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Abstract.  Ionic liquids (ILs) consist of cation-anion pairs.  Despite this fact, current efforts to 

predict IL properties using quantitative structure property relationships (QSPRs) treat the cations 

and anions separately, ignoring potential cross-correlations.  Here we consider a method for 

treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the 

prediction of protein-protein interactions in bioinformatics.  We demonstrate the method by 

predicting electrical conductivity, viscosity, and melting point on a dataset taken from the 

ILThermo database on June 18
th

, 2014.  The dataset consists of 3,926 measurements taken from 

165 ILs made up of 72 cations and 34 anions.  We benchmark our QSPRs on the known values 

in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the 

dataset. 

Introduction 

Ionic liquids (ILs) are highly modifiable molten salts (usually considered to have melting points 

below 100 ℃) used for a range of basic and applied studies
1-4

.  ILs can exhibit high thermal 

stability, negligible vapor pressure, wide electrochemical window, and the ability to dissolve a 

range of organic and inorganic compounds.  They have been studied in the context of 

separations, catalysis, and electrochemistry
5-10

.  Although many of their properties can be 

systematically varied by compositional and structural changes, there is considerable ongoing 

effort to develop ionic liquids that simultaneously exhibit low viscosity and high conductivity. 

In this paper, we consider the use of quantitative structure property relationships (QSPRs) to 

screen for high conductivity/low viscosity ILs.  QSPRs have been shown to predict various 

properties of ILs
11,12

, including viscosity
13-17

, conductivity
18-22

, and melting point
23-26

.  These 

studies have used different datasets, generally available from the public domain; different 

methods for generating descriptors, including group contribution
18,22

, ISIDA fragments
13,25

, 

Gaussian 03
14,20,24

, MOPAC
19,23

, Chem3D
19

, CODESSA
14,20,23,24

, and DRAGON
16,25

; and 

different regression algorithms including Genetic Algorithms
16,18,19

, Neural Networks
13,25,26

, 

Multiple Linear Regression
14,15,20,23,24

, and Support Vector Machines (SVMs)
21,22,25

.  One 

commonality between these studies is the use of concatenation to produce feature vectors 

describing the ILs.  Descriptors are computed for either the entire IL, or for the cation and anion 

separately before combination by concatenation into a vector.  In the first case, it can be difficult 
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to generalize prediction to ILs not in the original dataset, and in the second case, potential cross-

correlations between cation and anion descriptors are ignored. 

In this paper we consider QSPRs which incorporate descriptor cross-correlation between cations 

and anions in ILs.  This approach treats ILs as pairs using product descriptors for QSPRs, a 

concept borrowed from the prediction of protein-protein, enzyme-metabolite, and drug-target 

interactions in bioinformatics
27,28

.  We apply this method to screening for high conductivity/low 

viscosity ILs.  We show that this approach yields qualitative improvements over a comparable 

non-product based method when extrapolating beyond the training set. 

Materials and Methods 

Data.  A dataset was downloaded from the ILThermo database (http://ilthermo.boulder.nist.gov) 

on June 18
th

, 2014.  The full dataset consisted of 8,508 measurements: 2,396 of conductivities; 

5,672 of viscosities; and 440 of melting points.  ILs with unusual composition (e.g. including Hg 

or Ge), with non-standard naming not easily parsed by computer, or with measurements not at 

standard pressure were removed, yielding 7,014 measurements: 1,980 conductivities; 4,624 

viscosities; and 410 melting points.  Measurements duplicated by different studies were averaged 

and retained only if the minimum and maximum measurements were within the average error 

(typically reported as a standard deviation) of the average measurement, i.e.  

𝑚̅ + 𝑚𝑒𝑟𝑟̅̅ ̅̅ ̅̅ < 𝑚𝑚𝑎𝑥      (1) 

and 

𝑚̅ − 𝑚𝑒𝑟𝑟̅̅ ̅̅ ̅̅ > 𝑚𝑚𝑖𝑛,      (2) 

where 𝑚̅ is the average duplicated measurement, 𝑚𝑒𝑟𝑟̅̅ ̅̅ ̅̅  is the average measurement error for the 

duplicated measurements reported by the different studies, 𝑚𝑚𝑖𝑛 is the minimum measurement 

for the duplicated measurements, and 𝑚𝑚𝑎𝑥 is the maximum duplicated measurement.  The 

resulting dataset consisted of 6,569 measurements: 1,863 conductivity; 4,296 viscosity; and 410 

melting point.  These measurements were taken from 491 ILs made from 277 cations and 103 

anions.  Figure 1(a) shows the distribution of the different measurement types in the full dataset. 

