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ABSTRACT: It is shown that black hole spacetimes in classical Einstein gravity are charac-
terized by, in addition to their ADM mass M, momentum 13, angular momentum J and
boost charge K , an infinite head of supertranslation hair. The distinct black holes are
distinguished by classical superrotation charges measured at infinity. Solutions with super-
translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms
are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown
that a black hole can be supertranslated by throwing in an asymmetric shock wave. A
leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation
charge and shown to generate, via the Dirac bracket, supertranslations on the linearized
phase space of gravitational excitations of the horizon. The considerations of this paper
are largely classical augmented by comments on their implications for the quantum theory.
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1 Introduction

Over the last few years it has been found [1-14] that empty space is a richer place than was
previously believed.! Even the classical Minkowskian vacuum, far from being a unique, fea-
tureless configuration, is infinitely degenerate in all electromagnetic, Yang-Mills and gravi-
tational theories. Information about the vacuum configuration is holographically stored at
the asymptotic boundary of spacetime. Different vacua are related by infinite-dimensional
asymptotic symmetries which, in the quantum theory, can be infinitesimally described as
creating or annihilating soft (i.e. zero-energy) particles such as photons or gravitons.

The infinity of associated conserved charges constrain every scattering process in
asymptotically Minkowskian spacetimes, including those in which black holes are formed
and then evaporate. For each and every conserved charge, the charge on the black hole
must be reduced (increased) by exactly the amount carried by any emitted (absorbed)
particles [20-23]. Charge conservation is possible only if black holes themselves carry an

'Prescient early work appears in [15-19)].



infinite number of charges or, equivalently, have an infinite head of ‘soft hair’ [22]. This
does not violate the classical no-hair theorems [24] because the distinct black holes are
related by diffeomorphisms, albeit ‘large’ ones which comprise the asymptotic symmetry
group and act nontrivially on the classical phase space. Soft hair has implications for the
information paradox [25], since charge conservation enforces quantum correlations between
the outgoing Hawking quanta and the soft hair configuration.

In this paper we undertake a study the properties of the charges arising from infinite-
dimensional gravitational symmetries in a weak-coupling expansion. The fundamental
definitions of these conserved charges will be given below in terms of simple boundary inte-
grals near spatial infinity. As usual, integration by parts and the constraint equations can
be used to express these charges as three-dimensional ‘bulk’ integrals and thereby associate
distinct contributions to the charge from distinct regions of spacetime such as a black hole.

However, even for the simplest of the conserved charges — the ADM energy — this
procedure is in the general case fraught with difficulties associated to the choices of slice
and gauge. Quantum fluctuations of the spacetime geometry further diminish the utility of
such constructions. Nevertheless, in the context of weak coupling, a perturbative analysis
of charge conservation in the bulk can be informative. For example it is possible to show,
to first order in the gravitational coupling, that the mass of a black hole always increases by
the energy flux of radiation across its horizon. A similar picture should exist for all of the
conserved charges. For the infinity of electromagnetic charges, such a picture was obtained
n [22]. In this paper, while also supplying the reader with some pedagogical background,
we continue the program of [22] and perturbatively analyze in some detail the infinity of
so-called supertranslation and superrotation symmetries. Supertranslation (superrotation)
charge conservation equates the total incoming energy at each angle to the total outgoing
energy (angular momentum) at the opposing angle [2, 26].

After spelling out our notation in section 2.1, in section 2.2 we reiterate the simple
origin of the infinity of conserved charges. We show that the very existence of a well-posed
scattering problem in asymptotically Minkowskian general relativity requires a boundary
condition which matches certain metric components at the top of Z~ (past null infinity)
to those at the bottom of ZT (future null infinity). This immediately implies an infinite
number of conserved charges, simply from the equality of all the past and future multipole
moments of the matched metric data. Explicit expressions are given for the supertranslation
charges arising from the matching of the Bondi mass aspect, as well as the superrotation
charges arising from the matching of the angular momentum aspect. The relationship to
previous work on asymptotic behavior and the peeling theorem is briefly discussed in sec-
tion 2.3. Section 3.1 reviews the derivation of supertranslation symmetry as the action
via Dirac brackets of the supertranslation charges on the physical phase space. Section
3.2 reviews the current status of efforts to similarly associate a symmetry superrotation
charge conservation. In section 4 we use the Bondi gauge to continue supertranslations
from the boundary into the bulk of the Schwarzschild geometry. The Bondi-gauge metric
of an infinitesimally supertranslated Schwarzschild black hole, i.e. a black hole with super-
translation hair, is derived. In section 5 we show, via an explicit Vaidya-type solution, how
a black hole can be physically supertranslated by throwing in an asymmetric null shock



wave. Supertranslated black holes do not carry supertranslation charge because the group
is abelian. However in section 6 we find they can and do carry superrotation charges and
an explicit expression is given. This provides a classical diagnostic of supertranslation hair
(see also [27, 28]). Section 7 gives a canonical construction of the generators of linearized
Bondi-gauge supertranslations on the future Schwarzschild horizon H*. Section 7.1 reviews
the covariant canonical formalism and symplectic form in gravity. Section 7.2 presents the
covariant supertranslation charge Q}'ﬁ on the horizon. In section 7.3, a careful fixing of
the residual gauge symmetries in Bondi gauge which (unlike supertranslations) are zero
eigenvalues of the pre-symplectic form is performed. The symplectic form is then inverted
on the physical phase space to obtain the Dirac bracket. Finally it is shown that the charge
Q}'ﬁ properly generates horizon supertranslations.

During the course of this work strongly overlapping results were independently ob-
tained in [27, 28]. Related work has also appeared in [29-74]. We expect our horizon
analysis is closely related to much earlier work [75-78] employing different gauges and for-
malisms. Soft hair appears to be an alternate description of the phenomenon of edge modes
as discussed in [79-83]. A precise characterization of the relation of these edge modes and
soft hair would be of great interest.

We set Newton’s constant G = 1 throughout.

2 Supertranslation and superrotation charge conservation

In this section we review a few salient facts about asymptotically flat spacetimes in classical
general relativity (GR) and the newly-discovered infinite number of conserved supertrans-
lation [2] and superrotation [7, 26, 84] charges. Moreover, we show that the existence of
this infinite number of conserved charges in GR follows simply from the requirement of a
well-posed scattering problem.

