on
generating new database tables with metrics of interest, derived from the original database
tables. Python was chosen for this tool, known as Cymetric, because of the flexibility it would
allow for using its capabilities: as a command-line tool for performing small operations on a
database, as a module to be included in scripts for batch processing of databases, or using
Jupyter notebooks for more interactive exploration of data. These different modes imply
different levels of user sophistication. The interactive mode is best employed by sophisticated
Python users, but could result in packaged scripts that could be used by less sophisticated
users to repeatably generate visualizations of interesting results.

With similar concepts to the automatic code generation discussed in section 2.2.1, Cymetric
provides streamlined capability for defining new metrics based on previously defined metrics
using the Pandas data analysis framework. The fundamental data structure, known as a
dataframe, is a table in which each row represents a record of related data. Pandas provides
compact mechanisms to perform complex operations on such data tables.

To define a new derived metric in Cymetric, a user/developer must provide the depen-
dencies, the format of the output dataframe, and the algorithm for populating the output
dataframe from the dependencies. For each dataframe upon which this metric depends, it is
also necessary to define the columns to use as the index and the columns to use as the value.
For the output dataframe, it is necessary to define which columns it will contain, formally

36



known as a schema. In many instances the algorithm that calculates the output dataframe
from the input can be compact and developers are encouraged to design metrics in this way,
possibly chaining multiple metrics to achieve an ultimate calculation. Such a design approach
allows the intermediate metrics to be available as dependencies for other metrics developed
in the future.

Listing 5.1 shows a listing of a simple metric that defines the activity of material objects
as a function of the mass and composition of that object. This new metric depends on the
Materials table, in which the index is formed from a number of simulation-related identifiers
as well as the time of creation and the nuclide id, and the value is the mass of the nuclide. The
resultant activity is stored in a table with columns defined from the index of the dependency,
and adding a column for the activity. The algorithm simply loops through the rows of the
mass dataframe, uses the decay constant and atomic mass to determine the total activity
of that nuclide, and appends it to the list of activities. It is straightforward to imagine a
derived metric for decay heat that depends, in turn, on this activity metric.

Listing 5.1: A sample derived metric in Cymetric
# Activity (mass * decay_const / atomic_mass)

_actdeps = [

("Materials", ("SimId", "QualId", "ResourceId", "ObjId", "TimeCreated", "NucId"),

"Mass")

]

_actschema = [

("SimId", ts.UUID), ("QualId", ts.INT),

("ResourceId", ts.INT), ("ObjId", ts.INT),

("TimeCreated", ts.INT), ("NucId", ts.INT),

("Activity", ts.DOUBLE)

]

@metric(name="Activity", depends=_actdeps , schema=_actschema)

def activity(series):

"""Activity metric returns the instantaneous activity of a nuclide

in a material (material mass * decay constant / atomic mass)

indexed by the SimId , QualId , ResourceId , ObjId , TimeCreated , and NucId.

"""

tools.raise_no_pyne("Activity could not be computed", HAVE_PYNE)

mass = series [0]

act = []

for (simid , qual , res , obj , time , nuc), m in mass.iteritems ():

val = (1000 * data.N_A * m * data.decay_const(nuc) \

/ data.atomic_mass(nuc))

act.append(val)

act = pd.Series(act , index=mass.index)

act.name = "Activity"

rtn = act.reset_index ()

return rtn

5.3 Demonstration with Economic Analysis

A set of derived metrics were created to demonstrate how Cymetric could be used to estimate
economic performance of different fuel cycles. A simple economic model for a reactor was
introduced that used data from the Cyclus output data base to calculate various estimates
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of economic performance. The economic model included components for the construction
costs, the fuel cycle cost expressed as a variable cost, operations and maintenance costs
including both fixed and variable costs, and decommissioning costs. This model used the
following data for each reactor from the Cyclus output database:

• the date of commissioning,
• the lifetime,
• the reactor power,
• the energy generated as a function of time, and
• the mass of fuel transacted as a function of time.
The construction costs were determined by combining the power level of the reactor with

user-provided overnight capital cost, construction time and payment schedule. The payment
schedule spreads out the capital cost over a period that is greater than the construction
time to convert from an overnight capital cost to a more realistic construction cost. The
operations and maintenance costs were determined by combining the power level of the
reactor with a user-provided fixed cost and the total power generated with a user-provided
variable cost. Fuel costs are a product of the transacted mass of fuel with a user-provided fuel
cycle cost. Finally, the decommissioning costs use a model similar to the construction cost
model. While a simple model, it is able to demonstrate the generation of a time-dependent
cash flow based on the time-varying Cyclus output data and can also easily incorporate
stochastic realizations of the individual costs.

Because the output of this model is a series of cash flows, it is possible to examine a
variety of approaches to translate the cash flows into simpler metrics for comparison. The
most common approach is to calculate a levelized cost of electricity (LCOE) by summing the
present value of the lifetime costs and dividing by the present value of the lifetime energy
generation, assuming some discount rate. This approach is useful for evaluating a single
reactor, but becomes less useful when evaluating a strategy in which multiple reactors are
built, possibly with different costs and over long periods of time. One variation relies on
first calculating the LCOE for each reactor, and then determining a time varying fleet-wide
LCOE by averaging the LCOE of all operating reactors at each time step, where the average
is weighted by the power level of the reactors. Another variation uses a formulation similar
to the LCOE but instead of performing the sum over the entire lifetime, it is performed over
a smaller time window, and the costs and generation are summed over all operating reactors
at each time step. The value reported at each time step is based on a calculation window
that starts in that time step.

This capability was used to look at the economic performance of a transition from thermal
to fast reactors consistent with the EG23 transition identified by the department of energy.
Figure 5.1 shows three different representations of the time dependent costs, depending on
how they are averaged over time and over the complete fleet of reactors. The left-most chart
in Figure 5.2 shows the total power generation in this scenario. This is helpful to understand
the other two charts that show the net accumulated profit over time, both with discounting
to the present value (center) and without (right). Both figures show how typical discounting
can render decisions in the distant future irrelevant to the present value of the economic
analysis.

More details on the implementation and demonstration of this capability is available in
[12].
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Figure 5.1: Three different representations of the time-dependent costs of an EG23 transition:
(left) the present value, (center) the as-spent, (right) averaged LCOE

Figure 5.2: The time-dependent energy generation and net profit (with and without discount-
ing) of an EG23 transition.
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5.4 Summary

Cymetric offers a demonstration of an extensible system to define metrics for nuclear fuel
cycle analysis based on the output database of a Cyclus simulation. As in thrust 0,
automated code generation reduces the burden on individual developers to understand either
the underlying data access methods or the dependency resolution of the extended metrics.
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Chapter 6

Thrust 4: Visualization Environment

The fidelity and volume of data that can be provided by a discrete facility, discrete material
object agent-based fuel cycle simulator opens the door for a richer visualization experience.
The fundamental transaction data, as described in Chapter 5, can be considered most
abstractly as the mass of each transaction sparsely mapped onto a five-dimensional domain:
time, sending facility, receiving facility, material ID, nuclide. The simplest visualizations are
formed from filtering this data set on some domains and aggregating it on other domains.
For example, the total time-dependent flow between two facilities is found by filtering the
sending/receiving facility domains with those two facilities, and aggregating over the material
id and nuclide domains. Being able to easily select the filters and aggregations can enable
data exploration that may not be natural through more typical spreadsheet based data
analysis environments. Additional power can be derived from examining different linked
visualizations in which the filter and aggregation operations on one are reflected on the other.

Thrust 4 was led by Yarden Livnat at the University of Utah, to develop a complete
visualization environment that can enable a richer data exploration experience. The lack of a
robust NGFCS in the early stages of the project limited the scope of this thrust. While this
thrust originally aimed to explore different visualization modes for different levels of nuclear
fuel cycle expertise, it focused instead on providing visualization capability for Cyclus for
developers and expert users. This was driven, in part, by a need for Cyclus developers to
visualize results during the development process. This thrust was also somewhat hampered
by a lack of real-world analysis needs within the project. Without interesting output analysis,
it was difficult to motivate advanced visualization needs despite the availability of a richer
data set.