 

http://ilthermo.boulder.nist.gov/
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Figure 1.  ILThermo Dataset.  On the left (a), we show the distribution of measurement types in 

the full dataset downloaded from ILThermo on June 18
th

, 2014.  The cations and anions are 

ordered so that the maximum measurement type intersection is shown by the inset on the lower 

left.  On the right (b), the inset is shown.  This subset of the ILThermo database is used in the 

QSPR analysis.  It represents the maximal intersection of ILs with conductivity, viscosity, and 

melting point measurements. 

As seen in Figure 1(a), there is a limited overlap between the three properties taken from the 

ILThermo database, where conductivity is the most limiting property.  To maximize this overlap, 

we obtained our final dataset by restricting to ILs with conductivity measurements.  Our final 

dataset consisted of 3,926 measurements: 1,853 conductivities; 2,584 viscosities; and 130 

melting points.  Conductivities were in the range 3×10
-5

 to 144.6 S/m; viscosities were in the 

range 1.059×10
-5

 to 364 Pa∗s, and melting points were in the range 188 to 399.4 K.  These 

measurements were taken from 165 ILs made from 72 cations and 34 anions.  The distribution of 

the measurements is shown in Figure 1(b).  This is the dataset used in the QSPR analysis.  The 

measurements can be found Supplement 1, and the cation/anion structures can be found in 

Supplement 2. 

Descriptor Matrices. We used PubChem (https://pubchem.ncbi.nlm.nih.gov/) and 

chemicalize.org (http://www.chemicalize.org) to obtain SMILES strings representing the 

structures obtained from the ILThermo database.  We then used AMPAC 10 

(http://www.semichem.com) and CODESSA III (http://www.semichem.com) to produce 

chemical descriptors for each cation and anion in our dataset.  For the cations, we assumed a 

charge of +1, singlet bonds, and performed a Hessian minimum energy calculation using 

AMPAC.  For the anions, we assumed a charge of -1.  The results from AMPAC were input to 

CODESSA, which was used to compute various chemical descriptors (ranging from 

compositional and topological to quantum chemical).  After removing constant valued 

descriptors, and descriptors which were identical, we were left with 320 cation descriptors and 

222 anion descriptors.  Each of these descriptors was mean-centered and scaled to have unit 

variance. 

From the CODESSA descriptors, we formed two matrices describing the IL dataset.  The first 

matrix was obtained by concatenating the cation and anion descriptors for each IL cation-anion 

https://pubchem.ncbi.nlm.nih.gov/
http://www.chemicalize.org/
http://www.semichem.com/
http://www.semichem.com/
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pair.  This operation resulted in a 3,926 × 542 concatenated matrix.  In the case of temperature 

dependent properties (such as conductivity and viscosity), we added an extra column giving 

temperature.  This matrix is the standard used for QSPRs in conductivity, viscosity and melting 

point predictions.  It encodes information about IL chemical structure as well as temperature for 

use by the QSPRs. 

The second matrix was obtained by using a tensor product of the cation descriptors with the 

anion descriptors for each IL pair.  Briefly, if the vector 𝒄 contains the cation descriptor values 

and the vector 𝒂 contains anion descriptor values then 

𝑃 = 𝒄𝒂𝑇      (3) 

gives a product matrix containing the product of every pair of cation-anion descriptor values in 𝒄 

and 𝒂.  By re-forming 𝑃 as a vector for each IL cation-anion pair, we obtain a 3,926 × 71,040 

product matrix.  Again for temperature dependent quantities we added an extra column providing 

temperature. 

The product matrix tracks every potential first-order interaction between the cation and anion 

descriptors in the IL dataset.  It encodes more detailed IL chemical structure information than the 

standard matrix, as well as temperature for use by the QSPRs.  It has been shown previously to 

improve prediction performance in the case of pairwise data, including protein-protein, enzyme-

metabolite, and drug-target interactions
27,28

.   

