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Abstract. Ionic liquids (ILs) consist of cation-anion pairs. Despite this fact, current efforts to
predict IL properties using quantitative structure property relationships (QSPRs) treat the cations
and anions separately, ignoring potential cross-correlations. Here we consider a method for
treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the
prediction of protein-protein interactions in bioinformatics. We demonstrate the method by
predicting electrical conductivity, viscosity, and melting point on a dataset taken from the
ILThermo database on June 18th, 2014. The dataset consists of 3,926 measurements taken from
165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values
in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the
dataset.

Introduction

Ionic liquids (ILs) are highly modifiable molten salts (usually considered to have melting points
below 100 °C) used for a range of basic and applied studies'™. ILs can exhibit high thermal
stability, negligible vapor pressure, wide electrochemical window, and the ability to dissolve a
range of organic and inorganic compounds. They have been studied in the context of
separations, catalysis, and electrochemistry’'?. Although many of their properties can be
systematically varied by compositional and structural changes, there is considerable ongoing
effort to develop ionic liquids that simultaneously exhibit low viscosity and high conductivity.

In this paper, we consider the use of quantitative structure property relationships (QSPRs) to
screen for high conductivity/low viscosity ILs. QSPRs have been shown to predict various
properties of ILs' "2, including viscosity ", conductivity'***, and melting point™Z°. These
studies have used different datasets, generally available from the public domain; different
methods for generating descriptors, including group contribution'***, ISIDA fragments'>*,
Gaussian 03'*****, MOPAC""*, Chem3D", CODESSA'*******, and DRAGON'**’; and
different regression algorithms including Genetic Algorithms'®'®!"”, Neural Networks'**>%,
Multiple Linear Regression'*'>?*#** and Support Vector Machines (SVMs)*'****. One
commonality between these studies is the use of concatenation to produce feature vectors
describing the ILs. Descriptors are computed for either the entire IL, or for the cation and anion
separately before combination by concatenation into a vector. In the first case, it can be difficult
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to generalize prediction to ILs not in the original dataset, and in the second case, potential cross-
correlations between cation and anion descriptors are ignored.

In this paper we consider QSPRs which incorporate descriptor cross-correlation between cations
and anions in ILs. This approach treats ILs as pairs using product descriptors for QSPRs, a
concept borrowed from the prediction of protein-protein, enzyme-metabolite, and drug-target
interactions in bioinformatics*’*®. We apply this method to screening for high conductivity/low
viscosity ILs. We show that this approach yields qualitative improvements over a comparable
non-product based method when extrapolating beyond the training set.

Materials and Methods

Data. A dataset was downloaded from the ILThermo database (http://ilthermo.boulder.nist.gov)
on June 18th, 2014. The full dataset consisted of 8,508 measurements: 2,396 of conductivities;
5,672 of viscosities; and 440 of melting points. ILs with unusual composition (e.g. including Hg
or Ge), with non-standard naming not easily parsed by computer, or with measurements not at
standard pressure were removed, yielding 7,014 measurements: 1,980 conductivities; 4,624
viscosities; and 410 melting points. Measurements duplicated by different studies were averaged
and retained only if the minimum and maximum measurements were within the average error
(typically reported as a standard deviation) of the average measurement, i.e.

m+ Mgy < Mypgy (1)
and
m— Meryr > Mypin, (2)

where m is the average duplicated measurement, m,,,- is the average measurement error for the
duplicated measurements reported by the different studies, m,,;, is the minimum measurement
for the duplicated measurements, and m,,,, is the maximum duplicated measurement. The
resulting dataset consisted of 6,569 measurements: 1,863 conductivity; 4,296 viscosity; and 410
melting point. These measurements were taken from 491 ILs made from 277 cations and 103
anions. Figure 1(a) shows the distribution of the different measurement types in the full dataset.
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Figure 1. ILThermo Dataset. On the left (a), we show the distribution of measurement types in
the full dataset downloaded from ILThermo on June 18", 2014. The cations and anions are
ordered so that the maximum measurement type intersection is shown by the inset on the lower
left. On the right (b), the inset is shown. This subset of the ILThermo database is used in the
QSPR analysis. It represents the maximal intersection of ILs with conductivity, viscosity, and
melting point measurements.

