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Neutron diffraction and magnetic susceptibility studies of a polycrystalline SrCraAss sample re-
veal that this compound is an itinerant G-type antiferromagnet below the Néel temperature Tn =
590(5) K with the Cr magnetic moments aligned along the tetragonal ¢ axis. The system remains
tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio ¢/a and the
magnetic moment saturate at about the same temperature below ~ 200 K, indicating a possible
magnetoelastic coupling. The ordered moment, p = 1.9(1) ug/Cr, measured at 7' = 12 K, is sig-
nificantly reduced compared to its localized value (4 ug/Cr) due to the itinerant character brought
about by the hybridization between the Cr 3d and As 4p orbitals.

I. INTRODUCTION

Extensive research has been devoted in recent years
to iron-based pnictides and chalcogenides due to their
intriguing correlated lattice, electronic, magnetic and su-
perconducting properties ﬂ—@] In particular, compre-
hensive studies have been conducted on the doped and
undoped body-centered tetragonal parent compounds
AFesAsy; (A = Ca, Sr, Ba, Eu) with the ThCrySis-
type structure (122-type compounds). This in turn
prompted the search for novel physical properties in
other transition-metal based 122-type compounds, such
as with Mn/Cr in place of Fe ﬂﬁ—lﬁ], and moreover
to CaMnyAs, and SrMnsAss with the layered trigonal
CaAlsSis-type structure ﬂﬂ, @] Experimental and the-
oretical work on BaCrgoAsy with the ThCraSis-type struc-
ture ﬂE, ] revealed metallic character, and an itinerant
spin-density-wave ground state ﬂﬂ] The theory also in-
dicated stronger Cr—As covalency than occurs in the Fe—
As compounds. BaCraAs,; undergoes G-type antiferro-
magnetic (AFM) ordering below a transition temperature
Tx = 580(10) K with moments aligned along the ¢ axis

]. ARPES measurements indicate reduction in elec-
tron correlation effects involving the nominally 3d* Cr*?2
cations where the band renormalization is smaller than
in BaFeyAs, [23,[24]. Additionally, recent electrical resis-
tivity and x-ray diffraction measurements on single and
polycrystals of BaCraAse under high pressure revealed
a tetragonal to collapsed tetragonal (cT) transition at
~ 18.5 GPa [25]. The ¢T phase has also been manifested
in CaCoj ggAss at ambient pressure ﬂﬁ and in CaFesAso
and SrCosAss under high pressures , ] Measure-
ments on isostructural EuCryAsy containing divalent Eu
cations with spin S = 7/2 showed this compound to be
metallic, with the Cr and Eu sublattices each exhibiting
G-type AFM ordering at Ty = 680(40) K and 21.0(1) K,
respectively, with the ordered moments on both sublat-
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FIG. 1: (Color online) Chemical and magnetic structures of
SrCraAsy in the magnetically-ordered state. The Cr?t or-
dered moments are aligned in a G-type arrangement shown by

arrows, with antiferromagnetic alignments between all nearest
neighbors.
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tices aligned along the tetragonal c¢ axis @, @] The
recent discovery of superconductivity in MsCrsAss (M
=K, Cs, Rb) under ambient pressure [31-33] and in CrAs
under high pressure ﬂ@, @] sparked more interest in the
search for new Cr-As based compounds.

SrCroAsy is isostructural to BaCroAss ﬂE, @], for
which a hint of a magnetic transition at ~ 165 K was
reported in an early magnetic susceptibility versus tem-
perature study, x(7), and attributed to an AFM transi-
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tion m] This compound is found to be a good metal
from ab-plane electrical resistivity versus temperature
measurements @] Herein, we report neutron diffrac-
tion and magnetization studies of a high quality poly-
crystalline SrCroAs, sample and show that this com-
pound orders in a G-type AFM structure below Ty =
590(5) K with the ordered Cr magnetic moments aligned
along the tetragonal ¢ axis (see Fig.[Il). We find no struc-
tural distortion down to 12 K but the close resemblance
of the temperature variation of the magnetic moment
and the lattice parameter ratio, ¢/a, indicates a possible
magnetoelastic coupling. The ordered magnetic moment,
u = 1.9(1) up/Cr, is significantly reduced compared to
its localized-moment value (4 g /Cr?T) due to the itiner-
ant character brought about by the spin-dependent hy-
bridization [21] between the Cr 3d and the As 4p or-
bitals. This suggests that Cr as a dopant is a stronger
scatterer compared to Co or Ni dopants and may ex-

plain why superconductivity has not been observed in
Cr-doped BaFeyAs, 21, 22].

