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C.	Introduction	
Effective development of enhanced geothermal systems can significantly benefit from improved 
modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 
350 oC, thermal and poro-mechanical processes play an important role in fracture initiation and 
propagation. Models have been developed to study the fundamental mechanisms of fracture propagation 
in hot poroelastic rocks and fracture coalescence, particularly in the near wellbore region of geothermal 
reservoirs (e.g., Ghassemi and Zhang, 2005; Ghassemi and Zhang, 2004). However, a hydraulic fracture 
simulation model capable of addressing the propagation of fractures in tensile or shear in rock is not 
available and must be developed (MIT-led Report).  Moreover, poro-thermo-mechanical analysis of 
injection into fractures shows that high stress zones develop in the vicinity of the main fracture, indicating 
potential for multiple initiation and propagation events (Ghassemi et al., 2007). Therefore, hydraulic 
fracture models need to include poro-thermoelastic effects on fracture initiation in rock penetrated by the 
main fracture.  On the other hand, reservoir rock and in-situ stress heterogeneity often result in fracture 
propagation involving tensile, shear and tearing modes, and as shown in Healy and Jones (2006), 2-D 
numerical modeling and simple analytical approaches (Germanovich et al. 1997) are insufficient to 
predict the fracture and a 3-D numerical analysis is required. Therefore, the objective of this work was to 
develop 3-D numerical models for simulating models that can capture modes I, II, and III (tensile, shear, 
and out-of-plane) propagation in geothermal reservoir stimulation using damage mechanics and the novel 
approach of virtual multi-dimensional internal bond (VMIB). 

The proposed research addresses the major technical issue of accurately predicting stimulation outcome, a 
technology barrier addressed in the MIT-led report (lack of tools to predict propagation of fracture cluster 
in mixed modes). Phase 1 of the work consisted of elastic model development. Starting with 2D work and 
then developing 3D VMIB and damage models implemented into the FEM codes with hydraulic 
propagation routines. This phase included simulations and comparison with published results and 
laboratory experiments. Phase 2 of the work includes addition of thermoelastic material models in FEM 
codes and addition of hydraulic fracture routine with joint elements and partitioning algorithms. Phase 3 
was the testing and application phase and verification of the poro- and thermoelastic effects on fracturing; 
assessing the accuracy of the method and making improvements. Finally, we applied the model to Lab-
scale stimulation experiments. 

In this project hydraulic fracturing of hot subsurface rock mass is numerically modeled by extending the 
virtual multiple internal bond theory and implementing it in a 3D finite element code. In addition, we 
developed numerical model based on the non-local damage model. Detailed of these numerical strategies 
are discussed next.   

CHAPTER	1:	VIRTUAL	MULTIDIMENSIONAL	INTERNAL	BONDS	
 

Simulation of 3D fracture propagation is complex because it often simultaneously involves all three 
fracture modes (I, II, III) over a contour. This is in contrast to 2D case where the zone of interest is only a 
point, i.e., the fracture tips. Currently, a number of techniques are used to simulate fractures and their 
growth in hydraulic stimulation process, including boundary element method (Sesetty and Ghassemi, 
2015; Kumar and Ghassemi, 2016; Dobroskok et al., 2005; Koshelev and Ghassemi 2003 and 2004; 
Vandamme and Curran, 1989; Curran and Carvalho, 1987) or the finite-element method (FEM). The 
BEM such as the displacement discontinuity technique provides efficient and accurate results when 
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modeling 2D fracture propagation in elastic media. A major challenge in modeling 3D fracture 
propagation using the linear elastic FEM or BEM is the need of re-meshing as the fracture propagates.  To 
address the problem of re-meshing, nodal enrichment methods (Belytschko et al., 1999; Moes et al., 1999) 
are mostly used in 2D. An alternative includes the Virtual Internal Bond (VIB) method (Gao and Klein, 
1998) which was proven to be effective in 2D simulations. In VIB method, the solid is considered to 
consist of micro material particles at micro scale and these material particles are bonded with internal 
virtual bond. The cohesive law contains the information of fracture so that external fracture criterion is 
not needed. (Zhang and Ge, 2005a; Zhang and Ge 2005b]; Zhang and Ge, 2006) modified the VIB 
method and introduced the shear effect between material particles so that the extended VIB model, 
defined as Virtual Multidimensional Internal Bond (VMIB), is applicable to material with different 
Poisson’s ratio. In VIB-based constitutive model, the micro mechanism of Mode II and III is the same in 
that both the two fracture result from the bond ruptures. Via bond evolution function, the fracture criterion 
is actually implicitly embedded into the constitutive relation. Recently, this method has been extended to 
simulation of pre-existing fractures (Min et al., 2010; Zhang and Ghassemi, 2010). In this work, the 
VMIB is further developed, and is used to simulate the 3D propagation and interaction of multiple 
fractures in rock subjected to compressive stresses and fluid pressure, including pre-existing natural 
fracture. To represent the pre-existing fracture, the 3D element partition method (Huang and Zhang, 
2010) is used to avoid re-meshing. 

 

The VMIB model considers that the material is composited by the randomized mass particles connected 
by virtual bonds with both normal and shear stiffness. According to the concept of VMIB, the macro 
behavior of material is determined by the bond evolution in micro structure. In other words, a macro 
constitutive relation derived from the cohesive law between material particles represents the macro 
nonlinear behaviors.  

1.1		Hyperelastic	Theory	
In the continuum mechanics, a change in the configuration of a continuum body results in displacement. 
The displacement is composed by rigid-body displacement and deformation. The material points in the 

undeformed configuration are described by the Lagrangian (Material) coordinates  321 ,, XXXX  . The 
corresponding material points in the deformed configuration is described by Eulerian (spatial) coordinates 

 321 ,, xxxx  . The deformation gradient is given by: 

I

i
iI X

x
F




  (1) 

From deformation gradient, the Green-Lagrange strain tensor is given by: 

 IJiJiIIJ FFE 
2

1
             (2) 

where IJ is the Kronecker delta. In the hyperelastic theory (Marsden and Hughes, 1983; Ogden, 1984), 

  is the strain energy density function. The Piola-Kitchhoff stress tensor is: 

IJ
IJ E

S



                            (3) 
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The material elastic tensor is: 

KLIJKL

IJ
IJKL EEE

S
C









2

  (4) 

1.2	Material	Constitutive	Model	of	VMIB	
The constitutive representation of a material varies with different scales, These are continuum based for 
materials at macro scale and are particle based at the micro scale, shown as Figure 1. The macroscopic 
mechanical behavior is determined by the material constitutive representation at micro scale. In the VMIB 
method, the solid is considered as randomized virtual material particles at the micro scale shown in Figure 
1(b). Virtual internal bonds between the material particles have both normal and shear stiffness as shown 
in Figure 1(c). The bond constrains both normal displacement and rotation. The interactions of the bonds 
govern the mechanical response of the material according to the relative displacements of paired particles. 
These particles and bonds are not necessary to be realistic physical particles such as atom or molecule. In 
this simplifying of microscopic structure, VMIB avoids the complicated and massive atom simulation.  

       

mass particles

particle Pair

mass particle

y

x

z

virtual bond

 
(a)                                       (b)                                      (c) 

Figure 1. Material constitution at (a) macro scale and (b) micro scale consisting of randomized 
material particles that are bonded with (c) virtual bonds. 

 

1.3 Relative	Displacements	and	Energy	Potentials	of	Particle	Pairs 
From micro structure of material, derivation of the macroscopic constitution starts with the relative 
position and displacements of each virtual particle pair. The relative displacements can be decomposed 
into bond stretch l  and bond rotation with angle  . Therefore, the virtual bonds between particles are 

classified as normal bonds and shear bonds due to the different connecting and constraining mechanisms. 
Normal bonds govern the normal relative displacement and interacting effects of a particle pair. On the 
other hand, shear bonds restrict the relative rotations. In the small deformation cases, according to 
Cauchy-Born rule, the stretch of normal bond in ξ  direction is 

jiji ξεξll 0                                                                                    (5) 

where 0l  is the original bond length,   cos,sinsin,cossinξ  is the unit orientation vector of bond 

in sphere coordinate system and ij is the strain tensor. The rotation angles of bond towards three 

coordinate axes are respectively: 
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













jiji

jiji

jiji





3

2

1

                                                                                       (6) 

where 1 , 2  and 3  are the rotation angle towards axis 1x , 2x  and 3x  respectively, η , η   and η  is 

the unit vectors perpendicular to the direction indicated by ξ  of normal bond. Additionally, η , η   and 

η   have to be in same planes determined with their correspondent coordinate axis vectors and ξ  

respectively. Their mathematical expressions are 

 
  coscossin,sincossin,cossinsin 2222

1



 ξxξη
               (7) 

 
  cossinsin,cossincos,sincossin 2222

2



 ξxξη
                 (8) 

 
  2

3

sin,cossinsin,coscossin 

 ξxξη
                             (9) 

According to two decomposed displacement l  and  , the total energy potential U  is given as: 

UUU l                                                                                            (10) 

where lU , U  are the stretch energy potential and rotation potential respectively. lU  and U  can be 

written as: 

 20
2

2

1

2

1
jiijl lkklU                                                                  (11) 

     222

2
2

2
2

2
1

2

1

2

1

2

1
2

1

2

1

2

1
321

jiijjiijjiij

rrr

UUUU













                                      (12) 

where k  is normal bond stiffness, r  is the shear bond stiffness coefficient. 

1.3.1	Fourth‐order	elastic	tensor	
The mass particles randomly distribute in the infinitesimal of material according to the assumption above. 
Therefore, the bonds between the particles are also have randomized distributions and orientations, but 
following a given spatial distribution density   ,D  in the sphere coordinate system. Since the 

assumption of small deformation cases, IJE  and IJS  reduce to the strain ijε  and stress ij  respectively of 

linear elasticity (Gao and Klein, 1998). By integrating the total energy potential and assuming the initial 
length of normal bond is identical, the energy density is written as 
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V

WWl 
  (13) 

where V  is volume of infinitesimal, lW  is 

    
 


2

0 0
sin, ddDUW ll  (14) 

, and W  is 

       

    
  





 



 



 







2

0 0

2

0 0

2

0 0

sin,

sin,sin,

3

21

ddDU

ddDUddDUW
 (15) 

According to Eqs. (3) and (4), by equaling the energy potential stored in the virtual bonds with the strain 
energy potential stored on the continuum level in the same volume due to an imposed deformation, the 
stress tensor is given as: 

     

   

   

    

 

 

 













 

 

 

 












2

0 0
3

2

0 0
2

2

0 0
1

2

0 0
0

sin,
1

sin,
1

sin,
1

sin,
1

ddDr
V

ddDr
V

ddDr
V

ddDkl
V

ji

ji

ji

jinmnm
ij

ij

 (16) 

The fourth-order elastic tensor is written as: 

   

   

   

    

 

 

 













 

 

 

 










2

0 0

2

0 0

2

0 0

2

0 0

2
0

2

sin,
1

sin,
1

sin,
1

sin,
1

ddDr
V

ddDr
V

ddDr
V

ddDkl
V

C

nmji

nmji

nmji

nmji
mnij

ijmn

 (17) 

For an isotropic material, the bond distribution density in every direction is uniform, i.e.   1, D .  

In finite element method (FEM), the strain-stress relationship is expressed as: 

εΩσ   (18) 

where σ  is the stress vector, i.e.  T231312332211 ,,,,, σ , ε  is the strain vector, i.e. 

 T231312332211 ,,,,, ε , and Ω  is the elastic tensor ijmnC  written in the elastic matrix form: 
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Integrating Eq. (17) and substituting to Eq. (19) yields 
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Equaling Eq. (20) with elastic matrix expressed by macroscopic material constants Young’s modulus E  
and Poisson ratio  , the relationship between microscopic material constants k , r  and macroscopic 
constants can be obtained  

  2
0214

3
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 
  (21) 
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On the contrary, the Young’s modulus and Poisson ratio can also be expressed using microscopic material 
constants k , r , which means the macroscopic mechanical behaviors are determined by the micro bond 
mechanical properties. 

1.4	Bond	Evolution	Mechanisms 
In the previous sections, the linear VMIB constitutive relationship was derived. For realistic materials 
such as rocks, normally, the mechanical response can be classified as linear elastic phase, strengthening 
phase and strain-softening phases as the deformation increases, shown in Figure 2. In VMIB system, the 
bond is not broken when simulating the fracture propagating. The nonlinear macro properties of a 
material such as softening and degradation are expressed by introducing the strength evolution of internal 
virtual bonds. Thus, by introducing an evolution function )(εf , the nonlinear elastic tensor is given by: 
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Figure 2. Nonlinear mechanical response of material under uniaxial tensile load. 

In this work, the strain based evolution function can be written as following: 
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where b  is a micro coefficient, tb    if 0εξξT  whereas cb    if 0εξξT . t  and c  indicate the 

strain at the peak stress in uniaxial tensile and compressive test, respectively. c , n  are the shape 

coefficients which determine the shape of stress-strain curve. The term εξξT  means the relative normal 

deformation of bond and the term  2εξξεξεξ TTT   represents the relative shear deformation of bond 

shown in the Figure 3. 
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Figure 3. Geometrical relationship among undeformed bond vector 0lξ  and deformed bond vector 0

~
lξ  

2.	Three	Dimensional	Representation	of	Fracture	Using	Element	
Partition	Method	
One of the challenges for 3D fracture simulation is the mechanical representation of pre-existing and 
newly extended fracture surfaces. Propagating fracture geometry associated with the moving boundary 
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conditions through fracture growth path makes hydraulic fracturing modeling especially difficult. 
Additionally, besides the opening fracture, the contact and friction of closed fracture surface are also 
significant mechanical behaviors for pre-existed fracture subjected to the compressive and shear stresses. 
Several special treatments for fracture surface have been used in the fracture modeling in the framework 
of finite element method. Remeshing and mesh refining for the newly extended fracture surface and tip 
are common techniques, which have great advantages on the computational accuracy and efficiency on 
the linear equation system solving. However, the remeshing and refining scheme implements are difficult 
to be performed since that it is time consuming and mathematically challenging especially for 3D 
problems with complex domain and fracture geometry. Extended finite element method (XFEM) 
(Belytschko and Black, 1999; Moes et al., 1999) based on the generalized finite element method and 
partition of unit method represents the fracture by enriching the solution space with discontinuous 
function for fracture surface and asymptotic function for the fracture. The XFEM avoids the remeshing 
problem and captures the stress singularity using the original mesh system, which compensates the 
inconvenience of traditional FEM. However, the XFEM still has disadvantage that the added degrees of 
freedom change the original structure of matrix and sparseness, numerical integration for each divided 
parts of element is time consuming and difficult particularly for the element contains multiple fractures. 

Different from the XFEM, taking advantage of simple geometry character of triangle and tetrahedron 
element, element partitioning method (EPM) (Zhang and Chen, 2008, 2009; Huang and Zhang, 2010) 
construct triple-node and quad-node contact element that needs no remeshing and mesh refinement during 
the fracture propagation and uses original mesh configuration during the fracture propagation. Therefore, 
the greatest advantage of EPM saves computational time and is easier to encode since that EPM 
introduces no additional degree of freedom and global matrix structure remains the same. However, EPM 
has a limitation that the elastic deformation of partitioned element is not considered. The error is arising 
with increase of element size. Comparing the computational cost with the other fracture treatment 
techniques, EPM is still more desirable since that the simulating domain and element size chosen is 
relative small. In the functional test, performance of 3D EPM will be tested on representing mechanical 
behaviors of the closed fracture surface subjected to the compressive and shear stress. 

2.1	General	Idea	of	Element	Partition	Method	
(Zhang and Chen, 2008, 2009) developed the two-dimensional element partition method (2D EPM) to 
represent the mechanical behaviors of fractured element cut through by pre-existing and newly extended 
fracture. Taking advantages of the simple geometrical characteristic of three-node triangular element, the 
stiffness matrix for a partitioned element is derived to account for the contact and friction effects between 
fracture faces. Through 2D EPM, the fracture could be represented by transferring intact element to 
partitioned element. Since the partitioned element shares the same nodes with intact element, no mesh 
modification is needed. Based on similar concept, 3D element partition method (3D EPM) is developed 
by (Huang and Zhang 2010) to describe the opening, contact and friction between the fracture surfaces. 
The 3D EPM takes advantage of the geometry features of tetrahedron element to construct a four-node 
contact element. When a fracture cuts through a tetrahedron element, two types of four-node contact 
element, i.e., Type I and Type II, are formed shown as Figure 4. Tetrahedron element is chosen because 
of its geometric simplicity. Therefore, only type I and II of the contact element with triangular and 
quadrilateral fracture sections, respectively, will be generated, which avoids the complexity from more 
types of partition element to be identified and calculated. The geometry aspects will be discussed in the 
follow sections. 
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(a)                                                               (b) 

Figure 4. Partition modes of tetrahedron element: (a) type I: triangular fracture plane; (b) type II: 
quadrilateral fracture plane. 

 

2.2	Derivation	of	Stiffness	Matrix	for	3D	EPM	
To derive the stiffness matrix of 3D EPM, taking type I partition element shown in Figure 5 for example, 
a local coordinate system needs to be established. The original point, x  and y  axis of the coordinate 

system are on the fracture plane. The zaxis is perpendicular to the fracture plane. Therefore, the local 

coordinates x , yand zare defined as: 
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where  321 ,, nnn  is the unit vector indicating the normal direction of the fracture plane calculated by the 

plane equation 0)()()( 030201  zznyynxxn .  000 ,, zyx  is the center point on the fracture 

plane. 

The following assumptions are made to derive the stiffness matrix of 3D EPM: (i) all the strain energy is 
stored in a contact volume with the thickness h  and the area A  shown in Figure 6 if the fracture surface 
is subjected to compression and shear stress; (ii) the contact volume is linear elastic; (iii) the 
displacements of points m , m   and m  are equal to the displacements of node M , the displacements of 

point i , j  and k  are equal to the displacements of I , J  and K  respectively; (iv) the contact areas miA  , 

mjA   and mkA   shown in Fig. 3 are controlled by contact pairs mi  , mj   and mk   respectively. 

The displacements of nodes I , J , K  and M are denoted as 
I
xu , I

yu , I
zu , 

J
xu , J

yu , J
zu ,

K
xu , K

yu , K
zu ,

M
xu , 

M
yu  and M

zu  respectively. 
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Figure 5. Local coordinate system and node pairs for type I partition element. 
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Figure 6. Contact volume and contact areas for each node pairs (type I). 

 

Based on a special case that local and global coordinate systems are parallel to each other, the strain 
energy stored in the contact volume is: 
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where nK , sK are the shear and the normal stiffness coefficients of the contact element respectively. mi
n

 , 
2mi

s
  are the normal strain and shear strain of the contact area miA  . 

Similarly, the strain energy stored in the contact areas mjA   and mkA   are 
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where AAAA mkmjmi 3

1
  , A  is the area of fracture plane contained in the partition element. 

To capture the opening, contact and slippage of the fracture plane in the partition element, two different 
conditions are considered. The first condition is that the fracture surface is free to open if it is subjected to 
tensile stress. The second one is that the fracture surface keeps the normal strength and surface friction to 
support the closure and represent the slippage resistance respectively, when the fracture is subjected to 
compressive and shear stresses. Therefore, the total strain energy stored in the contact volume is derived 
as: 
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Substituting Eqs. (26), (27) and (28) into Eq. (29) yields 
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For sake of simplicity, the displacements of element nodes are written as: 
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Using the new notation, Eq. (30) can be written as: 
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where ij  is the Kronecker delta. 

The complementary energy   is 

ii FuW   (34) 

According to the principle of minimum complementary energy in the elasticity theory, the stiffness matrix 
of type I partition element is derived as: 
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Figure 7. Local coordinate system and node pairs for type II partition element. 
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Figure 8. Contact volume and contact areas for each node pairs (type II). 

 

Similarly, Figure (7)shows the local coordinate system and node pairs for type II partition element. The 

contact node pairs such as mi  , mj  , ki   and kj   control their contact areas miA  , mjA  , kiA   and 

kjA   respectively shown in Figure (8). The stiffness matrix of type II partition is derived as 
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where AAAAA kjkimjmi 4

1
  . 

Based on the stiffness matrixes derived above for special case that the local and global coordinate systems 
are parallel to each other, the general form of stiffness matrixes can be derived through the coordinate 
system transformation as follow: 

QKQK T
ij   (37) 

where Q  is the coordinate transform matrix. 

2.3	Functional	Test	of	3D	EPM	
To test the performance of 3D EPM on representing the contact and slippage of the fracture surface, the 
mechanical behavior of a rock block with a cut-through joint is tested in the section. The object geometry 
and boundary conditions are shown in Figure 9. The number of element and node used in the simulation 
are 8000 and 3362 respectively. Figure 10(a) shows the tetrahedron elements intersected with the joint. 
Figure 10(b) gives the geometrical relationship between vertical and horizontal force components. Two 
different shear stiffness coefficients  1sK and 2sK  are used in the simulations to test the influence of the 

coefficients on the slippage response of the joint surface. The material parameters are listed in Table 1. 
The normal stress applied on the top of object is MPan 0.1 . The simulation results are shown in 

Figure 11 indicating the curve of the resultant force and relative displacements on the joint surface and 
Figure 12 displays the relative slippage between joint surfaces by the deformed mesh configuration. 
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Figure 9. (a) Dimension of simulation object and (b) boundary conditions. 
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where the first equation considers the constitutive response for the solid skeleton, the second equation 
correspond to the behaviors of porous fluid, ij  is strain tensor that is positive for tension, ij  denotes the 

total stress tensor, p  and   are the pore pressure and the variation of the fluid content per unit volume 

of the porous media respectively. G  is the shear modulus and   is the Poisson ratio.   is the Biot’s 

coefficient, B  is the Skempton’s coefficient.   and B  are written as 

sK

K
1  (40) 

 
  u

uB








121

3
 (41) 

where K  is bulk modulus, sK  is the bulk modulus of solid phase, u  is the undrained Poisson ratio.  