As seen in Figure 1(a), there is a limited overlap between the three properties taken from the
ILThermo database, where conductivity is the most limiting property. To maximize this overlap,
we obtained our final dataset by restricting to ILs with conductivity measurements. Our final
dataset consisted of 3,926 measurements: 1,853 conductivities; 2,584 viscosities; and 130
melting points. Conductivities were in the range 3x 107 to 144.6 S/m; viscosities were in the
range 1.059x107 to 364 Paxs, and melting points were in the range 188 to 399.4 K. These
measurements were taken from 165 ILs made from 72 cations and 34 anions. The distribution of
the measurements is shown in Figure 1(b). This is the dataset used in the QSPR analysis. The
measurements can be found Supplement 1, and the cation/anion structures can be found in
Supplement 2.

Descriptor Matrices. We used PubChem (https://pubchem.ncbi.nlm.nih.gov/) and
chemicalize.org (http://www.chemicalize.org) to obtain SMILES strings representing the
structures obtained from the ILThermo database. We then used AMPAC 10
(http://www.semichem.com) and CODESSA III (http://www.semichem.com) to produce
chemical descriptors for each cation and anion in our dataset. For the cations, we assumed a
charge of +1, singlet bonds, and performed a Hessian minimum energy calculation using
AMPAC. For the anions, we assumed a charge of -1. The results from AMPAC were input to
CODESSA, which was used to compute various chemical descriptors (ranging from
compositional and topological to quantum chemical). After removing constant valued
descriptors, and descriptors which were identical, we were left with 320 cation descriptors and
222 anion descriptors. Each of these descriptors was mean-centered and scaled to have unit
variance.

From the CODESSA descriptors, we formed two matrices describing the IL dataset. The first
matrix was obtained by concatenating the cation and anion descriptors for each IL cation-anion
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pair. This operation resulted in a 3,926 X 542 concatenated matrix. In the case of temperature
dependent properties (such as conductivity and viscosity), we added an extra column giving
temperature. This matrix is the standard used for QSPRs in conductivity, viscosity and melting
point predictions. It encodes information about IL chemical structure as well as temperature for
use by the QSPRs.

The second matrix was obtained by using a tensor product of the cation descriptors with the
anion descriptors for each IL pair. Briefly, if the vector ¢ contains the cation descriptor values
and the vector a contains anion descriptor values then

P=cal (3)

gives a product matrix containing the product of every pair of cation-anion descriptor values in ¢
and a. By re-forming P as a vector for each IL cation-anion pair, we obtain a 3,926 X 71,040
product matrix. Again for temperature dependent quantities we added an extra column providing
temperature.

The product matrix tracks every potential first-order interaction between the cation and anion
descriptors in the IL dataset. It encodes more detailed IL chemical structure information than the
standard matrix, as well as temperature for use by the QSPRs. It has been shown previously to
improve prediction performance in the case of pairwise data, including protein-protein, enzyme-

metabolite, and drug-target interactions” .