II. EXPERIMENTAL DETAILS

A high quality polycrystalline sample (2 g) of SrCraAss
was synthesized by solid-state reaction using Sr (99.95%),
Cr (99.99%) and As (99.999 99%) from Alfa-Aesar. The
synthesis was started by reacting small pieces of Sr metal
with prereacted CrAs taken in the ratio Sr:CrAs = 1.05:2.
Excess Sr was added in the starting composition to avoid
the presence of unreacted CrAs phase and to compen-
sate for Sr loss due to evaporation. The mixture was
pelletized, placed in an alumina crucible, and sealed in
an evacuated quartz tube. The tube was placed in a box
furnace and heated to 900 °C at a rate of 100 °C/h and
held at that temperature for 48 h, then the furnace was
cooled to room temperature. This process was repeated
twice with intermediate grinding. The resulting material
was reground inside a helium-filled glove box, pelletized,
and then sealed under ~ 1/4 atm high purity argon in a
quartz tube. The sample was heated to 1150 °C at the
rate of 100 °C/h and held there for 48 h followed by fur-
nace cooling. Powder x-ray diffraction of the final prod-
uct confirmed the phase purity of SrCroAs,. The magne-
tization M (T') measurement in the temperature range 1.8
to 300 K was performed using a Quantum Design Inc.,
magnetic properties measurement system (MPMS). The
high temperature M (T') measurement from 300 to 900 K
was performed using the vibrating sample magnetome-
ter (VSM) option of a Quantum Design Inc., physical
properties measurement system (PPMS).

Powder neutron diffraction measurements were per-
formed at the thermal triple-axis spectrometer TRIAX
at the University of Missouri Research Reactor. Mea-
surements were carried out with an incident energy of
14.7 meV, using Soller slit collimations of 60'-60’-sample-
40’-80". Pyrolytic graphite filters were placed both be-
fore and after the sample to reduce higher-order wave-
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FIG. 2: (Color online) Zero-field-cooled (ZFC) magnetic sus-
ceptibility, x = M/H, of a SrCrzAs, polycrystalline sample
measured in the temperature (7") range of 1.8 to 900 K, at
a magnetic field H = 0.1 T. The inset shows d(x7")/dT" ver-
sus T, which yields the AFM ordering temperature @] as
Tn = 600(10) K.

lengths. The pelletized sample of mass ~ 2 g was placed
in an Al holder and was mounted on the cold finger
(made of Cu) of a cryofurnace to reach temperatures of
12 K < T <612 K. Rietveld refinements of the neutron
diffraction data were carried out using FullProf software

[37].

IIT. RESULTS AND DISCUSSION

The temperature dependence of the magnetic suscep-
tibility, x = M/H, with an applied magnetic field H =
0.1 T, is shown in Fig. Over the extended tempera-
ture range, x increases monotonically. The x(7T') shows
a distinct change in slope around ~ 600 K indicative
of an AFM transition. We identify the AFM transition
temperature Ty = 600(10) K as the peak temperature
of a A—type anomaly obtained from d(x7T)/dT versus T
as shown in the inset of Fig. 2 [39). We note that our
X(T') measurements and the neutron diffraction studies
described below are inconsistent with the previous re-
port of Ref. m] suggesting an AFM transition at T
~ 165 K which is evidently due to impurities. At temper-
atures above Ty, the susceptibility appears to approach
a broad maximum, indicative of strong two-dimensional
AFM correlations setting in well above the ordering tem-
perature, which by virtue of weak AFM interplanar cou-
pling lead to the three dimensional AFM structure ob-
served below Ty [13, 4d].

Figures Bl(a) and Blb) show the full powder neutron
diffraction pattern obtained at ' = 611 K (> Tn) and
T = 12 K (< Tn), respectively. Notice that all the nu-
clear and magnetic Bragg peaks coincide as shown in



TABLE I: Fit parameters obtained from Rietveld refinements of the powder neutron diffraction patterns at the two listed

temperatures with tetragonal I4/mmm space group.