SVM Kernels.  One problem with using the product descriptor is the combinatorial growth of the 

pair-wise descriptors.  In our case, for example, the 320 cation and 222 anion descriptors yield 

320 × 222 = 71,040 product descriptors. Fortunately, this problem can be circumvented by 

implementing the method in the context of SVMs.  A SVM takes as input a kernel function 

which specifies the similarity of two objects under consideration.  For ILs, we are comparing two 

cation-anion pairs.  Following the original work on protein-protein interactions
27

, we assume that 

our first IL is denoted (𝒄1, 𝒂1) and our second IL is denoted (𝒄2, 𝒂2).  Then we define the kernel 

product measuring the similarity of the two ILs as 

𝑘𝑝((𝒄1, 𝒂1), (𝒄2, 𝒂2)) = 𝑘(𝒄1, 𝒄1)𝑘(𝒂1, 𝒂1),    (4) 

where 𝑘(𝒄1, 𝒄1) and 𝑘(𝒂1, 𝒂1) are given by the standard dot products 𝒄1𝒄1
𝑇 and 𝒂1𝒂1

𝑇.  This 

definition follows algebraically
27

 from the use of the tensor product in Eq. (3).  It should be 

noted that the concatenated descriptor can also be expressed using kernels by addition 

 𝑘𝑐((𝒄1, 𝒂1), (𝒄2, 𝒂2)) = 𝑘(𝒄1, 𝒄1) + 𝑘(𝒂1, 𝒂1),      (5) 

We can further use a Gaussian version of the kernels in (4) and (5).  The Gaussian kernel version 

of (4) is given by 

𝑘𝐺(𝐿1, 𝐿2) = exp (−𝛾 (𝑘𝑝(𝐿1, 𝐿1) − 2𝑘𝑝(𝐿1, 𝐿2) + 𝑘𝑝(𝐿2, 𝐿2))),  (6)  

where 𝐿1 = (𝒄1, 𝒂1) is the first IL and 𝐿2 = (𝒄2, 𝒂2) is the second IL. 



 5 

Finally, using SVMs also allows us to compare our results with the leading method for 

computing QSPRs for conductivity in ILs
21,22

, which uses Least Squares SVMs, or LS-SVMs
29

.  

The LS-SVM implementation used here, and by Gharaghezi et al.
21,22

, is available as LS-SVM 

Lab (http://www.esat.kuleuven.be/sista/lssvmlab/).  This package includes automatic parameter 

tuning for regularization, Gaussian kernels, and scaling of the original descriptors.  Details on the 

actual LS-SVM algorithm can be found elsewhere
29,30

. 

Performance Metrics.  There are a host of metrics available for assessing the accuracy of QSPR 

predictions
31-33

, and a number of these were applied by Gharagheizi et al. to the LS-SVM models 

for predicting conductivity in ILs
32,33

.  Of these metrics, we use two very common statistics (𝑅2 

and 𝑄2) along with a lesser known metric (confidence) designed to judge extrapolation quality of 

predictions farther from the training set. 

The goodness-of-fit measure 𝑅2 is computed according to the formula 

𝑅2 = 1 −
∑ (𝑒𝑖−𝑝𝑖)2

𝑖

∑ (𝑒𝑖−𝑒̅)2
𝑖

,      (7) 

where 𝑒𝑖 are measured (experimental) values, 𝑝𝑖 are predicted values and 𝑒̅ =
1

𝑛
∑ 𝑒𝑖

𝑛
𝑖=1 , given 𝑛 

measured values. 

We also compute 𝑄2, which is a measure of the generalization ability of a QSPR model.  𝑄2 is 

typically computed using a leave-one-out strategy, although we use a 10-fold data split due to the 

relatively large size of our dataset.  To compute ten-fold 𝑄2, we first divide the dataset into ten 

equal subsets.  For a given subset, denoted the test set, we train a model on the remaining nine 

subsets of the dataset.  Predictions are then made on the test set.  It is important to note that the 

model is re-trained (and re-optimized) ten times altogether, and that each time the test set is 

unknown to the model.  These calculations are repeated for each test set and 𝑄2 is computed 

using the test set predictions as 

𝑄2 = 1 −
∑ (𝑒𝑖−𝑝𝑖)2

𝑖

∑ (𝑒𝑖−𝑒̅)2
𝑖

.      (8) 

Finally, to assess the quality of our QSPR extrapolations, we use a confidence measure
31