SVM Kernels. One problem with using the product descriptor is the combinatorial growth of the
pair-wise descriptors. In our case, for example, the 320 cation and 222 anion descriptors yield
320 x 222 = 71,040 product descriptors. Fortunately, this problem can be circumvented by
implementing the method in the context of SVMs. A SVM takes as input a kernel function
which specifies the similarity of two objects under consideration. For ILs, we are comparing two
cation-anion pairs. Following the original work on protein-protein interactions”’, we assume that
our first IL is denoted (c;, a;) and our second IL is denoted (c,, a,). Then we define the kernel
product measuring the similarity of the two ILs as

kp((cp a), (Cz;az)) = k(cy, ¢k(ay, a,), 4)
where k(cy, ¢;) and k(a,, a,) are given by the standard dot products ¢;c! and a;al. This

definition follows algebraically’’ from the use of the tensor product in Eq. (3). It should be
noted that the concatenated descriptor can also be expressed using kernels by addition

kc((c1,a1), (Cz,az)) = k(cy,¢1) + k(ay,ay), (5)

We can further use a Gaussian version of the kernels in (4) and (5). The Gaussian kernel version
of (4) is given by

kg(Ly,Ly) = exp(—y (kp (Ly,Ly) — 2ky, (Ly,Lp) + k, (Lz,Lz)))' (6)

where L, = (¢4, a,) is the first IL and L, = (c,, a,) is the second IL.



Finally, using SVMs also allows us to compare our results with the leading method for
computing QSPRs for conductivity in ILs*'*%, which uses Least Squares SVMs, or LS-SVMs”.
The LS-SVM implementation used here, and by Gharaghezi er al.*'*?, is available as LS-SVM
Lab (http://www.esat.kuleuven.be/sista/lssvmlab/). This package includes automatic parameter
tuning for regularization, Gaussian kernels, and scaling of the original descriptors. Details on the
actual LS-SVM algorithm can be found elsewhere®-".

Performance Metrics. There are a host of metrics available for assessing the accuracy of QSPR
predictions®' ™, and a number of these were applied by Gharagheizi ez al. to the LS-SVM models
for predicting conductivity in ILs*>>. Of these metrics, we use two very common statistics (R?
and Q?) along with a lesser known metric (confidence) designed to judge extrapolation quality of
predictions farther from the training set.

The goodness-of-fit measure R? is computed according to the formula

2 _ 1 _ Zilei=p)?
Re=1 Zi(ei—e)?’ 2

. . _ 1 .
where e; are measured (experimental) values, p; are predicted values and e = ;Z?ﬂ e;, givenn
measured values.

We also compute Q2, which is a measure of the generalization ability of a QSPR model. Q2 is
typically computed using a leave-one-out strategy, although we use a 10-fold data split due to the
relatively large size of our dataset. To compute ten-fold Q2, we first divide the dataset into ten
equal subsets. For a given subset, denoted the test set, we train a model on the remaining nine
subsets of the dataset. Predictions are then made on the test set. It is important to note that the
model is re-trained (and re-optimized) ten times altogether, and that each time the test set is
unknown to the model. These calculations are repeated for each test set and Q2 is computed
using the test set predictions as

21— Zi(ei—p)? 3
¢ Li(e;—e)?’ (®)
Finally, to assess the quality of our QSPR extrapolations, we use a confidence measure®’. We
consider extrapolations to be predictions where no experimental data is known. We extrapolate
over all possible cation-anion pairs, with at least one of the pair (cation or anion) in the original
dataset (i.e. having a measured value). The confidence metric is computed as
min j; || Li—Lj|

¢ =1 — =kl (9)

max; ”Lk—Lj”,
where L; is the IL under consideration, L; ranges over ILs with measured values only, and L
ranges over all potential ILs (both extrapolated and in the dataset). In all cases, L, refers to the

IL descriptor vectors. The metric ¢; tells us how close structure L; is a structure L; with a
measured value. Values of ¢; closer to 1 indicate higher confidence predictions.
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Results and Discussion

Cross-Validation. Our first results are obtained on the ILThermo dataset using cross-validation
to assess our models. Thus the data consists of ILs with previously obtained experimental
measurements. We apply the LS-SVM model to the ILThermo data using both the concatenated
and product descriptors to predict conductivity, viscosity, and melting point. The models are
compared using cross-validation, and all predictions are made on test sets.