2.1 Asymptotic expansion

Near future null infinity (Z+) we use retarded coordinates (u,r, ©4) and the Bondi gauge,
in which
gra = grr =0, det (%) = 9(9) (21)

Surfaces of constant retarded time u = t — 7 are null. Z7T is the surface r — co. ©4 are
coordinates on the two-sphere and ¢(0) is a fixed function on the sphere. An asymptotically

flat metric has a large r-expansion?

ds® = —du® — 2dudr + r’*y,pdO"dOP
2
+=du? + 1Capd©"d0” + DPCapdude™
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2See [85-88] and [89] for recent reviews. We omit here interesting logarithmic terms [90, 91] of potential
relevance in the present context.
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where indices are raised and lowered using the metric on the unit sphere, y45. The traceless
tensor C'4p, the Bondi mass aspect m, and the angular momentum aspect N4 all depend on
the Z* coordinates (u, ©4) but not r. Our definition of N4> differs from the conventional
ones in two ways. Firstly, by a shift of ud4m which has the advantage that, as can be seen
from the constraint equations below, is typically finite for u — +oo. Secondly, there is a
shift of N4 by quadratic terms in C'4p to obtain a simple relation to the Riemann tensor

lim 3 Rayry = Na + udam. (2.3)

r—00

The Bondi news
Nag = 0,CuB (2.4)

characterizes the gravitational radiation passing through ZT.
The Cauchy data on Z+ for the full spacetime metric includes* C 45, m and N4 which
are subject to the constraint equations

1
Oym = ZDADBNAB — Ty,

1 .
Tuw = 3 AN+ Tim [T, (2.5)

1 1
OuN4 = —ZDB(DBDCC’CA — DADYCpe) + uda <Tuu - 4DBDCNBC> —Tya,
1 1 1
Tua = 87 lim [r*Ty4] — 204(CopNTP) + 1 Dp(CP Nea) = 5CapDoN". (26)

Here Té\g[ is the matter stress tensor while 7T,, incorporates corrections from the stress
tensor for linearized gravity waves.

The traceless Bondi news Nap(u,©) comprises two unconstrained real functions on
It as expected for the two helicities of the massless graviton. We assume that near the
past and future boundaries of ZT, Ii and Z7, the news falls off faster than ﬁ and that the
angular momentum aspect N4 approaches a finite one-form on S?. These (and stronger)
asymptotic boundary conditions were proven by Christodoulou and Klainerman [92] to
hold in a finite neighborhood of flat space: here we shall consider spacetimes with this
asymptotic behavior but do not require them to be near flat space in the deep interior.

The news then trivially determines C'4p up to an integration function by integrating (2.4).

30ur angular momentum aspect N4 can be related to that defined by Barnich and Troessaert [85-88],
NET by the following Na = N7 — Dam + CapDcCP% + 2CPDsCpe.

“Determining if or when these (or the Z~ counterparts) comprise a complete set of Cauchy data is an
outstanding problem in mathematical relativity which we do not address here. Among other issues are the
possibilities of logarithms and further integration functions appearing at higher order in the % expansion.
See for example [90, 91].



We take the integration function to be Csp|,+. Finiteness of N4|,+ and (2.6) then imply

Cap|z+ is determined from a single real function C' on 7t [2:
CaBly+ = —2DADBC| 1+ + yapD*C| 1+ (2.7)

Given the news tensor and this initial data at Z*, the constraints may be integrated to
give the mass and angular momentum aspects m and N4 everywhere on ZT. Hence the
Cauchy data includes

{Nap(u, ©),C(O)[z+,m(O)[ 7+, Na(©)|7+}- (2.8)

The Cauchy data (2.8) transforms non-trivially under the BMS+ subgroup® [93, 94]
of diffeomorphisms acting near Z, which includes boosts, rotations and supertranslations
(formulae for which are in the next section). As shown in [93, 94], despite being diffeo-
morphic, data sets which differ by BMS transformations are physically inequivalent. For
example they can change the ADM energy or transform a configuration with gravity waves
simultaneously emerging at the north and south pole on ZT into ones where they appear
with an arbitrary relative retarded time delay. Even when the news is zero, BMS+ gener-
ically changes the vacuum to an inequivalent one with different values of both C|,+ and
ADM angular momentum. That is, there is an infinite family of inequivalent vacua in GR.

A similar set of equations apply near Z—, where we employ advanced Bondi coordinates
(v, 7, @A) in which the metric has the asymptotic expansion

ds® = —dv® + 2dvdr + 1*y4pdO4dO"
2
+ = dv? + 1Capd®AdO” — DPCpdvde™
1

b AB
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. <3NA 3 oam 88A(CBDC )> dvd©
1
+17ABC’CDCCDd®Ad@B
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In flat Minkowski space advanced and retarded Bondi coordinates are related by
(v,7,0%) = (u+ 2r,r, PO4) (2.10)
where PO is the antipode of ©4 on the sphere.® The analog of the Cauchy data (2.8) for
I is
{Nan(v,0),C(6) |- m(O)];-, Na(©)],- ). (2.11)

5The ‘4’ signifies the action is on ZT rather than Z~.
SFor standard angular coordinates ©4 ~ (0, ¢), PO“ ~ (m —0, ¢+ 7). This coordinate convention is

chosen to simplify the past-future matching conditions below.



2.2 The scattering problem

The scattering problem in classical general relativity is, roughly speaking, to find the map
from Cauchy data on Z~ to that on Zt.7 Such a map is not even formally determined from
the maximal Cauchy development of the Z~ data (2.11) with the Einstein equation. This
determines the data on ZT at most up to a BMS+ transformation. A prescription is needed
to attach ZT, choose a BMS+ frame and determine the initial values for integrating m and
N4 along TV using the constraints. Without such a prescription, the scattering problem in
GR is not defined. In [2], it was proposed that the BMS+ frame should be determined by
the Lorentz and CPT invariant matching conditions

Ol (0) = CO); . m(O)lyr =m(O)];- . (212)
and in [26] the matching condition for the angular momentum aspect

Na(©)lz+ = Na(©)|; (2.13)

was proposed. This breaks the combined BMS+®BMS— action on ZT and Z~ down to the
diagonal subgroup which preserves these conditions. Noting our convention (2.10) relating
©4(ZF) and ©4(Z] ), we see that (2.12) and (2.13) antipodally equate past and future fields
near spatial infinity. At first sight, this antipodal relation appears rather bizarre. However,
we expect that it is the only Lorentz and CPT invariant choice and is implicit in most or all
GR computations in asymptotically flat spacetimes. In [3] the matching condition (2.12)
was in fact proven to be implicit to all orders in standard weak field perturbation theory by
demonstrating its equivalence to Weinberg’s soft graviton theorem [95]. In [84, 96, 97] a new
subleading soft graviton theorem was proven to all orders using Feynman tree diagrams,?
and then shown to imply (2.13) [7, 26]. Motivated by this perturbative analysis, we propose
that (2.12), (2.13) are part of the definition of the scattering problem whenever the fields
are sufficiently weak near spatial infinity, even if the interior contains a black hole.

The matching conditions (2.12) and (2.13) immediately imply that an infinite number
of charges are conserved in GR scattering. Two families of charges are defined at Z= and
I, by:

1 _ 1
o = [ eovitm. Q=g [ wouism (24)

where f(©) is any function on S2. Integrating by parts and using the constraint (2.5),
these can be written as integrals over Z+ or Z~ respectively:”

1 1
S R Tyw — ~DADEN
Q) = ¢ [, au s (T~ 1D Nas ).

