The INLis a

U.S. Department of Energy
Mational Laboratory
operated by

Battelle Energy Alliance

—

Idaho National
Laboratory

INL/CON-17-41034
PREPRINT

Vulnerabilities Under the

Surface
2017 Cybersecurity Symposium

Todd M. Keller, Jacob S. Benjamin,
Virginia L. Wright, Bryan H. Gold

April 2017

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

Vulnerabilities Under the Surface

Tracking potential vulnerabilities by voiding warranties

ABSTRACT

This paper will describe a practical methodology for understanding
the cyber risk of a digital asset. This research attempts to gain a
greater understanding of the cyber risk posed by a hardware-based
computer asset by considering it as a sum of its hardware and
software based sub-components.

KEYWORDS

2017 Security Symposium, Hardware Security, Software Security

ACM Reference format:

. 2017. Vulnerabilities Under the Surface. In Proceedings of 2017 Cybersecu-
rity Symposium, Coeur d’Alene, Idaho USA, April 17-19, 2017, 3 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the proliferation of computers and embedded systems in all
personal, commercial, and industrial settings, identifying the level
of cyber risk associated with those assets is increasingly impor-
tant. However, in most cases, documentation provided to the asset
owner describing the software and hardware comprising an asset is
incomplete at best. To properly understand and identify an asset’s
cyber risk, a thorough investigation of its hardware and software
components is essential.

Many system vulnerabilities cannot be identified through super-
ficial hardware inspection or a list of software installed in an asset
because many vulnerabilities are contained at lower levels of hard-
ware or software abstraction. It is necessary to first establish an
asset’s component makeup by performing an in-depth investigation
of its hardware and software components to discover, understand,
and address any potential vulnerabilities. A comprehensive security
assessment investigation must examine the details of the hardware
components and the software components installed in an asset.
During this investigation we discovered vulnerabilities that would
have remained undisclosed with currently used analysis methods.
However, a proper security assessment examines all of the details
associated with the systems. To achieve a comprehensive security
assessment, a detailed asset inventory should be created by dis-
assembling and cataloging hardware and software. This catalog
can then be used to extrapolate the necessary information for a
thorough vulnerability analysis of an asset and its components.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
2017 Cybersecurity Symposium, Coeur d’Alene, Idaho USA

© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM...$1.00

DOI: 10.1145/nnnnnnn.nnnnnnn

2 APPROACH
2.1 Hardware Approach

Comprehensively cataloging hardware components requires at least
some disassembly and reverse engineering. However, for the sake
of brevity, and since physical disassembly of a device is a relatively
easy task, that aspect is not covered in this paper. When disassem-
bling an asset, the focus should be to catalog any logic containing
Integrated Circuits (IC) and potential storage components for fur-
ther research or firmware analysis. However, IC identification is
not an exact science and may require some level of reverse engi-
neering to gather enough information to positively identify the IC
in question.

One method that can be used for hardware component cataloging
is logo matching. Identifying the manufacturer can make positive
identification easier by greatly narrowing the possible matching
hardware components. A second method, which can be used in con-
junction with the previous method, involves performing searches
using all or some of the strings of characters printed on the IC
stamp. This can be combined with the IC package type and pin
counts to further narrow results. Searches should be done both
as general web searches on sites like Google and Bing, as well as
component distributor sites such as DigiKey, Newark, and Mouser.

If these methods do not provide positive identification of an IC,
more-intrusive methods for identification can be performed. This
includes checking for the power and ground connection pins and
attempting to match these or other potential identifiers to suspected
data sheets of possible matches, which will narrow the options for
positive identification. In some cases it may be necessary to check
the voltage levels with a multimeter and the logic pins with an
oscilloscope prior to using logic analyzers, if more simplified efforts
fail.

Once the ICs have been identified, the compiled information
should be placed into a form that is readily usable for searching,
sorting, and filtering. Microsoft Excel was used in this research
effort, but it is envisioned to store the results in a more user-friendly
database to document and characterize any relationships that can

be found.

2.2 Software Approach

Understanding the software installed in an asset is required to build
a complete picture of its cyber risk or security posture. While
not a completely new territory, we attempt to cover a proposed
practical approach. For the purpose of this paper, software includes
any drivers and/or client applications that interact with the asset’s
hardware. However, opposed to hardware component analysis,
software component analysis is exponentially more difficult due to
the complexity of software, its use of proprietary code, the time-
consuming nature of code reverse engineering, and the lack of tools
for analyzing binary-distributed software for risk analysis purposes.