Eq. (38) can be written in terms of stress strain relation, 

ijijkkijij p
G

G 


 



21

2
2  (42) 

Eq. (42) represents the constitutive equation for the linear system, in which we can find the effective 
stress ij   by eliminates the last pore pressure term defined as  

ijkkijij

G
G 




21

2
2


  (43) 

Effective stress ij   physically means the resultant stress applied on the rock skeleton. It is the exact stress 

that the rock skeleton supports.  

3.1.1	Balance	law	
Two equilibrium considerations compose the conservation law for poroelastic material. Firstly, the static 
equilibrium leads to stress balance equation or equilibrium equation written as 

ijij F,  (44) 

where iF  is the body force per unit volume. Usually the body force is assumed to be ignored if the 

volume or dimension of objective of interest is small. Second one is the continuity equation for the fluid 
phase considering the mass conservation: 







iiq
t ,  (45) 

where   is the density of injection source. 

3.1.2	Field	equations	
The equations in the previous sections explain the physical meaning of porous material and fluid. 
However, only field equations lead to useful solution that is derived in this section. Associated with (i) the 
constitutive equations for the porous rock (Eq. (42)) and porous fluid (Eq. (39)), (ii) the equilibrium 
equation and continuity equation defined as Eqs. (44) and (45) respectively and (iii) Darcy’s law that 
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governs the single phase fluid transport in the porous rock, the linear isotropic poroelastic coupling 
processes are captured. By ignoring the body force of fluid, the Darcy’s law is written as  

ii p
k

q ,
  (46) 

where k  is intrinsic permeability and   is the fluid viscosity. 

By combining the strain-displacement relationship under assumption of small deformation, 

 ijjiij uu ,,2

1
  (47) 

with the constitutive equations and the momentum equilibrium. The deformation field equations are 
obtained as 

0
21 ,,

2 


 ijiji pu
G

uG 


 (48) 

The diffusion equation is derived by substituting Darcy’s law (Eq. (46)) and constitutive equation (Eq. 
(39)) into fluid mass conservation (Eq. (45)) in terms of pore pressure p : 

0
1 2 







 p
k

t

p

Mt
kk


  (49 

where M  is the Biot modulus defined as the fluid contents increase results from the unit increase of pore 
pressure under constant volumetric strain, written as 

 
  u

uG
M




2121

2
2 


  (50) 

Based on the constitutive relations of porous rock and fluid, static equilibrium and mass conservation and 
transportation function, the governing equations representing the fully coupled poroelastic behaviors are 
therefore derived and written in terms of the displacement u  and pore pressure p  as 

  0
21

2 


 p
G

G 


muu  (51) 

  


 iQp
k

p
M

 21 u  (52) 

where  T0,0,0,1,1,1m  for 3D problems and  T0,1,1m  for 2D problems since the coupling term 

pm  is only active in case of volumetric change of porous solid, iQ  is injection rate at point source,   

is Kronecker’s delta function. 

By solving the field equation system shown as Eqs. (51) and (52) for the primary unknown variables-
displacement u  and pore pressure p , we can then calculate other unknowns such as strain ε , total 

stress σ , effective stress σ  and flux q  according the constitutive relations. However, it is very 

difficult to get a close form solution due to the complexity of the partial differential equations, except the 
special cases with simple and symmetric geometries and material properties. Therefore, finding the 
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solution of coupled equations generally relies on numerical techniques, for example, finite element 
method, boundary element method and finite different method, etc. The problems contain more 
complicate geometries and various properties of porous solid and fluid such as nonlinearity, anisotropy, 
heterogeneity could be solved. In this work, we focus on the numerical solution using finite element 
method.  

3.2	FEM	Formulation	
In the following, the finite element solution for the problem of poroelasticity is presented. The field 
equations (51) and (52) are spatially discrete by approximating the field variables of displacement, u , 

pore pressure p  through interpolation functions written as,  

uNu ~
u  (53) 

pN ~
pp   (54) 

where uN  and pN  are the shape functions for the solid displacement and pore pressure fields, 

respectively. u~  and p~  are the displacements and pore pressure on nodes in each elements described 

following an order as 
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],,,[~ 21 nppp p  (56) 

The shape functions for displacement and pore pressure are respectively, 
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 n
pppp NNN ,,, 21 N  (58) 

where n  is the node order number depends on the chose type of element. 

The strain-displacement relationship expressed as Eq. (47) can be written in discretized form, 

uBε ~  (59) 

where 

uLNB   (60) 

T

xyz

zxy

zyx






















































000

000

000

L  (61) 



25 
 

According to Eqs. (53) through (61), using Galerkin’s method, the weak form of equation system Eqs. 
(51) and (52) can be derived as: 

fpAuK  ~~  (62) 

qpHpSuA   ~~~
H

T  (63) 

where 


eV

T dVDBBK (64) 
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p
T dVmNBA   (65) 
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p dV
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NNS
1

 (66) 

    
eV

p
T

pH dV
k

NNH


 (67) 

In these equations, eV  is the volume of element, f  is external mechanical loading, q  is the injection 

rate from a point source. In the following Eq. (63) is discretized in time domain since it is first order time 
dependent. Though incremental formulation of matrix is required for strong nonlinear problem, the 
present work adopts the total formulation since that the constitutive models (VMIB, nonlocal damage 
model et al.) for the nonlinear rock behaviors are written in total form. Therefore the temporal 
discretization of field variables performed between 0t  and t  can be expressed as: 

0000 )1(~)1(~)1(~~
tttttttt ffpAuKpAuK    (68) 
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where 0ttt   is the time interval,   is a coefficient with the range 10   . 

Eqs. (68) and (69) are written in the matrix form: 











































































0

0

0

00

1

1

~

~

)1(

11

~

~

tt

tt

t

t

H
T

t

t

t

H
T

t

ttt

t

qq

ff

p

u

SHA

AK

p

u

SHA

AK

















 (70) 

For simplification purpose, set 1  corresponding to an implicit schemes. Thus, the finite element 
formulation of field equations through special and temporal discretization in terms of displacement and 
pore pressure is obtained and Eq. (70) is reduced to 
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Finally, by integrating the constitutive equations for the porous rock and fluid, the equilibrium equation, 
continuity equation and single phase Darcy’s law, the fully coupled poroelastic field equations in FEM 
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form are obtained and coded in FORTRAN language. Due to the time dependency of poroelastic problem, 
using an appropriate time step is especially important. The stress and strain of porous rock propagates 
relatively faster than fluid diffusion that requires small enough time step for accuracy consideration. 
However, in fluid flow part, small time step will induce instable because of the pore pressure is nearly 
unchanged in this small time interval. Meantime, element size is another influence factor for adopting 
appropriate time step. Therefore, the time step is determined according to reasonable accuracy and 
stability. 

3.4	FEM	Formulation	Validation	of	Poroelastic	Model	
To validate the present model for poroelastic model, the numerical solution is compared with the 
analytical solution of Terzaghi’s one-dimensional consolidation. Terzaghi consolidation theory provided a 
solution for the fluid solid interaction in soil saturate with water, which has successfully inspired the 
following research in soil mechanics and geotechnical engineering. The settlement of a saturated soil 
column with thickness of h  under a constant load from the top surface is analyzed. The column rests on 

a rigid and impermeable boundary. The constant normal loading with magnitude of P  squeezes the pore 
water out from the top that induces a gradual settlement. The boundary conditions are written as follows: 

0)(  zPtHzz  (72) 

tzp  00  (73) 
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


0  (74) 

(Detournay and Cheng 1993; Jaeger, Cook et al. 2009) give the detailed solutions for Terzaghi’s one-
dimensional consolidation. The solutions for pressure distribution are written as: 
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and the solution for top settlement is 
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where h  is the thickness of soil column, M  is the Biot modulus expressed as Eq. (50), B  is the 
Skempton’s coefficient written as Eq. (41), S is storativity coefficient written as: 
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and )(xerfc  is the coerror function (Abramowitz and Stegun, 1970), defined as 
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Figure 13. Problem geometry and boundary conditions of soil column. 

The 3D finite element model with specified boundary conditions is used to reproduce Terzaghi 1D 
consolidation. The soil column has mm 11   cross section and m10  height shown in Figure 13. The lateral 
surfaces are impermeable and their normal displacements are confined to fulfill the same boundary 
conditions as 1D Terzaghi’s problem. The bottom side is also impermeable with no displacements. The 
top surface is exposed in air representing zero pore pressure boundary and subjected to a mechanical 
pressure load P . Therefore, the water is drained from the top during the loading process. Table 2 lists the 
input parameters used for analytical and numerical solutions. In the simulation, 38028 four nodes 
tetrahedron elements with 8556 nodes are used. 

Table 2. Input Parameters for Terzaghi’s 1D Consolidation. 

Shear modulus, G  12.0 GPa 

Poisson’s ratio,   0.15 

Undrained Poisson’s ratio, u  0.29 

Biot’s coefficient,   1.0 

Permeability, k  0.5 md 

Fluid viscosity,   sPa100.3 4    

Load, P  MPa0.1

 

The comparisons of the transient pore pressure distributions between analytical and numerical solutions 
are shown in Figure 14. The pore pressure contours at different time are plotted in Figure 15. Figure 16 
shows the transient settlements at various depth comparisons between analytical and numerical solutions. 
The comparisons indicate well agreement between the analytical and numerical solutions, which enhances 
the confidence that the model can be adopted to simulate the porous rock and fluid during the hydraulic 
stimulation in the following sections. 
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3.5	Fracture	Flow	Model	
The theoretical aspects and mathematical derivation of classic poroelastic model are presented. The model 
is continuum-based and well explains the coupled process of the porous fluid flow and rock mass 
deformation for intact rock formation. However, to simulate the hydraulic fracturing process, a 
modification is necessarily needed because of the different flow mechanisms and boundary condition due 
to discontinuity of fracture surface. The conventional poroelastic model is not valid in an element that 
contains a fracture. On the aspect of fluid flow only, the permeability of fractured element is artificially 
increased to represent the conductivity enhancement by fracture creation. The pressure distribution along 
the fracture and diffusion in the rock formation can be calculated using an equation system. The challenge 
problem is applying the calculated pressure profile as pressure boundary on the fracture surface during the 
propagation process. As mentioned, the coupling part of the poroelastic model is not valid for the 
fractured element though the fluid diffusion part is still used to calculate the fluid pressure. Therefore, the 
modification is made on the coupling part of poroelastic model. The original coupled part A  in Eq. (71) 
is replaced with a new matrix derived based on the way of applying hydraulic pressure on the fracture 
surface using 3D EPM. The original poroelastic equations system is written as: 
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In Eq. (80), A is the fully coupled term representing the porous fluid and solid mutual interaction. Eq. 
(80) is used for the intact element. For the fractured element, the following equation system is used: 
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In Eq. (81), the stiffness matrix of solid EPM
tΚ  has been changed to the one calculated by 3D EPM and is 

no longer fully coupled with the porous fluid. The fluid flow in the fracture element will only follows the 
Darcy’s law. In other words, the solid deformation will not influence the fluid pressure. The fluid pressure 
will affect the solid deformation in a one-way manner. Next, Eq. (81) is rearranged as 
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After rearranging of Eq. (82), t
EPMpA ~ term can be considered as nodal forces applied on the right hand 

side of equation system. Meantime, the pressure boundary condition on the fracture surface can be 

successfully applied if EPMA  is well constructed. Another advantage is that the pressure boundary will be 
possibly applied real-timely since that displacement and pressure are calculated simultaneously. Let’s 
recall the method of representing the hydraulic pressure in fractured element, which is helpful for 

understanding the mathematical and mechanical meaning of t
EPMpA ~ . The hydraulic pressure P  in an 

element is represented by the equivalent nodal forces APF , where A  is the area of fracture in one 
element. Take type I partition element for example, the pressure in the fracture surface uses the averaged 
value of the pressure on these 4 nodes written as  
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where ],,[ zyx nnnn  is the direction vector indicating the normal direction of fracture surface. 

The equivalent nodal forces are rewritten as 
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(a)                                                                (b) 

Figure 17. Equivalent nodal forces representing hydraulic pressure for (a) type I partition element; (b) 
type II partition element. 

 

Write Eq. (84)~(87) in matrix form shown as following: 
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The nodal force vector on the right hand of elemental matrix system is written as: 

],,,,,,,,,,,[ zMyMxMzKyKxKzJyJxJzIyIxI FFFFFFFFFFFF f  (92) 

Combining and rearranging Eq. (88)~(92) yields: 
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Combining and rearranging Eq. (92) and Eq. (94)~(97) yield 

t
EPM
typeIIpAf ~  (98) 

where TM
typeII

K
typeII

J
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I
typeII

EPM
typeII ][ AAAAA   for type II partition element. 
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Figure 18. Illustration of modified poroelastic model 

Finally, the modified poroelastic model is derived and illustrated in Figure 18. In Figure 18, the red line 
indicates a fracture. The blue rectangular with the red dot corner displays the permeability enhanced 
element cut by the fracture. The arrows show the equivalent nodal forces normal to the fracture surface. 
The fully coupled poroelastic model shown in Eq. (80) is adopted to simulate the fluid diffusion and 
deformation in the intact rock formation. The modified poroelastic model shown in Eq. (81) changed the 
matrix component based on 3D EPM that is capable to apply real-time hydraulic pressure calculated 
simultaneously in the same equation system. For newly extended fracture, the elemental matrix will be 
changed to 3D EPM formulation if the element is cut by the new fracture surfaces. 

In traditional poroelastic modeling, the time step t  is predetermined to fit the problem of interests. 
However, for hydraulic fracture simulation, the time step between each propagation step has specific 
physical meaning that governs the fracture pressure distribution and leak-off volume into the formation. 

Therefore, a reasonable value of t  is required. In present model, the injection time increment t  in Eq. 
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(80) and (81) is calculated using the similar way as the one used in lubrication theory written as 

 
fA

iQwdAt / . The equation means that the t  only takes account in the fluid volume that stays in 

the fracture surface. The volume of diffuse fluid is neglect in t  calculation since that the leak-off 
volume is difficult to get especially for complex fracture surface and moving boundary during the fracture 

propagation. Therefore, t  is underestimated and needs more work in the future. 

4.	Thermo‐mechanical	Model	
 

The influences of thermo-mechanical processes on fracture initiation and propagation are important to 
geothermal systems development. Cold water injection and heat extraction in the geothermal reservoir 
will cause dramatic temperature changes in the rock subjecting it to volumetric contraction (expansion). A 
volumetric expansion or contraction results in variation of rock stress and rock properties. The processes 
of thermal and mechanical coupling occur on various time scales and may have different influence upon 
the problem of interest. The influence of thermo-poroelastic process on the near wellbore flow and 
stresses has been addressed analytically (McTigue, 1990) and numerically (e.g., Ghassemi and Zhang, 
2004; Zhou and Ghassemi, 2009). Generally, the thermal effects should be considered during long term 
injection owing to low thermal diffusivity of rocks. High tensile stress are induced by cooling of the rock 
fractures surfaces, indicating a potential for extension of the secondary thermal fractures (Bazant and 
Ohtsubo, 1979,  Tarasovs and Ghassemi, 2014, Feng and Jin, 2009, Tarasovs and Ghassemi, 2011, Huang 
and Ghassemi, 2012). There is also experimental investigation (Geyer and Nemat-Nasser, 1982) showing 
thermally induced crack in glass. (Bauer and Handin, 1979, 1983) presented experiments to measure the 
thermal expansion of various water-saturated heated rocks under different effective confining pressure. 
Microcrack developments have been found associated with thermal expansions from 25  C to 800 C . The 
work inferred the permeability enhancement of interconnected micro crack due to thermal stimulation. As 
a result, thermal stimulation has been suggested as a means of enhancing reservoir permeability.   

Thermal fractures can result from the nonlinear deformation of the solid in response to thermal stress. 
Before the rock reaches the final failure stage, material softening and bulk modulus degradation can cause 
changes in the thermo-mechanical properties of the solid. In order to capture this aspect of the solid 
fracture, a VMIB-based thermo-mechanical model is derived to track elastic, softening, and the final 
failure stages of the rock response with the change of its temperature field in time. The thermo-
mechanical properties of rock changes as its bulk modulus evolves are derived from a nonlinear 
constitutive model. On the other hand, to represent the thermo-mechanical behavior of pre-existing 
fractures, the element partition method (EPM)(Huang and Zhang, 2010) is employed. The 3D EPM has 
been used to simulate the propagation of 3D embedded mix-mode fracture (Huang, Zhang and Ghassemi, 
2012). Taking advantage of EPM, the contact and friction of the fracture can be simulated without a 
dedicated mesh.  

By including an additional thermal term into the governing equations, a nonlinear thermo-mechanical 
constitutive equation can be obtained as (Nowacki, 1976), 

ijmnijmnij TC   ˆ  (99) 
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where ij  and ij  are the components of stress and strain tensor (tension is considered positive), T  is 

the temperature change equal to )( 0TT  , in which T  and 0T  are the current temperature and initial 

temperature, respectively. ij  is the Kronecker’s detla. The thermal coefficient ̂  in Eq. (99) is defined 

as: 

mK ˆˆ   (100) 

where K̂  is bulk modulus defined as klklklklklkl CCCK  332211 3

1

3

1

3

1ˆ   for an isotropic material, and 

m  is the thermal expansion coefficient of solid matrix. The above constitutive equations combined with 

stress equilibrium and energy balance equations, yield the following Navier’s and thermal diffusion field 
equations,  

0ˆ ,,  ijilikijkl TuC   (101) 

02  TcT T  (102) 

In the following, the finite element method for the nonlinear thermo-mechanical problems is presented. 
To approximate the field variables of displacement, u , temperature T , and total temperatures change, 

T , shape functions are used: uNu ~
u , TNT

~
T , TNT

~
 T , where uN  and TN  are the shape 

functions for the solid displacement and temperature fields, respectively. u~  and T
~

  are nodal 
displacements and total temperatures change. These approximations are substituted into Eq. (101) and 
(102) (Galerkin method) yielding the following equations 

fTVuK
~~~   (103) 

0
~~
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Using Crank-Nicolson method for time approximation scheme to discretize the heat diffusion equation 
shown as Eq. (104), the final finite element formula can be obtained  

1
~~

)(  nn tt TUTUR   (109) 
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Where 1
~

nT  is the temperature in the previous time step, and nT
~

  is the temperature change in the 

present step. 

Since the thermal-mechanical problem is not a fully coupled one, i.e., mechanical deformation does not 
influence the thermal diffusion, the thermal coupling term in the elasticity equations can be taken as a 
mechanical load caused by temperature changes during the calculation. Once the temperature field is 
known, the thermal stress load can be obtained. Considering the coupling part, after rearrangement of 
Eqn. (103), the field equation becomes 

TVfuK
~~~   (110) 

The second term on the right side describes how the temperature changes influences the stress-strain field 
through displacements. 

       

Figure 19. Thermo-mechanical response of a fracture in traditional FEM. The arrows show the 
cooling-induced nodal forces for contraction. 

To achieve the volume change such as expansion by heating and shrinking by cooling in the finite 
element modeling, equivalent node forces (ENFs) caused by the nodal temperature changes are applied on 
the corresponding nodes and in the corresponding directions. The mathematical expression of equivalent 

node forces (ENFs) is shown in Eq. (110), which is TV
~

 . For example, we assume that the temperature 
over a domain changes instantaneously and uniformly. The ENFs are canceled on the interior nodes 
because of their same temperature change, and only the enforced ENFs on the boundary nodes will cause 
a volumetric change (shown in 2D in Figure 19 for cooling process). 
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Figure 20. Thermo-mechanical response with original thermal properties. 

 

In this work we use a 3D element partition method (3D EPM) for fracture creation so there is no need to 
mesh for pre-existing fracture. If the ith element is cut through by a fracture, the element will be 

transferred to the partition element based on the original structured. The ith element stiffness matrix e
iK  

will be replaced by EPM
iK  before being assembled into global stiffness matrix K . However, the thermal 

and thermo-mechanical coupling part of the partition element also needs to be modified. In Figure 20, the 
elements with red boundaries have been changed into partition elements after being cut by fracture shown 
as thick line. Having their original thermal and coupling properties, the object in the figure will perform 
like a non-fractured one, because that the ENFs status in Figure 20 is equal to the resultant nodal forces in 
Figure 21(a) and (b). If the thermally induced ENFs of the fractured elements are removed, shown in 
Figure 21(a), the resultant nodal force shown in Figure 21(b) will be the same as the one in Figure 19. 
Mathematically, before being assembled into the coupling part of global matrix V , the thermo-

mechanical coupling term in element level e
iV  should be multiplied by   which equals 0 if the ith 

element is fractured. Therefore, the fractured element is now partitioned both with respect to its 
mechanical properties and its volumetric thermal deformation so that deformation behavior of a fracture 
under thermo-mechanical load is numerically represented. The same modification will be applied to 
newly extended fractures. As a result, the fracture will be represented in a blunt sharp that related the size 
and shape of the fractured elements. This could influence the precision of calculation if the element size is 
relative large. 
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(a)                                              (b) 

Figure 21. (a) Thermo-mechanical response of fractured element; (b) thermo-mechanical 
response of partition element after modification. 