a, ¢, and V are the unit cell parameters and the unit cell volume,

respectively. zas represents the As z position in the crystal structure. dcr—cr and dcr—as are the in-plane Cr—Cr and Cr—As
distances, respectively. x? gives the overall value of the goodness of fit. The error (one standard deviation) in the last digit of

a quantity is shown in parentheses.
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T a C C/a 1% ZAs dCr7Cr dCrfAs X
3
(K) (A) (A) (A7) (A) (A)
12 3.9063(8) 12.933(4) 3.311(1) 197.35(8) 0.3667(7) 2.7622(6) 2.468(3) 3.04
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IOb ' g ' ' ' ' ' 3.98 T T T
° serve -
400 - Calculated () T=611K 4 @ 4131
—— Difference
| Nuclear peaks 3.96
200 | Gupesk
r U peaks 1
P } ! 1130
] cob pp b ; -
2 { { 12,9
i 200 . . . 392 } { —_—
% |1 Nuclear peaks (b) T=12K * } E
_,GEJ 400 Magnetic peaks 3.90 % } 1128
200 ©) f f f
oF 332 { } { } E } }H}}H{ 0o
-200 - . { } {{H
) | . | ) 330 Eh
20 40 60 80 100 Ly 120 <
o © >
20() I H
328t ﬁ}
FIG. 3: (Color online) Observed neutron diffraction patterns { } }H 1198
(red open circles), fits from the Rietveld refinement (black 3% % }
solid lines) and their differences (dark yellow solid lines) at ’
(a) T =611 K (> Tx) and (b) T = 12 K (< Tx). The vertical 0 200 200 o0 16
bars are the expected Bragg peak positions as mentioned in T(K)
the panels. Additional peaks due to the Al sample holder
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ane b coc HeEr were observed and fave been Take mio FIG. 4: (Color online) (a) Lattice parameters a and c as a

account while fitting.

Fig. Blb). No additional Bragg peaks are observed in
the magnetically ordered state indicating the same chem-
ical and magnetic unit cell, and furthermore that there is
no structural phase transition down to 12 K. The mag-
netic intensities are superimposed on the nuclear Bragg
peaks and decrease with increasing 260 in accordance with
the expected behavior of a magnetic form factor. The
strongest magnetic peak is the (1 0 1) Bragg reflection
which is allowed by the chemical structure but has a very
small nuclear structure factor. Rietveld structural re-
finement of the nuclear structure at high temperature
is performed using the tetragonal I4/mmm ThCraSis-
type crystal symmetry. The magnetic structure is de-
termined from the combined nuclear and magnetic Ri-
etveld refinements of the diffraction pattern at T'= 12 K,
yielding a G-type AFM ordering with the magnetic Cr2*

function of temperature, 7.
ratio and unit cell volume V.

(b) T-dependence of the c/a

moments arranged antiferromagnetically with all nearest
neighbors, both in-plane and out-of-plane, and aligned
along the ¢ axis, as shown in Fig. [l We note that the
value of the ordered moment at 7' = 12 K is found to be
= 1.9(1) up/Cr, where up is the Bohr magneton, and
is similar to BaCryAss ﬂﬁ]L

The fit parameters from the Rietveld refinements of
the diffraction patterns are listed in Table [l The lattice
parameter o and the unit cell volume V = a?c decrease
by about ~ 1.5% and 2.5%, respectively, between 611 K
and 12 K, while the c lattice parameter increases slightly.
This is accompanied by an almost ~ 1.5% change in the
Cr—Cr distance, compared with ~ 0.5% change in the
Cr—As distance at the two temperatures.
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FIG. 5: (Color online) Integrated intensity (Im) of the (1 0 1)
Bragg peak as a function of temperature 7. The solid line
is a power law fit given by In = Io(1 — T/TN)2*B, for T >
450 K. Inset: 260 scans around the (1 0 1) Bragg peak for the
temperatures listed.