2017 Cybersecurity Symposium, April 17-19, 2017, Coeur d’Alene, Idaho USA

While performing software component analysis, it is extremely
important to focus on not only the software’s functionality but any
shared libraries or unanticipated software components contained
within the programs. Software and drivers may utilize shared li-
braries and utilities that may be unexpected by administrators and
security practitioners. In addition, shared code and utilities across
multiple programs can negatively impact asset security. In a 2015
study, security researchers discovered that it took a median of 11
days and up to 118 days for two applications that shared common
code to patch their respective programs.[2] For example, in the
past, products that used OpenSSL had trouble with the HeartBleed
vulnerability while others suffered from the ImageTragick vulnera-
bility. These underlying components within the software are often
overlooked by administrators when creating a digital asset inven-
tory used to track vulnerabilities but are as important or more
important due to the danger of shared vulnerabilities across soft-
ware. The 2015 study also found a threat in multiple installation
scenarios where even after patching, some shared code vulnerabili-
ties may remain vulnerable due to incomplete patching mechanisms
or inactive applications.[2]

The first step to understand what software is used by an asset
is to capture and catalog all software components that are trans-
ferred during asset installation. Ideally, this can be performed with
tools such as CaptureBAT or RegShot, which are typically used in
forensic analysis of malware. Unfortunately, this method is costly
and time-intensive and asset owners may be unwilling to spend the
time or money to implement such an in-depth procedure. However,
because many installation programs are comprised of relatively
uncomplicated self-extracting compressed archive, a less-complex
approach is to analyze the installation files. These files can then be
uncompressed by conventional tools and compared with known
files. A limited database of known files is available as part of Na-
tional Institute of Standards and Technology’s Software Reference
Library (NSRL). The NSRL contains file names and hash signatures
for some software and provides some limited utilities for interact-
ing with software data. This is potentially the best-known freely
available source of current data for trusted software information.

At a minimum, hashes of each file should be taken and included
in the database. If available, the status and inclusion of exploit
mitigations, such as Address Space Layout Randomization (ASLR),
Data Execution Prevention (DEP), and whether Stack Canaries are
enabled, can be included. Cataloging these details could provide
a resource that could enable an asset owner to make purchasing
decisions based on security metrics and provide an indication of
the vendor’s commitment to secure development.

2.3 Quick Wins and Potential Administrative
Options

Administrative approaches may also provide fruitful information
for component analysis. One approach is to use the vendor’s license
disclosure documentation of other licensed software packaged in
an asset. In a discussion on finding shared libraries for network
communications and packet capture on Mercedes S Class Vehicles,
Peiter Zatko[4] noted that by reading the asset’s license documen-
tation, he was able to discover shared libraries of interest. On
Twitter, he referenced a chart for Mercedes vehicles[1] detailing

vehicle models correlated with which software licenses are included
for use within the vehicle. This approach can be used to quickly
gain an understanding of what might be found in an asset and
any potential vulnerabilities an asset owner may want to track.
This documentation can also be used to confirm and strengthen re-
searchers’ confidence in their findings stemming from the research
steps discussed previously.

A second approach is to use a firmware flashing utility to expose
device firmware, which can extract the firmware without requiring
it to be extracted directly from the device. Once extracted, the
firmware can be analyzed with standard system forensics tech-
niques and binary code analysis.

Combining these two methods allows an asset owner to quickly
obtain detailed information on hardware and software components,
often at a more-detailed level than the data sheet, without incurring
the expenses of reverse engineering.

2.4 Potential Gaps/Pitfalls

While relatively comprehensive, both the hardware and software
approaches will likely contain gaps. Hardware will not always
contain a data sheet and component identification may not be
easily discerned from the vendor documentation. Software will
change from updates, downloaded components, and internal update
mechanisms that may not be presented to the user or administrator.
Both hardware and software approaches will require either an
assumption of trust or further reverse engineering to ensure an in-
depth understanding of the asset’s full functionality and capabilities.