4.1	Numerical	Simulation	of	Fracture	Propagation	under	Mechanical	Loading	

4.1.1	Mode	I	fracture	
To examine the performance of VMIB and 3D EPM in simulating tensile (Mode I) fractures propagation 
and their interaction, a cubic specimen with two sawed horizontal rectangular fractures is simulated. The 
geometry is shown in Figure 22. The uniaxial vertical tensile load is applied on the top of the specimen. 
Table 4 shows the parameters used. The mesh consists of 12, 24 and 34 rows of nodes plotted on the x, y 
and z direction respectively. The total element number is 41745 and the total node number is 9792. 
Displacement controlled loading is employed in this simulation.  

Table 4. Parameters of Simulations Using VMIB Model  

Parameters of intact element: 

Young’s modulus, E  30.5 GPa 

Poisson’s ratio,   0.20 

Tensile strain strength, t  310105.0   

Parameters of 3D EPM: 

Normal stiffness coefficient, hKn /  10.0 GPa/m 

Shear stiffness coefficient, hKs /  10-8 GPa/m 

Fracture width, h  1.0 mm 

Parameters of 3D VMIB: 

c  0.15 

n  4.0 
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Case IV: 4.2V , 8.0h , 8.0H , MPap 2.30  ; 

In Case I the angle of inclination,  , is set to be 45 degree to decrease the boundary effect.   in other 
cases is set to be 30 degree. The simulation results for these cases are shown in Figure 46 to Figure 48. 

 

Figure 45. Problem geometry and in-situ stress directions. 

When the fracture is pressurized, both the strain and the stress are concentrated near its tip. However, in 
case of the 3D embedded elliptical fracture, the fracture tip is an ellipse, and the stress strain state is 
different along the tip contour depending on the certain geometry and in situ stress. Thus, different 
fracture propagation modes might occur at different locations of the fracture tip contour. Figure 46a 
shows the fracture propagation in the isotropic stress field (Case I). As the applied stress state is 
symmetric for the 45-degree crack, the fracture propagates on its original plane under the action of the 
applied stress field. The fracture advances straightforward when the applied uniform hydraulic pressure 
exceeds the normal stress on the plane of the fracture. Figure 46b shows the fracture propagation for the 
Case II. The upper and lower fracture tips develop slightly inclined to the vertical direction, that is, the 
maximum stress direction. This can be observed more clearly in Case III, shown in Figure 46c. The final 
path is steeper than that of Case II, tending to the maximum in situ stress direction. As V  increases, the 

pattern of fracture propagation at the upper and lower wings of original fracture changes from Mode I to 
combined Modes I and II. To illustrate this, the middle slice of the rock block, which contains only the 
upper and lower end tips, is considered, and the resulting fracture path is shown for each stress state in 
Figure 47. Figure 48 shows the final propagation of the half elliptical fracture. In Case I, shown in Figure 
48a, the fracture propagates as Mode I despite the location of the fracture tip. From Figure 48b–c, mixed 
mode propagation (Modes I and II) occurs at both upper and lower edges of the original fracture. On the 
side tips, the fracture develops outward and connects with the fractures on the upper and lower ends to 
form a curved surface, a typical behavior of Mode III fracture. 
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(b) 

Figure 48. . Final shape of propagated hydraulic fracture: (a) Case I, (b) Case II, (c) Case III, and (d) Case 
IV. 

5.1	Mesh	Size	Sensitivity	
 

In realistic material, the strength degradation causes by micro crack and void development. The material 
failure results from interconnection of micro crack and emerging of macro crack. In element based 
methods and strain softening constitutive models like VMIB, the micro-cracks growth are homogenized 
in an implicit way within a representative volume that usually is the element size. Since one element size 
is the minimum representative volume, the softening usually localized in a narrow region that is 
controlled by the size of the element. Therefore, VMIB model becomes highly affected by the mesh size 
and alignment causing non-physical predictions of fracture proceeding area. 
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Figure 49. (a) Softening behavior of a single spring; (b) spring system and (c) displacement-force 
diagrams from different number of springs (Bazant and Planas, 1998). 

 

(Bazant and Planas, 1998) described the phenomenon as mesh size dependency. It has been discussed in 

numerical results from a 1D spring system with total length L shown in Figure 49(a). Figure 49(a) shows 
the softening behavior of a single spring by stretching. Figure 49(c) shows the displacement-force curves 
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from different number of springs in the system. The post-peak behaviors, therefore, depend on the number 

of springs in the system. When n  springs are used, the post-peak curve will snap back to 0
3

u
n

. The 

tendency of post-peak curve is turning back to the original point if the number of springs n  goes infinite 
that indicates the energy dissipation during the whole loading and failure process tends to be zero, which 
is physically unrealistic. 

The original VMIB model used unique cohesive law for all elements with different size. However, the 
fracture energy is not conserved and model is subjected to mesh size dependency. Through analysis using 
J-integral (Rice, 1968), the outline of localization zone is taken as the integral path  , the J-integral (23) 
along   can be computed as  
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where W is the strain energy density, T and U  are the traction and separation vector of cohesive zone 

respectively, h is the length scale of localization zone, εhu n   is the normal separation, 
nu  is the critical 

separation when cohesive stress becomes zero, hu nu / . In J integral along  , a length scale h that is 

proportional to the fracture energy in the VMIB model. Therefore, the bond density potential has to 
consider strength and fracture energy conjugated with the localization zone size to eliminate the mesh size 
dependency.  



h

 

Figure 50. The path of J-integral contours along the outline of localization zone. 

 

5.2	VMIB	Model	with	Hyperelastic	Bilinear	Potential	Considering	Fracture	
Energy	Conservation	
 

At different scales, the constitution of material has different representation. Generally, material is 
considered as continuum at macro scale and particle at microscale shown as Figure 51. In VMIB theory, 
material is consisted by randomized mass particles at the micro scale. The particles are connected by 
virtual bonds that provide both longitudinal and rotational resistances in Figure 51(c). The behaviors of 
bonds govern the mechanical response of material according to relative displacements of paired particles. 
These particles are not realistic physical particles such as atom or molecule. The macroscopic continuum 
behavior is descripted by microscopic interaction of particles through homogenization. By Cauchy–Born 
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rule, the strain energy function in the VMIB model is characterized. A change in the configuration of a 
continuum body results in displacement that is composed by rigid-body displacement and deformation. 
The material points in the undeformed configuration are described by the Lagrangian (Material) 
coordinates ),,( 321 XXXX  . The corresponding material points in the deformed configuration is 

described by Eulerian (spatial) coordinates ),,( 321 xxxx  . The deformation gradient is given by 

I

i
iI X

x
F




  (112) 

From deformation gradient, the Green-Lagrange strain tensor is given by 

 IJiJiIIJ FFE 
2

1  (113) 

where 
IJ  is the Kronecker delta. In the hyperelastic theory (Marsden and Hughes, 1983; Ogden, 1984), 

  is the strain energy density function. The Piola-Kitchhoff stress tensor is 
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S
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The material elastic tensor is 
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Figure 51. Material constitution at (a) macro scale and (b) micro scale consisting of randomized 
material particles that are bonded with (c) virtual bonds. 

 

Each micro bond is described by a potential:  

 l
 (116) 

where l  is bond stretch and  is bond rotation angle. In small deformation case, 
IJE  and 

IJS  reduce to the 

strain 
ij  and stress 

ij  respectively of linear elasticity (Gao and Klein, 1998). According to the Cauchy–

Born rule (Milstein,1980; Tadmor et al., 1996), the bond deformation  contain: 

jijill 0 , 
jiji  1
, 

jiji  2
, 

jiji  3
 (117) 



64 
 

where 
0l  is the original bond length, )cos,sinsin,cos(sin ξ is the unit orientation vector of bond in 

sphere coordinate system and 
ij  is the strain tensor. 1 , 2  and 

3  are rotation angles of bond towards 

three coordinate axes 1x , 2x  and 
3x  respectively. η , η   and η   are unit vectors perpendicular to the 

direction indicated by ξ of normal bond. 

The average strain energy density of the representative volume element can be written as follows

 lV

1  (118) 

where V is the volume of representative element and 
 

ddD sin),()(
2

0

2

0   . ),( D  is the bond 

density function. The bracket   represents a homogenization process. The homogenization process 

integrals and diminishes the individual behaviors of all micro bonds in the representative volume. 

From Eqs. (3) and (4) and assumption of small deformation, the stress tensor of the representative element 
is derived as 
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We assume 
321 
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The modulus matrix 
ijklC  is derived as 
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For elastic and isotropic case, 
l  , 

   are constant and 0.1),( D . For material nonlinearity, a 

phenomenological cohesive law is introduced to represent hyperelastic and softening behaviors. The 
following exponential function (Gao and Klein 1998; Klein and Gao 1998; Zhang et al. 2002; Klein et al. 
2001; Nguyen et al. 2004; Thiagarajan et al. 2004) is typical one used as bond density potential in VIB 
model 

 BllllAl /)(exp)( 00   (122) 

where A is a Young’s modulus related parameter and B is related to fracture energy. The nonlinear macro 
properties of material such as softening and degradation are expressed by introducing the bond strength or 
density evolution. The evolution law is characterized by mechanical behaviors of material failure test. 

5.3	VMIB	With	Fracture	Energy	Conservation	
 

Many works (Hillerborg et al., 1976, Bazant and Planas, 1998, Kyoungsoo et al., 2008) introduced a 
localization zone size according to this length scale for the simulations. This is feasible for problems with 
simple geometry and known fracture propagating direction and patterns. For complex stress state in three 
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dimension and mix-mode fracture problem, the localization zone remains unknown before analysis. 
Therefore, to capture fracture propagation without pre-assuming localization zone, the present work 
considers every element as potential localization zone. If element type and shape are known, the length 

scale h of each element is proportion to element volume. (Bazant and Becq-Giraudon, 2002) introduced 
two fracture energies to 

fG  and 
FG  that are needed for accurate structural analysis considering size effect. 

FG  is total fracture energy that corresponds to total work under the softening curve. 
fG  is the initial 

fracture energy that primary depends on peak strength. Accordingly, (Park etc., 2008) described a bilinear 
softening model for concrete shown as Fig.4. The bilinear softening curve was defined tensile stress 

tf  , 

initial fracture energy 
fG  and total fracture energy 

FG . The vertical coordinate of kink point is 
tf  . 

crw , 

1w , 
kw  and 

fw  are crucial crack openings width during the softening process, which are determined by 

the peak strength, fracture energy and location of kink point. According to Figure 52, the stress responds 
to given crack opening is 
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and tangential stiffness is 
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Figure 52. Bilinear softening model for concrete where 
tf  is tensile strength, 

fG is initial fracture 

energy; and 
FG  is total fracture energy. 

Adapting the idea of bilinear softening model, the bond cohesive law of VMIB incorporate the material’s 

fracture energy shown as Figure 53, where Fg  and fg  are the fracture energy related coefficients 

calculated by VgAG FF   and VgAG ff  . A is the fracture area in the element and V is element volume. 
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From Eq. (6), the bond longitudinal stretch l  and rotational angle   are the functions of strain ε 
according to the Cauchy–Born rule. Therefore, the longitudinal potential is rewrote as )(l . The present 

model assume the longitudinal potential l  and rotational potential   in Eq. (10) evolution follow 

same bond cohesive law. In loading process, the evolutions of rotational potential    is proportional to 

l  , and l  in brief. In Eq.(10), l  and    follows similar softening tendency in Figure 52 

and are rewritten as kfl )(ε  and rf )(ε , where )(εf  is bond evolution function, k and r  are 

longitudinal and rotational bond material constants respectively, which can be interconnected and 

expressed by macroscopic material constants Young’s modulus E and Poisson ratio   as 

)21)(1(4

)41(3

)21(4

3
2
0














EV
r

l

EV
k

 (125) 

Eq. (10) is written as 
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Similar to Eq. (14), the bond evolution function )(εf  is written as  
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where 
b , 

p , 
r  and 

c  are shape parameters determined by the peak strength 
t , fracture energies, 

location of kink point 
t  and the size of representative volume. 

b p c
fg

fF gg 

r

t

t

 
Figure 53. Bond cohesive law for VMIB considering fracture energy 

fg  and Fg . 
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representative
   volume V

     

fracture surface A

 
Figure 54. (a)Continuum based representative volume consumes strain energy and (b)fracture 

surface and its area consumes fracture energy. 

The VMIB is a particle-based and continuum-based model. The softening and energy consumption occur 
in the representative volume that is element in FEM implementation, which is shown in Figure 54(a). The 
fracture energy, on the other hand, is dissipated over the fracture surface shown as Figure 54(b). The 
shape parameters 

b , 
p , 

r  and 
c  are quantified by relating the bond work to fracture energy. Firstly, 

b  is the critical strain at tensile strength of material. 
p , 

r  and 
c  are related to the initial fracture 

energy 
fG , total fracture energy 

FG and representative element volume. 
p  is the strain at the kink point 

of softening segments in the bilinear cohesive law. 
r  is the extended line of segment 

b -
p  to 

horizontal axis. The strength vanishes at 
c . According to Figure 53 and Eq. (17), the work of bond in 

representative element is divided into three segments, 
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where V is element volume, 
1W is the work on loading from zero to tensile strength, 

21 WW   is related to 

initial fracture energy 
fG , 

3W  corresponds to 
fF GG  . 

As the representative element is deformed and cracked, a crack is created in the element. The geometrical 

parameters like the length scale of localization zone h and fracture area A need to characterized from the 
volume of element, 
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where  is a coefficient related to the element geometry and shape. 

The total strain energy dissipation by stretching volumetric element is equal to fracture energy required to 
create crack surface in the element. We have  
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The shape parameters 
p , 

r  and 
c  shown in Figure 53 are derived with Eqs. (18)-(20) 
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where 
Ff GG / ,  is bond force ratio indicating the location of kink point in softening curve. 

In certain cases, the calculated 
r  is smaller than 

b  that makes present model no more validate to 

capture fracture energy correctly. The present VMIB model can be applied if the length scale of 

localization zone h is smaller than a critical value  
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And the critical element volume is 
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5.3.1	Verification	
To verify the bilinear softening potential model in remedying the spurious mesh sensitivity, the three-
point bonding test of notched concrete beam made of micro-concrete (Ruiz G. 1998, Yu et al., 2008) is 
simulated. The dimension and geometry of simulating specimen is shown in Figure 55. The parameters of 

materials (Yu et al., 2008) are the Young’s modulus is GPa5.30E , the Poisson ratio is 2.0 , the 
uniaxial tensile strength MPa8.3tf  and the total fracture energy 2J/m5.62FG . The critical strain is 

calibrated as 310286.0 b . The fracture energy ratio  is set as 5.0/  Ff GG  and the ratio of bond 

force is 2.0 . The element geometry and shape coefficient is calibrated as 23.0 . To examine the 

effectiveness of the present method on element size dependency, three different mesh schemes are 
simulated and shown in Figure 56. Finer meshes are generated above the notch sections with approximate 
sizes of 5 mm, 2.5 mm and 1 mm respectively. 
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Figure 55. The dimensions of the simulated three points bending specimen. 
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media formulation and the permeability is enhanced since the high conductive zone created by fracture in 
the element. For moving boundary hydraulic fracturing process, a modification to the continuum model is 
necessary due to discontinuity of fracture surface. For intact element, the original poroelastic equations 
system in FEM formulation is written as 
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where K  is rock stiffness matrix, A  is the poroelastic coupled term representing the mutual interaction 

of porous fluid and matrix, Sand 
HH  are diffusion matrix, u~ and p~p~

 are the nodal displacements and pore 

pressure. f is external mechanical loading, q is the injection rate from a point source, t  is the present time, 

0t  is the time at previous step, 0ttt   is the time interval,  is a coefficient with the range 10  . 

For the fractured element, the following equation system is used: 
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where 
t

EPM pA ~  term is nodal forces applied on the right hand side of equation system to apply the fluid 

pressure on the fracture surface. The fluid flow in the fracture element will only follows the Darcy’s law. 
The fluid and solid are no longer coupled in the way described by the Biot’s theory. Eq. (25) is rewritten 
as  
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After rearranging, the pressure boundary condition on the fracture surface can be applied by matrix EPMA
. It is not needed to apply the nodal forces representing the fluid pressure on fracture after the pressure is 
calculated. The pressurizing displacement and fluid pressure are calculated simultaneously. 

The hydraulic pressure p in a fracture element is represented by the equivalent nodal forces pf A  , 

where A  is the fracture area in the element. For example, considering fractured element with triangle 
fracture area, the pressure on the fracture surface is calculated by averaging the pressures on all 4 nodes 
of the element:  
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I
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  (137) 

where n  is the unit normal to the fracture surface, I
tp~  is the nodal fluid pressure on node I at time t . As 

shown in Figure 60(a), the element contains a triangle crack surface. Node M  is the only one on the 

upper side of fracture. The equivalent force of node M  is representing the fluid pressure on the fracture, 
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Each node I, Jand K  on the other side are carrying 1/3 of the fluid load on the fracture. Their equivalent 
nodal forces are 
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The nodal force vector on the right hand of the elemental matrix system is written as 
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According to (Huang, dissertation), nodal force vector is derived as 

e
t

EPM pAf ~  (141) 

where  MKJIEPM AAAAA   for fractured element with triangle crack intersection. 

h

z
x
y

MzF 

MxF 

MyF 

KzF 

KxF 

KyF IzF 

IxF 

IyF 

JzF 

JxF 

JyF 

o

I

o
x

z

y

M

I

J

K

x

z

y

 
(a) 

Mzu 

Mxu 

Myu 

Kzu 

Kxu 

Kyu 
Izu 

Ixu 

Iyu 

Jzu 

Jxu 

Jyu 
I

o
x

z

y

J

K

M

n

         

Mun

Kun

I

o
x

z

y

J

K

M

n

Jun

Iun

 
(b) 

Figure 60. (a)Equivalent nodal force representing the fracture fluid pressure and (b) aperture 
representing by relative displacement in element with triangle crack plane. 

Based on similar concept, the fracture aperture w  is calculated based on the relative displacement and 
orientation of the fracture surface, shown as Figure 60(b). The displacements of nodes along the normal 
direction of fracture are written as  n

M
n
K

n
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n
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n uuuuu~  . The aperture is calculated as 
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centered. The spacing between the notch intervals is 15 mm. Figure 62 illustrates the geometry of rock 
block sample. Take advantage of symmetry of problems, a quarter of rock sample is simulated and shown 
as gray. Two fractures are simulated to emphasis on their interaction illustrated in Figure 61. The fluid is 
injected in the notch with red outline that is 15 mm above the previously placed fracture with blue outline. 
Two limiting scenarios are designed in the experiments, which are cases with zero vertical confining 
stress and with vertical stress restraining the reopening of underneath fracture. The simulation properties 

is used according to the rock block used in the test. The Young’s modulus, E  and Poisson’s ratio,  are 

GPa102  and 0.27, respectively. The rock fracture toughness is 2/13.2 mMPaKIC  . (Bazant and 

Kazemi, 1990) discussed the relation between the fracture toughness ICK , fracture energy release rate 

IG  and fracture energy fG . In linear elastic fracture mechanics it is shown that EKG II /2  and further 

yields EKR IC /2 , where R  is critical fracture energy release rate. According to the size effect law, 

fracture energy fG  is expressed by RG
d

f 
 lim , where d  is the sample size. (Hashida .and Takahashi, 

1985) presented R  value as a function of sample size d . When the sample size d  reaches 350 mm, the 

value of fGR /  is larger than 0.9 and approaching 1.0 as the size increasing. The present simulation uses 

RG f  and its value is 51.86 2/ mJ . The critical strain is calibrated as 410922.0 b . The fracture 

energy ratio  is set as 5.0/  Ff GG  and the ratio of bond force is 25.0 . The element geometry and 

shape coefficient is calibrated as 12.0 . For fluid flow in the rock and fractures, we consider that the 

rock is nearly impermeable since extreme low permeability and short term injection. Therefore, a very 

low permeability nd0.1intact k  is given for the intact rock in the simulation. Major fluid flow and storage 

occur in the fractures. As the theory mentioned above, the fractured elements are also treated as porous 

media with constant enhanced permeability that is given by cubic law using constant aperture of 5105   

meter. For fluid parameters, the viscosity is Pae3.0 3 , the injection rate is constant 

min/0.0038mlinj Q . The total number of elements is 975,454 and the total number of nodes is 160,806. 
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Figure 63. Geometry of rock block sample and simulation domain. 
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advantage of 3D EPM, the pre-existing fractures were treated as “joints” so that the contact and reopening 
behaviors were captured when interacting with a propagating fracture. For each case, curved and parallel 
growth of fractures under different confining stresses was captured with reasonable agreement with 
experimental observations. The critical element size, however, limits the maximum size that satisfies 
fracture energy conservation and the effectiveness of the model. Therefore, it limits the size of simulation 
domains to small and possibly meso-scale. 
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CHAPTER	2:	MODELING	HYDRAULIC	FRACTURE	PROPAGATION	USING	A	
THERMO‐HYDRO‐MECHANICAL	FINITE	ELEMENT	METHOD	WITH	
BRITTLE	DAMAGE	MODEL		
 
 this chapter we use a related but alternative approach to model the complex hydraulic fracturing 
processes including rock deformation induced by hydraulic pressurization, fluid flow (fluid pressure) 
within the fractures caused by fluid injection, and fracture propagation. To simulate the coupled processes, 
the following key factors are considered for hydraulic fracturing design in complex settings: 

 

 First, the nonlinear mechanical behavior of a rock mass is described by elastic/brittle 
constitutive modeling using continuum damage mechanics (CDM). The failure mechanism 
of brittle rock is described using a mechanical damage evolution law at the elemental scale 
within the finite element method. So, at current stage, no rate/time-dependent behaviors 
such as plasticity are taken into account. 

 Second, the heterogeneity of rock mass is considered using spatial distributions of material 
properties (Young’s modulus, strength, and permeability). The spatial distribution curves 
are described by the Weibull distribution function (Weibull, 1939). The random variable 
approach of the Weibull function is popularly used to represent rock heterogeneity because 
of its simplicity (Fang and Harrison, 2002a; Tang and Hudson, 2011; Tang et al., 2002; 
Wong et al., 2006; Yuan and Harrison, 2005) and have been used in stimulation (Lee and 
Ghassemi, 2010).   