In order to simplify distribution across many types of computing systems, and to take
advantage of existing high quality visualization toolsets and user interface widgets, the
JavaFX software platform was selected for this thrust. This decision ultimately drove the
software platform decision of Thrust 2, as well. JavaFX is a freely available platform that is
supported on a wide variety of computing systems.
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6.1 Cyclist

The tool for data visualization is named Cyclist, and ultimately incorporated the Cycic model
building environment as a single platform-independent tool. It is a stand-alone application
that can read Cyclus databases from the local computer or access a remote execution
server to download and access a database. Upon loading a database, Cyclist checks for the
existence of an inventory table in the database, as described in section 5.1 and reconstructs
the inventory if not present using Cyan-based methods. Cyclist then offers a list of database
tables to the user from which to select data to visualize. Once a table is selected, each of the
columns of that table are offered in a separate list as specific data to include in a visualization.
The other columns in that table become available for other operations such as aggregation or
filtering.

6.1.1 Workspaces

The visualization environment is arrange in workspaces, each of which may contain multiple
individual visualizations. Some characteristics of the workspace apply to all the visualizations
in that workspace, allowing for operations to be applied to a workspace such that its
effects are reflected in all visualizations simultaneously. Multiple workspaces can be opened
simultaneously, each with different settings and operations applied. A workspace can be
duplicated, thus allowing for largely the same visualizations, but with slightly different
operations or slightly different parameters for those operations.

6.1.2 Drag & Drop

Most operations in a workspace are implemented by a drag-and-drop interaction mode. Once
a new chart has been created, the a database table columns can be dragged and dropped to
populate the X and Y axes, as well as the “Group by” entry which enables aggregation and
filtering (see the next section). Depending on the data types of the columns chosen for the X
and Y axes, a set of operations will be offered that can be applied to that data. For example,
in some circumstances it may be logical to sum the value in the Y axis for each point on the
X axis. The type of plot is automatically adapted to the type of data being plotted. For a
continuous variable, e.g. Time, the plot will be a typical x-y scatter/line plot. For a discrete
variable, e.g. Prototype, the plot will be a column/bar chart.

6.1.3 Aggregation & Filters

Additional columns can be dragged into the “Group by” entry to create categories for the
operation being applied to the Y axis data. For example, if the Y-axis data is being summed
over all rows for each X axis point, the addition of a grouping field will separate the single
sum into multiple sums, each associated with a different result in the grouping column.

In a similar fashion, additional fields can be dragged into the title bar of the plot to
create an opportunity for filtering. For each field in the filtering bar, a new user interface
appears that allows the user to select from the values in that field. For fields that represent
discrete quantities, the filter interface appears as a set of checkboxes and the user can select
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which values are shown or not. For fields that are represented as continuous quantities, the
users specifies the maximum and minimum, either with a slider or with text boxes depending
on the required precision. It is possible, but not required, for fields to be used for both
aggregation and filtering, increasing the flexibility of generating plots.

Figure 6.1 shows a sample plot with aggregation across multiple fields and filtering across
multiple fields. In this case, the total quantity of material in inventory as a function of time.
Since there may be many discrete inventories, the Y-axis value is summed over all possible
inventories. Without grouping, this would result a single curve on the plot. However, in
this problem, the quantities are grouped by both Prototype (of which there are three) and
Nuclide (of which there are four). Therefore, there is a single curve for each combination of
Prototype and Nuclide. This plot also includes filtering by Prototype, Nuclide and Time.
The user has selected to see all Prototypes, but only the fissile nuclides. Finally, the user has
asked to see only the first 60 time steps. Since Time also defines the X-axis, this serves to
zoom in the plot to those 60 time steps.