1 1
Q= 4= /_ dvd*©./~ f (Tw — 4DADBNAB) : (2.15)

TOf course if a black hole is formed we need Cauchy data on ZTUH ™, where # 7T is the future horizon,
but this section is mainly concerned with the weak-field problem for which black holes are absent.

8 Although this paper largely concerns classical GR, we note that (2.13) is possibly deformed by an
anomaly at one loop [98-103]. Since some matching relation of the form (2.13) must exist in order for grav-
itational scattering to be defined, this suggests that these one loop corrections deform rather than eliminate
the conserved charges. This is an important open problem. Some recent progress has appeared in [104, 105].

9In the presence of massive matter or black holes there are extra contibutions at Ii and Z_.



(2.12) implies:
Q7 = Q5. (2.16)

The case f = 1 is just the total energy conservation while the £ = 1 harmonic f = Y,}
gives the well known ADM momentum conservation. The general case (2.16) provides
an infinite number of new generalizations of these four laws referred to as supertranslation
charge conservation [2]. Choosing f to be a delta function, the generalized conservation law
equates the net incoming energy flux at each angle (including linear gravitational terms)
to the net outgoing energy flux at the opposing angle. The relation of these charges to
supertranslation symmetry will be discussed in the next section.

A second infinity of conserved charges can similarly be constructed from an arbitrary
vector field Y4 on the sphere. Using (2.13) one finds

1 1
QY = — d?0,AY AN, = / *0AYANs = Q5. (2.17)
8 Tt 8 I

This expresses conservation of superrotation charge. The special cases for which Y4 is
one of the 6 global conformal Killing vectors on S? are conservation of ADM angular mo-
mentum and boost charge, sometimes referred to as the BORT (Beig-O’Murchada-Regge-
Teitelboim) [106, 107] center-of-mass. Choosing the vector field to be a delta-function,
these new conservation laws equate net in and out angular momentum flux for every angle.

The supertranslation and superrotation charges are absolutely conserved in the sense
that each gives a number constructed according to (2.15) from incoming classical data on
Z~ that must equal a number constructed from outgoing data on ZT. This same number
can also be constructed from data on any spacelike slice that ends on Z* or Z,. This is
qualitatively different from e.g. the oft-discussed Bondi mass as a function of retarded time
which is not conserved but rather obeys a conservation law relating its time dependence
to energy flux through ZF.

The existence of these conserved charges is in principle experimentally verifiable. In-
deed, proposed tests of the gravitational memory effect, although not initially recognized
as such, are tests of supertranslation charge conservation [20]. Superrotation charge con-
servation may in principle be tested via the gravitational spin memory effect [21].

In conclusion, the very existence of a well-posed scattering problem from I~ to
I7 in GR necessitates the existence, for any matching condition, of an infinite num-
ber of conserved supertranslation and superrotation charges. With our matching condi-
tions (2.12), (2.13) the explicit expressions for these charges are in (2.14), (2.17).

2.3 Discussion

It may seem peculiar that this infinity of exactly conserved charges, which generalize ADM
energy and angular momentum, has gone unnoticed in the more than half a century since
the notion of an asymptotically flat spacetime was introduced in [108]. Part of the reason
for this is that many early studies concentrated on special spacetimes in which the peeling
theorem [109] applies and Penrose’s conformal compactification [110] can be utilized. In
fact the peeling theorem does not apply in generic physical settings, see e.g. [111, 112] . A



simple example which violates peeling is a pair of massive bodies coming in from infinity
with asymptotically constant velocities and no incoming radiation. In this type of situation,
however, peeling can typically be restored by adding incoming radiation in just such a fine-
tuned way that the solution is exactly Schwarzschild outside some arbitrarily large but
finite radius [113-115]. This procedure fine-tunes all of the nontrivial supertranslation
and superrotation charges to zero, rendering the conservation laws rather trivial. It was
a commonly held expectation that, in the generic physical case, the singularity structure
near spatial infinity is too uncontrolled to admit well-defined conserved charges of the type
described here. If correct, this would suggest that there are no physical contexts in which
an infinite number of non-trivial and well-defined conserved charges can exist. This all
changed relatively recently starting from the work of Christodoulou and Klainerman [92],
who showed!? that generic spacetimes in a finite neighborhood of flat space lie precisely
in the sweet spot where it is possible to define [2, 7, 26] an infinite number of finite,
generically non-zero and conserved supertranslation and superrotation charges. In this
paper we consider a larger family of spacetimes whose asymptotics lie in the same sweet
spot and have the conserved charges, but are not necessarily in a small neighborhood of
flat space and may contain black holes in the interior.

3 Asymptotic symmetries

It is typically the case that conserved charges imply symmetries. In judicious circumstances,
a physical phase space I' can be constructed by imposing suitable constraints and gauge
conditions. Dirac’s procedure is then applied to give the Dirac bracket {, }. One then
defines the infinitesimal symmetry associated to a conserved charge ) on the fields ® by

50 = {Q, d). (3.1)

In practice, many subtleties may arise in implementing this procedure including the identi-
fication of proper boundary conditions and zero modes. As reviewed in this section, the pro-
gram has been completed for supertranslations but remains underway for superrotations.

3.1 Supertranslations

Dirac brackets involving Cap (including its zero modes) were constructed in [3].}! Com-
mutators of the supertranslation charge Q;{ in (2.14) were then shown to obey

{Q}r, Cap} = f0,Cap —2DaDpf +vapD*f, (3.2)
{QF,Clz+} = f. (3.3)

The key result of [92] relevant for our purposes is that the Bondi news falls off at least as fast as Iu\%/?

(or \v\%/z ) near the boundaries of Z. This is much faster than required for finiteness of the total radiated
energy, and in particular implies that C'ap is finite and well defined at the boundaries of Z, enabling the
fundamental identification (2.12). If the news decayed only as ﬁ7 Cap would diverge and the scattering
problem would be ill-posed.

"This refined the results of [15-18, 116, 118, 119] by a careful treatment of zero modes, including an impo-

sition as physical constraints of the vanishing of the Weyl tensor and the Bondi news at the boundaries of Z.



This is easily recognized as the action on Cyp of the BMS+ supertranslations [93, 94]
which are diffeomorphisms generated by the vector field

1 1
Cp=fOu — ;DAfﬁA + §D2fc‘9r + ... (3.4)

Here the subleading % corrections required to preserve Bondi gauge depend on the metric
and D? = v48 D, Dg. The full BMS+ group is a semidirect product of supertranslations
with the Lorentz group.

The fact that the symmetry generated by ); is a subgroup of a known symmetry
(diffeomorphisms) of the standard presentation of the theory is a beautiful feature of this
example. It is not obvious or a priori guaranteed. Indeed there are a number of examples
(e.g. [31]) where this is not the case.

Interestingly, the vacuum solution C'4xg = 0 on ZT is not invariant under supertrans-
lations. In other words, supertranslation symmetry is spontaneously broken. There are
an infinite number of degenerate classical vacua labelled by the function C|,+, each of
which is preserved by a different Poincare subgroup of BMS+. These vacua have different
ADM angular momenta. This is consistent with the existence of vacuum solutions with
nonzero angular momentum [120]. This is sometimes referred to as the ‘problem of angular
momentum’ in GR. However properly understood it is a beautiful feature indicating a rich
vacuum structure, not a problem!