Our first effort was towards predicting conductivity in ILs to replicate the work of Gharagheizi et
al?' using the concatenated descriptors. For this effort, we used both a standard linear kernel
and a Gaussian kernel (Gharagheizi et al. used only a Gaussian kernel). The LS-SVM Lab
package chose y = 0.2996 for the Gaussian kernel. For the linear kernel, we obtained a
goodness-of-fit measure of R? = 0.9207 and ten-fold generalization measure of Q2 = 0.9036.
For the Gaussian kernel, we obtained R? = 0.9975 and Q% = 0.9842. The results are shown in
Figure 2. Fit statistics are summarized in Table 1.
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Figure 2. Conductivity Predictions Using Concatenated Descriptors. On the left (a), we
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compare the experimentally measured conductivity values with the predictions from the linear
LS-SVM model using concatenated descriptor vectors. On the right (b), we make the same

comparison using the non-linear Gaussian LS-SVM model. This is the model used by
Gharagheizi et al. for IL conductivity predictions (27). Predicted measurements shown are from
the R? measurement (i.e. training on the full dataset).

We repeated the same computations using the product descriptors, as shown in Figure 3. The
LS-SVM Lab package chose y = 0.5039. For the linear kernel using the product descriptor we
obtained a goodness-of-fit measure of R? = 0.9313 and ten-fold Q? = 0.9164. For the Gaussian
kernel we obtained R? = 0.9975 and Q2 = 0.9909. The statistics for the product descriptors
offer improvement over the standard concatenated descriptor for both the linear and Gaussian

LS-SVM models. Statistics are summarized in Table 1.
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Figure 3. Conductivity Predictions Using Product Descriptors. On the left (a), we compare the
experimentally measured conductivity values with the predicted values using a linear LS-SVM
model with the product kernel. On the right (b), we make the same comparison using a Gaussian

LS-SVM with the product descriptors. Predicted measurements shown are from the R?
measurement (i.e. trained on the full dataset).

We repeated our analysis for the ILThermo viscosity data. We restricted measurements between
1073 Pa = s and 2 Pa * s and performed our analysis using log;, transformed temperature and
viscosity values. We again compared the standard concatenated descriptors with product
descriptors for linear and Gaussian LS-SVM models. For the concatenated descriptors, the LS-
SVM Lab package chose y = 0.0248. For the linear LS-SVM model, we obtained goodness-of-
fit R* = 0.9170 and ten-fold generalization Q% = 0.9020. For the Gaussian LS-SVM model,
we obtained R? = 0.9870 and Q% = 0.9726. The results are shown in Figure 4, and statistics
are summarized in Table 1.
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Figure 4. Viscosity Predictions Using Concatenated Descriptor. On the left (a), we compare the
experimentally measured viscosity values with the predicted values for the linear LS-SVM
model with the standard concatenated descriptors. On the right (b), we compare the viscosity
values for the Gaussian LS-SVM model with the concatenated descriptors. Predicted
measurements shown are from the R? measurement (i.e. trained on the full dataset).



Repeating the computations using the product descriptors, the LS-SVM Lab package chose

y = 0.0212. For the linear kernel using the product descriptor we obtained a goodness-of-fit
measure of R? = 0.9373 and ten-fold Q2 = 0.9246. For the Gaussian kernel we obtained

R? = 0.9866 and Q% = 0.9700. The statistics for the product descriptors were an improvement
for the linear model, but almost identical for the Gaussian model. The results are quite similar to
those shown in Figure 4, so another figure is not provided, but statistics are given in Table 1.