 Third, the porous rock mass is assumed to be fully saturated with fluid flow governed by 
Darcy’s law, and the reservoir response by the coupled processes of rock deformation, pore 
pressure, and temperature during hydraulic fracture propagation were described using the 
fully coupled thermo-hydro-mechanical (THM) analysis under the governance of mass, 
momentum and energy conservation laws (Noorishad and Tsang, 1996).  

 Fourth, the fluid flow inside fractures is assumed as incompressible and single phase, with 
Newtonian flow, so that the hydraulic pressure distribution inside fractures is solved using 
the lubrication equation with a no-flow boundary condition at the fracture tip.  

 Fifth, the quasi-static crack growth algorithm is developed to describe hydraulic fracture 
propagation. The Mohr-Coulomb failure criterion with tension cut-off was used to capture 
shear and tensile crack initiation. A moving-boundary scheme is developed to describe the 
transition of hydraulic pressure through the fracturing paths.  

 

1.	Methodologies	
 
Developing a numerical model for the hydraulic fracturing process requires clear understanding of the 
rock failure mechanism, fluid flow in deformable fractures, and numerical modeling for crack 
propagation. Especially, numerical capability to capture fracture propagation under different failure 
modes is critical for hydraulic fracturing model design. Rock heterogeneity is also an important factor 
because of its influence on fluid flow and fracture pattern. Numerically, crack paths are very difficult to 
replicate because of the complexity of mechanical behavior and strong discontinuity of cracks in 
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heterogeneous rock. To solve for the fracturing problems, different numerical approaches based on the 
boundary element method (BEM), the finite element method (FEM) with VMIB and the discrete element 
method (DEM) can be used for crack propagation, depending on different purposes. However, each 
method has both cons and pros. DEM, which uses interaction between bonds of particles, gives good 
crack-path estimation for the discontinuous aspect of crack propagation. But it requires numerous 
particles to obtain accurate results, which lead to high computation costs and limit the method to small-
scale geological models. Also, especially for fully coupled poroelastic analysis, it is very difficult to 
model realistic particle geometries and to determine the material parameters required to define 
mechanical relationships between these “micro-scale” particles, causing significant errors during 
simulation. BEM has the advantages of reducing computational model dimensions and generating a 
simple mesh, compared with FEM and DEM that use a full-domain discretization method (Jing and 
Hudson, 2002). BEM is especially suitable for linear-elastic fracture problems in homogeneous material. 
BEM formulations can be extended for coupled hydro-mechanical processes (Ghassemi et al., 2001; Pan 
and Maier, 1997). However, when dealing with rock heterogeneity in numerical domains, the BEM may 
not be a suitable method, because the basic BEM formulation cannot have sufficient sub-domains to 
represent the material’s heterogeneity, in contrast with FEM and DEM. In addition, the BEM is not as 
efficient as the FEM for simulating nonlinear material behavior such as plasticity and damage evolution, 
because it requires sub-domain integrals (Jing, 2003). On the other hand, FEM has disadvantages when 
the discontinuous crack behavior is embedded on a continuum-mechanics-based FEM formulation. When 
many fracture elements are included, the FEM solution tends to yield an unstable and ill-conditioned state. 
Despite these disadvantages, FEM is the most popularly used numerical method in the engineering field 
because of its wide applicability. Particularly, the FEM is efficient for handling of rock heterogeneity, 
nonlinear material behavior, complex boundary conditions, and dynamic problems (Jing and Hudson, 
2002). The FEM method has been used for hydraulic fracturing simulation by several researchers (Boone 
and Ingraffea, 1989; Boone et al., 1991; Carrier and Granet, 2012; Sarris and Papanastasious, 2011). 
However, a simple fracture plane has generally been assumed in these simulations.  The VMIB presented 
in the last chapter remedies some of these shortcomings. An alternative approach is presented in based on 
damage mechanics approach. Several failure mechanisms of brittle rock and influences of pore pressure 
and confining pressure are investigated and the Weibull distribution function is introduced for rock 
heterogeneity as a stochastic approach.  
 

1.1	Failure	of	Brittle	Rock	
Rock failure is a very complex process because of anisotropy and heterogeneity, so that numerically 
replicating the rock failure mechanism is still a very challenging issue in rock engineering. Thus only 
simplified descriptions of real rock behavior based on convenient mathematical descriptions are available 
(Fjær et al., 2008). Typically, rock specimen is tested in the laboratory using uniaxial and triaxial tests to 
measure mechanical properties of the rock. From these experiments, rock strength, which is a critical 
parameter for rock failure, is measured. Figure is a typical stress/strain curve from a uniaxial compression 
test. During the rock-failure process, three regions are generally observed: the elastic region, where elastic 
rock deformation is reversible; the ductile region, where rock deformation (microcrack growth) is 
irreversible; and the brittle region, where sudden loss of strength leads to totally irreversible rock 
deformation (microcrack coalescence and macrocrack growth).  
Typically the ductile region is very small, so the deformed behavior can be modeled as a simplified 
elastic/brittle constitutive relationship. In a triaxial compression test, the compressive rock strength is 
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varied with confining pressure variation, and post-failure behavior also changes accordingly. In this study, 
the complex failure mechanism is numerically modeled as a simplified stress/strain relationship using 
CDM, rock heterogeneity, and a crack propagation model with an FEM formulation.  

 

 
Figure 1. Typical stress-strain curve of brittle material from microcrack to macroscopic crack-growth. 

1.1.1	Fracture	modes	
Three basic modes of fracture are illustrated in Figure 2Figure 2. Mode I is a tensile mode: the crack tip is 
opening; Mode II is an in-plane shear mode: the crack tip is sliding; and Mode III is an anti-plane shear 
mode: the crack tip is tearing. The tensile mode is the most important and dominant mode in hydraulic 
fracturing, but the importance of the shear-mode fractures is increasing during hydraulic fracturing 
treatments in naturally fractured and heterogeneous reservoirs. This is because most fractures are initiated 
by mixed modes and in practice; there are no single mode fractures because of heterogeneity.  

 

 
Figure 2. Schematic of fracture modes: (a) Mode I, (b) Mode II, (c) Mode III 
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1.1.2	Tensile	failure	
When the effective tensile stress at the crack tip exceeds the critical stress limit called tensile strength, 
Eqn. (4.1), tensile failure occurs. That is, the tensile crack initiates when the minimum principal stress, or 
the maximum tensile stress component during compression, reaches the critical tensile strength of the 
material. The tensile strength represents the opening mode of fracture toughness. The tensile failure 
criterion is usually combined with the Mohr-Coulomb failure criterion as a tension cut-off condition as 
explained in Figure 3.  

 3 T   , (4.1) 

where T  is tensile strength of material and 3  is the minimum principal stress, which is also the 

maximum tensile stress. 
 

n



13  
Figure 3. Tensile failure with the Mohr-Coulomb failure criterion. 

 

1.1.3	Shear	failure	
When rock is subjected to compressive loading, shear mode failures are commonly observed. In the 
uniaxial and triaxial tests, shear localized fracturing dominates fracture growth. Generally, a shear crack 
initiates when effective compressive stress in the material reaches a specific value, which called 
compressive strength. Failure occurs along the failure plane when the shear stress increases on the failure 
plane to a specific value which is a function of the normal stresses in Eqn. (4.2). The Mohr-Coulomb 
criterion is commonly used to explain this shear localized fracturing behavior; it can predict the angle of 
the fracture plane and the stress state when the shear failure occurs. 

 tanf F nf fc     (4.2) 

where f and nf  are the shear and normal effective stresses on the failure plane respectively, and the 

cohesion strength Fc  and friction angle f are rock-strength parameters. 
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

13 n  
Figure 4. Shear failure on the Mohr-Coulomb failure plane.  

 

1.1.4	Compaction	failure	
In highly porous or heterogeneous materials, pore collapse and grain reorientation are normally observed 
under compaction, as shown in Figure 5.  5. The pore collapse might be caused by breaks of grains and 
then filled into open pore space under pure hydrostatic loading. For instance, when a highly porous chalk 
is under compaction, the possibility of pore collapse increases because the grain size is much smaller than 
the pore-space dimension, so that the pore-collapse mechanism becomes the dominating fracture mode in 
that case (Fjær et al., 2008).  
 
However, microscopically, after compaction failure, shear fracture is initiated by the contact between 
breaking grains; hence, the pore collapse can be regarded as shear-failure distribution in macroscopic 
view. Therefore, in this study, the compaction failure mechanism is not considered because of its 
complexity and uncertainty. And our target is tight reservoirs which have relatively low porosity, so the 
compaction failure has not effectively happened. 

 

 
Figure 5.  Grain reorientation by compaction forces. 
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1.1.5	Pore	pressure	effect	
In porous rock, the pore space is filled with water, oil, or gas under in-situ stresses. The pore fluid may 
affect the failure of the rock, because the pore pressure is equally acting in all normal directions but not 
affected by shear stresses (Jaeger et al., 2007). In the Mohr diagram of Figure 6, the effect of pore 
pressure is translated to all the stress circles to the left and close to the failure line for shear and tensile 
failures. Therefore, increasing pore pressure significantly affects the destabilizing process of a rock and 
causes the rock to soften.  

 



3 p 
1 p  13 n  

Figure 6. Effect of pore pressure on effective stress state. 
 
 
Conventional triaxial tests illustrate that the stress/strain relations of geological materials change as 
applied confining pressure increases. In Figure 7(a), the slope of the stress/strain curve of Rand quartzite 
is nearly linear elastic, and both the yield strength and the compressive strength increase as the confining 
stress increases. Complete brittle fracture behavior is found after the yield points regardless of the 
confining stress variation. In Figure 7(b), a different type of behavior is shown with Carrara marble. As 
the confining stress increases, more ductile behavior is exhibited. The rock fails by brittle fracture at a 
low confining zone, transitions from brittle to ductile, and undergoes stress hardening at a high confining 
zone. The brittle behavior is also seen in other results at various confining stresses (Samieh and Wong, 
1997). Figure 8.(a) shows the stress/strain responses of Athabasca oil sand specimens at different 
confining stresses. Figure 8 (b) presents the results of triaxial compression tests on Labiche shale. Except 
for swollen shale and Carrara marble, the general mechanical behavior of rock is observed as 
elastic/brittle behavior during triaxial compression tests.  

 



 

Figure 7. 

 

Figure 8. 
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Mean effective stress and deviatoric stress are defined as: 
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The principal stresses are expressed as stress invariants as: 

 
1

2 2
sin

3 3
p q I

      
 

 (4.10) 

 2

2
sin

3
p q I     (4.11) 

 
3

2 2
sin

3 3
p q I

      
 

 (4.12) 

Then, the Mohr-Coulomb failure surface is expressed as shown below. The shear strength of rock at 
failure, τf, is given by the Coulomb failure criterion,  

 tanf F nf fc    , (4.13) 

where τf and nf  are the shear and normal effective stresses on the failure plane respectively. The 

cohesion strength, Fc , and friction angle,  f , are rock strength parameters. The Coulomb failure criterion 

can be rewritten in terms of stress invariants using Mohr’s effective stress circle as follows; 
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 (4.14) 

So for the stress state falls inside of the yield surface, f < 0, while it is on the yield surface for f = 0, and it 
is outside the yield surface, f > 0. When the effective stress state is on the yield surface or outside the 
yield surface, the rock is indicated by shear failure. In addition, to introduce the tensile failure, the 
maximum tensile strength criterion, Eqn. (4.1), is combined with Mohr-Coulomb failure criterion as a 
tension cut-off condition as described in Figure 9. .  
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Figure 9. Schematic of Mohr Coulomb failure criterion with tension cut-off. 

 

1.2	Rock	Heterogeneity	
 
Micromechanically, rock is a heterogeneous material that contains lots of different sizes, properties, and 
types of particle stack. That is, local rock properties may vary by composition and fabrication of the 
particle stack. Rock heterogeneity leads to various formations of multiple-crack branching during 
hydraulic fracture propagation. The effect of the rock heterogeneity has been studied experimentally by 
several researchers (Brace, 1961; Fredrich et al., 1990; Mahabadi et al., 2012; Wong et al., 2006), but the 
effect on strength and deformation has not been well understood. Especially, when the heterogeneity of 
large geological media is considered, it is almost impossible to characterize the heterogeneity from field 
observations. This uncertainty has led to use of a stochastic approach to represent a distribution of 
material properties and to take into account rock heterogeneity on numerical models.  
 
Characteristics of various microdefects such as size, strength, and location can be determined by 
statistical aspects of a random function. The Weibull distribution function is widely used for modeling 
rock failure because of its simplicity (Fang and Harrison, 2002b; Liu et al., 2004; Tang and Hudson, 2011; 
Wong et al., 2006; Yuan and Harrison, 2005). Although failure processes of heterogeneous rock are 
complex, the stochastic approach can account for a variety of possibilities of rock heterogeneity. However, 
the stochastic approach cannot explain all different types of rock heterogeneity because each rock has a 
different form of heterogeneity and each unique statistical model can explain these heterogeneities (Wong 
et al., 2006). Also, the parameters of the Weibull distribution function are uncertain and highly dependent 
on the choice of input parameters, so the stochastic model may need to be evaluated on the basis of 
microstructure analysis and image analysis. For further improvement, the correlation between Weibull 
parameters and rock composition must be investigated. This issue is essential for numerical design for 
rock experiments; however, it is beyond the scope of my study, since lots of uncertainties in rock 
heterogeneity make it quite difficult.  
 
The Weibull distribution function is used to account for a variety of rock fabric possibilities and has been 
used by several researchers (Fang and Harrison, 2002a; Lee and Ghassemi, 2010; Tang and Hudson, 2011; 
Tang et al., 2002; Yuan and Harrison, 2005). The Weibull distribution function is defined by the 
following probability density function (Weibull, 1939): 
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2.	Constitutive	Modeling	of	Brittle	Rock	Failure	
 
Various types of mathematical theories such as linear elastic, hyperelastic, plastic, viscoelastic, and 
viscoplastic are available to describe a realistic constitutive model of material behavior. However, 
constitutive modeling of  realistic behavior of heterogeneous rock is quite difficult using mathematical 
formulation via numerical methods, because of the largely discontinuous, anisotropic, inhomogeneous 
and nonelastic behavior of a rock mass (Harrison and Hudson, 2000). Failure mechanism and fracture 
patterns are strongly dependent on the mechanical behavior of rock, so that finding a suitable constitutive 
model for the rock is an essential part of rock engineering.  
 
In this work, the idealized elastic/brittle constitutive relations used for brittle materials are illustrated in 
Figure 12. The idealized elastic/brittle behavior of brittle rock is modeled by employing the elastic/brittle 
constitutive model using continuum damage mechanics. When brittle rock is under compressive forces, 
the mechanical behavior of the rock is changed by its confining pressure. Normally, as the confining 
pressure increases, the brittle rock has larger compressive strength and more ductile behavior, so 
confining pressure-dependent constitutive relations were developed using compressive-strength data from 
the experimental results. The constitutive relations needed to be calibrated with experimental results, 
since realistic strain-softening behavior must be described physically to predict damage and failure 
mechanisms of brittle materials and capture macroscopic cracking behavior (Bazant, 1986; Mazars and 
Pijaudier-Cabot, 1989). The material degradation of the brittle rock, where a localized, severely damaged 
zone defines a failure plane in the form of a macrocrack, was macroscopically characterized using the 
idealized elastic/brittle damage model. The damage variable represents average material degradation and 
considers various damage types at the micro scale such as nucleation, coalescence, and growth of voids, 
microcracks, cavities, and other microscopic defects (Budiansky and O'connell, 1976; Lubarda and 
Krajcinovic, 1993; Voyiadjis and Kattan, 2009).  
 
The failure mechanism of brittle material is believed to involve growth of microcracks through the 
interaction of material inhomogeneities and applied stresses. Coalescence of these microcracks leads to 
macroscopic crack and damaged zone expansion as microcrack population and intensity increase. The 
brittle behavior is characterized by a sudden drop of the stress/strain curve right after the yield point 
caused by loss of cohesion, while ductile behavior is characterized by continuous deformation without 
downward change of the stress/strain curve after the yield point (Mogi, 2007). The initiation and growth 
of damage variables can be described using CDM (Kachanov, 1986). Usually, the critical value of the 
damage variable is used to decide the macroscopic crack growth. However, an important issue is how a 
macroscopic crack can be defined and at what amount of damage. Usually, the critical value chosen is in 
the range of 0.5 to 0.9 (Al-Rub and Darabi, 2010; Kachanov, 1986; Krajcinovic, 1989, 2000). In principle, 
CDM can be applied to porous materials weakened by microvoids of all shapes (Krajcinovic, 2000).  
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Figure 12. Idealized stress/strain behaviors based on compressive and tensile failure corresponding to 

confining pressure variation. 

 

2.1	Continuum	Damage	Mechanics	
 
The initial model of CDM was proposed by Kachanov(1958). From a microscopic point of view, 
breakage of atomic bonds causes damage and crack initiation. The breakage means degradation of 
material strength, and material strength degradation can be represented by a damage variable. Depending 
on material behavior (isotropic, transversely isotropic, anisotropic, etc.), a scalar, vector, or tensor damage 
variable (D, Dij, Dijkl) can be used to describe the isotropic or anisotropic stiffness degradation 
(Krajcinovic and Fonseka, 1981; Voyiadjis and Kattan, 2009). Among the different types of damage 
variable, the scalar damage variable is frequently used for an isotropic material for simplicity. The 
assumption of an isotropic damage variable has been found to be effective in predicting local failure in 
structural components (Lemaitre, 1984). The concept of scalar damage parameter and the “effective 
stress” approach were introduced by Kachanov(1958) and Rabotnov(1969). From the force balance

effA A  , where DA A A   is the effective area or the undamaged area in the total area A in Figure 

13(a)-(b). 

 eff

A

A
   (5.1) 

For an isotropic case, the damage parameter has the same value in all directions, and it can be defined as: 

 1 DAA
D

A A
   , (5.2) 

where A is the total area of the specimen and AD is the total damaged parts of the area (all microcracks, 
voids formed) of the specimen in Figure 13(a). Propagation and coalescence of the microcracks lead to 
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growth of the damage variable. By substituting Eqn. (5.2) into Eqn. (5.1), the effective stress is expressed 
as: 

 ,0 1
1eff D

D

   


 (5.3) 

Because the damage model is isotropic, either damaged or undamaged material is still under linear elastic 
behavior before the strain level reaches breaking point, so the effective stress is governed by the Hooke’s 
law (Kachanov, 1986): 

 eff E   (5.4) 

Combining Eqn. (5.3) and (5.4), the stress/strain relation is obtained as: 

  1 D E    (5.5) 

In CDM, the damage parameter D is considered a macroscopic-state variable that affects stiffness 
degradation of the material (Kachanov, 1986), so that the effective Young’s modulus is defined as: 

  1E D E    (5.6) 

The damage evolution equation can be characterized by a function of strain as the simplest method, as 
described in Figure 13(c) (Jirasek, 2004; Jirasek and Zimmermann, 1998).  
 

A

 
 

Figure 13. (a) Damaged configuration, (b) Effective stress equivalence principle (Kachanov, 1986) (c) 
Linear softening damage evolution (Jirasek and Zimmermann, 1998). 

 

2.1.1	Nonlocal	damage	Model	
 
Local strain-softening phenomena modeled using finite element analysis causes spurious mesh sensitivity 
due to strain localization in the damaged zone. In order to avoid the strain localization, nonlocal 
continuum approach was introduced (Erigen and Edelen, 1972; Kunin, 1968) and the nonlocal theory was 
extended to the nonlocal damage model by (Bazant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and 
Bazant, 1987). The nonlocal damage model is formulated to explain the mesh size effects and prevent 
instability of strain localization. In the nonlocal theory, the stress is considered as a function of the mean 
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of the strain from a certain representative volume of the material, which plays a central role in the physics 
of heterogeneous materials to predict their effective properties. The representative volume is defined by a 
characteristic length. The characteristic length is usually determined by microstructural statistics using 
image analysis (Graham and Yang, 2003). For concrete, the characteristic length can be roughly estimated 
as 2 to 7 times the maximum aggregation size (Bazant and Pijaudier-Cabot, 1988).  
 
The principle idea of the nonlocal damage theory is that the nonlocal damage variable is defined by 
spatial averaging over the representative volume (Bazant and Pijaudier-Cabot, 1988). The spatial 
averaging form was derived from a thermodynamic approach, and the state of material can be 
characterized by its free energy density, which is defined as: 

 
1

2 ij ij   , (5.7) 

where  is  the free energy density, ρ is mass density, and σij and εij are the stress and strain tensors. From 
the stress/strain relation for an isotropic damage: 

  1ij ijkl klD C    (5.8) 

Substituting Eqn. (5.8) into Eqn. (5.7), the following relation is obtained for the specific free energy,  , 

per unit volume: 

 
1

2 ij ijkl kl

D
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  (5.9) 

 
In Figure 13(c), when the material is damaged, the strain energy in the failed zone begins release the 
stored energy during the failure process, so that the damage variable could be defined by the rate of strain 
energy dissipation. The energy dissipation rate is expressed as: 
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YD
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 , (5.10) 

and the damage energy release rate, which is the driving force for the growth of damage, is defined as 
(Pijaudier-Cabot and Bazant, 1987): 
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Based on the nonlocal damage theory (Pijaudier-Cabot and Bazant, 1987), the mean value of the damage 
energy release rate is evaluated over the representative volume. The spatial average of the damage energy 
release rate over the representative volume is defined as:   

 
1

e V
r

Y Y dV
V

  , (5.12) 

where Vr is a representative volume. 