3.2 Superrotations

It is natural to expect that superrotation charges canonically generate the antipodally-
identified Virasoro-like symmetry presented in [26, 85-88] whose global SL(2, C') subgroup
is the Lorentz group. We think this is likely in some sense the case. However superrotation
symmetry is more subtle than its supertranslation analog and the construction has not
been completed. The difficulty can be seen in a naive application of the Dirac brackets
of [3] which yield

1
{Qi’;, NAB} = ﬁyNAB — DADBDcyc + §7ABD2D0YC. (3.5)

Apparently Q;C does not preserve the condition that N4p vanish at the boundaries of ZT:
i.e. it does not map the phase space considered in [3] into itself. Quantum mechanically,
the action of Q{ﬁ will produce a state outside the Hilbert space studied in [3]. A larger
phase space and associated bracket is needed, but has not yet been found. Indeed recent
work [121] building on [122] has shown have shown that superrotations can create strings
which pierce Z and destroy asymptotic flatness, suggesting the requisite phase space is
the one considered in [123]. Other very interesting recent works have suggested that su-
perrotations can be understood in terms of diffeomorphisms which violate standard falloff
conditions [45, 121, 124, 125]. An important issue for the quantum theory is the appear-
ance of one loop corrections [98] which depend on the order of soft limits [99]. These
and other important issues are beyond the scope of this paper (although in section 7.3



we will show that non-holomorphic superrotations preserve Bondi gauge). Early discus-
sions of superrotation symmetry can be found in [122, 126, 127], and more recent ones
in [7, 26, 27, 84-88, 104, 105, 128).

In this paper we will not use the superrotation symmetry per se — only the finite and
conserved superrotation charge given by (2.17), and defer the above interesting issues to
future work.

4 Schwarzschild supertranslations

In this section we will describe the infinitesimal supertranslation of the Schwarzschild black
hole i.e. a black hole with linearized supertranslation hair. This specializes more general
formulae which can be found in [85-88]. This type of soft hair appears to be an alternate
description of the edge modes as discussed in [79-83].

The extension of an asymptotic gauge symmetry into the interior is gauge dependent.
In a general time dependent situation, there is unlikely to be a useful or canonical choice of
gauge. Quantum fluctuations further diminish the utility of specific choices. In quantum
gravity in asymptotic Minkowski space, we expect the only fully well-defined observables
are supported at the boundary at infinity.

It is nevertheless sometimes possible, armed with a gauge choice, to define interior
quantities such as local gravitational energy densities at first non-trivial order in pertur-
bation theory around Schwarzschild. This is sometimes useful in developing a picture
and intuition for the behavior of the spacetime away from its boundary. For example one
may show at leading order in perturbation theory that, at both the classical and quantum
level, the total energy comprised of linearized perturbations plus the mass of the black
hole itself is conserved. Moreover, this perturbative conservation law is the linearization
of an exact, nonperturbative conservation law, which can only be exactly phrased in
terms of asymptotic quantities. It is in this spirit that we study the linearized action of
supertranslations in Schwarzschild.

In advanced Bondi coordinates the Schwarzschild metric is
2M
ds? = —Vdv? + 2dvdr + r?yapd©1deP, vV =1-". (4.1)
r
We wish to find the BMS— supertranslations ¢ which preserve Bondi gauge (2.1) and the
standard metric component falloffs at large » while having bounded components in a local
orthonormal frame at large . The last condition eliminates all superrotations, including

boosts and rotations. The former conditions require, for Schwarzschild

Legra = 0aC” + gap0r¢P =0, (4.2)
E(grr = 28TCU =0,

T

5gABﬁggw = rDsC +2¢" =0, (4.4)

The general solution to this consistent with Bondi gauge and asymptotic falloffs is'?

Cr=fo,+ %DAfaA - %D%@h O f =0uf =0. (4.5)

12The general solution without restricted falloffs is given in section 7 below.

,10,



This extends the asymptotic expansion of the supertranslations on Z~ to the entire region
covered by the advanced coordinates. This includes Z~ and H ™ but not Zt. These act on
the Schwarzschild metric as

MD?
ﬁfgvv = r2 fa
Ligap = 2rDaDgf — ryapD?f,
1
Ligay = —Da (Vf+ 2D2f> : (4.6)

Adding this to (4.1) gives the infinitesimally supertranslated Schwarzschild geometry:!3

M D?
ds® = — <V - f> dv? 4 2dvdr — dvd©®? D 4(2V f 4+ D2 f)

+(r2yap + 2rDaDpf — ryapD? f)dOAd65. (4.7)

The event horizon is at r = 2M + %D2 f- This describes a black hole with linearized
supertranslation hair.

5 Implanting supertranslation hair

In the previous sections we described a supertranslated eternal Schwarzschild black hole. In
order to be certain such objects really exist, in this section we describe how one physically
makes such a hairy black hole.

First we show how to add supertranslation hair to bald eternal Schwarzschild, and then
generalize to a black hole formed from the vacuum. At advanced time vy in Schwarzschild
we send in a linearized shock wave with energy momentum density

7 _ u+T(0)

v T
A2

0(v — o) (5.1)

near Z~—. We wish to solve for the linearized metric in such a way that the solution
is diffeomorphic to Schwarzschild both before and after the shock wave. Stress energy
conservation V,7% = 0 then mandates subleading in % corrections to the stress tensor for

shock waves which are not spherically symmetric. These take the form'
o [pt T T . Ty
Tvv = W 471’7‘3 (S(U — 'U()), TUA = 47]'7"25(2} — UO). (52)

where 7/(©) has only ¢ > 1 components’® so that and 7™ and T4 are functions of x
determined by

(D?+2)TW = —6MT, DATy =T, (5.3)

13Tt may be possible to find the finitely supertranslated geometry. This was accomplished at null infinity
in [34] and related finite problems were solved in [28, 122, 129-131]. However in this paper our attention is
restricted to the linearized theory.

We are grateful to Alex Lupsasca, Monica Pate and Prahar Mitra for help with this solution.