Lastly, we analyzed the ILThermo melting point data. We compared the same four LS-SVM
models used to predict conductivity and viscosity. For the concatenated descriptor, the LS-SVM
Lab package chose ¥y = 0.0006. For the linear LS-SVM model we obtained R? = 0.3869 and
Q? = 0.0977, and for the Gaussian LS-SVM model we obtained R? = 0.4444 and Q? =
0.1336. The results are shown in Figure 5, and statistics are provided in Table 1.
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Figure 5. Melting Point Predictions Using Concatenated Descriptor. On the left (a), we
compare the measured melting point values with the predicted values using a linear LS-SVM

with a concatenated descriptor. On the right (b), we compare the same values using a Gaussian
LS-SVM. Predicted measurements shown are from the R? measurement (i.e. trained on the full

dataset).
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Repeating the computations using the product descriptors, the LS-SVM Lab package chose

Y = 8.9 x 107°. For the linear kernel using the product descriptor we obtained R* = 0.3737
and Q2 = 0.0157. For the Gaussian kernel we obtained R? = 0.6191 and Q2 = 0.1675.
Results are similar to those shown in Figure 5 so another figure is not provided, but statistics are

shown in Table 1.

From our analysis, it is evident that all four models fail to predict the melting point data.

Although some success has been achieved predicting melting point with different methods and

using more focused IL datasets™"*

showed more modest success™. Our results agree with this later study, and given the
heterogeneity of the ILThermo dataset, it is perhaps not surprising that our methods failed to

predict melting point.

, a study with a wider variety of methods and a larger dataset



R? Q% | v (Gaussian Models Only)

Conductivity

Linear Concatenated 0.9207 | 0.9036

Gaussian Concatenated | 0.9975 | 0.9842 0.2986
Linear Product 0.9313 | 0.9164

Gaussian Product 0.9975 | 0.9909 0.5039
Viscosity

Linear Concatenated 0.9170 | 0.9020

Gaussian Concatenated | 0.9870 | 0.9726 0.0248
Linear Product 0.9373 | 0.9246

Gaussian Product 0.9866 | 0.9700 0.0212
Melting Point

Linear Concatenated 0.3869 | 0.0977

Product Concatenated | 0.4444 | 0.1336 0.0006
Linear Product 0.3737 | 0.0157
Gaussian Product 0.6191 | 0.1675 8.9x10°

Table 1. QSAR Model Fit Statistics. Here we collect the QSAR model statistics for the various
predictions made in this paper. In the first column, we groups the models according to property
predicted and model type. In the second column, we give R? values; in the third column, we
give Q2 values; and in the last column we give the LS-SVM y values for Gaussian kernels.

Extrapolation. Next, we consider the extrapolation ability of the four different LS-SVM models.
In this situation, we consider ILs where no experimental data is available, but at least one of the
cation or anion in the IL is present in the ILThermo dataset, and has a measured conductivity
value. Our goal is to determine which model provides the most useful extrapolations outside of
the original training data (ILThermo data with experimental measurements). For conductivity,
our extrapolations are shown in Figure 6 for the concatenated descriptor and Figure 7 for the
product descriptor.
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Figure 6. Extrapolated Conductivity Predictions Using Concatenated Descriptor. On the left
(a), we show conductivity predictions at 293 K using the concatenated linear LS-SVM model
extrapolated to the entire IL dataset. In the middle (b), we show predictions using the
concatenated Gaussian LS-SVM model. On the right (c), we show the locations of ILs in the
original dataset distributed throughout the extrapolated space. Comparing (b) and (c), we see
that the non-linear LS-SVM model is only accurate on or near the training set.
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Figure 7. Extrapolated Conductivity Predictions Using Product Descriptor. On the left (a), we
show conductivity predictions at 293 K using the product linear LS-SVM model. In the middle
(b), we show predictions using the product Gaussian LS-SVM model. On the right (c), we show
the locations of the ILs in the original dataset. Comparing (b) and (c), we see that the non-linear
LS-SVM model is only accurate very near the training set.