2.1.2	Damage	evolution	law	for	brittle	rock	
 
Employing an idea from the nonlocal damage theory, the damage energy release rate was evaluated by 
spatial averaging integral over the damaged volume instead of the representative volume:  

 
1

 
ed

ed edV
d

Y Y dV
V

   (5.13) 
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where Vd is a total volume of damaged elements and Ved is a damaged element volume. In Figure 14, 
constitutive relationships of the brittle rock are differently described by failure type, so that a threshold 
value for the damaged release rate is calculated for tensile and shear failure, respectively. Each damage 
evolution equation for tensile and shear failure can be defined by a function of the damage energy release 
rate for monotonic damage growth. The type of softening curve could be obtained from a realistic shape 
of the stress/strain relationship on the basis of experiments. In this work a linear strain softening, 

schematically shown in Figure 14.  14, was assumed for numerical simplicity. The tensile strength ( T ) 

and compressive strengths ( 1 2,c c  ) by various confining pressures are obtained from experimental data. 

Based on the material strength information, the material coefficients (εt, εtr, εc1, εc1r, εc2, εc2r) are 
determined to control the relationships. In case of a heterogeneous material, the constitutive relationship 
of each element is varied by employing random variables.  
 

 
Figure 14.  Schematic constitutive relationship based on tensile and shear damage. 

 
To calculate the damage energy release rate of Eqn. (5.11),  the elastic strain energy per unit volume of 
linear elastic material is used as follows: 

 
1

2e ij ijU    (5.14) 

The elastic strain energy per unit volume is rewritten using the stress/strain relation of an isotropic solid, 
which is described as: 

 2ij ij kk L ij       (5.15) 

where δij is the Kronecker delta, and Lamé’s constants λ, μL are defined as below: 
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,
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E E 
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 (5.16) 

Then, substituting into Eqn. (5.14), the elastic strain energy per unit volume can be expressed in terms of 
strains: 
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1

2e ij kk ij ij ijU        (5.17) 

 
In this thesis, the damage dissipated energy rate is assumed to decrease linearly with the principal strain 
and the damage variable has a different stain softening curve for tensile and shear failure, which are 
determined by the Mohr-Coulomb failure criterion. The evolution equation of the damage variable is 
modeled by the damage energy release rate and the softening function, g(ε) which is determined using: 

     0

0 if  ,

1
if  

t tr

e
t tr

t tr

g s Y
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
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 

 
 
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  (5.18) 

 
where εt, is the maximum tensile stain, and εtr, released tensile strain for tensile damage and Ỹe0 is the 
initial value of damage energy release rate, εt is determined by the tensile strength, σT, in Figure 15 and s 
is a parameter for strain softening rate, which has 0<s<1. The softening parameter for the tensile damage 
is assumed 0.1, while the softening parameter for the shear damage is decided by a confining pressure. 
We assumed the softening parameter is increasing linearly with the confining pressure. So, the softening 
parameter for the shear damage is calculated by s=Pc(i)/max(Pc(n))*0.99, where Pc(i) indicates a current 
confining pressure and  max(Pc(n)) represents the maximum confining pressure during triaxial 
compression tests. If the confining pressure is high, the softening parameter becomes closed to 0.99. That 
means the stress/stress curve does not softening and the material is nearly perfect plasticity. When the 
state of the current equivalent strain,  , is between εt and εtr, the dissipated strain energy is computed by 

multiplying of the softening function with    t . After the equivalent strain is over the softening 

region (  tr  ), the damage variable is gradually increased up to 0.99, which is calculated by an 

equation of 01 /e es Y U    . The damage evolution law can then be expressed as: 
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 (5.19) 

 
In cases of shear damage, εc1 and εc2 are used instead of εt in Eqn. (5.18) and (3.19). εc1r and εc2r are 
calculated when the shear failure is detected. The shear strains are determined by compressive strength σc1 

and σc2, which are obtained from experimental results for a rock. All these tensile and shear strengths are 
also varied through the simulation domain (when needed) by employing random variables. Hence, the 
constitutive relationship of each element could vary by confining pressure, material heterogeneity, and 
type of failure. 
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Figure 15. Schematic of softening parameter variation by tensile and shear damage. 

 
 

3.	Thermo‐Hydro‐Mechanical	Rock	Response	
 
The fully coupled processes involving thermal, hydrologic and mechanical effects have been studied for a 
nuclear-waste repository in fractured rocks during the early 1980s (Stephansson et al., 1996; Tsang, 1987, 
1991; Tsang et al., 2004). Through the international cooperative DECOVALEX (acronym for 
DEvelopment of COupled models and their VALidation against Experiments) project, these coupled 
processes have made significant progress and results have been published in a series of reports and books 
(Jing et al., 1993, 1995, 1996; Stephansson et al., 1996). Similar coupling procedure operates in the 
gas/oil recovery industry and geothermal energy development. The coupled THM process can be 
extended for chemical effect by the swelling of shale for wellbore stability analysis (Ghassemi and Diek, 
2003; Ghassemi et al., 2009; Zhou and Ghassemi, 2009). The coupled THM process is described using 
the constitutive relations for the porous matrix, the pore space, and the fluid and heat diffusions within the 
conservation laws for momentum, mass, and energy. Terzaghi’s 1D consolidation theory of soils was 
proposed for its pore-pressure effect on soil deformation (Terzaghi, 1923) and it was extended to linear 
poroelasticity for elastic porous media considering effective stress change by variations of pore pressure 
under fluid loading using the isothermal consolidation problem (Biot, 1941). Hooke’s law of elasticity 
with the concept of infinitesimal displacement hypothesis, Darcy’s law of flow in porous media, and 
Fourier’s law of heat transfer were adopted. The effective heat transfer concept, which generally assumes 
that temperature is the same in both rock solids and pore fluid, was also adopted since local heat transfer 
is rapid enough for equilibrium of temperature, unlike in global heat and fluid diffusion models.  
 
Then, based on the framework of Rice and Cleary formulation (Rice and Cleary, 1976) and  Kurashige’s 
approach for thermal effects (Kurashige, 1989), the thermo-poroelastic model was extended to combined 



101 
 

thermal and hydraulic stress for fully-saturated homogeneous rock (Mctigue, 1986; Palciauskas and 
Domenico, 1982). The deformation processes are considered as quasistatic states, since the inertia effect 
of rock mass is assumed to be neglected (Li, 1998). 

 

3.1	Constitutive	Relations	
 
In deriving the coupled THM equations, the total stress, σij, (tensile positive convention); pore pressure, p, 
for compressive positive; and temperature, T, are considered as the coupled variables. The general 
constitutive equations for fully saturated thermoelastic porous material can be written based on 
thermodynamics principles as follows (Cleary, 1976, 1977);  

T
ij ijkl kl ij ij ijC B p T          (5.20) 

      T
kl kl pB p T     (5.21) 

where σij denotes the components of the total stress tensor, εij is the strain tensor from the solid 
displacements, p and T are the pore pressure and temperature, ζ is the variation of the fluid content per 

unit volume of the porous material, T
ij  is the linear thermal expansion coefficient tensor, and T

p is the 

thermal expansion coefficient of the pore space. The elastic tensors Cijkl  and  Bij for isotropic materials are 
described as: 
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where B is Skempton’s pore pressure coefficient defined as (Skempton, 1954): 
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Kurachige’s work introduced an assumption that pores thermally expand while their volume remains the 
same, so the volumetric thermal expansion coefficient of pore space can be expressed as:  

 T
p m   (5.27) 

K and G are bulk and shear moduli,  is the porosity, Ks are the bulk of solid matrix, α is Biot’s 

coefficient, and ν and νu are the drained and undrained Poisson’s ratio. Rearranging Eqn. (5.20) using 
above relations and presenting it in a more convenient form,  

 
 
1 21

2 1 2 1 3
m

ij ij kk ij ij ijp T
G G

       
 

       
  (5.28) 

where σkk is the first invariant of the stress tensor: 
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Eqn. (5.28) can be presented in terms of strain: 
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                    (5.30) 

The change of fluid content also can be presented as: 
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Simplifying Eqn. (4.12) by applying Eqn. (1.10) gives the following relationship: 
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Substituting Skempton’s coefficient, B, into the equation above and simplifying Eqn. (5.33), then 
summarizing from Eqn. (5.30) and (5.35), finally obtains the following constitutive relations: 
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where αm and αf are the thermal expansion coefficients of solid and fluid.  
 

3.2	Conservation	Laws	
 
Three conservation laws are applied for the coupled THM processes. First, a momentum balance or 
equilibrium equation with no body force assumption is described as: 

 , 0ij j   (5.36) 

Second, to express effective force of the fluxes of fluid, the fluid flow in porous rock was assumed to be 
governed by Darcy’s law with no phase change:  
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The fluid mass balance equation is obtained as: 
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Finally, to express the effective force of the heat transfer, the Fourier equation is used for heat transfer. 

 ,
T
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The energy balance equation is used for an element unit volume (Combarnous and Bories, 1975): 
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where ρ and Ct are the mass density and specific heat capacity for the bulk material, k is the permeability,  
μ is the fluid viscosity, and kT is the thermal conductivity.   
 

3.3	Governing	Equations	
 
The momentum, fluid mass, and energy balance equations can be combined with the above constitutive 
and transport equations and yield the following field equations. First, substituting these small deformation 
relationships into Eqn. (5.34):  
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The deformation field equation is obtained from Eqn. (5.34) and (5.36): 
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Second, for the fluid-diffusivity field equations, differentiating Eqn. (5.30) and (5.42) twice leads to: 
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Differentiating Eqn. (5.43) with respect to xi, solving for uii,jj and substituting into Eqn. (5.45) and then 
into Eqn. (5.44), the compatibility equation can be obtained in terms of stresses: 
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Differentiating Eqn. (5.43) with respect to xj and substituting into Eqn. (5.46), the following equation can 
be described: 
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Then, solving for p,jj from Eqn. (5.47) and substituting into Eqn. (5.38), the fluid diffusivity field equation 
can be obtained as: 
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where, fC is the fluid diffusion coefficient, which is defined as: 
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Then, differentiating Eqn. (5.35) with respect to time and substituting into Eqn. (5.38) with Darcy’s law, 
Eqn. (5.37), and applying the relationships of σkk and εkk, the fluid diffusion field equation can be 
expressed in terms of pore pressure: 
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where M is the Biot modulus, which is defined as the change of fluid contents as a result of pore pressure 
variation under constant volumetric strain per unit volume.  
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Finally, for the thermal diffusivity field equation can be obtained from Eqn. (5.39) and (5.40) as: 
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where cT is the thermal diffusivity coefficient for the bulk material. 
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where ρ and Ct are the mass density and specific heat capacity for the bulk material, and kT is the thermal 
conductivity.  
Finally, three governing equations (Eqn. (5.48), (5.50), (5.52)) for the coupled THM processes are 
derived from the momentum, fluid mass, and energy balance equations combined with the constitutive 
and transport equations above. For convenient forms for the fully coupled Thermo-Hydro-Mechanical 
model, following governing equations could be written; 
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where u is displacement vector and m=[1,1,1,0,0,0]T for 3D problems. The coefficients in Eqn. (5.54) and 
(5.55) are defined as following; 
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Then the coupled equations are usually treated by numerical solution techniques using FEM, BEM, FDM, 
and FVM for practical conditions such as nonlinearity, anisotropy, heterogeneity, and complex 
geometries (Börgesson et al., 2001; Li, 1998; Millard, 1996; Noorishad and Tsang, 1996; Noorishad et al., 
1992; Rutqvist et al., 2001; Schrefler, 2001). Among these numerical methods, FEM formulation is 
popularly used; and previously, the 3D, fully coupled, and nonlinear THM model has been developed 
within a finite element formulation using damage mechanics (Lee, 2011; Zhou and Ghassemi, 2009).  

 

3.4	Poroelastic	Parameter	Changes		
 
Since mechanical behavior of the fully coupled THM model is controlled by damage mechanics. It is 
necessary to consider the change of the poroelastic parameters such as bulk modulus, Biot’s coefficients, 
and other related parameters (βp, γ1, γ2) and when failure is detected and stress-strain relation is no longer 
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elastic. So, based on the status of the effective stress at a gauss point of an element, type of failure is 
decided by the Mohr-Coulomb failure criterion with tension cut-off and damage variables are calculated 
by the damage evolution law proposed in Chapter 3. We used linear 3-node triangular element for 2D 
simulation and 4-node tetrahedron element for 3D simulation in this thesis and both triangular and 
tetrahedron elements have one Gaussian point. So, according to the damage variable at the gauss point of 
the failed element, the poroelastic parameters are newly calculated. Since the effective Young’s modulus 

is updated by  1E D E   , the bulk modulus should be re-calculated by  / 3 1 2K E   . In 

addition, we assumed that Biot’s coefficient is changed to 0.99 when the damage variable is over 0.8. By 
the changes of the bulk modulus and Biot’s coefficient, related parameters (βp, γ1, γ2) are updated 
accordingly. 

 

3.4.1	Time	step	of	the	coupling	process	
 
The complexity of the THM problem is often attributed to uncertainty of parameter values and 
unpredictable geometrical complexities of rock fractures with various dimensions under thermal, 
hydraulic, and mechanical loadings (Jing, 2003). Numerically, the coupled THM process is a challenge 
issue because of wide differences among the three processes in temporal and spatial scales (Tsang et al., 
2004).  While the thermal effect has relatively longer time and spatial scales, mechanical effect has a 
shorter time scale. This is because mechanical response can transfer with the speed of elastic waves, and 
various dimensions of fractures, joints and faults dominated its deformability (Tsang, 1991). Also, 
hydraulic effect is sensitive in both small-scale pore distribution and fracture networks with longer flow 
and solute transport time. Hence, finding an appropriate value for the time step is a critical aspect of the 
coupling process. The time increment should be small enough to capture the rock deformation accurately 
because of the high speed of stress waves in porous rock, however, too small of a time increment is not 
suitable for the fluid flow and the heat transfer equation as changes from one time step to another would 
be too small. Therefore, generally the smaller time increment is preferred to use. Moreover, smaller time 
step requires larger computational costs in time-dependent problems, thus the largest possible time step 
should be chosen by stability and accuracy analysis. 

 

3.4.2	Fluid	flow	analysis	in	fractures	
 
A common approach to fluid flow analysis in rock fractures is to assume idealized parallel plates 
separated by a constant aperture. In that approach, as described in Figure 16, fracture propagation is 
driven by injection of an incompressible Newtonian fluid at a constant volumetric injection rate Qi. The 
incompressible fluid is described by the Poiseuille (lubrication) equation (Batchelor, 1967). The 
lubrication equation can be used to solve the fluid pressure distribution along the fracture. Fluid flow 
inside the fracture length depends on the aperture, roughness of the walls, and geometry of fractures. 
When the aperture is large and the fracture surface is smooth, large bulk flow dominates and Darcy’s law 
is no longer valid. The various laboratory results showed that the assumption of laminar flow in the 
fractures is valid for Reynolds number less than about 2300 (Witherspoon et al., 1980). The Reynolds 
number can be defined for fluid flow in the fracture: 
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where u is an average flow velocity in the fracture, f the fluid viscosity of the fracturing fluid, wf  the 

fracture aperture, and f is an density of the fracturing fluid. The lubrication equation for the fluid flow 

is described as: 
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Two-dimensional fluid flow in the fracture plane is expressed as: 
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where 2 is the two-dimensional divergence operator in the fracture plane, f is the fluid viscosity, vl is 

the leakoff fluid from the fracture plane, pf (x,y,t) is the fluid pressure in the fracture, wf  is the fracture 
aperture, Qi(t) is the fluid injection rate, and Af is area of the fracture plane. 
 
So, the fluid flow inside fractures is governed by the Poiseuille equation. The continuity equation and 
boundary conditions for the fluid flow in the fracture plane describe the point where the fluid injection 
rate is equal to the fluid flux at a wellbore and no flow at the crack tip is assumed. This boundary 
condition is valid when the fracturing fluid is fully filled inside the fracture. That is, there is no fluid lag, 
defined as an empty zone ahead of the fluid front to the fracturing tip, in the fluid flow analysis. If the 
fluid lag is included, there is additional unknown of the problem (Garagash and Detournay, 2000). 
Tracking of both the fluid front and the fracturing tip is required to account for the fluid lag, however it is 
not easy since the fluid lag length is unknown. In addition, the no fluid flux boundary condition is 
difficult to implement in finite element methods, because an arbitrary constant pressure assumption 
between the fracturing tip and neighbor is impracticable in the coupling algorithm. Because the pressure 
level inside the fracture is unknown, the zero flux boundary condition is not applicable to use in FEM. 
Therefore, zero pressure boundary condition at the fracturing tip is assumed instead of the zero flux 
boundary condition. Due to opening mode of fracture by hydraulic pressurization near the fracturing tip, 
pressure level at this region is near zero so the zero pressure assumption is appropriate and practicable to 
use in FEM.  
 



107 
 

minS

maxS

( )t

 
Figure 16. The fluid-driven hydraulic fracture propagation process. 

 

3.4.3	Fluid	leakoff	
 
Leakoff during hydraulic fracturing has been shown to significantly affect fracture growth (Economides 
and Nolte, 2000). The leakoff volume affects the efficiency of the treatment. The injection efficiency, εinj, 
can be defined as the volume of fluid in the fracture divided by the total volume of injected fluid. The 
volume of fluid in the fracture can be defined as the total volume of injected fluid minus the leakoff 
volume.  
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where Vf is the total volume of the fractures, Vl is the leakoff volume, and Vi is the total injected fluid 
volume. In this paper, the fluid lost by the injected fluid leaking off into the rock matrix is expressed 
using Darcy’s law: 
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where km is the rock matrix permeability and n is the normal direction of the fracture plane. The pressure 
differential between the fracture and the rock matrix and the permeability change of the rock formation 
are key factors that affect the volume of the leakoff.  
 

3.4.4	Numerical	modeling	of	fracture	propagation	
 
In this thesis, the fracture propagation model was developed based on three requirements: a possibility to 
describe continuous crack geometry, a capability to apply a moving-boundary scheme for transition of 
hydraulic forces through fracturing path, and simplicity of implementation with low computational effort.  
 
To satisfy these requirements, a few guidelines for the fracture propagation model have been established. 
First, the crack path can only propagate through the inside of elements, as with cohesive element 
modeling and XFEM. Second, for low computational cost, the crack path should be expressed without 
modifying the mesh information. No redefinition of the element mesh is required after crack propagation. 
Third, there is no pre-assigned crack path, which means cracks can grow in arbitrary directions without 
restriction; this approach puts no limitation on the direction of the crack propagation. Last, to apply a 
moving-boundary scheme of hydraulic forces, crack surfaces are assumed inside the cracked element, and 
the direction of crack propagation is decided by the proportional direction of the maximum principal 
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stress at a fracture tip. Furthermore, a specialized 2D and 3D crack partitioning algorithm was employed 
to calculate the splitting surface in the cracked element for several scenarios. 
 
When the fully coupled thermo-hydro-mechanical (THM) analysis is modeled via finite-element methods 
(FEM), an 8-node quadrilateral element is recommended for use; the 4 corner nodes are used for pore 
pressures and temperature, while all 8 nodes are used for displacements (Aboustit et al., 1985; Christian, 
1977). However, in our fracture propagation modeling, the conventional rectangular element mesh is not 
efficient, because our fracture propagation model assumes that the crack path can grow arbitrarily without 
redefining mesh information. This approach is hugely beneficial for computational time and simplicity in 
numerical implementation. From the standpoint of the fracture propagation approach, if a rectangular 
mesh is used, the fracture propagation path shows a zig-zag crack band (Figure (a)). Moreover, 
mathematical formulation of the EPM is unavailable and should be developed. Splitting a rectangular 
element is more complicated than using a triangular element and it may increase computational costs. A 
triangular mesh (Figure 5.1(b)) clearly represents the arbitrary fracture propagation more flexibly than a 
rectangular mesh. By the same token, in the 3D crack propagation problem, a 4-node tetrahedron element 
has more flexibility to express the arbitrary growth of the 3D crack than an 8-node or 16-node cubic 
element. We used 3-node triangular and 4-node tetrahedron elements for the fracture propagation model 
in this project.  

 

 
             (a) Rectangular element                                      (b) Triangular element 
Figure 17. Description of fracture path by mesh type (re-drawing from (Bazant and Planas, 1997)). 

 

3.4.5	Fracture	initiation	for	hydraulic	fracturing	
 
Stresses applied to the rock by various loading mechanisms introduce crack nucleation, propagation, 
interaction, and coalescence, but there is no universally accepted theory for the fracture initiation and 
propagation. Practically, fractures can be initiated by various failure mechanisms such as tensile, shear 
and compaction. Among these failure mechanisms, the tensile fracture is dominating failure mechanism 
in the hydraulic fracture propagation. So, we assumed there is only tensile mode fracture available at a 
fracture tip. The fracture initiation criterion is checked at Gaussian point of the crack tip elements. For 
capturing the hydraulic fracturing failure of the brittle rock, the most commonly used criterion is the 
maximum tensile strength criterion, defined as: 
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 3 T   , (5.66) 

where T  is a tensile strength of material, and 3  is the minimum principal effective stress, which is 

also the maximum effective tensile stress for poroelastic analysis. So, we checked the fracture initiation 
criterion at a fracture tip. Once the fracture initiation criterion met, the fracture tip is extended by the 
fracture propagation algorithm, described in following.  
 