.  We 

consider extrapolations to be predictions where no experimental data is known.  We extrapolate 

over all possible cation-anion pairs, with at least one of the pair (cation or anion) in the original 

dataset (i.e. having a measured value).  The confidence metric is computed as 

𝑐𝑖 = 1 −
min𝑗≠𝑖 ‖𝐿𝑖−𝐿𝑗‖

max𝑗,𝑘 ‖𝐿𝑘−𝐿𝑗‖
,     (9) 

where 𝐿𝑖 is the IL under consideration, 𝐿𝑗 ranges over ILs with measured values only, and 𝐿𝑘 

ranges over all potential ILs (both extrapolated and in the dataset).  In all cases, 𝐿∗ refers to the 

IL descriptor vectors.  The metric 𝑐𝑖 tells us how close structure 𝐿𝑖 is a structure 𝐿𝑗 with a 

measured value.  Values of 𝑐𝑖 closer to 1 indicate higher confidence predictions. 

 

http://www.esat.kuleuven.be/sista/lssvmlab/
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Results and Discussion 

Cross-Validation.  Our first results are obtained on the ILThermo dataset using cross-validation 

to assess our models.  Thus the data consists of ILs with previously obtained experimental 

measurements.  We apply the LS-SVM model to the ILThermo data using both the concatenated 

and product descriptors to predict conductivity, viscosity, and melting point.  The models are 

compared using cross-validation, and all predictions are made on test sets. 

Our first effort was towards predicting conductivity in ILs to replicate the work of Gharagheizi et 

al.
21

  using the concatenated descriptors.  For this effort, we used both a standard linear kernel 

and a Gaussian kernel (Gharagheizi et al. used only a Gaussian kernel).  The LS-SVM Lab 

package chose 𝛾 = 0.2996 for the Gaussian kernel.  For the linear kernel, we obtained a 

goodness-of-fit measure of 𝑅2 = 0.9207 and ten-fold generalization measure of 𝑄2 = 0.9036.  

For the Gaussian kernel, we obtained 𝑅2 = 0.9975 and 𝑄2 = 0.9842.  The results are shown in 

Figure 2.  Fit statistics are summarized in Table 1. 

 

Figure 2.  Conductivity Predictions Using Concatenated Descriptors.  On the left (a), we 

compare the experimentally measured conductivity values with the predictions from the linear 

LS-SVM model using concatenated descriptor vectors.  On the right (b), we make the same 

comparison using the non-linear Gaussian LS-SVM model.  This is the model used by 

Gharagheizi et al. for IL conductivity predictions (21).  Predicted measurements shown are from 

the 𝑅2 measurement (i.e. training on the full dataset). 

We repeated the same computations using the product descriptors, as shown in Figure 3.  The 

LS-SVM Lab package chose 𝛾 = 0.5039.  For the linear kernel using the product descriptor we 

obtained a goodness-of-fit measure of 𝑅2 = 0.9313 and ten-fold 𝑄2 = 0.9164.  For the Gaussian 

kernel we obtained 𝑅2 = 0.9975 and 𝑄2 = 0.9909.  The statistics for the product descriptors 

offer improvement over the standard concatenated descriptor for both the linear and Gaussian 

LS-SVM models.  Statistics are summarized in Table 1. 
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Figure 3.  Conductivity Predictions Using Product Descriptors.  On the left (a), we compare the 

experimentally measured conductivity values with the predicted values using a linear LS-SVM 

model with the product kernel.  On the right (b), we make the same comparison using a Gaussian 

LS-SVM with the product descriptors.  Predicted measurements shown are from the 𝑅2 

measurement (i.e. trained on the full dataset). 

We repeated our analysis for the ILThermo viscosity data.  We restricted measurements between 

10−3 Pa ∗ s and 2 Pa ∗ s and performed our analysis using log10 transformed temperature and 

viscosity values.  We again compared the standard concatenated descriptors with product 

descriptors for linear and Gaussian LS-SVM models.  For the concatenated descriptors, the LS-

SVM Lab package chose 𝛾 = 0.0248.  For the linear LS-SVM model, we obtained goodness-of-

fit 𝑅2 = 0.9170 and ten-fold generalization 𝑄2 = 0.9020.  For the Gaussian LS-SVM model, 

we obtained 𝑅2 = 0.9870 and 𝑄2 = 0.9726.  The results are shown in Figure 4, and statistics 

are summarized in Table 1. 