5The ¢ = 0 component is represented by pu. The £ = 1 component, which would add ADM momentum
to the black hole, is eliminated to simplify the discussion.
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The solutions are conveniently expressed by introducing the Green function solving

\f D2(D? 4+ 2)G(0:©') = §2(A0), (5.4)
namely [20] , n6 A6
G(0;0") = —sin? - log sin® — (5.5)
m

where A© is the angle on the sphere between © and ©’. Further defining
é(o) = / 26'G(0,0)T(0), (5.6)
(5.3) has the solution

1 A
T = ZD2(D2 +2)C,

Py _ _3M o
2 Y
- 3M A
Equivalently
. 1 1 s 3M 5 4
w=-—> |p+-D*(D*+2)C - =—D*C| 5 (v—1),
4772 4 r (5.8)
. 3M . '
Toa = _87T7“2DAC(S (v—wp) .
The leading large-r constraint equation on Z— may then be written
1 .
Dym = 1DADBNAB + (1 +T(0))5(v — ). (5.9)

This equation constrains, but does not fully determine, the mass aspect m and Cyp. We
wish to solve it in such a way that dgm = 0 everywhere. Integrating over the sphere this

implies
m = M + pf(v — vo). (5.10)
It then follows from (2.5) that
DADpCAB = —4T(©)0(v — vp). (5.11)
The unique solution to this is
Cap = —20(v — 1) <DADBC' — ;7A3D20> . (5.12)

One may verify that

r r2

o A
By = 0(v — vp) <2“_MD C’))

A 1 A
hap = —2rf(v — vg) <DADBC - 27ABD20> )

2M 1 A
hUA = 9(’[} - ’UO)aA (1 - T + 2D2> C, (513)
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solves the linearized Einstein equation with source (5.8) for all » and hence are the complete
linearized metric perturbations. Comparing with the formula (4.6) for a supertranslation
of Schwarzschild one finds (5.13) can be written

2
hap = 0(v — 1) (ﬁf:égab + fégé};) . (5.14)

Hence the shock wave is a domain wall interpolating between two BMS inequivalent
Schwarzschild vacua, whose mass parameters differ by pu.

The shock wave induces a shift in the transverse components of the metric perturbation
on the horizon. Integrating over a null generator of the horizon

~ 1 A
Ahap(r =2M,v,0) = /dv@thB(r =2M,v,0) = —4M <DADBC’(G)) - §7ABD2C .

(5.15)

At the quantum level, the expectation value of the metric perturbation in the semiclassical
state produced by the shock wave must have the profile (5.15). That is, it must be close to
a coherent state of soft gravitons. According to Weinberg’s theorem, soft gravitons at Z+
are excited whenever energy crosses Z* with an £ > 1 angular momentum profile. Similarly,
soft gravitons at H' are excited whenever energy is thrown into the black hole with an
¢ > 1 angular momentum profile. It would be interesting to see this diagrammatically in
perturbation theory around Schwarzschild from the emergence of a pole in the soft limit of
gravitons falling into the black hole. It may also be possible to use (5.15) to define a ‘black
hole memory effect” which can be measured by observers hovering just outside the horizon.
It is trivial to generalize this construction to a black hole formed from the vacuum via

a Vaidya shock wave at v = vg. One simply replaces the mass aspect appearing in (5.10) by

m = M6(v —vg) + ub(v — vo). (5.16)

Hence hairy black holes can be classically produced from the vacuum. In the next section
we see how they are classically distinguished by their superrotation charges.

6 Classical superrotation charges of supertranslation hair

Supertranslating a black hole does not add supertranslation charges to the black hole, just
as an ordinary translation of a black hole does not add momentum. This follows from the
fact that the supertranslation group is abelian, and may also be seen directly by evaluating
the charge expressions of the previous section. However, as supertranslations and super-
rotations do not commute, a supertranslated black hole can and does carry superrotation
charges, already at the classical level. In this section we work out these charges for linearly
supertranslated Schwarzschild.
From (2.17) the conserved superrotation charges are
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where Y4 is any smooth vector field on the sphere. We are interested in the differential
superrotation charges carried by an infinitesimally supertranslated Schwarzschild black hole
of the type considered in the previous section. As seen from (4.6), under a supertranslation
df9ab = L¢gap of Schwarzschild

O0fNao = —3MOaf. (6.2)
It follows immediately that
o 3
Qy(9,h=1079) = — /I d?0\AYAMo,f. (6.3)
+

This is nonzero for a generic vector field Y4 and supertranslation f. An infinite number
of superrotation charges can be independently added to the black hole by different choices
of f. Hence the superrotation charges classically distinguish differently supertranslated
black holes. Classical black holes sport an infinite head of “supertranslation hair” which is
rearranged essentially every time something is thrown into it.16

The most easily measurable quantity is the difference in superrotation charges before
and after the supertranslation hair implant. This is because the definition of superrotation
charges (including angular momentum) is ambiguous up to conjugation by supertransla-
tions. In particular, in this example, we could conjugate the superrotation charges by f so
that all vanish post-implant. However, the pre-implant charges then become nonzero while
the difference of pre-post implant charges is unaffected. This is analogous to the stan-
dard gravitational memory effect at Z which also measures differences in supertranslation
frames.

However one should not conclude from this that only the charge difference is physical,
any more than one should conclude that only black hole energy or momentum differences (a
special case) are physical. Measurement of absolute (rather than relative) energy, momen-
tum, angular momentum or any of the superrotation charges is also possible but requires
specification of an asymptotic Poincare frame. In the physical phase space, two black hole
spacetimes which differ by any element of BMS correspond to different points. For the
case of boosts, the two spacetimes have different energy. For supertranslations they are
energetically degenerate, but carry different superrotation charges (including angular mo-
mentum) and are still physically distinct points. In the quantum theory, the corresponding
states are orthogonal and can be superposed. An important difference between boosts and
supertranslations is that the latter act nontrivially on all the zero-energy vacua as well,!”
imparting superrotation charges at quadratic order [34]. Hence the phase space of asymp-
totically flat geometries with nonzero energy and 4 Killing vectors is not a simple product

of vacuum and black hole phase spaces.'®

'SSimilar observations were made in [27] and in the context of the membrane paradigm in [30, 44].

17 Any given boost element of BMS acts nontrivially on a generic vacuum, but every vacuum is preserved
by some Poincare subgroup of BMS. There is no preferred Poincare subgroup [93, 94].

18 As we shall see in the next section, the linearized supertranslation charge around a black hole geometry
naturally decomposes into the sum of a horizon term and a Z term, which are not separately conserved in
the general nonlinear context. It may be interesting to consider the phase space action of only one term,
but such configurations will generically not be static or have Killing symmetries.
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The formula (6.3) of superrotation charges requires only the asymptotic behavior of
the black hole, and would in a sense pertain to essentially any configuration with the same
mass. To understand this, let us suppose we sent the supertranslating shock wave into a
star or a collection of stars instead of into a black hole. The wave will excite and rearrange
the interior structure of the star and, in the case of multiple stars, their relative motions.
Generically gravitational radiation will carry some, but not all, of the superrotation charge
back out to infinity, while some will be retained by the star(s). It is unsurprising that a star,
or a collection of stars, which has many internal degrees of freedom and possible interior
states, can carry many superrotation charges. There is no no-hair theorem for a star. Now
consider instead replacing the black hole by a massive stable ‘hairless’ elementary particle
with no internal degrees of freedom. Such an object cannot carry arbitrary superrotation
charges: the pre- and post- superrotation charges are generically the same (except for
the £ = 1 component). To leading order, the supertranslating shock wave will simply be
reflected through the origin and scatter back up to future null infinity. The elementary
particle has no mechanism to absorb all the superrotation charges. The outgoing wave will
cancel the superrotation charges induced by the ingoing wave and, in the far future, the
superrotation charges will revert to their initial incoming values.