3.4.6	Fracture	propagation	algorithm	
 
Once the fracture initiation criterion was met at crack tips, the hydraulic fracture is extended with certain 
length and direction as shown in Figure 19.  . So, tracking the fracture propagation is one of the main 
issues for hydraulic fracturing simulation. Developing a tracking algorithm for the crack-tip location and 
path information was necessary to apply correct boundary conditions for fluid pressure inside fractures 
and for estimating the propagating location of fracture. In order to extend the fracture, crack length 
criterion for quasi-static crack increments and crack direction criterion for angle of the fracture 
propagation are required.  
 
First, the crack length criterion is adopted from Paris’ law, which is proposed to compute a crack 
increment by the stress intensity factor under fatigue stress regime (Paris and Erdogan, 1963). Usually, 
the crack tip is assumed to advance in a quasi-static manner meaning that the crack is propagating at a 
constant speed in the hydraulic fracture propagation simulation. So every time a crack tip fails, the crack 
is assumed to advance by a fixed length, but crack should grow at different speeds during various stages 
because the energy required to propagate the crack could be different at different stages, particularly 
through heterogeneous materials. So, we adopted the propagation criterion suggested by (Renshaw and 
Pollard, 1994) to extend crack tips at every step. The crack increment is calculated by the energy 
accumulated at the crack tips. 
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where Utip is the strain energy accumulated at the crack tip, Umax is the maximum stain energy 
concentration at the crack tip, ladv is an increment crack length, lmax is the maximum increment crack 
length at any propagation step, and  is an empirical velocity index. The crack incremental method is a 

Paris-type law (Paris and Erdogan, 1963). Renshaw and Pollard (1994) defined lmax as the initial flaw size, 
because they assumed the maximum incremental length could be representative of the fracture processing 
zone (Irwin, 1958), which is a nonlinear zone characterized by progressive softening (stress decreases as 
increasing deformation). Renshaw and Pollard (1994) demonstrated by experimentation that the empirical 
velocity index of 0.35 yields realistic fracture propagation for the opening mode fractures of brittle rock. 
However, there is no detail information for the hydraulic fracturing simulation, so that we assumed input 
parameters by Renshaw and Pollard’s crack incremental method. We assumed that lmax is same as a pre-
existing crack length and the empirical velocity index is assumed as 0.35. In addition, Umax, the maximum 
strain energy concentration at the crack tip, is assumed ten times larger than Umin, which is the minimum 
strain energy required to advance the crack tip and defined; 
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where T is the tensile strength of rock, E is Young’s modulus.    

 
Second, the fracture propagation angle is assumed to follow the direction of perpendicular to the 
maximum circumferential tensile stress. It is determined by the normal direction of the maximum tensile 
stress. Because the fracture propagation induced by hydraulic pressurization is usually attributed to tensile 
mode opening, the orientation of the failure may simply be determined by the maximum principal stress 
direction as described in Figure 18.  The principal angle is computed at the crack tip (Figure 19). The 
rotation angle, θp, is calculated using the normal stresses and the shear stress as follows: 
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Figure 18.  Illustration of the maximum principal stress direction. 
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Figure 19.  Illustration of crack propagation with crack increment and angle. 

 

3.4.7	Moving	boundary	scheme	using	element	partition	methodology	(EPM)	
 
Another challenging issue for the hydraulic fracture propagation is applying transient boundary conditions 
on the propagating fracture surfaces at every step. The hydraulic pressure through the updated fracturing 
path, which is computed by the fluid flow analysis, must be applied as a boundary condition for the rock 
deformation analysis. So, a “quasi-static” hydraulic loading algorithm is used to provide the proper 
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boundary conditions for fluid pressure inside fractures. In this approach, when the propagation criterion is 
satisfied at the crack tip, the fracture geometry is extended by the propagation algorithm and the new 
crack geometry is calculated by EPM algorithm. Figure  20 briefly shows the boundary procedure to 
transfer from internal fluid pressure distribution to nodal forces. The pre-existing and newly propagated 
cracks are identified as equivalent crack elements (Zhang and Chen, 2008). The major features of the 
quasi-static hydraulic loading algorithm are identifying the newly extended fracture surface using the 
intersection points on the edges of the cracked element and applying the resulting nodal forces on the 
equivalent crack elements.  
 
The EPM is used to compute the fracture areas subjected to the hydraulic pressurization. In this 
methodology, a crack plane intersecting the existing triangular element is defined using points on the 
edges of the existing element. When an element is cut by the newly propagated crack plane, the 
intersection points on the element edges are stored and updated at every time step. The EPM takes 
advantage of the continuous geometric features in both triangular and tetrahedron elements to construct 
fracture surfaces when a newly propagated crack path is cut through the triangular element (Huang and 
Zhang, 2010; Zhang and Chen, 2008). So the method does not require redefined mesh information during 
crack propagation, and the total number of degrees of freedom and the dimensions of the general stiffness 
matrix are not changed. The greatest advantage of the fixed mesh approach is low computation time and 
easier to encode for numerical implementation. However, the fixed meshes can lead poor definition of the 
fracture tips when the mesh size is too big, so that moderate size of the mesh is desired to use the EPM 
approach. When mesh size is too coarse to represent the fracture tips correctly, special care like the sub-
mesh scheme near the fracture tip should be employed to obtain accurate results in the fixed mesh case. 
However, the sub-mesh scheme is computationally expensive and difficult to implement. Another 
disadvantage of the fixed mesh approach is resolution issue. This is because fracture elements 
representing the fracture geometry is too few at the early time, while the fracture elements are too many at 
the later time. In order to reduce the resolution issue, re-meshing scheme can be employed to make 
efficient use of computation time by controlling number of elements. Since the re-meshing method has 
great benefits to save computation time and to reduce the resolution issue, the method is recommended to 
use for larger scaled problem (i.e. reservoir scaled problem). However, developing the re-meshing scheme 
is not quite easy. Especially, the 3D re-meshing algorithm may require lots of efforts and mathematical 
challenges. As a result, we conclude that the fixed mesh approach is more desired than other approaches 
(sub-mesh, re-meshing), because numerical domains shown in this thesis is relatively small scale.  
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Figure 20.  Schematic illustration of boundary condition description using EPM ((Huang and Zhang, 2010; 

Zhang and Chen, 2008). 
 
 

4.	Implementation	of	Damage	Mechanics	Hydraulic	Fracturing	Model	
 
As mentioned above, the hydraulic fracturing could be defined as a fully coupled fluid-solid interaction 
problem. Each fluid and solid part is calculated by a separate solution, so that it is necessary to construct 
coupling algorithm between the fluid and solid analysis. When constructing the coupling algorithm 
between two analyses is handled, the consistency of solutions from these analyses remains an important 
issue. Especially for the hydraulic fracturing problem, the mechanical analysis of fracture opening is 
coupled with the fluid flow analysis. That is, the fluid pressure obtained from the fluid flow analysis is 
used to compute the fracture opening in the mechanical analysis. So, the opening amount should be 
consisted with the amount of injected fluid into the fractures by the mass conservation law. Since the fluid 
pressure and the fracture opening are calculated by a separate analysis, the iterative method is necessary 
to introduce to get converged solution between the fluid and solid analysis. 
 
The coupling of the solution scheme for the fluid-driven fracturing problem was studied previously. 
Numerical modeling of the hydraulic fracturing was studied using mathematical formulation for the fluid-
driven fracturing problem of simple planar geometry (Adachi and Detournay, 2008; Detournay, 2004). 
The fluid-driven propagation in poroelastic media was simulated using FEM technique and the influence 
of the poroelastic effects on fracture propagation was studied (Boone and Ingraffea, 1989; Boone et al., 
1991).  
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The major difficulty in solving the coupled processes is the non-linear relationship between the fracture 
opening and the fluid pressure (Adachi and Detournay, 2008). Boone and Ingraffea (1990) proposed a 
partially coupled solution scheme with constant time step (Boone and Ingraffea, 1990). Adachi (2008) 
adopted the Picard iteration method (Picard, 1890) to solve the coupled fluid-driven fracturing problem. 
The Picard iterative process is useful to get approximation solution using iteration from a given trial 
solution. Figure 21 is a flowchart of the fully coupled iteration process. 

 

 
Figure 21. Flow chart of the fully coupled solution procedure. 

 
Once a numerical model is constructed with an initial fracture, and input material parameters (E, ν, km, etc) 
and necessary boundary conditions (in-situ stresses, Injection rate, etc) are estimated, it is needed to get a 
converged solution within a given initial fracture geometry before advancing to the next step. We used the 
iterative method to achieve the converged solution. 
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The basic procedure of the iterative process is straightforward: i) estimate initial fluid pressure 
distribution in the fractures, pf (0) and initial time step for an injection time, ts(0); ii) solve the coupled 
poroelastic equation for fracture opening, wf (0) and update time step, ts(0) using the total mass balance 
equation (Eqn. (6.2)) ; iii) solve the fluid flow equation for new fluid pressure inside the fractures, pf (n) 
and calculate leakoff rate, ql (n); iv) solve the poroelastic equation for new fracture opening, wf (n) and 
update the time step, ts (n) using the total mass balance equation (Eqn. (6.2)); v) the convergence of 
iterations  is examined with given tolerance of the average error in the fluid pressure distribution in 
fractures as described in Eqn. (6.1), if not converged, return to iii) re-solve the fluid flow equation with 
the newly updated aperture profile and the time step, wf(n+1) and ts(n+1). The newly updated aperture 

profile is computed by        n 1 n  1 n-1f f fw w w     , where ω is a convergence parameter, 0< 

ω <0.5, to control extreme changes of the solutions. ts(n+1) is also calculated based on the newly updated 
aperture profile using the total mass balance equation (Eqn. (6.2)). If the solution converges within a 
given tolerance, the iteration process is terminated and the fracture propagation and failure analysis 
processes, described in below, are begun to update the crack information (tip location, path). 
 
The convergence of the iteration is determined by the average error in the fluid pressure during the 
iteration process (Adachi and Detournay, 2008; Adachi et al., 2007; Taleghani, 2009).  
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where εf  is an average error of fluid pressure distribution during iteration, pf (n) is the fluid pressure at the 
current iteration, and pf (n-1) is the fluid pressure at previous iteration.  
 
The time step in the simulation is calculated from the total mass balance. The total injected fluid volume 
is a summation of the fracture volume and the fluid leakoff volume. Schematic description of the 
summation of the leakoff volume is described in Figure 22: 

 inj s f l sq t V q t     (6.2) 

where ts is the time step, Vf is the fracture volume, qinj is an injection rate as an input value, and ql is 
calculated by summation of the leakoff volume on the fracture surface from Eqn. (5.65). The total leakoff 
volume is computed by a following equation: 
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where nf is the number of fracture elements, i
fA is the area of fracture surface in the fracture element, i

mp  

is an average of pore pressure in rock matrix, and i
fp  is an average of fluid pressures in the fracture 

element. So, we know the fluid injection rate, qinj, the volume of the fractures, Vf , and the leakoff volume, 
ql. Then, the time step, ts, can be obtained from Eqn. (6.2). 
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Figure 22. Schematic description of leakoff flow and summation. 

 
Before proceeding to the fracture propagation analysis, the crack initiation criterion is examined at the 
crack tips. If the maximum tensile stress at the crack tip does not meet with the maximum tensile failure 
criterion, the hydraulic fracturing simulation is terminated and we should change input parameters such as 
fracturing fluid injection rate or viscosity of the fracturing fluid to increase the hydraulic fracturing. Once 
the crack initiation criterion is met, the hydraulic fracture will be extended based on quasi-static crack 
growth assumption. In the fracture propagation process, the hydraulic fracture is extended by the 
propagation angle and the incremental length computed from Eqn. (5.69) and (5.67). And then, fracture 
elements are identified by the newly extended crack path, and the cutting fracture surfaces are calculated 
by EPM for equivalent nodal forces of the hydraulic pressurization inside the fracture elements. In this 
process, the crack path is traced and stored information of the fracture elements at every time step.  
 
One of the advantages of our model is using fixed mesh information for both solid and fluid analysis. 
That is, it is unnecessary to modify the size of global matrix at every time step, and this feature is 
beneficial for significant savings of computational cost when a large geological problem is considered. In 
the fluid-flow analysis, the hydraulic conductivity and pressurization are continuously updated using the 
crack path information. If the hydraulic fracture is extended, fracture elements are activated in the global 
matrix. For fluid flow modeling inside the fracture, the fractured elements are considered as fluid 
networks. As for applying boundary conditions on identified crack tips and injection points, the fluid flow 
equations are solved in this geometry. 

 
Apart from the crack propagation model, intact elements in the rock matrix are examined by the failure 
criterion to identify failures. Beside with the crack propagation path, the rock is failed when the failure 
criterion is met. Especially in a heterogeneous reservoir, the rock failures near the primary fracturing path 
by the hydraulic pressurization is increasing and the failure events have critical role for the leakoff rate 
increase. Based on state of the effective stress at the intact element, the M-C failure criterion provides 
type of failure and can calculate the damage variable by a damage evolution law proposed in Chapter 3. 

By the calculated damage variable, the effective Young’s modulus is calculated by  1E D E   . 

Poroelastic parameters (βp, γ1, γ2) related with bulk modulus and Biot’s coefficients updated in the failed 
elements as described in Chapter 4.  

4.1	Model	Verification	
 
The hydraulic fracture propagation is a complicated and coupled problem of fluid-solid interaction; thus, 
it is very difficult to find suitable analytical solutions. In the fluid-driven fracture problem, the correct 
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relationship between the fracture aperture and the fluid pressure is important. According to the lubrication 
theory, the fluid pressure distribution has cubic relationship with the fracture aperture, so that the solution 
from the lubrication equation is quite sensitive to the fracture aperture value. Hence, to verify the 
numerical model, the fracture opening and stress near the crack tip are compared with available analytical 
solutions using a pressurized, penny-shaped crack problem (Sneddon, 1946). 

 

4.1.1	A	pressurized	crack	
When the infinitely thin crack is subjected to uniform pressure ∆p at the crack surface described in Figure 
23,  the stress and displacement fields are given by the solution with Possion’s ratio ν and shear modulus 
G along the x-direction (Sneddon, 1946).                                         
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where Dy is a displacement in y-direction, a the half-length of the fracture, and x the computational point 
within the half length of the fracture. The normal stresses σyy along the uncracked part of the crack plane 
are expressed as: 
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The rock material is assumed as a linear elastic material and fracture length is 2 m within a 10-m×10-m 
rectangular model. The material parameters are set as described in Table 1 and uniform pressure, ∆p=5 
MPa, is applied at the fracture surface as a boundary condition. The uniform triangular mesh is used for 
the numerical solution, and element size is 0.1-m ×0.1-m each. Figure 24 compares the numerical and 
analytical solutions about the fracture opening and normal stresses near the crack tip under uniform 
pressurization on the line crack. Therefore, the fracture permeability estimated by the lubrication equation 
is validated, since the simulated fracture opening has good agreement with the analytical result in Figure 
23. However, error increased for the numerical results near the crack tip is, because a uniform mesh was 
used instead of a fine mesh near the crack tip (Figure 23). 
 

Table 1.  Material parameters for the verification problem 

Inputs Values 

Young’s Modulus, E (GPa) 37.5 

Poisson ratio, υ 0.25 

Shear Modulus, G (GPa) 15 

Number of Elements 20,000 

 

 



 

 
 

Figure 24
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Table 3. Multistage triaxial test data of Granite (Wang et al., 2012a). 

Pc, psi 
500 

(3.45 MPa) 
1500 

(10.34 MPa) 
2500 

(17.24 MPa) 
3500 

(24.14 MPa) 
4500 

(31.03 MPa) 

Compressive strength,
psi 

15873 
(109.47 
MPa) 

24,080 
(166.07 
MPa) 

35,024 
(241.54 
MPa) 

40,827 
(281.56 
MPa) 

52,875 
(364.65 
MPa) 

E, psi 
4,996,970 

(34.46 GPa) 
6,165,314 

(42.52 GPa) 
6,741,385 

(46.49 GPa) 
6,918,957 

(47.72 GPa) 
6,998,963 

(48.27 GPa) 

Possion’s ratio, υ 0.37 0.43 0.47 0.47 0.46 

UCS, psi 11,246.59 (77.56 MPa) 

Friction angle 55.3 

Cohesion, cF (psi) 1,756.36 (12.11 MPa) 

Inclination angle of  
failure plane,  β 

72.7° 

 

5.1.1	Heterogeneity	of	Tuff	and	Granite	samples	
 
Petrographic analyses are conducted to describe rock textures, classify and determine the relative amounts 
of mineral constituents, to identify minerals, and to detect evidence of mineral alteration (Wang et al., 
2012a). The identification of mineral constituents and determination of texture and micro-structural 
features allows the recognition of rock properties that may influence the mechanical properties of the rock. 
 
According to the petrographic analysis, the tested Tuff specimen has an aphanitic fine-grained texture 
(Wang et al., 2012a). In Figure 30, the images of Tuff show a heterogeneous rock containing different 
types of grains and various minerals. The Tuff mainly consists of two types of minerals and may have 
rock properties in brittle with fine-grained crystals. In addition, grain size, grain shape, texture and 
structure were randomly distributed. All these heterogeneity factors could affect fracture pattern creation. 
Effective rock properties are a function of rock composition and properties of the components. The 
description of petrographic images in Figure 31 is about the Granite sample and thin section of the 
Granite is composed of course-grained quartz, hornblende, plagioclase, biotite, and muscovite minerals 
with grain sizes ranging from 0.1 to 0.35 μm.  The quartz, feldspar, and biotite are dispersed with various 
sizes. As explained previously, in order to represent the rock heterogeneity into a numerical domain. 
Random variables generated by Weibull distribution function are distributed to material strength and 
Young’s modulus as multiplying the random variables at Gaussian point in an element. So, in the finite-
element (FEM) formulation, the microscopic heterogeneity can be described only at the elemental scale. 
Therefore, further improvement, would require the correlation of Weibull parameters with rock 
composition from mineralogical and textural characterization. This is an important issue for the practical 
modeling of rock samples; however, the issue would require extensive rock mechanical and petrological 
analysis and is beyond the scope of this thesis.   
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distribution, and m2=0.9, a2=10 for strength distribution were estimated. In Figure 32 (c), average value 
of stiffness is about 51 GPa, which shows that stiffness was distributed to each element by random 
variables. Darker colored elements represent higher stiffness, while lighter colored elements represent 
lower stiffness.  

 

 
                           (a)                                        (b)                                     (c) 
Figure 32. Numerical simulation model for triaxial compression tests (a) Boundary conditions, (b) Mesh 

(NE=10,000), (c) Heterogeneity index. 
 
 

Table 4. Material parameters and input parameters for 2D triaxial. 

Inputs Values 

Element type Triangular 

Young’s Modulus, GPa 53.84 (Initial) 
Poisson ratio 0.32 (Initial) 

Num. of elements 10,000 

Size of element 0.02 

Aspect ratio (D:H) 1:2 

Cut-off strength, MPa 15 

Incremental displacement  0.1e-3 

Weibull parameters 
 

m1=0.9, a1=10 for stiffness(Tuff) 
m2=0.9, a2=15 for strength(Tuff) 
m1=0.8, a1=10 for stiffness(Granite) 
m2=0.9, a2=10 for strength (Granite) 

 
 
Numerical simulation for Tuff at Pc=15 MPa:  

The simulation result of Tuff sample about the fracture process at 15 MPa confining pressure is shown in 
Figure 34. The results show that local failure events initiate at random locations and gradually propagate, 
and then the localized failure tends to concentrate on the weaker elements of the rock specimen. The 
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strain localization leads to shear plane development by irreversible friction. After the shear plane takes 
place, the fracture surface slips and more failure is concentrated on the fracture plane.  

In Figure 34, Region I is a reversible elastic zone behaving elastically; that is, the deformation is 
instantaneously reversed to its initial point when the forces are removed. Region II is an irreversible 
inelastic zone, which means the deformation could not reverse to its initial point when the forces were 
removed. In Region II, the rock was dilated by heterogeneous microcrack growth. Region III is a brittle 
fracture zone, which means sudden loss of strength happened across the fracture plane. In Region III, the 
deformation becomes totally irrecoverable. The fracture plane is formed when shear, compression, and 
tension forces break molecular bonds. As a result, the compressive forces lead to lots of microcrack 
growth in Region II, and then combined compressive/tensile macroscopic failures are observed in Region 
III (Jaeger et al., 2007). In Figure 33(a), initiation of microcracks was detected at an early stage and 
dilation occurred simultaneously with the microcrack growth. Then the accumulation of microcrack 
events hikes before reaching its peak stress. When the fracture plane was formed, both tensile and shear 
damages were found near the fracture plane. This is because slippage related to the shearing behavior 
caused tensile failures near the localized shear-fracture plane. Therefore, both tensile and shear failures 
occurred during the triaxial compression test, and the combined failures triggered the fracture initiation 
and propagation.  
 
In Figure 33(b), the numerical result was compared with the experimental multistage triaxial result, tested 
at Pc=17.24 MPa. It shows general agreement between two results. Specifically, at the early stage, the 
strain curve has good agreement with the experiment, while at later stages the experiment’s results have 
more inelastic behavior than the numerical result. The numerical result has less inelastic behavior than the 
experiment’s because the volcanic Tuff sample shows hardening behavior and our constitutive model was 
developed based on the elastic/brittle assumption. However, the volumetric strain curve has somewhat 
similar behavior in both the simulation and the experiment even though the discrepancy of axial strain 
curves. 
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Figure 33(a) Failure events detection during fracture process at Pc=15 MPa;  (b) Comparison of 

numerical with experimental result. 
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Figure 34. Axial and volumetric strain curve at Pc=15 MPa and micro/macro crack growth of brittle 

fractures in heterogeneous rock. 
 