Given the performance of the four models according to the cross-validation analysis, which
model is best suited for extrapolation of conductivity predictions to all possible ILs in the
dataset? Using only the R? and Q? statistics, we might conclude that the non-linear Gaussian
LS-SVM models are superior to the linear LS-SVM models, and that the product descriptor
offers a slight improvement over the standard concatenated descriptor. However, considering the
qualitative evidence in Figures 6 and 7, we see that the non-linear models are accurate only on or
very near the training set, i.e. they are over-fitting the training data, and are generalizing poorly.
In fact, their predictions are constant for any IL even a little different from the ILs in the training
set. Therefore, we can eliminate the non-linear models for the purpose of extrapolating our
predictions.

Comparing the two linear models, we note that the model based on the concatenated descriptor
exhibits striping behavior, as seen in Figure 6(a). For a vertical stripe, the model is identifying
certain cations as high performing, regardless of their pairings with different anions. For a
horizontal stripe, the situation is reversed. While this same striping is evident in the product
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descriptor predictions in Figure 7(a), it is not as pronounced. In order for an IL to be highly
conductive, it must have both a high performing cation and a high performing anion. Although
we cannot know which predictions are better, the behavior of the product descriptor seems to fit
better with chemical intuition. Thus, we’ve chosen the linear product LS-SVM model as the
basis for our screening predictions (to follow).
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Figure 8. Extrapolated Viscosity Predictions Using Concatenated Descriptor. On the left (a),
we show viscosity predictions at 293 K using the concatenated linear LS-SVM model
extrapolated to the entire IL dataset. In the middle (b), we show predictions using the
concatenated Gaussian LS-SVM model. On the right (c), we show the locations of ILs in the
original dataset distributed throughout the extrapolated space. Comparing (b) and (c), we again
see that the non-linear LS-SVM model is only accurate on or near the training set.
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Figure 9. Extrapolated Viscosity Predictions Using Product Descriptor. On the left (a), we
show viscosity predictions at 293 K using the product linear LS-SVM model. In the middle (b),
we show predictions using the product Gaussian LS-SVM model. On the right (c), we show the
locations of the ILs in the original dataset. Again comparing (b) and (c), we see that the non-
linear LS-SVM model is only accurate very near the training set.