So we see that in this sense black holes act more like a complex star with many internal
degrees of freedom than a massive elementary particle. The observer at infinity can confirm
this by sending in shock waves and watching what comes out.

At the same time, we note that the exact definition of supertranslation hair in the
nonlinear theory given here relies on the existence of an asymptotically flat spacetime
boundary and so is not fully intrinsic to the black hole. Although it may be possible, we do
not know how to canonically associate supertranslation hair to a classical stationary black
hole in AdS (this is likely related to the discussion in [81]), while a star in AdS clearly
retains many internal degrees of freedom. The next section sheds some light on this issue
by giving an intrinsic definition of the horizon contribution to the supertranslation charge
to linear order around Schwarzschild.

7 Horizon charges

In the absence of eternal black holes or massive fields, the linearized supertranslation
charges Q;{ can be written as volume integrals of local operators over ZT, as explicitly
demonstrated in [3]. However for Schwarzschild this is clearly impossible, as ZT is not a
Cauchy surface. Rather, in the absence of massive fields, Z+ U H™ is a Cauchy surface.
Hence one expects a relation of the form

Qf =QF +Q}". (7.1)

The precise form of the horizon contribution Q}'ﬁ will depend on the coordinate choice used
to extend the supertranslations in from the boundary to the horizon. Here we use Bondi
coordinates for this purpose. We gauge fix linearized metric fluctuations of the horizon
to obtain a physical horizon phase space I'y+. The symplectic form is then constructed
and inverted to obtain the Dirac bracket. An expression for Q}'ﬁ is derived and shown
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to generate supertranslations on I'y+. The construction requires that Q}'ﬁ and the soft
graviton modes, which are nonvanishing on the boundaries H{ of H*, be incorporated as
symplectic partners within I'y/+.

Our construction of course makes sense only in (leading order) perturbation theory:
in the general case the classical horizon is defined only nonlocally and, even worse, in
the quantum case it evaporates. It is doubtful that in the presence of interactions a clean
separation can be made between the two terms on the right hand side of (7.1). Nevertheless
we hope it may prove useful in developing intuition for the effects of supertranslation charge
conservation on black hole dynamics.

This section relies heavily on general formulae from the literature [117-119, 132-135]
on the covariant canonical formalism and symplectic forms in gravity.

7.1 Symplectic forms and linearized charges

We expand in variations dg., = hgp around a fixed background metric g, which solves
the Einstein equation. The variations are taken to obey the linearized vacuum Einstein
equation

Ohab + 2Rachah™ — 2Reiahy — VoV ehy = ViVeha® + Vo Vph = 0. (7.2)

and so are tangent to the phase space. The general results of [134] give the pre-symplectic
structure as

w(h, ) = /2 I (B, 1), (7.3)

where the surface 3 is a Cauchy surface in the spacetime and J is the pre-symplectic
one-form. Explicitly,

v—g |1 1 1 1
J= Ton g §hvbh’ab— 5hvah’+ 5habvbh/—h”cvbhngr§h”cvah’bc— (h < b)) |da®. (7.4)
T

It may be shown that (7.2) implies
d+J=0. (7.5)

Hence w(h, h’) is a functional of the background metric and the two on-shell variations h
and A/. It is invariant under deformations of the surface ¥ which leave the boundary 9%
fixed.

We are particularly interested in the case where one of the variations — say b/ — is
pure gauge i.e. h’:zb =Vuolp + Vi, = hgb. J then becomes coexact

1

J =
¥ 167

dx*F, (7.6)
where F; is given by

1
Fab = §(vaCb - VbCa)h + (Vahcb - Vbhca)CC + (cha hcb - Vch hca)
- (vchcb Ca - vchca Cb) - (vah Cb - vbh Ca)-

(7.7)
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One then has [117-119, 133-135]

1 _ AT

w(h, h¢) = 167 s «F = Q7. (7.8)
When ¥ is a Cauchy surface, and this is nonzero, it indicates that the diffeomorphism ¢
acts non-trivially on the physical phase space. Q?E is a conserved charge associated to
the surface 0% and diffeomorphism ¢ in the sense that it does not depend on the choice of
an interior surface X. We use the hat notation Q to emphasize that this is the linearized
difference in the charge between the geometries g and g + h. We will not in this paper
consider the integration to finite charges.

In general, the pre-symplectic form w has zero modes and cannot be inverted. These
are eliminated by imposition of the constraints and a judicious choice of gauge. Once this
has been accomplished, the restriction of the pre-symplectic form to the physical subspace
is the symplectic form. Since all of the zero modes have now been eliminated, it may be
inverted to find the Dirac bracket. Once we have done this, we may decompose a tangent
vector in this physical phase space by hg, = ), h'h;q, where the tangent index i runs over
the (infinite) dimension of the phase space. Defining the inverse of w by

wwi, = o, (7.9)
the Dirac bracket is
{ht, hI} = WY, (7.10)
Using
QF = (h)'wih?, (7.11)
it follows immediately that
{QZ",h'} = (h)". (7.12)

In other words, Q?Z infinitesimally generates the action of the symmetry ¢ on the physical
phase space via the Dirac bracket.

7.2 Schwarzschild charges
We work in the Bondi gauge (2.1) for which

her = hpa =7 Phap =0, (7.13)
and are interested in the case 9% is an S? of constant  and v. One then has

A 1
% 2 2
= — d°e Fry, 7.14
Q¢ 167 Jos, VAT ( )

where for Schwarzschild the general expression (7.7) reduces to

2 1 2 1
Fry = CA (arhAv - T'hAU) + Cv <_T2DAhAU - 7'th> 37«thm; + ﬁDACUth
4V 2
+aTCvVhUT - CUThm‘ + CT;hvr‘- (715)
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For ( = (f a supertranslation as given in (4.5), after discarding total derivatives on S?, we

find
4V

1 2 1
Frv = 7DAf8rhAv - f (hvv + hvr) - D2f7hvr- (716)
T T T T

Given the large r asymptotics, only the h,, term survives for r — oo and one finds

AT

1
+ 2 A 1
Qe =+ /I+ d20./7 frn, (7.17)

which is the standard expression for the incoming linearized supertranslation charge Q}Z
The hat on m denotes that it is the deviation of the Bondi mass aspect from the background
around which we are expanding. Supertranslation charge conservation equates this to the
outgoing charge

It

+ A 1 A
Q;F =Q; Zh/ﬁf@ﬁfm. (7.18)

Assuming there are no massive particles'® or black holes, after imposing constraints
and fixing to the Bondi gauge, the symplectic form (7.3) was inverted in [3] to obtain the
Dirac bracket {, }. Using the constraints to rewrite the charge as a Z~ integral

O I7 1 1
Q? = Qf+ = E /I d2®dv\ﬁf (Tvv - 4DADBNAB> . (7'19)

It was then shown that on Z—
{Qr, } =165 (7.20)

That is, in this special case the supertranslation charge indeed generates supertranslations
via the Dirac bracket.