Figure 6.1: A typical plot showing the quantity of material inventory at each point in time.
This case shows the application of a SUM operation to the Y-axis data, grouping of the
results by Prototype and Nuclide, and subsequent filtering by Prototype, Nuclide and Time.
Since Time is a continuous variable, the user interface for this filter is different. Since Time
is the X-axis variable, its filter is applied differently.

6.1.4 Extensibility

Since it is possible for many tables to exist in the Cyclus output database, Cyclist shows
only a default set of tables in its interface. There is also a mechanism, however, to add any
table, including custom tables, to that list. Thus, if an archetype developer adds a custom
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table to the database it is still possible to use Cyclist to visualize the data it contains with
no changes to Cyclist.

6.2 Custom Visualization: Material Flows

Although the primary visualization modes in Cyclist are based on well-understood x-y plots,
there was also a desire to implement application specific visualizations to support fuel cycle
analysis. Following the network flow model that underlies the Cyclus, a material flow
visualization was created to demonstrate an interactive and exploratory visualization mode.

As shown in Figure 6.2, this visualization provides a way to examine both total flows and
time dependent flows between sets of agents. Both the sender and receiver can be used to
specify archetypes, prototypes, or individual agents, whether regions, institutions or facilities.
Multiple pairs of flows can be included for comparison purposes. As each pair is added to
the flow map, its cumulative flow is added to the strip chart below. The checkboxes on the
let allow for filtering by the commodity and by the nuclide. Finally, a time window can be
specified over which to sum the flow as reported on the flow diagram.

Figure 6.2: A flow visualization shows the total flow between different pairs of prototypes,
aggregating over all agents that share that prototype. The upper pane shows the sender
receiver pairs while the lower pane shows the cumulative flow as a function of time. The
quantity shown in the upper pane is the total flow contained in the window indicated in gray
from time step 129-179.

Different visual representations of this flow information have been conceptualized for
future development, including a map-based view in the event of trade among many regions,
or a graph-based view for representing flows throughout the whole fuel cycle.
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6.3 Limitations

There were some limitations identified during the development of Cyclist. First and foremost,
as Cyclus simulations became more complicated, the volume of data began to become an
obstacle. This was true both in terms of accessing the database file as well as managing
the data in memory. This is particularly true for the operation that builds an inventory
table from the transaction tables. Furthermore, there is growing interest in processing results
for 100’s or 1000’s of separate but related Cyclus runs either due to parametric sweeps,
sensitivity studies, or optimization capability. The current Cyclist infrastructure is not well
suited for such applications.

In addition, since the beginning of this project, large investments have been made by
various third parties in the technology for Javascript-based software. Visualization solutions
and user interface widgets in Javascript have achieved a quality that surpasses the JavaFX
version, propelled by rapid development of web apps for a variety of computing platforms,
particularly mobile. A new project has begun that is expected to replace Cyclist with a
Javascript based interface and rely more heavily on intermediate computing capability to
process results before reaching the device that will actually display the results.

6.4 Summary

A dedicated, open source visualization tool was developed to facilitate the display of Cyclus
databases in creative ways. This tool was designed with an advanced user in mind - one who
could interpret the names of fields and tables in the output data base. The basic framework
for this visualization tool could be used for more creative visual representations and to craft
simplified tools for different categories of users. The Cycic model building tool was integrated
into Cyclist so that users had a uniform experience in both generating their model and
analyzing the results. Both tools support remote execution (see Chapter 7) and therefore
Cyclist became a convenient way to distribute access to Cyclus without requiring users to
install it independently.
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Chapter 7

Thrust 5: Efficient Design of a
Client-Server Model

One goal for a NGFCS is deployment on a variety of computing platforms, including those
with greatly reduced resources (mobile/tablet). This suggets a client-server approach in
which the simulation itself occurs on a remote execution server and only the visualization
occurs on a local device. To ensure that the user experience meets expectations on the local
device, the software must be designed to accommodate, as much as possible, the limitations
of the network connection. Another advantage of a client-server strategy is the ability to
scale up the computing resource on the server side, as necessary for larger and more complex
problems.