 

Figure 4.  Viscosity Predictions Using Concatenated Descriptor.  On the left (a), we compare the 

experimentally measured viscosity values with the predicted values for the linear LS-SVM 

model with the standard concatenated descriptors.  On the right (b), we compare the viscosity 

values for the Gaussian LS-SVM model with the concatenated descriptors.  Predicted 

measurements shown are from the 𝑅2 measurement (i.e. trained on the full dataset). 
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Repeating the computations using the product descriptors, the LS-SVM Lab package chose 

𝛾 = 0.0212.  For the linear kernel using the product descriptor we obtained a goodness-of-fit 

measure of 𝑅2 = 0.9373 and ten-fold 𝑄2 = 0.9246.  For the Gaussian kernel we obtained 

𝑅2 = 0.9866 and 𝑄2 = 0.9700.  The statistics for the product descriptors were an improvement 

for the linear model, but almost identical for the Gaussian model.  The results are quite similar to 

those shown in Figure 4, so another figure is not provided, but statistics are given in Table 1. 

Lastly, we analyzed the ILThermo melting point data.  We compared the same four LS-SVM 

models used to predict conductivity and viscosity.  For the concatenated descriptor, the LS-SVM 

Lab package chose 𝛾 = 0.0006.  For the linear LS-SVM model we obtained 𝑅2 = 0.3869 and 

𝑄2 = 0.0977, and for the Gaussian LS-SVM model we obtained 𝑅2 = 0.4444 and 𝑄2 =
0.1336.  The results are shown in Figure 5, and statistics are provided in Table 1. 

 

Figure 5.  Melting Point Predictions Using Concatenated Descriptor.  On the left (a), we 

compare the measured melting point values with the predicted values using a linear LS-SVM 

with a concatenated descriptor.  On the right (b), we compare the same values using a Gaussian 

LS-SVM.  Predicted measurements shown are from the 𝑅2 measurement (i.e. trained on the full 

dataset). 

Repeating the computations using the product descriptors, the LS-SVM Lab package chose 

𝛾 = 8.9 × 10−6.  For the linear kernel using the product descriptor we obtained 𝑅2 = 0.3737 

and 𝑄2 = 0.0157.  For the Gaussian kernel we obtained 𝑅2 = 0.6191 and 𝑄2 = 0.1675.  
Results are similar to those shown in Figure 5 so another figure is not provided, but statistics are 

shown in Table 1. 

From our analysis, it is evident that all four models fail to predict the melting point data.  

Although some success has been achieved predicting melting point with different methods and 

using more focused IL datasets
23,24

, a study with a wider variety of methods and a larger dataset 

showed more modest success
25

.  Our results agree with this later study, and given the 

heterogeneity of the ILThermo dataset, it is perhaps not surprising that our methods failed to 

predict melting point. 
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Table 1.  QSAR Model Fit Statistics.  Here we collect the QSAR model statistics for the various 

predictions made in this paper.  In the first column, we groups the models according to property 

predicted and model type.  In the second column, we give 𝑅2 values; in the third column, we 

give 𝑄2 values; and in the last column we give the LS-SVM 𝛾 values for Gaussian kernels. 

Extrapolation. Next, we consider the extrapolation ability of the four different LS-SVM models.  

In this situation, we consider ILs where no experimental data is available, but at least one of the 

cation or anion in the IL is present in the ILThermo dataset, and has a measured conductivity 

value.  Our goal is to determine which model provides the most useful extrapolations outside of 

the original training data (ILThermo data with experimental measurements).  For conductivity, 

our extrapolations are shown in Figure 6 for the concatenated descriptor and Figure 7 for the 

product descriptor.   

 

 𝑅2 𝑄2 γ (Gaussian Models Only) 

Conductivity   
 

Linear Concatenated 0.9207 0.9036 
 

Gaussian Concatenated 0.9975 0.9842 0.2986 

Linear Product 0.9313 0.9164  

Gaussian Product 0.9975 0.9909 0.5039 

Viscosity   
 

Linear Concatenated 0.9170 0.9020  

Gaussian Concatenated 0.9870 0.9726 0.0248 

Linear Product 0.9373 0.9246 
 

Gaussian Product 0.9866 0.9700 0.0212 

Melting Point   
 

Linear Concatenated 0.3869 0.0977 
 

Product Concatenated 0.4444 0.1336 0.0006 

Linear Product 0.3737 0.0157  

Gaussian Product 0.6191 0.1675 8.9 × 10
-6
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Figure 6.  Extrapolated Conductivity Predictions Using Concatenated Descriptor.  On the left 

(a), we show conductivity predictions at 293 K using the concatenated linear LS-SVM model 

extrapolated to the entire IL dataset.  In the middle (b), we show predictions using the 

concatenated Gaussian LS-SVM model.  On the right (c), we show the locations of ILs in the 

original dataset distributed throughout the extrapolated space.  Comparing (b) and (c), we see 

that the non-linear LS-SVM model is only accurate on or near the training set. 