Stress-strain relations of Tuff by confining pressure:  

In this section, the influence of confining pressure was studied. As discussed in Chapter 2, the stress-
strain relations of a rock were highly affected by the confining pressure. Similarly, fracture patterns are 
also influenced by the confining pressure variation. Under uniaxial compression (i.e. no confinement), a 
rock tends to by failed by somewhat irregular longitudinal splitting, while with a moderate amount of 
confining pressure, the longitudinal fracturing is suppressed and clearly defined plane of fracture  is 
formed through the rock specimen (Jaeger et al., 2007). The fracture plane is characterized by shearing 
displacement (i.e. shear fracture) and typically inclined at an angle less than 45° from the axial direction. 
If the confining pressure is increased highly and the rock becomes fully ductile, small shear fractures, 
accompanied by plastic deformation of the individual rock grains, are observed (Jaeger et al., 2007). 

Numerical results show that both the stress-strain relations and the fracture pattern were affected by the 
confining pressure variation in Figure 35 and 36. As peak strength increases, absorbed fracture energy 
increases during the fracturing process. Inclination angles of the fracture plane were varied by the 
confining pressure. As increasing confinement, the inclination angle of the fracture plane is about 45°. 
Furthermore, the angle of dilation depends on the confining pressure and the angle of dilation of the 
higher confinement case has a larger angle than other cases.  
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In cases of higher confinement, more damaged events were detected and the damaged events could lead 
to more dilation during the failure process. This is because the angle of dilation is controlled by an 
amount of plastic volumetric strain developed during fracture shearing. In Figure 36, we observed that the 
fracture pattern after the multistage triaxial simulation has brittle fracturing patterns. Based on the study 
of confining pressure, the peak strength of the brittle rock undergoing deviatoric loading is highly affected 
by the confining pressure. The peak strength and shear dilation have strong effects on the fracture pattern. 
 
In Figure 46, a fracture pattern of Tuff sample was observed at an angle of 62° after the multistage triaxial 
compression test at Pc=4500psi (≈31MPa). From the front and side view (Figure 46(b), small fractures 
are observed along the rock sample. However, a fracture pattern from the numerical simulation at 
Pc=30MPa (Figure 36) shows clearly formed fracture plane at an angle of 45°. This is because the stress-
strain relation of numerical simulations at Pc=30MPa (Figure 35) has elastic-brittle behavior; on the other 
hand the stress-strain relation of experimental results has ductile behavior. Hence, the fracture patterns 
from numerical results are somewhat disagreement with the experimental results when high confining 
pressure is applied. However, the multi-stage triaxial test is not a good experiment to characterize the 
fracture pattern variation by the confining pressure, since micro-fractures could be formed due to multi-
loading/unloading during the multi-stage test.  
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Figure 35. Stress/strain relations of Tuff by various confining pressure 

 



 

 

Figure 3

         (a) B
 

Figure 

Pc= 0

Figure 36

37. Stress-stra

Before multis

38.  Fracture 

MPa  Pc= 5

. Fracture pat

ain relation of

tage tests      

pattern of Tu

5MPa      Pc

tterns of Tuff 

f Tuff at Pc=3

                  
          (b) Aft

uff rock befor
127 

= 15MPa 

f by various co

30 MPa comp

 

        
ter multistage

e and after m

Pc= 30MPa

onfining pres

pared with exp

e test from sid

multistage triax

a   Pc= 40MP

sure at NE=1

perimental re

de and front 

xial test (Wan

Pa
 

0,000 

 
esult (Pc=31M

 

ng et al., 2012

MPa) 

2b). 



128 
 

Numerical simulations for Granite at Pc=25 MPa:  

The simulation result of Granite sample about the fracture process at 25 MPa confining pressure is shown 
in Figure 39. Similar with previous Tuff example, compressive failures were mostly observed and 
accumulated at random locations. While the fracture plane was formed, small amount of tensile failures 
are observed during the shear fracturing process (Figure 39(a)). The stress-strain relation of the Granite 
sample shows less inelastic behavior before complete failure and brittle behavior when the rock is 
completely failed. These small inelastic and brittle behaviors are good agreement with the experimental 
results (Figure 39(b)). The Granite sample shows less ductile behavior than the Tuff sample (Figure 
33(b)). So, it is found that the elastic-brittle constitutive assumption is suitable for the Granite rock 
sample than the Tuff sample.  
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Figure 39. (a) Failure events detection during fracture process at Pc=25 MPa;  (b) Comparison of 

numerical with experimental result. 
 
 

Stress-strain relations of Granite by confining pressure:  

As discussed earlier, the confining pressure is critically influencing the stress-strain relations and fracture 
patterns of a rock. Numerical results show that the stress-strain relations and the fracture pattern were 
affected by the confining pressure variation in Figure 40 and 41. The fracture patterns of the Granite 
sample show irrelevant results than the Tuff cases. Under uniaxial compression, somewhat longitudinal 
splitting fractures were found and clearly formed fracture planes were observed under various 
confinements. In Figure 43, a fracture pattern of Granite sample was observed at an angle of 72° after the 
multistage triaxial compression test at Pc=4500psi (≈31MPa). However, observed fracture pattern from 
the numerical simulation at Pc=32MPa was inclined at an angle of 50°. This is because a formation of 
rock heterogeneity is also a critical factor for the fracture plane forming. As mentioned above, the 
characterization of the rock heterogeneity is an important issue for the practical modeling of rock samples, 
but this issue is beyond the scope of this thesis, because it requires extensive research about micro-
mechanical structures of the rock.  
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In Figure 42, the stress-strain relation of the numerical result (Pc=32MPa) and the experiments result 
(Pc=31.03MPa), which is the last stage of the multi-stage triaxial test was compared until complete failure. 
General behavior of axial and volumetric strains is almost similar in both numerical and experimental 
results. The experimental results show high volumetric changes when the complete failure occurred.  
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Figure 40. Stress/strain relations of Granite by various confining pressures. 

 

 
Figure 41. Fracture patterns of Granite by various confining pressures. 
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In this study, the Weibull distribution function was used to characterize the rock heterogeneity. The 
Weibull function is commonly used in rock engineering (Fang and Harrison, 2002b; Tang and Hudson, 
2011), although the approach cannot be a perfectly suitable method to characterize the rock heterogeneity 
because its randomly generated variables cannot exactly represent texture, orientation, and shape of 
micrograins. However, the Weilbull distribution function may be the easiest method for generating 
heterogeneous properties of rock, and it is also easy to implement in an FEM formulation (Fang and 
Harrison, 2002a; Tang and Hudson, 2011; Tang et al., 2002; Wong et al., 2006; Yuan and Harrison, 2005). 
So far, no numerical method can express the complicated mineralogy and microstructures of the brittle 
rock perfectly, so the heterogeneity study in this section could give valuable interpretation of rock 
heterogeneity effects on the fracture pattern. This section discusses the simulated influence of the Weibull 
shape parameters on stiffness and strength distributions using numerical simulations of Tuff samples. 

 

Stiffness mean value parameter:  

Figure 45 shows different fracture patterns by controlling of Weibull parameter for average value of 
stiffness distribution curve. In this simulation, lower value of m1 means the mean value of Young’s 
modulus of rock becomes smaller, but strength of rock specimen was not changed, because it was 
determined by confining pressure from experimental data in our numerical model. In this section, 
influence of different mean values on stiffness distribution was tested without strength variation, because 
we generally assumed that stiffness variation does not mean corresponding change of material strength. 
Figure 44 shows that case of m1=1.5 has higher compressive strength than other cases. In addition, as we 
discussed, fracture patterns are depend on distribution curve of random variable which means we cannot 
control the specific location of weaker or stronger elements. In case of m1=0.5, fracture plane was mostly 
observed at upper of the specimen, while other cases have clearly inclined fracture plane. In addition, we 
applied same loading condition of ∆d=0.1e-3, so that upper of the rock sample could be failed earlier 
when a rock is weaker (m1=0.5). This is because relatively large loading condition was applied on the 
weaker rock sample and the high stress concentration near loading points, where a top surface of the rock 
sample, lead shear failures near the top surface. From observation of, both dilation angle and peak 
strength were influenced by the value of Weibull parameter change.  
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Figure 43. Stress/strain curve by stiffness mean value parameter change. 

 

 
Figure 45. Fracture patterns by changing the stiffness mean value (left to right: softer rock to stiffer rock). 
 

Stiffness shape parameter:  

In this section, a shape parameter effect of the stiffness distribution was simulated with values of a1=5, 10, 
20, 100. In Figure 11, a larger value of a1 means more homogeneity and narrow distribution, while a 
lower value of a1 means more heterogeneity and wider distribution. Figure 46 and 47 show effects of the 
shape variation of the stiffness distribution on the fracture patterns. According to the simulation results, 
the influence of the stiffness shape parameter wasn’t significant because two sets of Weibull parameters 
were used to represent the rock heterogeneity in our model. One was used for the grain-size distribution, 
while the other was used for the microdefects distribution. As explained earlier, we assumed that the 
stiffness variation did not correspond with any change of the material strength, so that the combination of 
the two sets has strong randomicity on the fracture patterns. That is, the distribution of the microdefects 
more significantly influenced the material heterogeneity. However, the stiffness shape parameter could 
influence crack initiation and its patterns. In Figure 47, as the shape parameter increases, the fracture 
plane becomes more clearly formed, since larger shape parameter represents more homogeneous 
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distribution. On the other hand, more randomly distributed crack growth was found when the stiffness 
shape parameter was small (a1=5), which means the matrix was more heterogeneous.  
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Figure 46. Stress/strain curve by stiffness shape parameter change. 

 

 

Figure 47. Fracture patterns by stiffness shape parameter change. 

 

Strength mean value parameter:  

Similar with previous section, mean values of strength distribution were changed accordingly and 
simulated in Figure 48. Based on material strength estimation from numerical results, Weibull parameter 
change on mean value of strength distribution has strong influence the material strength. It is better to 
compare the numerical estimation with experimental results, but it is very difficult to use same 
heterogeneity conditions in experimental test. In every case, fracture plane was fully ruptured through the 
specimen. Although dip angle and fracture pattern is different, this difference is not critical issue here 
because rock property has a lot of uncertainty and complexity. Due to these uncertainty and complexity of 
rock mechanics, it is hard to estimate fracturing phenomena of brittle heterogeneous rock. 
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Figure 48. Stress/strain curve by strength mean value parameter change. 

 

 

Figure 49. Fracture patterns by strength mean value parameter change. 

 

Strength shape parameter:  

In this section, the effect of the shape parameter on the strength distribution was simulated and discussed 
with values of a2=5, 15, 30, 100. Figure 50 shows that the strength shape parameters of a2=15, 30, 100 
indicated a similar compressive strength, while the strength shape parameter of a2=5 has a much lower 
compressive strength than other cases. As mentioned earlier, a lower Weibull parameter means that the 
rock has more heterogeneity. That is, the strength shape parameter change has a strong influence on the 
material strength. In Figure 50, fracture planes were formed differently through the fully ruptured path in 
the specimens. Because every case has different formations of heterogeneity, the fracture patterns are 
strongly influenced by the heterogeneity formation.  
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Figure 50. Stress/strain curve by strength scale parameter change. 

 

 

Figure 51 Fracture patterns by strength shape parameter change. 

 

5.1.4	Numerical	simulation	for	mesh	size	effects	
 

In this section, three different sizes of mesh (0.01, 0.02, 0.04) were used for the multistage triaxial 
simulation (Figure 52). For rock heterogeneity, Weibull parameters of m1=0.9, a1=10 for stiffness 
distribution and m2=0.9, a2=15 for strength distribution were used to generate random variables; this 
allowed us to apply similar heterogeneity density to the numerical models. Table 5 and Figure 53 
compare compressive strengths estimated by the numerical simulations, and the simulation results show 
that the estimated strengths generally match well with the experiments. However, the coarse mesh case 
shows some discrepancy in the high confinement tests, while the intermediate mesh size of 0.02 gives 
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better estimates than other mesh cases. In Figure 54, multiple and unconfined fractures were initiated and 
propagated during the triaxial compression test. When the confinement increased, the fracture patterns 
formed with less inclination angle. According to the simulation results, the finer mesh case can capture 
multiple crack growths; however, computational costs might be exponentially increased. The coarse mesh 
case shows inaccurate fracture patterns in Figure 56. Especially, at the high confinement cases, fracture 
patterns are significantly different from other mesh cases. Also, estimated compressive strength has larger 
errors. 

 

 
 (a) size=0.04(NE=2,500)      (b) size=0.02(NE=10,000)      (c) size=0.01(NE=40,000)            

Figure 52. Numerical models with different mesh sizes. 

 

Table 5. Comparison of experiment and simulations of Tuff samples. 

Confining Pressure 
(Unit=MPa) 

0 5 15 30 40 

Multistage Triaxial tests 88.4 126.9 190.3 261.6 309.2 
NE=40,000 (size=0.01) 84.9 107.3 197.5 263.4 339.2 
error(%) 4.12 18.27 3.65 0.68 8.84 
NE=10,000 (size=0.02) 86.6 124.1 201.1 279.9 321.2 
error(%) 2.08 2.26 5.37 6.54 3.74 
NE=2,500 (size=0.04) 87.7 132.1 202.9 339.2 385.1 
error(%) 0.8 3.94 6.21 22.9 19.7 
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Figure 53. Comparison of estimated compressive strength by different mesh size. 
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Figure 54. Stress/strain curve by various confining pressure at NE=40,000 (size=0.01). 
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Figure 55. Fracture patterns by various confining pressure at NE=40,000 (size=0.01). 
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Figure 56. Stress/strain curve by various confining pressure at NE=2,500 (size=0.04). 

 

 
Figure 57. Fracture patterns by various confining pressure at NE=2,500 (size=0.04). 
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5.1.5	Mesh	dependency	issue	
 

Mesh dependency is significant in FEM analysis. A stress-strain relation predicted in finite-element 
analysis usually depends on the mesh density. The mesh dependency may increase significant errors 
during analysis of practical problems (Pande et al., 1990). Thus, reducing mesh dependency is a critical 
issue in both numerical and practical aspects. In order to reduce the mesh effect, the hypothesis of 
equivalent energy dissipates rate was proposed and the dissipate energy based constitutive model was 
developed in Chapter 3. In this constitutive modeling, it is generally assumed that the energy dissipation 
rate required to initiate/propagate cracks should be similar regardless of finite element size. That is, initial 
amount of fracture energy and the energy dissipation rate per unit volume for crack initiation/propagation 
should be consistent in different finite element sizes. So, required fracture energy for bigger element size 
(NE=2500) should be four times higher than intermediate element size (NE=10000) and sixteen times 
higher than smallest element size (NE=40000). Also, the energy dissipation rate should be assigned same 
value regardless of finite element size to maintain the similar softening part of stress-strain curve to keep 
the fracture energy constant during crack propagation. During the triaxial compression simulation, elastic 
energy stored by mechanical deformation is computed at each element and the energy dissipation rate is 
assigned based on the confining pressure, as explained in Chapter 3. Hence, the constitutive relation of 
each element is governed by the elastic energy variation. When same loading and boundary conditions are 
applied, the stress-strain relations of three cases (NE=2500, 10000, 40000) show similar behaviors 
(Figure 58), because the fracture energy kept constant. 
 
Based on this hypothesis, the damage model based on energy dissipation rate could be a possible solution 
for the mesh dependency problem. In Figure 58, strain-stress curves of the three different mesh sizes 
show similar behavior. That means total amount of dissipated energy of the three different mesh cases are 
similar and it indicates less mesh dependency solutions. Consequently, the mesh sensitivity issue has been 
successfully reduced in numerical analysis; however fracture patterns of the three different mesh cases 
show different patterns (Figure 59). This is because the fracture patterns are strongly related with 
distribution of the rock heterogeneity. In our method, the rock heterogeneity does not consist in the three 
different mesh cases, so that different fracture patterns are obtained in the different mesh cases. In 
addition, as mentioned earlier, in order to obtain proper fracture pattern and approximated compressive 
strength, coarse mesh case are not recommended and intermediate finite element size is recommended 
based on calculation of error estimation and computational cost.   
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Figure 59. Stress-strain behavior at Pc=15 MPa with different element size. 

 

 
(a) size=0.04(NE=2,500)    (b) size=0.02(NE=10,000)    (c) size=0.01(NE=40,000) 

 
Figure 59. Fracture pattern at Pc=15 MPa with different element size. 

 

5.2	3D	Numerical	Simulation	of	Compression	Tests	
 

In this section, uniaxial compression test was used to study brittle fracture phenomena in a heterogeneous 
rock. When compressive forces are applied to the brittle rock, the fracturing patterns are complex, and 
replicating the shear localized fracturing patterns is challenging using numerical methods, especially for 
the three-dimensional simulation. The shear-faulting phenomenon depends on many parameters such as 
strength, heterogeneity, initial flaws, composition pattern, and grain size of rock. Because of the model’s 
complexity, rather than attempting to consider grain size in numerical simulations, a probability 
distribution function was used to characterize the strength of fine- and coarse-grained rock in this study.  
The heterogeneity of brittle rock was characterized by the Weibull distribution function (Weibull, 1951), 
which was chosen for its flexibility. Random values generated by Weibull distribution function were 
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5.2.1	Numerical	simulation	of	uniaxial	compression	
 

When rock heterogeneities were applied on both the stiffness and compressive strength of each element, 
fully penetrated cracking was found (Figure 61). Because the rock specimen was modeled as very brittle 
material, fully ruptured fracturing occurred in a very short period (Steps 175-195). Multiple failures were 
initiated at Step 175 when the total applied displacement on the top surface was ∆d=6.21×10-1. Also, we 
can see very broad and spotted damage propagation due to the rock heterogeneity (Figure 62). The rock 
specimen is more damaged near the fracture plane after contact and shear faulting fully ruptured 
fracturing of the specimen. Figure 61 shows damage propagation with deformation over the step, so that 
the part with more deformation in the damaged zone is clearly visible.  
 
In Figure 63, the maximum principal stress is mostly focused in the damaged zone and strain localization 
follows crack element propagation. According to the uniaxial compression simulation, the compressive 
failure of brittle rock predominated at the earlier period of rock fracture. The compressive stress led to 
shear faulting of the brittle rock after that, and the shear faulting dominated mostly during the fracture 
propagation.  

 

 
Figure 61. Damage propagation along steps with deformation (step= 175,185, 190, 200). 

 

 
Figure62. Damage events during uniaxial compression (step= 175,185, 190, 200). 
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Figure 63. Principal stress propagation (Unit=Pa) (step= 175,185, 190, 200). 

 

5.2.2	Snapback	issue	during	triaxial	compression		
 

In this section, 3D numerical simulations were performed for triaxial compression test. Numerical model 
is same as previous 3D uniaxial simulation and material properties (Table 7) were used. When 
confinement is applied to the rock specimen, snapback issue is found Figure 64 and 65. From the 
numerical results, it is observed that fully ruptured fracture plane is successfully formed through the rock 
specimen. However, stress-strain curves show snapback behavior during crack propagation (Figure 64 
and 65). The snapback behavior occurs for brittle materials when more fracture energy dissipated than the 
stored elastic energy during crack propagation. In the case of brittle materials, crack propagation causes 
sudden drop of the load and it could lead unstable response of stress-strain relation. The instability of 
mechanical behavior represents the snapback phenomenon. The snapback issue is normally caused by 
numerical destabilization, because more energy is dissipated than it actually should (Bazant and Planas, 
1997). The snapback issue does not occur in 2D triaxial simulation, while only 3D triaxial simulation 
shows the snapback issue. This is because more energy is dissipated during crack propagation in the 3D 
triaxial simulation. Since we used scalar relation between the normal stress and strain for 3D constitutive 
modeling, the scalar degradation model could not represent the compressive failures in triaxial 
phenomenon, in which failure is triggered by lateral expansion and shear slip on inclined mircroplanes.  
Therefore, in order to consider the triaxial variation of elemental degradation model, tensor type of 
damage model is recommended and the tensor damage model might be a solution of the numerical 
destabilization by the snapback phenomenon. However the tensor type of damage modeling is requiring 
complex mathematical formulation and high computational efforts. So, this issue is out of scope of our 
research and development of the tensor damage model is remaining for future improvement.  
 

Table 7. Material properties and input parameters for 3D tiaxial simulation. 

Inputs Values 

Young’s Modulus, GPa 53.84 ~54.76 Gpa 

Poisson ratio 0.32~0.34 

Tensile strength, MPa 15-30 

Incremental displacement  0.1e-3 

Confining pressure, Pc 5MPa, 15MPa 

Weibull parameters m1=1, a1=9 for stiffness 
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 m2=0.9, a2=10 for strength 
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Figure 64. Plot of damage events and stress-strain curves of snapback at Pc=5MPa. 
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Figure 65. Plot of damage events and stress-strain curves of snapback at Pc=15MPa. 

 

6.	Numerical	Simulation	for	Mixed‐mode	Fracture	Propagation	
 

Hydraulic fracturing paths, especially for fractures emanating from inclined wellbores and closed natural 
fractures, often involve mixed models of Mode I, Mode II, and Mode III fracture patterns. When an 
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embedded inclined fracture is subjected to compression, the fracture tips are restrained by the surrounding 
materials so that it does not propagate as predicted by a single-mode fracture (Min et al., 2011). In this 
section, two- and three-dimensional mixed-modes fracture growths from an initially embedded crack 
were studied using damage mechanics implemented within a finite element method (FEM). Especially, 
simulation of three-dimensional fracture propagation is complex as it often simultaneously involves all 
three fracture modes over a contour. Whereas in a 2D case, the zone of interest is only a point (fracture 
tips), in a 3D case, the fracture tip is a closed boundary, making development of a fracture criterion for 
predicting propagation at different points along its edges difficult.  
 