Thrust 5 was led by Robert Hiromoto at the University of Idaho, to understand the
network requirements and limitations of deploying a client-server computational model. Like
some of the other thrusts, this task was undermined, in part, by the lack of a fully functioning
NGFCS. Since this thrust also depended on a demonstration of the visualization software
that would run locally, that was itself delayed by the lack of a NGFCS at the projects start,
it was largely reformulated.

The outcome of Thrust 5 was a lightweight server that would listen for Cyclus tasks,
perform the simulation, and offer the output database for further analysis. This capability
was deployed in two related capacities: as a remote execution server for Cyclus users and as
a compute farm for large scale analysis. This became a key component to providing platform-
independent access to Cyclus when coupled with the Cyclist tool for model building and
data visualization.

Cloudlus[13] is a lightweight wrapper, written in the Go programming language, that
listens on an internet port for tasks, performs those tasks by launching a Cyclus simulation,
and then serves the output database on the same internet port. Cloudlus has been deployed
continuously since 2014 as the mechanism for users to submit Cyclus jobs through the
website, www.fuelcycle.org. The same Cloudlus service is available to users of Cyclist as a
remote execution service as described briefly in Chapters 4 and 6.

Cloudlus also supports a mode for large scale deployment and analysis. In this mode, many
Cloudlus workers are deployed in cloud computing resources and register with a single master
process that then issues requests to those workers. The master can be designed/configured to
generate that work in many different ways. Cloudlus has been deployed on commercial cloud
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resources and UW-Madison’s high-throughput computing (HTC) computing system to support
large scale optimization[24]. In this case, the master implemented an optimization algorithm
that relied on 1000’s of independent Cyclus simulations, with that master automatically
determining the input file for each simulation based on the results of previous simulations.

This infrastructure has been sufficient, to date, but may not scale well as problems become
more complex due to the size of the output database. Storage and network transfer of those
databases may become a challenge as more complex problems result in databases of many
gigabytes. It will continue to be sufficient for beginner use through the website or the Cyclist
interface, but as more robust and scalable replacements for Cloudlus emerge, better remote
execution paradigms are also expected to merge.
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Chapter 8

Summary

This project made substantial progress on its original aim for providing a modern user
experience for nuclear fuel cycle analysis while also creating a robust and functional next-
generation fuel cycle simulator (NGFCS).

Early changes in project scope required more investment in the generation of a NGFCS
that originally planned, delaying progress in some of the thrust areas and ultimately preventing
the project from being as tightly integrated as intended. One of the most important aims
that was not accomplished was a demonstration of substantially different user experiences for
different categories of stakeholders. Most thrusts areas scaled back the number of stakeholder
groups to a single group, most often a sophisticated nuclear engineering stakeholder group.
While Thrust 1 did provide insight into the interests of a different stakeholder group, namely
national-scale decision makers, there was no opportunity to demonstrate a user experience
that suited this group.

The success of the Cyclus kernel did catalyze a growing community of contributors to
an active ecosystem. A number of institutions have since been funded to contribute an array
of alternative archetypes for facilities including enrichment facilities, fuel fabrication facilities
and reactors. Additional investments were made in optimization efforts related to Cyclus
including the detailed development of the dynamic resource exchange (DRE) and an external
optimization wrapper that was able to identify an optimal transition strategy.

Future efforts should focus on further developing post-processing capability across a
variety of different stakeholder groups. While there is constant demand for more visualization
capabilities for advanced users, there continues to be value in the original premise of providing
different visualizations to different audiences, based on the same simulation kernel.

In addition, it will be valuable to see Cyclus applied to real fuel cycle analysis. This kind
of application is critical to all aspects of continued progress in the Cyclus ecosystem. Most
importantly, it will uncover and help prioritize important needs in the user experience. It
will undoubtedly also lead to the development of new archetypes that are customized to suit
the particular fuel cycle problem being solved. Through these developments, the community
will identify common improvements, needs and directions for the ecosystem as a whole.
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