  

Figure 7.  Extrapolated Conductivity Predictions Using Product Descriptor.  On the left (a), we 

show conductivity predictions at 293 K using the product linear LS-SVM model.  In the middle 

(b), we show predictions using the product Gaussian LS-SVM model.  On the right (c), we show 

the locations of the ILs in the original dataset.  Comparing (b) and (c), we see that the non-linear 

LS-SVM model is only accurate very near the training set. 

Given the performance of the four models according to the cross-validation analysis, which 

model is best suited for extrapolation of conductivity predictions to all possible ILs in the 

dataset?  Using only the 𝑅2 and 𝑄2 statistics, we might conclude that the non-linear Gaussian 

LS-SVM models are superior to the linear LS-SVM models, and that the product descriptor 

offers a slight improvement over the standard concatenated descriptor.  However, considering the 

qualitative evidence in Figures 6 and 7, we see that the non-linear models are accurate only on or 

very near the training set, i.e. they are over-fitting the training data, and are generalizing poorly.  

In fact, their predictions are constant for any IL even a little different from the ILs in the training 

set.  Therefore, we can eliminate the non-linear models for the purpose of extrapolating our 

predictions. 

Comparing the two linear models, we note that the model based on the concatenated descriptor 

exhibits striping behavior, as seen in Figure 6(a).  For a vertical stripe, the model is identifying 

certain cations as high performing, regardless of their pairings with different anions.  For a 

horizontal stripe, the situation is reversed.  While this same striping is evident in the product 
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descriptor predictions in Figure 7(a), it is not as pronounced.  In order for an IL to be highly 

conductive, it must have both a high performing cation and a high performing anion.  Although 

we cannot know which predictions are better, the behavior of the product descriptor seems to fit 

better with chemical intuition.  Thus, we’ve chosen the linear product LS-SVM model as the 

basis for our screening predictions (to follow). 

 

Figure 8.  Extrapolated Viscosity Predictions Using Concatenated Descriptor.  On the left (a), 

we show viscosity predictions at 293 K using the concatenated linear LS-SVM model 

extrapolated to the entire IL dataset.  In the middle (b), we show predictions using the 

concatenated Gaussian LS-SVM model.  On the right (c), we show the locations of ILs in the 

original dataset distributed throughout the extrapolated space.  Comparing (b) and (c), we again 

see that the non-linear LS-SVM model is only accurate on or near the training set. 

 

Figure 9.  Extrapolated Viscosity Predictions Using Product Descriptor.  On the left (a), we 

show viscosity predictions at 293 K using the product linear LS-SVM model.  In the middle (b), 

we show predictions using the product Gaussian LS-SVM model.  On the right (c), we show the 

locations of the ILs in the original dataset.  Again comparing (b) and (c), we see that the non-

linear LS-SVM model is only accurate very near the training set. 

For viscosity, we again made extrapolation on every possible cation-anion pair in the database.  

These results are shown in Figure 8 for the concatenated descriptor and Figure 9 for the product 

descriptor.  Given the cross-validation performance of the four LS-SVM models for predicting 

viscosity, we can make the same conclusions that we made in the case of conductivity.  

Specifically, the non-linear Gaussian models are again accurate only very near or on the training 

set, making constant predictions outside otherwise, and that the linear concatenated LS-SVM 

model exhibits the same striping behavior.  We again conclude that the linear LS-SVM model 

with the product descriptor is best suited for extrapolating viscosity predictions to the entire set 

of cation-anion pairs. 
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Screening.  Finally, we screen for high-conductivity/low-viscosity ILs by using our extrapolated 

conductivity and viscosity predictions on the all possible cation-anion pairs with at least one 

cation or anion in the ILThermo dataset.  The melting point predictions are not considered due to 

the questionable accuracy of the melting point QSPR.  Sorting by conductivity and thresholding 

for predictions above 4 S/m we obtained the list in Table 2.  A list thresholded above 1 S/m is 

given in Supplement 3. 
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Rank Cation (ID) Anion (ID) Cond., S/m Conf. Log10(Vis., Pa*s) Conf. In Concat. List 