2.5 Impact and Way Ahead

A vulnerability is not always obvious upon surface inspections. For
example, the Genesys Logic GL3220 memory card reader controller
is capable of In System Programming (ISP), and in some products
it is believed to be potentially vulnerable to BadUSB. The GL3220
serves as an excellent and relevant example as it is used in many
multimedia card readers. We identified products containing this
chipset only by opening up the hardware for deeper inspection. A
surface inspection would have not identified this chipset due to the
lack of in-depth technical details in vendor-provided documentation.
In addition, web searches for most card readers do not provide
information on the type of chipset used, and an asset owner would
be unable to determine if it was vulnerable to BadUSB. However, by
dissasembiling the device and conducting searches on the GL3220
chipset itself, a single result[3] indicates it is likely vulnerable.

In some cases in our investigation, we were unable to determine
if any increased cyber risk existed for some ICs. This occurred
when we found an IC that lacked any public data sheet. Without a
data sheet, an IC’s function must be determined by other means,
such as deductive reasoning or reverse engineering.

ACKNOWLEDGMENTS

This work was funded by the U.S. Department of Energy (Office
of Nuclear Energy) under DOE Idaho Operations Office Contract
DE-AC07-05ID14517

Vulnerabilities Under the Surface 2017 Cybersecurity Symposium, April 17-19, 2017, Coeur d’Alene, Idaho USA

A APPENDIX - PROCESS SUMMARIZATION
A.1 Hardware Steps

A.1.1 Use device firmware flashing utilities to expose device
firmware for binary analysis.

A.1.2 Disassemble hardware and catalog any/all logic containing
integrated circuits.

A.1.3 Use logo matching to identify the manufacturer for any
unidentified ICs.

A.1.4 Perform searches on strings printed on the IC stamp of
unidentified ICs.

A.1.5 Combine IC package information with string searches for
any unidentified ICs.

A.1.6 Check for power and ground connection pins and attempt
to match to suspected data sheets or for additional search criteria if a
positive match has not yet been made.

A.2 Software Steps

A.2.1 Review vendor’s license disclosure for identification of other
licensed software included.

A.2.2 Capture all software components that are transferred dur-
ing asset installation.

A.2.3 Catalog software components including at least the file
name and hash signature. Expand with security-relevant information.

A.2.4 Compare cataloged files with known files such as the NSRL.
Expand with information from National Vulnerability Database and
other security-relevant sources.

REFERENCES

[1] Daimler. 2013. Licence Agreement Supplement. http://moba.i.daimler.com
bai- cars/ba/foss/content/en/assets/FOSS_ licences.pdf. (2013).

[2] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Du-
mitras. 2015. The Attack of the Clones: A Study of the Impact of Shared Code
on Vulnerability Patching. (2015). http://www.artificialstudios.org/jeppojeps
oakland15_camera_ready.pdf.

[3] SRLabs. 2015. SD Card Adapters Suspected vulnerable to Bad USB. hitps:

opensource.srlabs.de/projects/badusb/wiki/SD_card_adapters. (2015). Research
appears to be from 2015 based on that being the first date of capture on the
Internet Archive Wayback Machine.

[4] Peiter Zatko twitter.com/dotmudge. 2016. Pre-hacked-car :). https://twitter.com

dotMudge/status/769588040884817920. (2016).

http://moba.i.daimler.com/bai-cars/ba/foss/content/en/assets/FOSS_licences.pdf
http://moba.i.daimler.com/bai-cars/ba/foss/content/en/assets/FOSS_licences.pdf
http://www.artificialstudios.org/jeppojeps/oakland15_camera_ready.pdf
http://www.artificialstudios.org/jeppojeps/oakland15_camera_ready.pdf
https://opensource.srlabs.de/projects/badusb/wiki/SD_card_adapters
https://opensource.srlabs.de/projects/badusb/wiki/SD_card_adapters
twitter.com/dotmudge
https://twitter.com/dotMudge/status/769588040884817920
https://twitter.com/dotMudge/status/769588040884817920

	INL-CON-17-41034 Cover
	INL-CON-17-41034
	Abstract
	1 Introduction
	2 Approach
	2.1 Hardware Approach
	2.2 Software Approach
	2.3 Quick Wins and Potential Administrative Options
	2.4 Potential Gaps/Pitfalls
	2.5 Impact and Way Ahead

	Acknowledgments
	A Appendix - Process Summarization
	A.1 Hardware Steps
	A.2 Software Steps

	References