We would like to preform a similar construction of the charge in the presence of a black
hole. Let Xt be a hypersurface extending from Z© to HI, so that XT U H™ is a Cauchy
surface for the portion of the spacetime exterior to the black hole. Then?°

Q; =QF +Q}. (7.21)

Q}# is the contribution to the full supertranslation charge coming from the horizon: i.e.
the black hole supertranslation charge. It is the difference between two boundary terms

. M T
QY = = / d*0/f [DA8rhay + 2y + DQhW]:‘E : (7.22)

We wish to study its properties and demonstrate that it generates horizon supertransla-
tions.

9The additional boundary terms at Z~ from massive fields are given in [11].
20For eternal Schwarzschild, which has a past horizon, charge conservation will require a matching con-
dition relating data on H' to that on Hy.
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Q}# can be written as a horizon integral by integrating by parts and using the con-

straints. The linearized constraints on the horizon are?!
1 1
Dy(Dhpy + 2Mhy,) — mDAhAU - §D2hm,_327rM2T]‘f . (7.23)
1 1
a’u <_DAhvr_arhAv+thA+4M2D hBA)“‘DA8 hvv+2MD hvr
+4M2 DAD hpy, — 4M2D hay — 4M2 hAv—167rTAv (7.24)
Using the linear combination of (7.23) and the divergence of (7.24) given by
1 1
My (2hyy + D*hyy + DA, hpy) — Dth, - mDADBa hpa — MD?8,hy,
——DZhw + L~ pA hay = 320 M>*TM — 162 M DATY  (7.25)

AM
and integrating by parts it finally follows that

yut _ 1

QF 2 / d2@fdvf< DADBOhpa + 320 M*TY — 162 M DATYL
T JH+

+ D2hv'u + MD28 hfuv + D hm« - WDAhAv) (726)

We will see that this generates horizon supertranslations after appropriate gauge fixing and
boundary conditions.

7.3 Gauge fixing and Dirac brackets

We cannot yet construct Dirac brackets because the presymplectic form w still has zero
eigenvectors given by residual gauge transformations which vanish at ”HI and preserve the
Bondi gauge (4.2)—(4.4). We now find the most general such transformation. Differentiat-
ing (4.2) with respect to r and using (4.3) one finds the condition

ro2¢A 4 20,¢4 = 0. (7.27)

The general solution to the above equation is
A(r0,0) = XA, 0) + - 741, 0). (7.28)
Substituting ¢4 (r, v, ©) from above into (4.2)(4.4) gives the remaining components of (¢,
¢ = —gDACA, 0aC" = yapZ”. (7.29)

Let us define (Y = X(v,0). Then the most general residual diffeomorphism (x for
Schwarzschild in Bondi gauge?? is parametrized by an arbitrary vector X (v, ©) and an
arbitrary scalar X (v,0©) on H™T as:

1 1
(x = X0, — 5(rDAXA +D%*X)0, + X494 + ;DAXéA. (7.30)

2In this section consider only linearized order where the matter stress tensor 7 vanishes, we include it
here only as an indicator of how matter couples at next order.

*2This is more general than the usual BMS vector fields discussed e.g. in [85-88] as we have not imposed
any falloffs.
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These shift the nonzero metric perturbations to leading order as follows

M
r

1
Sxhay = —%DADBXB — 5DAD?X = VOAX +170,Xa + 9, DaX,

M
Sxhyy = —DpXP + T—2D2X —2V9,X —rd,DpX? — D%, X,

Sxhap = 2 (DaXp + DpXa —yapDcX) +r(2DADpX — yapD?*X),

1
Sxhor = —§DBXB + 0, X, (7.31)

where, as usual, X4 = vapX? and dx denotes the Lie action of (x on Schwarzschild. A
supertranslation is

X=f XxX"=0, (7.32)

with 9, f = 0, while a superrotation is??

X = gDAYA, XA =v4, (7.33)

with 0,Y4 = 0.

In order to invert the symplectic form to get the Dirac bracket we must fix the trivial
gauge symmetry, namely those transformations which (unlike supertranslations) are zero
eigenvectors of w and then use the Einstein equation to restrict to the ‘on-shell” physical
phase space. We moreover by hand restrict the phase space via the boundary condition
Ophablv=too = 0. This excludes the superrotations (7.33): a looser boundary condition
(see [45, 121, 124, 125]) is certainly of interest but outside our current scope. Having done
so, we will find w in two steps. First we will construct a reduced w™? in which all gauge
freedom is eliminated. We will then add in the non-trivial gauge modes which requires
only the boundary expression (7.15).

The constraints (7.23), (7.24) imply that the linear combinations

L 4 [
——Dpy + =D?hyy =0, (7.34
ol vt ]Hi 0, (7.34)
Dadhhos + ——Dahor + ——oDaDPhiy — —— D2h gy — ——1, =0, (7.35)
AUrllyy oM Albyr AM?2 A Bv AM2 Av AM?2 Av Hi =Y, .

vanish at the horizon boundaries 7—[1 where we have set 0,hg, = 0. Defining two convenient
combinations of the metric perturbations h and h4 by

B = hop + 2hey + 2M Oy oy, (7.36)

ha = hay + 2M D ghy,, (7.37)

ZLocally imposing the standard Bondi falloff conditions at large r requires Y to be locally a con-
formal Killing vector [85-88] and implies D*DaY* = —2D4Y*. We will not impose this restric-
tion herein. The general expression for the charge is QA(X’XA) = —ﬁ faz dQG)ﬁr[XA(rarhAu —

2hav + rD*hor) — X(D*0phav + 2hyy + (D? 4 4V)hy,)], while the central term is w(X, X*; X/, X"4) =
e [oe O Ar[X(=D? =2+ 2DAXA — (X — X, X' — X)),
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(7.34) and (7.35) can be rewritten

DAiLA|Hi =0, (7.38)
(D2 + 1)ha — 2MDA}~1} i =0 (7.39)

These equations have angular momentum ¢ = 0,1 solutions with h4 a rotational Killing
vector and h a constant on the sphere. These are related to linearized deformations of the
angular momentum and mass of the black hole which are not our present interest. While
inclusion of these four modes would not change our final conclusions for simplicity we fix
them to zero:

BA!H; = i1|Hi = 0. (7.40)

Under the general residual X and X gauge transformations (7.31) one has
oxh = —(2D* 4+1)9,X — 6M9,Dp X5, (7.41)
Sxha = 4M?*(8,X 4 — 0,DADpXB) —2M D 4(D? - 1)9,X. (7.42)

We can use these to set (for £ # 0,1))

h=hy=0 (7.43)

everywhere on the horizon r = 2M. This still leaves unfixed all 9,X = 9,X* = 0 trans-
formations, which includes supertranslations. Using (7.43) to eliminate h,, and hg4,, the
constraints simplify to

(D? = 1)y[hy] = =167 MTM = 0, (7.44)
1
Dy |2M D 40y hoyy — Orhiny + mDBhBA = 16774 = 0. (7.45)