1 tributyl(hexadecyl)phosphonium (65) tris(pentafluoroethyl)trifluorophosphate (34) 54.24 0 0.62 0.34 
 

2 (3-aminopropyl)tributylphosphonium (1) tris(pentafluoroethyl)trifluorophosphate (34) 36.09 0.12 0.98 0.62 
 3 tributyl(hexadecyl)phosphonium (65) .beta.-alaninate (2) 35.44 0.04 -1.57 0.6 
 4 N,N,N-triethyltetradecan-1-aminium (42) tris(pentafluoroethyl)trifluorophosphate (34) 18.28 0.79 -0.33 0.78 
 5 tributyloctylammonium (68) tris(pentafluoroethyl)trifluorophosphate (34) 18.12 0.83 0.4 0.82 
 

7 (3-aminopropyl)tributylphosphonium (1) .beta.-alaninate (2) 16.21 0.14 -0.94 0.88 
 

8 tributylheptylammonium (66) tris(pentafluoroethyl)trifluorophosphate (34) 15.92 0.84 0.37 0.83 
 

9 N,N,N-tributyloctan-1-aminium (39) .beta.-alaninate (2) 15.1 0.84 -1.3 0.87 
 10 tributyloctylammonium (68) .beta.-alaninate (2) 14.36 0.84 -1.4 0.87 
 11 1-hexadecyl-3-methylimidazolium (18) tris(pentafluoroethyl)trifluorophosphate (34) 14.32 0.8 -0.49 0.78 
 12 tributylhexylammonium (67) tris(pentafluoroethyl)trifluorophosphate (34) 14.24 0.86 0.32 0.84 
 

13 N,N,N-triethyldodecan-1-aminium (41) tris(pentafluoroethyl)trifluorophosphate (34) 14.02 0.84 -0.28 0.83 
 

14 tributylheptylammonium (66) .beta.-alaninate (2) 13.33 0.85 -1.26 0.88 
 

15 N,N,N-triethyltetradecan-1-aminium (42) .beta.-alaninate (2) 12.35 0.8 -1.61 0.84 
 16 tributyl(hexadecyl)phosphonium (65) (S)-2-amino-3-carboxypropanoate (1) 12.22 0.77 -2.49 0.58 
 17 tributylhexylammonium (67) .beta.-alaninate (2) 11.59 0.86 -1.24 0.88 
 18 1-hexadecyl-3-methylimidazolium (18) .beta.-alaninate (2) 11.41 0.81 -1.89 0.84 
 

19 methanaminium (60) tetrafluoroborate (30) 10.25 0.93 -1.52 0.72 *** 

20 N,N,N-triethyldodecan-1-aminium (41) .beta.-alaninate (2) 10.07 0.85 -1.39 0.87 
 

21 N,N,N-triethyl-1-decanaminium (40) tris(pentafluoroethyl)trifluorophosphate (34) 9.32 0.88 -0.44 0.87 
 22 methanaminium (60) trifluoromethanesulfonate (33) 8.44 0.95 0.04 0.81 *** 

23 N,N,N-triethyl-1-decanaminium (40) .beta.-alaninate (2) 7.92 0.89 -1.06 0.89 
 24 ethylheptyl-di-(1-methylethyl)ammonium (57) tris(pentafluoroethyl)trifluorophosphate (34) 7.82 0.9 0 0.89 
 

25 ethylheptyl-di-(1-methylethyl)ammonium (57) .beta.-alaninate (2) 7.28 0.91 -1.05 0.91 
 

26 methanaminium (60) hexafluorophosphate (22) 6.29 0.92 -1.6 0.74 *** 

27 1-dodecyl-3-methylimidazolium (14) .beta.-alaninate (2) 6.21 0.9 -1.29 0.91 
 28 N,N,N-tributyloctan-1-aminium (39) (S)-2-amino-3-carboxypropanoate (1) 5.84 0.95 -1.78 0.88 
 29 ethanolammonium (55) trifluoromethanesulfonate (33) 5.82 0.96 -1.34 0.88 
 30 ethanolammonium (55) tetrafluoroborate (30) 5.71 0.96 -1.05 0.86 *** 
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31 tributyl(hexadecyl)phosphonium (65) L-valinate (8) 5.56 0.84 -0.2 0.72 
 