For viscosity, we again made extrapolation on every possible cation-anion pair in the database.
These results are shown in Figure 8 for the concatenated descriptor and Figure 9 for the product
descriptor. Given the cross-validation performance of the four LS-SVM models for predicting
viscosity, we can make the same conclusions that we made in the case of conductivity.
Specifically, the non-linear Gaussian models are again accurate only very near or on the training
set, making constant predictions outside otherwise, and that the linear concatenated LS-SVM
model exhibits the same striping behavior. We again conclude that the linear LS-SVM model
with the product descriptor is best suited for extrapolating viscosity predictions to the entire set
of cation-anion pairs.
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Screening. Finally, we screen for high-conductivity/low-viscosity ILs by using our extrapolated
conductivity and viscosity predictions on the all possible cation-anion pairs with at least one
cation or anion in the ILThermo dataset. The melting point predictions are not considered due to
the questionable accuracy of the melting point QSPR. Sorting by conductivity and thresholding
for predictions above 4 S/m we obtained the list in Table 2. A list thresholded above 1 S/m is
given in Supplement 3.
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Rank | Cation (ID) Anion (ID) Cond., S/m Conf. | Log,o(Vis., Pa*s) | Conf. In Concat. List
1 | tributyl(hexadecyl)phosphonium (65) tris(pentafluoroethyl)trifluorophosphate (34) 54.24 0 0.62 0.34
2 | (3-aminopropyl)tributylphosphonium (1) tris(pentafluoroethyl)trifluorophosphate (34) 36.09 0.12 0.98 0.62
3 | tributyl(hexadecyl)phosphonium (65) .beta.-alaninate (2) 35.44 0.04 -1.57 0.6
4 | N,N,N-triethyltetradecan-1-aminium (42) tris(pentafluoroethyl)trifluorophosphate (34) 18.28 0.79 -0.33 0.78
5 | tributyloctylammonium (68) tris(pentafluoroethyl)trifluorophosphate (34) 18.12 0.83 0.4 0.82
7 | (3-aminopropyl)tributylphosphonium (1) .beta.-alaninate (2) 16.21 0.14 -0.94 0.88
8 | tributylheptylammonium (66) tris(pentafluoroethyl)trifluorophosphate (34) 15.92 0.84 0.37 0.83
9 | N,N,N-tributyloctan-1-aminium (39) .beta.-alaninate (2) 15.1 0.84 -1.3 0.87
10 | tributyloctylammonium (68) .beta.-alaninate (2) 14.36 0.84 -1.4 0.87
11 | 1-hexadecyl-3-methylimidazolium (18) tris(pentafluoroethyl)trifluorophosphate (34) 14.32 0.8 -0.49 0.78
12 | tributylhexylammonium (67) tris(pentafluoroethyl)trifluorophosphate (34) 14.24 0.86 0.32 0.84
13 | N,N,N-triethyldodecan-1-aminium (41) tris(pentafluoroethyl)trifluorophosphate (34) 14.02 0.84 -0.28 0.83
14 | tributylheptylammonium (66) .beta.-alaninate (2) 13.33 0.85 -1.26 0.88
15 | N,N,N-triethyltetradecan-1-aminium (42) .beta.-alaninate (2) 12.35 0.8 -1.61 0.84
16 | tributyl(hexadecyl)phosphonium (65) (S)-2-amino-3-carboxypropanoate (1) 12.22 0.77 -2.49 0.58
17 | tributylhexylammonium (67) .beta.-alaninate (2) 11.59 0.86 -1.24 0.88
18 | 1-hexadecyl-3-methylimidazolium (18) .beta.-alaninate (2) 11.41 0.81 -1.89 0.84
19 | methanaminium (60) tetrafluoroborate (30) 10.25 0.93 -1.52 0.72 | ***
20 | N,N,N-triethyldodecan-1-aminium (41) .beta.-alaninate (2) 10.07 0.85 -1.39 0.87
21 | N,N,N-triethyl-1-decanaminium (40) tris(pentafluoroethyl)trifluorophosphate (34) 9.32 0.88 -0.44 0.87
22 | methanaminium (60) trifluoromethanesulfonate (33) 8.44 0.95 0.04 0.81 | ***
23 | N,N,N-triethyl-1-decanaminium (40) .beta.-alaninate (2) 7.92 0.89 -1.06 0.89
24 | ethylheptyl-di-(1-methylethyl)Jammonium (57) tris(pentafluoroethyl)trifluorophosphate (34) 7.82 0.9 0 0.89
25 | ethylheptyl-di-(1-methylethyl)Jammonium (57) .beta.-alaninate (2) 7.28 0.91 -1.05 0.91
26 | methanaminium (60) hexafluorophosphate (22) 6.29 0.92 -1.6 0.74 | ***
27 | 1-dodecyl-3-methylimidazolium (14) .beta.-alaninate (2) 6.21 0.9 -1.29 0.91
28 | N,N,N-tributyloctan-1-aminium (39) (S)-2-amino-3-carboxypropanoate (1) 5.84 0.95 -1.78 0.88
29 | ethanolammonium (55) trifluoromethanesulfonate (33) 5.82 0.96 -1.34 0.88
30 | ethanolammonium (55) tetrafluoroborate (30) 5.71 0.96 -1.05 0.86 | ***
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31 | tributyl(hexadecyl)phosphonium (65) L-valinate (8) 5.56 0.84 -0.2 0.72
32 | (3-aminopropyl)tributylphosphonium (1) bis(perfluoroethylsulfonyl)imide (12) 5.49 0.84 1.2 0.7
33 | triethyloctylammonium (71) tris(pentafluoroethyl)trifluorophosphate (34) 5.45 0.91 -0.35 0.91
34 | tributyloctylammonium (68) (S)-2-amino-3-carboxypropanoate (1) 5.39 0.95 -1.82 0.88
35 | triethyloctylammonium (71) .beta.-alaninate (2) 4.99 0.92 -0.92 0.92
36 | tributylheptylammonium (66) (S)-2-amino-3-carboxypropanoate (1) 4.91 0.95 -1.65 0.88
37 | ethylammonium (56) tetrafluoroborate (30) 49 0.97 -1.45 0.9 | ***
38 | methanaminium (60) nitrate (28) 4.74 0.95 -1.61 0.8 | ***
39 | pyrrolidinium (64) nitrate (28) 4.7 1 -1.27 1| *Ex*
40 | 1,3-dimethylimidazolium (3) dicyanamide (17) 4.69 0.98 -1.65 0.93 | ***
41 | 1,3-dimethylimidazolium (3) tetrafluoroborate (30) 4.63 0.99 -1.94 0.94
42 | 1-dodecyl-3-methylimidazolium (14) tris(pentafluoroethyl)trifluorophosphate (34) 4.16 0.9 -0.51 0.89
43 | tributylhexylammonium (67) (S)-2-amino-3-carboxypropanoate (1) 4.12 0.96 -1.57 0.89
44 | tributyl(hexadecyl)phosphonium (65) bis(perfluoroethylsulfonyl)imide (12) 4.07 0.77 0.9 0.49

