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Background and Motivation
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 Layer-by-layer powder bed fusion processes (e.g. SLM/SLS):

Powder delivery Selective laser melting Powder delivery Selective laser melting

Laser/electron
beam to melt/sinter
particles

 Why study AM powder processing?

 First step in AM powder bed process

 Powder bed surface  laser interaction

 Powder bed bulk packing void formation, surface finish

 Variability in powder properties due to vendor supply, powder recycling

 Powder flow properties affect spreading quality, packing

 Several key process length scales are comparable to individual particles

…



Typical powder characteristics
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From Ref. 1 From Ref. 2

 Particle shape generally spherical, but aggregates are likely

 Typical particle diameter: 10-100 μm; polydispersity factor 4-5

 Powder layer thickness 30-150 μm, laser beam spot size 70-200 μm (ref. 1)

Understanding powder bed structure at the scale of individual particles is important

1. Vandenbroucke, B. and Kruth, J.P. Rapid Prototyping Journal 13 (2007): 196
2. Yadroitsev, I., et al. Journal of Laser Applications 25 (2013): 052003



Overview
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Statistical characterization of simulated powder beds

Normalized particle diameter, d

d = 0.7 d = 1.3

Hall flow meter

Powder flow characterization:
combined simulations & experiments

Simple shear Angle of repose

Powder rheology

Powder spreading simulations (DEM)

r



Simulation methods: DEM
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1. Cundall, PA and Strack, ODL. Geotechnique 29.1 (1979): 47-65.
2. Plimpton, S. J. J Comput Phys 117.1 (1995): 1-19.    http://lammps.sandia.gov

Collision:

 Discrete Element Method (DEM): molecular-dynamics-
like simulation of Newton’s laws of motion for a 
collection of particles

 Forces/torques on particles computed from reduced-
order contact mechanics models1:

 Simple Hertzian normal force:

 Tangential force: history dependent friction, 
damping

 LAMMPS simulation code2

 Highly parallel via MPI

 Recently added/in-progress features:

Triangulated walls Geometric primitives
for walls

Non-spherical particles Contact models for 
cohesion and rolling friction



Large parameter space!
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Process-related Particle-related
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 Particle size/shape distribution

 Type of distribution

 Moments: mean, spread, skewness,etc.

 Shape: asphericity, distribution, etc.

…

 Contact parameters

 Stiffness, damping  relates to Young’s modulus, contact 
models

 Friction (sliding & rolling)  relates to particle surface 
characteristics, asphericity

 Cohesion  particle surface energy

 Different particle/particle, particle/wall parameters

…



Effects of spreader type
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Slider Roller, rotation in
direction of translation (forward)

Roller, rotation against
direction of translation (reverse)



Effects of particle properties: size distribution
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 Gaussian distributions, mean 
radius 0.5, vary σ

 Data shown for slider only

Layering order decreases 
with larger polydispersity. 
Small differences in mean 
porosity.

Less local structuring with 
larger polydispersity

Distance in z



Particle friction coefficient
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Powder bed surface properties also affected, but 
notable differences in bulk packing structure:

 General trends hold 
regardless of other process 
parameters 

Two-point correlation function Coarseness

Low friction
μf=0.1

High friction
μf=0.5

Truncated 
such that

Ri

Rj

δ

ωi

vi

vj

ω j

Total relative displacement 
during contact



Characterizing AM powder flowability

10

 Dynamic/flow properties important to spreading

 Connection between DEM parameters and powder experiments

 Hall flowmeter: ASTM standard for measuring powder flowability

 Time for 50 g of powder to drain from funnel

 Compare DEM simulations of Hall flowmeter to experiments, use data to parameterize 
simulations



Characterizing AM powder flowability
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 Challenge: for AM powders, number of particles in DEM simulation of Hall flow is 
computationally prohibitive

 Need to investigate scaling behavior!
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Characterizing AM powder flowability
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Effect of friction coefficient μ