The matter sources are set to zero here because we are constructing the Dirac brackets of
the linearized theory. We conclude the quantities in square brackets are function of © only.
Using the residual 9,X = 9, X4 = 0 symmetry we may set then to 0:

how = 0, (7.46)

1
—DBhpa. (7.47)

arhAv = 2MDA8rhvv + AM2

It can be shown that this completely fixes all the gauge symmetry, including supertrans-
lations. Using these relations, the rr and rv components of the Einstein equations reduce
to

1
2 Orhor = seTM =0, (7.48)

1, 1
_W(D = 1)0rhwy — 16M4

The symplectic form (7.3) involves (hapg, vy, Orhy, Rry, Ophry, B Ay, Orhay). (7.43) can
be used to eliminate h 4, and hy, in terms of other variables. (7.46)—(7.49) then eliminate

DADBhap = 82T = 0. (7.49)
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hovs Orhay, Orhyr and Ophy,, expressing everything in terms of the traceless hap. Denoting
such fully gauge-fixed on-shell perturbations by hgp, one finds

hoy = 0,
- 1 _ -
Orhyy = _W[DQ —17'DADPhyp,
= 1 _ -
By = m[D2 —1]7'DADBhyp,
haw = 0,
7 1 2 “11BNCOT I B3
87‘hAU = —MDA[D - 1] D"D hBC+ 4M2D hAB;
arhvr = 0. (750)

It should be noted that (D? — 1) is a negative definite operator and therefore its inverse
exists.
A computation reveals that

+
H+

/ dvd?0 /7 (R o'y — b W] (7.51)

Wv"eal(}’Z7 Bl)

= 64r M2
Here the traceless shear tensor 1
OAB = §8thB (7.52)

is the local coordinate-invariant dynamical degree of freedom on the horizon. (7.50) ex-
presses the fact that after complete gauge-fixing and imposition of the constraints all met-
ric components are determined by the shear tensor, up to zero modes. It is of course the
point of this paper to carefully understand the zero modes.

At the level of linearized metric perturbations around Schwarzschild, it appears self
consistent to view hyp, as a complete set of coordinates on the phase space of the horizon.
However as we have seen in section 5, the moment interactions are introduced, pure gauge
modes corresponding to supertranslations are excited. The gauge condition (7.46), which
eliminated the rigid supertranslations cannot be enforced. Hence one cannot perturbatively
construct the interacting theory beginning from fully gauge fixed modes. One must, at a
minimum introduce the supertranslation field ¢ g, which we shall see shortly is not a zero
mode of the presymplectic form w.2* The fully gauge fixed perturbation hg, is related to
the more general Bondi-gauge perturbation hg, by

hab = hap + O Gab- (7.53)
The full symplectic form is
W (h, ') = w(h, h') + W (h, dpg) + wred((sfg, R') + ofed(éfg, 5p1g). (7.54)

The last term is easily seen to vanish, implying there is no classical central term in the
supertranslation algebra. The middle two terms were essentially computed in (7.26). Us-
ing (7.43) and setting the sources to zero, one finds

1

W'(h,8pg) = ol /H X dvd*©,/7f'DADPo 5. (7.55)

240ther pure gauge modes which are not annihilated by the symplectic form are interesting candidates
for further physical degrees of freedom, but are beyond the scope of the present paper.
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Putting this together and using hap = hap +2M (2DADgf — yapD?f), one finds

1
w(h, ') = e /dz@ﬁ/dthBa’AB —he W, (7.56)

This implies the Dirac bracket

{04B(©,v),hep(©',v)} = 328 M?*(vacyBD + YADVBC — YABYCD)d (v — v)§°(© — ©),
(7.57)
The expression in parentheses is the deWitt metric [136] for computing distances on the
space of all metrics. Hence

Ayt 1 2 AnB

QF = toar /H+ dvd?0./7 fD*DPo 5. (7.58)
and

{QF"  hap} = 2M(2DaDgf — yapD?f) (7.59)

as desired.?” This equations state that the linearized charge Q}'ﬁ is the symplectic partner
of the supertranslation zero mode dyg,p. This was guaranteed to work by the general
argument of section 7.1 once the physical phase space and sympectic form were properly
identified.

The linearized charge Q}'ﬁ is a multipole moment of the zero mode of the shear tensor
which is the local Cauchy data on the horizon. QA}# does not vanish for generic shear
tensor on H*. If it did, it could not generate supertranslations via Dirac brackets on the
physical phase space. However, if we look at the space of linearized fluctuations on HT
that can be excited by sending in linearized gravity waves from Z—, they all have Q}'ﬁ =0.
This follows from the fact that the black hole absorption amplitude for the /th partial wave
with frequency w is proportional to w’.26 The % Cauchy data with nonzero Q}'ﬁ would, if
evolved backwards with the linearized equations, give perturbations which diverge far from
H*+ on Z~. Nevertheless, we here see that the horizon phase space parametrized by hap
must be enlarged by the symplectic pair (Q}#, d¢gap) in order to have a suitable starting
point for the interacting theory in which, as we have seen in section 5, the supertranslation
field can not be frozen. Equivalently, the enlargement of the phase space is required for the
existence of an operator which generates supertranslations everywhere in the spacetime.
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A Some useful formulae

In this appendix we collect some formulae which we have found useful in our computations.
In Schwarzschild the nonzero connection coefficients are

5A
Iy = TB7 Uap = —7ryaB, Iy = —rVyas, I'ge =% I'ie,
M M MV
Iy, = o Loy = PR [y, = 2 (A1)
Covariant derivatives on the unit sphere obey
[D*,D4]X = 04X, [D®,DslXp=X4. (A.2)

One finds at » = 2M

1 1 1
F A %) v A A A
=G ( rhao MhAU) ¢ ( 4M2D havt 4M2 o Mh 16M3h ) (A-3)

1
. 'Uhm) DA vy vA — vh r — By hA rhA
+00C Ry + Chya 8M28§ +¢ <M +8M3 ) SMzag

4M2

On the horizon, supertranslations are given by

vy T D2 5
Ot = 37 P77

1
5farhvv = _4M2D2fa

1
drhay = —§3AD2f,

1
5farhAv - _maAf,

(5th3 =2M(2DsDpf _’YABDQf)a
D2Duf = DaD*f + 0uf (A.4)

From the linearized constraints on the horizon (7.23)(7.24)

1 1 1
rlyy — — 7,1 or — =1, r v = ——D
Ohy=—rzhs hor=gh, dhay = =5 Daht o

1
Vlhyy = S 0uh
vbhvc - vvhbc = abhvc - avhbc - gchva + Fgchba

DPhap, hyw=ha,=0. (A.5)

vrhvv - vvhrv = _%avha
Vhoc — Vohpe = Ovhpe. (A.6)

Then the pre-symplectic current becomes

Jy = V16 h@h’—fhah’Jr hah/ hABahAB h b

= V32 I hABY Wy — h 5 I (A.7)
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