Table 2. List of Predicted High-Conductivity/Low-Viscosity ILs. Here we give a list of the most promising high-conductivity/low-

viscosity ILs according to the extrapolated predictions of our linear product LS-SVM model to all possible cation-anion pairs, with at

least one of the cation or anion from the ILThermo dataset. The first column contains the rank. The second and third columns give
the cation-anion pair. The cations and anion are named according to the ILThermo database, and tagged with an ID (in parenthesis)
which corresponds to the structures given in Supplement 2. The fourth and fifth columns give the predicted conductivity and

associated confidence. The sixth and seventh columns give the predicted viscosity and associated confidence. In the last column, we

provide an indicator (***) if the cation-anion pair was also predicted to have high-conductivity/low-viscosity by the standard

concatenated descriptor with the linear LS-SVM model.
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Conclusions

The combinatorial nature of IL chemistry is both a blessing and a curse. While we can in
principle engineer a custom IL for a particular application, the number of potential ILs can easily
overwhelm an experimentalist looking for that custom IL. Ideally, a computational screening
approach could help guide experimental work in ILs, making the initial design decisions more
manageable. In this paper we have proposed such an approach based on the use of QSPRs.

Specifically, we have proposed a QSPR approach that exploits the cation-anion pairwise nature
of ILs. We have benchmarked our approach on the problem of predicting conductivity and
viscosity for ILs, and have shown that our method is competitive with the best known QSPR
method for the task of predicting conductivity in ILs*"*%. Finally, we have produced a list of
potentially high-conductivity/low-viscosity ILs using our model.

Based on the data summarized in Table 2, and considering logistical and safety related aspects of
our chemical laboratory facility, we have chosen to synthesize tributylheptylammonium [3-
alaninate (number 14 in Table 2, shown in Figure 10). This compound is prepared by a
metathesis reaction of tributylheptylammonium bromide and sodium B-alaninate in polar aprotic
solvent mixtures. We are currently optimizing the synthesis in order to achieve a high purity
material that will be used as both solvent and supporting electrolyte in a redox flow battery. If
successful, this is expected to lead to lower viscosity and a wider electrochemical window than
our current system based on imidazolium triflimide salts. This work is presently underway and
the results will be reported in due course.

e

Figure 10. Chemical structure of tributylheptylammonium [B-alaninate

In the future, we plan to couple our approach with more detail computational methods such as
Quantum Density Function Theory and Molecular Dynamics to provide additional confidence in
the most promising QSPR predictions.
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