1. Beverloo, W. A et al. "The flow of granular solids through orifices." Chemical Engineering Science 15.3 (1961): 260-269.

mu k C'

0 1.451 1.000

0.3 1.427 0.699

0.5 1.519 0.647

0.7 1.547 0.621
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 Additional powder flow studies (simple shear, 
angle of repose, powder rheology)

 Powder deposition near/on rough surfaces 
representing partially manufactured part

 Particle shape variations, e.g. due to partial
sintering

 Thermal transport modeling and
coupling to melting/flow/solidification
simulations

Ongoing and future work



EXTRA SLIDES
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Descriptors of bulk powder bed
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Simulations of powder spreading

 Several approaches to representing complex, moving boundaries in DEM
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Surface triangle mesh1 Clustered, overlapping 
spheres2

Geometry primitives2

 Poor computational performance

 Inaccurate forces where
multiple triangles contact
particles in curved walls (roller)

 Undesirable artificial roughness

 Inaccurate forces where
multiple ‘wall spheres’ contact
particles

 Slight inaccuracy in forces at corners

 Not general, but adequate for current 
work

1. Kloss and Goniva, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2 (2011):781 
2. Plimpton, S. J. J Comput Phys 117.1 (1995): 1-19. http://lammps.sandia.gov



Particle friction coefficient

17

Powder bed surface properties also affected, but 
notable differences in bulk packing structure:

 Note that bulk porosity = S2(0)

 Trends hold regardless of 
other process parameters 

Two-point correlation function Coarseness

Low friction
μf=0.1

High friction
μf=0.5
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Effects of spreader speed
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Slider

Roller
forward rotation

Roller
reverse rotation

Increasing speed 



Effects of powder layer thickness
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ds

dp

dp: controls layer thickness

ds: controls amount of powder

All previous data for gap = 1.0, dp = 5.0, ds = 2.0

gap

Slider
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0.5, ds = 1.5, dp = 1.0

Roller/reverse
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0, ds = 1.5, dp = 1.0



Simulation methods

 Several approaches to representing complex, moving boundaries in DEM:
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Surface triangle mesh1 Clustered, overlapping 
spheres2

Geometry primitives2

 Poor computational performance
for curved surfaces

 Inaccurate forces where
multiple triangles contact
particles

 Undesirable artificial roughness

 Potentially inaccurate forces where
multiple ‘wall spheres’ contact
particles

 Not as general, but adequate for current 
work

1. Kloss and Goniva, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2 (2011):781 
2. Plimpton, S. J. J Comput Phys 117.1 (1995): 1-19. http://lammps.sandia.gov



Descriptors of powder bed surface
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Height profile: height averaged over z 
direction as a function of x

x, roller direction

y,
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Top view, grayscale intensity corresponds to height

Roughness: standard 
deviation of height (σ) 
across entire pack, 
excluding small region 
near edges

Height autocorrelation function:
A(r) = <(H(x)-μ) (H(x+r)-μ)>/ σ2
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Descriptors of bulk powder bed 

Porosity: mean value, spatial variation, etc.

Cubic samples of 
side length L

x
y

z

Coarseness:

Two-point correlation function:                          Pore size distribution function:



Effects of particle properties: particle shape
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Effects of powder layer thickness

24

ds

dp

dp: controls layer thickness

ds: controls amount of powder

All previous data for gap = 1.0, dp = 5.0, ds = 2.0

gap

Slider
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0.5, ds = 1.5, dp = 1.0

Roller/reverse
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0, ds = 1.5, dp = 1.0



Effects of particle size distribution
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 Gaussian distributions, mean 
radius 0.5, vary σ

 Data shown for slider only

Porosity in the height direction,
third pass of slider

Two-point correlation function

Layering order decreases 
with larger polydispersity. 
Small differences in mean 
porosity.

Less local structuring with 
larger polydispersity

Distance in z
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