32 (3-aminopropyl)tributylphosphonium (1) bis(perfluoroethylsulfonyl)imide (12) 5.49 0.84 1.2 0.7 
 

33 triethyloctylammonium (71) tris(pentafluoroethyl)trifluorophosphate (34) 5.45 0.91 -0.35 0.91 
 34 tributyloctylammonium (68) (S)-2-amino-3-carboxypropanoate (1) 5.39 0.95 -1.82 0.88 
 35 triethyloctylammonium (71) .beta.-alaninate (2) 4.99 0.92 -0.92 0.92 
 36 tributylheptylammonium (66) (S)-2-amino-3-carboxypropanoate (1) 4.91 0.95 -1.65 0.88 
 

37 ethylammonium (56) tetrafluoroborate (30) 4.9 0.97 -1.45 0.9 *** 

38 methanaminium (60) nitrate (28) 4.74 0.95 -1.61 0.8 *** 

39 pyrrolidinium (64) nitrate (28) 4.7 1 -1.27 1 *** 

40 1,3-dimethylimidazolium (3) dicyanamide (17) 4.69 0.98 -1.65 0.93 *** 

41 1,3-dimethylimidazolium (3) tetrafluoroborate (30) 4.63 0.99 -1.94 0.94 
 42 1-dodecyl-3-methylimidazolium (14) tris(pentafluoroethyl)trifluorophosphate (34) 4.16 0.9 -0.51 0.89 
 

43 tributylhexylammonium (67) (S)-2-amino-3-carboxypropanoate (1) 4.12 0.96 -1.57 0.89 
 

44 tributyl(hexadecyl)phosphonium (65) bis(perfluoroethylsulfonyl)imide (12) 4.07 0.77 0.9 0.49 
  

Table 2.  List of Predicted High-Conductivity/Low-Viscosity ILs.  Here we give a list of the most promising high-conductivity/low-

viscosity ILs according to the extrapolated predictions of our linear product LS-SVM model to all possible cation-anion pairs, with at 

least one of the cation or anion from the ILThermo dataset.  The first column contains the rank.  The second and third columns give 

the cation-anion pair.  The cations and anion are named according to the ILThermo database, and tagged with an ID (in parenthesis) 

which corresponds to the structures given in Supplement 2.  The fourth and fifth columns give the predicted conductivity and 

associated confidence.  The sixth and seventh columns give the predicted viscosity and associated confidence.  In the last column, we 

provide an indicator (***) if the cation-anion pair was also predicted to have high-conductivity/low-viscosity by the standard 

concatenated descriptor with the linear LS-SVM model. 

  



 15 

Conclusions 

The combinatorial nature of IL chemistry is both a blessing and a curse.  While we can in 

principle engineer a custom IL for a particular application, the number of potential ILs can easily 

overwhelm an experimentalist looking for that custom IL.  Ideally, a computational screening 

approach could help guide experimental work in ILs, making the initial design decisions more 

manageable.  In this paper we have proposed such an approach based on the use of QSPRs.   

Specifically, we have proposed a QSPR approach that exploits the cation-anion pairwise nature 

of ILs.  We have benchmarked our approach on the problem of predicting conductivity and 

viscosity for ILs, and have shown that our method is competitive with the best known QSPR 

method for the task of predicting conductivity in ILs
21,22

.  Finally, we have produced a list of 

potentially high-conductivity/low-viscosity ILs using our model. 

Based on the data summarized in Table 2, and considering logistical and safety related aspects of 

our chemical laboratory facility, we have chosen to synthesize tributylheptylammonium β-

alaninate (number 14 in Table 2, shown in Figure 10).  This compound is prepared by a 

metathesis reaction of tributylheptylammonium bromide and sodium β-alaninate in polar aprotic 

solvent mixtures.  We are currently optimizing the synthesis in order to achieve a high purity 

material that will be used as both solvent and supporting electrolyte in a redox flow battery.  If 

successful, this is expected to lead to lower viscosity and a wider electrochemical window than 

our current system based on imidazolium triflimide salts.  This work is presently underway and 

the results will be reported in due course. 

 

Figure 10.  Chemical structure of tributylheptylammonium β-alaninate 

In the future, we plan to couple our approach with more detail computational methods such as 

Quantum Density Function Theory and Molecular Dynamics to provide additional confidence in 

the most promising QSPR predictions. 
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