For temperature dependence measurements, two re-
gions in 260 were chosen. The first region is centered
around the (1 0 1) Bragg peak, 34° < 26 < 39°, which has
a weak nuclear contribution and for which the magnetic
signal is the strongest, making it ideal for the temper-
ature dependence of the order parameter. The second
region, 46° < 26 < 52°, covers the (1 0 3) and (1 1 0)
Bragg peaks, from which the temperature dependence
of the lattice parameters and the unit cell volume were
obtained. The lattice parameter a is obtained from the
(1 1 0) Bragg peak and is then used to determine the
lattice parameter ¢ from the (1 0 3) Bragg peak. Fig-
ure[dl(a) shows the temperature dependence of the a and
¢ lattice parameters while Fig. ll(b) shows the tempera-
ture dependence of the ¢/a ratio and the unit cell vol-
ume V. Since we do not have a full diffraction pattern at
these temperatures, these are not Rietveld-refined values,
but provide a good estimate obtained from the 26 values
of the centers of the fitted Bragg peaks. The a lattice
parameter decreases monotonically from high tempera-
tures while the ¢ lattice parameter remains almost con-
stant throughout the measured temperature range with
a slight increase with decreasing temperature. The c¢/a
ratio increases with decreasing temperature and becomes
almost constant below 200 K while the unit cell volume
V' decreases monotonically. These results are qualita-
tively similar to those in BaCraAsy [22] but distinctly
different from those of other Sr73Asy (T = Mn, Fe, Co)
compounds. Specifically, SrMnyAs, does not crystallize
in a tetragonal I4/mmm space group but forms a trig-
onal lattice with collinear AFM structure [1§], SrFe;As,
undergoes a first order structural transition from tetrag-
onal to an orthorhombic AFM phase at low temperatures
[38) and SrCoyAs, is non-magnetic with I4/mmm crys-
tal symmetry but undergoes a pressure-induced cT phase

[24].

Figure Bl shows the temperature dependence of the in-
tegrated intensity (Iy) of the (1 0 1) Bragg peak, which
is a measure of the magnetic moment. The inset shows
20 scans of the (1 0 1) reflections at T = 12 K, 466 K
(< ITn) and 611 K (> Tn). As evident from the inset,
the signal at 611 K is close to background level as it has
a negligible nuclear contribution. The shift in the peak
position is due to the change in the lattice parameters
with decreasing temperature. The continuous variation
of the integrated intensity near T indicates that the anti-
ferromagnetic transition is thermodynamically of second
order. For T > 450 K, we fitted the integrated inten-
sity by a power law with a critical exponent 23, given by
Iy = Ip(1-T/Tx)??. From the fit, the antiferromagnetic
transition temperature is found to be Ty = 590(5) K,
which is, within error, consistent with the transition tem-
perature estimated from the y(7') measurements in Fig[2l
Tn = 600(10) K. The critical exponent 3 is found to be
B =0.37(2), which is close to the expected value of 0.33
for a three-dimensional Heisenberg spin system. The in-
tensity saturates below 200 K, which is also the same
temperature below which the ¢/a ratio becomes constant
(see Fig. M), indicating a possible magneto-elastic cou-
pling.

The small ordered moment, p = 1.9(1) up/Cr, ob-
tained from the Rietveld refinement, suggests that this
is not a localized-moment system but rather an itiner-
ant one. In particular, the full moment for a localized
Cr?* is expected to be u = gSup = 4up, assuming a
5Dy high-spin configuration in a tetrahedral environment
with spin S = 2 and spectroscopic splitting factor g = 2,
and is almost twice our experimental value. This itiner-
ant character can be rationalized by strong hybridization
between Cr 3d orbitals and the As 4p orbitals as has been
suggested for BaCrgAslﬁund observed in the similar
BaMnyAss compound [11, [12]. From first-principle cal-
culations, it is estimated that at the Fermi energy, the Cr
d orbitals contribute almost 2/3 of the density of states
while the remaining 1/3 is of As p character, resulting
in large multi-sheet Fermi surfaces and making the sys-
tem itinerant ﬂﬂ] with a significantly reduced ordered
moment. Finally we come to the discussion of the mag-
netic exchange interactions J;’s. In FeAs compounds like
AFesAs, (A = Ca, Ba, Sr), stripe-type AFM is stabilized
with the Fe?t magnetic moments in the ab-plane. It has
been argued that the stripe structure is driven by the
next-nearest neighbor (NNN) interaction term J, when
Jo > J1/2, where J; is the nearest neighbor (NN) inter-
action ,@] In our case of SrCraAss, the G-type AFM
suggests that NN interaction J; is more dominant than
Jo.

IV. SUMMARY

We have shown that SrCroAss exhibits itinerant AFM
with a G-type magnetic structure below T = 590(5) K



with the Cr magnetic moments aligned along the ¢ axis.
However, strong magnetic correlations develop well above
T as evident from the susceptibility measurements. We
find that the system remains tetragonal in the I4/mmm
symmetry down to the base temperature (~ 12 K). The
lattice parameter ratio ¢/a and the ordered magnetic mo-
ment p saturate at about the same temperature below
~ 200 K, indicating a possible magneto-elastic coupling.
The derived p = 1.9(1) pp/Cr is significantly reduced
due to the itinerant character of the system, caused by
the hybridization between the Cr 3d and the As 4p or-

bitals.
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