6.1	Wing‐crack	Model	
 

In this section, two-dimensional and three-dimensional wing crack growths were studied under 
compressive forces. As shown in Figure 67, the extension of secondary cracks in the brittle rock forms by 
mixed mode fracture. In 2D crack growth, the wing cracks (tensile fracture) grow towards the direction of 
maximum compression, while the secondary cracks (shear fracture) grow by sliding toward the lateral 
direction of the maximum compressive force due to the transverse shear localization. Primary cracks, 
describing of the wing crack, are originated from points of highest tension stress. Secondary cracks, 
describing of the shear fractures, are originated from points of compressive stress concentration. After the 
tensile stress concentration initiates the primary cracks, the compressive stresses originated from the 
sliding of the upper and lower areas of the pre-existing crack, and the shear concentration leads to growth 
of the secondary cracks opposite the primary cracks. Sequential growths of the primary and secondary 
cracks were observed in experimental tests (Bobet and Einstein, 1998; Lajtai, 1973; Wong and Einstein, 
2009). Practically, 3D crack growth mechanism is more complicated. As shown in Figure 67, the primary 
cracks are originated from upper and lower areas of the pre-existing plane. By the compressive stress 
concentration, the secondary cracks are growing on the opposite side of the contact surface by Mode II 
conditions and the additional secondary crack could grow in the lateral direction due to Mode III 
conditions. In Figure 68 and Figure 69, the mixed modes of fracture propagation have been observed in 
experimental modeling (Bieniawski, 1967; Bobet and Einstein, 1998; Dyskin Av, 2003; Germanovich and 
Dyskin, 2000; Sagong, 2001). The experimental observations show tensile and shear crack growth in 
compression. The shear crack growth in compression is difficult to observe during the experiments, 
especially for Mode III, because the tensile mode, not the shear mode, is the dominant fracture 
mechanism in compression. However, when the confining pressure is high, as occurs when the rock is 
deep underground, the shear modes cracks may be the dominant fracture mechanism.  
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Figure 66. Evolution of 2D wing crack fractures from a pre-existing crack by (Mixed mode of KI  + KII). 

 

 
Figure 67. Evolution of 3D wing crack fractures from a pre-existing plane by (Mixed mode of KI  + KII+ 

KIII). 
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open flaw in numerical domain, crack elements overlapped with the initial crack geometry are modeled 
by assigning high damage variable (D=0.9). In addition, same as the experiment the crack elements are 
assumed as frictionless. If the pre-existing flaw is rough, crack initiation and propagation from the closed 
flaw are much different with the open flaw propagation. The closed flaw propagation was discussed in 
(Bobet and Einstein, 1998). Three cases are compared below: a tensile-dominated case, a shear-dominated 
case, and a mixed-modes case. The influence of various confinements on crack propagation and the mesh-
dependency issue are discussed in this section. 

 

 
Figure 70. Numerical modeling of 2D wing crack model (a) Boundary condition (b) Meshed domain with 

inclined pre-existing crack. 
 

Table 8.  Material properties and input parameters for 2D Wing crack. 

Inputs Values 

Young’s Modulus, E (GPa) 37.5 

Poisson ratio, υ 0.25 

Number of Elements 40,000 

Number of Nodes 20,301 

Element type Triangular 

Ratio of specimen(D:H) 1:2 

 
 

6.2.1	Tensile	dominated	wing	crack	growth	(Mode	I)	
We assumed zero confining pressure applied on the specimen and Mohr-Coulomb parameters are 
assumed as shown in Table 9. In Figure 61, it was observed that tensile failure is a dominant failure 
mechanism under compression in the wing-crack model. In Figure 72, tensile stresses were concentrated 
at upper and lower areas of the pre-existing crack and the primary cracks (wing crack) initiated at step=25 
and propagated until step=90 with the longer primary cracks. It was also observed that the maximum 
tensile stress concentration was following at the tensile crack tips and high compressive stress was 
developed at lateral directions of the pre-existing crack (Figure 71 (c)), but the secondary cracks (shear 
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crack) were not developing until step=90. The compressive stress eventually leads to initiation of the 
secondary crack (shear crack).  
 
 

Table 9.  Mohr-Coulomb parameters for tensile dominating crack (Mode I). 

Inputs Values 

Mohr-Coulomb parameter, f  10 

Cohesion,cF (MPa) 50 

Tensile strength, T (MPa) 10 

Incremental displacement, ∆d (mm) 1 
 

 
Figure 71. (a) Failure type (1:tensile, 2: shear), (b) Maximum tensile stress (unit=MPa), (c) Maximum 

compressive stress (unit=MPa). 

 
Figure 72. Maximum tensile stress (unit=MPa) with tensile crack growth. 
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6.2.2	Shear	dominated	wing	crack	growth	(Mode	II)	
For the shear dominated crack simulation, we applied a confining pressure of Pc= 20 MPa on the 
specimen and Mohr-Coulomb parameters are assumed as shown in Table 10. When a high confining 
pressure is applied, shear failure becomes a dominant failure mechanism in the wing crack model and the 
shear dominated crack propagation can be observed (Figure 73). Since tensile cracks were restrained by 
the applied confining pressure, compressive stresses concentrated at the lateral areas exceeded shear 
failure criterion and led to initiation of the secondary cracks (shear crack). In Figure 74, the secondary 
cracks were initiated at the crack tips towards the lateral direction, and the shear-dominated cracks grew 
obliquely. The oblique shear crack growth was also observed from experiments in Figure 68 (Bobet and 
Einstein, 1998). The shear failure is a dominant failure mechanism when high confining pressure was 
applied on the rock.  

 
Table 10.  Mohr-Coulomb parameters for shear dominating crack (Mode II). 

Inputs Values 

Mohr-Coulomb parameter, f  10 

Cohesion,cF (MPa) 50 

Tensile strength, T (MPa) 15 

Incremental displacement, ∆d (mm) 1 

 
 

 
Figure 73. (a) Schematic of shear dominant crack growth  (b) Damage propagation        (c) Maximum 

compressive stress (unit=MPa). 
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Table 11.  Mohr-Coulomb parameters for Mixed modes 2D Wing crack (Mode I+II). 

Inputs Values 

Mohr-Coulomb parameter,� f � 10 

Cohesion,�cF (MPa) 30 

Tensile strength, T (MPa) 10 

Incremental displacement, ∆d (mm) 1 

 

6.2.4	Influence	of	confining	pressure	
As we discussed earlier, tensile crack initiation is favored over shear crack initiation because the tensile 
toughness of the rock type material is lower than the shear toughness (Bieniawski, 1967). However, when 
the confining pressure on the rock becomes higher, the confinement will constrain the tensile crack 
initiation; thus, the shear failure becomes dominant in failure mechanics. Especially, a rock at deep depth 
is under high confining pressure, and it cannot fail by one dominant mechanism. In that case, the crack 
propagation is highly influenced by the confining pressure. In order to investigate the influence of the 
confining pressure, we simulated several numerical examples of the wing-crack model with various 
confining pressures. We compared crack propagation patterns in  Figure 76. Results of Pc=0MPa and 
Pc=0MPa are crack propagation at step=90, while results of Pc=0MPa and Pc=0MPa are crack 
propagation at step=120. The simulation results show the effect of confining pressure on a change in 
failure mechanism. From the simulation results, tensile cracking was dominant when the confining 
pressure is low, while shear cracking becomes dominant when the confining pressure is high. 

 

Table 12.  Mohr-Coulomb parameters for confining influence on 2D Wing crack. 

Inputs Values 

Mohr-Coulomb parameter,� f � 10 

Cohesion,�cF (MPa) 35 

Tensile strength, T (MPa) 10 

Incremental displacement, ∆d (mm) 1 
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        (a) Pc=0MPa             (b) Pc=5MPa              (c) Pc=10MPa           (d) Pc=20MPa 

Figure 76.  Mixed modes crack propagation at various confining pressure. 

 

Mesh dependency issue for crack propagation:  

Similar with the previous sections, the mesh-dependency issue in crack propagation is an important issue 
in FEM analysis. If the mesh-dependency issue is not considered, crack growth rate could depend on the 
mesh size. Usually, finer mesh is preferred for use in crack propagation modeling, since the finer mesh 
can describe more realistic crack growth.  

 

 

   (a) size=0.04(NE=2,500)       (b) size=0.02(NE=10,000)      (c) size=0.01(NE=40,000)  

Figure 77.  Numerical model by different mesh size. 
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7.	Hydraulic	Fracture	Propagation	in	Impermeable	Rock	
 

In unconventional geothermal reservoir (EGS) development, multiply-fractured reservoirs can be 
developed vertically or horizontally. Three areas of investigation are of special interest in the study of 
unconventional reservoir stimulation: the importance of mixed fracture modes and correct wellbore 
positioning, the estimation of crack paths from the inclined perforation, and the influence of tortuous 
fracture path on net injection pressure increase. In this chapter, these were investigated using models of 
fracture propagation induced by hydraulic pressure. Generally, when the perforations are misplaced 
within the maximum in-situ stress direction, high pumping pressure is required to open and initiate cracks.  

7.1	Facture	Propagation	from	Fractured	Wellbore	
 

The hydraulic fracturing treatment usually starts from an initial path for the fracture, which is created by a 
“perforation” technique. The perforation, a finger-like hole, is designed to give orientations. Consider a 
wellbore with a short initial crack on its boundary. The crack is either oriented along the maximum stress 
direction or is inclined as shown in Figure 82. Radius of the wellbore is 0.1 m, and it is situated in a 3m × 
3m block (Figure 83). The numerical domain is meshed by 4-noded triangular elements  (Figure 83). The 
initial crack is created by perforations before hydraulic fracturing stimulation. The length of the 
perforations is assumed as 0.1 m. The rock is subjected to anisotropic far-field stresses applied in the x- 
and y-directions and material properties of the rock are shown in Table 13. The wellbore/fracture system 
is pressurized incrementally using a pressure-boundary condition. The pressure level is updated at every 
time step and applied on both existing and newly propagated crack elements using a moving-boundary 
scheme. Slow fluid injection increases the hydraulic pressure uniformly over the fracture surfaces except 
in the crack tip area. Due to the highest fluid loss in the fluid-lag region, the applied hydraulic pressure 
decreases rapidly near the fracture tip (Papanastasious, 1997). Also, the low-pressure region indicates 
fracture-tip effects, since the fracturing fluid never quite reaches the fracture tip (Smith and 
Shlyapobersky, 2000). So in the simulation, the fracture tip pressure is assumed to be the zero. Except the 
fracture tips, we apply uniform pressurization in the fracture plane and increase incrementally until the 
fracture tips are propagating. Once the fracture propagated, we adjust lower uniform pressurization in the 
fracture and increase incrementally again until the fracture tips are propagating. It is also assumed that the 
process is isothermal and the rock is impermeable.  

 

 
Figure 82. Fractured wellbore with perforations under in-situ stress. 
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Figure 83. Numerical domains for the fractured wellbore. 

                                     

Table 13.  Material properties and input parameters for 2D HF model. 

Inputs Values 

Young’s Modulus, E (GPa) 37.5 

Poisson ratio, υ 0.25 

Number of Elements 19,200 

Number of Nodes 9,760 

Element type Triangular 

Mohr-Coulomb parameter,f 10 

Cohesion,cF (MPa) 40 

Tensile strength, T (MPa) 25 

 
 
 

7.1.1	Parallel	perforated	wellbore	
 

As a boundary condition (Table 14), the far-field stresses are 4 MPa in the x-direction and 1MPa in the y-
direction. As expected, the hydraulic fracture propagates toward the maximum principal stress direction 
(Figure 84). Note that the wellbore pressure decreases during fracture propagation. Since we used uniform 
pressure boundary condition (except fracture tips), required pressurization is decreasing with the growth 
of the fracture length. Applied total force in the fractures is increasing by multiplying the uniform 
pressure by the fracture length. In addition, when the injection rate remains the same during fracture 
propagation, the hydraulic pressure applied to the fracture surface is proportional to the fracture length. 
When the fracture is not propagating, the wellbore pressure increases until the fracture propagates and the 
wellbore pressure drops. In Figure 85, the wellbore pressure decreases continuously with fracture length. 
The rapid variations in the wellbore pressure profile are caused by propagation increments. The resulting 
aperture changes are smooth and continuously vary during crack propagation in Figure 85. 



 

                

 

 

 
 
 

                     

Table 14.

Inputs 

Max. Far

Min. Far-

Initial hyd

Incremen

Figure

Figure 85. W

    

. Boundary co

-field stress, S

-field stress, S

draulic pressu

ntal hydraulic 

e 84. Damage

Wellbore press

onditions for p

SH (MPa) 

Sh (MPa) 

ure (MPa) 

pressure (MP

e propagation 

sure change a

159 

parallel fractu

Pa) 

          

and Maximu

and aperture c

ured wellbore

um tensile stre

change during

e. 

Values 

4 

1 

4 

0.2 

ess distributio

g hydraulic fra

on. 

acturing. 
 



 

7.1.2	Inc
 

The inclin
crack prop
stress dire
then the h
is opened
propagatio
Figure 85
direction, 
path tortu
wellbore p
fracture a
segment. 
curved sec

 

 

clined	perfor

nation angle, 
pagation chan
ection. At ear
hydraulic frac
d by the hyd
on and shear 

5, the wellbor
but after tim

uosity. When
pressure incr

aperture chang
The shear slip
ction of the fr

Figure 87. W

rated	wellbo

45°, of the i
nges with inc
rly time, the h
ture turns tow
draulic press

slip are dete
re pressure i

me steps, the w
n the mixed 
eases to creat
ge (Figure 86
p of the open
racture (Figur

Figure86. D

Wellbore press

ore	

initial crack 
creasing lengt
hydraulic frac
ward the maxi
ure and slip
ected near the
s decreasing 
wellbore pres
mode fractur
te fracture pr
6) is not larg

ned fracture ca
re 89). 

amage propag

sure change a

160 

is assumed in
th as the fract
cture is propa
imum far-fiel
s under the 
e turning zon
at early time

ssure increase
res are comb
ropagation. D
ger than the a
auses highly c

            
gation at early

and aperture c
 

n the exampl
ture reorients 
agating with th
ld stress direc
anisotropic 

ne of the crac
e when the c
es again as th
bined during 

Despite the hig
aperture chan
compressive 

y time and lat

change during

le. As a resu
itself in the m

he same initia
ction. That is,
in-situ stress

ck path. As c
crack propaga
he crack turns

hydraulic fr
gh hydraulic 

nge for the st
stress near th

ter time. 

g hydraulic fra

ult, the directi
maximum far
al crack angle
, the initial fra
s. So both t
can be observ
ates in its or
s, reflecting c
racturing, req
pressurizatio

traight propag
he wellbore an

 

acturing. 

ion of 
r-field 
e, and 
acture 
tensile 
ved in 
riginal 
crack-
quired 
on, the 
gation 
nd the 



 

 

7.1.3	Fra
 

When the
of the wel
× 10-m bl
uniform tr

 

 
Parallel p

The initia
length is a
respective
is similar 
the growth
failure is d
propagatio
hydraulic 

Fi

acture	propa

e initially frac
llbore could b
lock and mes
riangular elem

Figure 89. S

perforation:  

al fracture is a
assumed as 0.
ely. As can be
with the prev
h of the fractu
dominating d
on, the wellbo
fracture. Bec

igure 88. Prin

agation	from

ctured perfora
be neglected. 
shed uniforml
ments were us

Schematic nu

assumed to be
.6 m, and the 
e observed in 
vious simulati
ure length and

during hydraul
ore pressure i
cause of the m

ncipal tensile 

m	long	perfo

ation is relativ
A larger scale
ly in Figure 8
sed in this sim

umerical doma

e long enough
far-field stres
Figure 90, cr

ion with a we
d aperture pro
lic fracturing
increases to o

mixed mode fr

161 

         
and compress

oration	

vely large com
e reservoir m
8.8. Material 
mulation.  

            
ain of reservo

h to ignore the
sses are 10MP
rack propagat
llbore. Trend
ofile is gradua
, but when sh

overcome the 
ractures, well

sive stress dis

mpared with 
model with an 

properties de

oir model w/o

e wellbore ge
Pa and 5MPa
tes straight, an
d of the wellbo
ally increasin

hear failures w
shear toughn

lbore pressure

stributions. 

the wellbore 
initial fractur

escribed in Ta

o wellbore geo

ometry effect
a in the x- and
nd the wellbo
ore pressure i

ng (Figure 91)
were combine
ness and propa
e is going to u

 

size, the infl
re is modeled 
able 13 and 2

 
ometry. 

t. Initial fractu
d y- direction,
ore pressure p
is decreasing 
). Basically, t
ed during frac
agates the 
up and down 

luence 
10-m 

20,000 

ure 
, 

profile 
with 
ensile 

cture 



 

during hy
case, the a
field stres
maximum
crack path

 

 

ydraulic fractu
applied max/m
ss contrast, the
m far-field stre
h is relatively

Table 

Inputs 

Max. F

Min. F

Initial 

Increm

Figur

ure propagatio
min in-situ str
e crack path s
ess. The simu

y straight.  

15. Boundary

Far-field stres

Far-field stress

hydraulic pre

mental hydrau

e 90. Damage

on (Figure 91
ress ratio is ch
shows some t

ulation results 

y conditions fo

ss, SH (MPa)

s, Sh (MPa) 

essure (MPa)

lic pressure (M

e propagtion a

162 

). Compared 
hanged from 
urns but the m
show that the

for parallel pe

MPa) 

 

 

      
and Maximum

with the prev
3:1 to 2:1, an

main crack pr
e fracture tort

erforation. 

m tensile stre

vious parallel 
nd due to relat
ropagating dir
tuosity is not 

Values

10 

5 

7 

0.5 

ss distribution

fractured we
tively higher 
rection follow
severe and th

s 

 
n. 

llbore 
far-

ws the 
he 



 

 
Inclined p

The inclin
example. 
applied in
fracture tu
At early t
initial cra
identified 
fracture, w
the wellbo
are combi
anisotropi
propagatio
indication
after initia

 

Figure 91. W

perforation: 

nation angle,
The reservoi

n the x- and 
urns to the ma
time, tensile p
ack angle. At

near the hyd
while the low
ore pressure 
ined. In addit
ic far-field s
on, more pu

n of shear fai
al wellbore pr

Wellbore press

 

, 45° and the
ir dimensions

y- direction
aximum far-f
propagation i
t later time, t
raulic fractur

wer damaged z
drops sharply
tion, since the
stresses is hi
umping is req
ilure during h
ressure drop. 

sure change a

e fracture len
s are 10 m e

ns, respective
field stress dir
is dominating
the hydraulic
e. In Figure 9
zone indicate 
y during prop
e initial perfo
igher than th
quired in the
hydraulic frac
  

163 

and aperture c

ngth of the i
each. The far
ly. Similar w
rection and sh
g and the hyd
c fracture turn
92, higher dam

secondary or
pagation and 
oration is incl
he parallel p
e inclined pe
cturing stimu

         

change during

initial crack 
r-field stress 
with the prev
hows tortuous
draulic fractur
ns with shea
mage zones (r
r microscopic
increases aga
lined, the wel

perforation ca
erforation ca

ulation, when 

g hydraulic fra

are assumed 
is given by 

vious simulat
s crack propa
re is propagat
ar slip and lo
red) indicate 
c fractures. A
ain when mix
llbore pressur
ase. In order
ase. Therefor

the wellbore

acturing. 

as 0.55 m i
10MPa and 5
tion, the hyd
gation (Figur
ting with the 

ots of damage
the main hyd

As explained a
xed mode frac
re to overcom
r to create t
re, it could b
e pressure go

  

in the 
5MPa 

draulic 
re 92). 

same 
es are 

draulic 
above, 
ctures 

me the 
tensile 
be an 

oes up 



164 
 

Figure 92. Damage propagtion and Maximum tensile stress distribution. 
 

 
Figure 93. Wellbore pressure change and aperture change during hydraulic fracturing. 

8. Hydraulic	Fracture	Propagation	in	Impermeable	Rock 
 

Hydraulic fracturing can be defined as coupled fluid-solid interaction problem. This interactive problem is 
very challenging to interpret via numerical methods, because of lots of numerical complexity such as the 
moving boundary issue, dynamic crack growth, and complex geometry. Therefore, one approach to solve 
the hydraulic fracture propagation problem has been quasi-static fluid-driven fracturing (Adachi et al., 
2007; Boone, 1989; Papanastasious, 1997). Although the quasi-static assumption might be invalid for 
realistic crack growth behavior, it has given a reasonable solution so far. Hydraulic fracturing can be 
divided into three coupled processes of fluid flow, hydromechanical deformation, and fracture 
propagation. The fluid flow inside fractures is modeled using the lubrication equation, and the 
hydromechanical deformation of rock is solved using fully coupled poroelastic analysis. Fracture 
propagation is modeled as quasi-static crack growth. So at each time step we solved an iterative solution 
for rock deformation and fluid pressure using the coupled iterative algorithm explained in Chapter 5. In 
this chapter, we present 2D hydraulic fracture propagation simulation using the quasi-static fluid-driven 
fracturing model. The influence of reservoir heterogeneity on hydraulic fracturing stimulation is of special 
interest. The heterogeneous feature of the rock could affect multiple fracture propagation and fluid flow in 
the fracture by increasing leakoff volume, so that reservoir heterogeneity is an important factor to 
determine the hydraulic fracturing strategy. Through the numerical study of hydraulic fracturing, the 
numerical model could help to design an optimized hydraulic fracturing strategy and save developing 
costs in was such as minimizing unnecessary experimental tests. 

8.1	Two‐Dimensional	Numerical	Modeling	
 

Similar to a previous simulation, a 10-m × 10-m 2D reservoir model was used. The numerical domain 
was meshed by 20,000 uniform triangular elements (Figure 94). The length of the perforation was 
assumed as 1.2 m, which is placed in the center of the numerical domain. Material properties of westerly 
granite were used (Table 16), and boundary conditions of the far-field stresses were 10 MPa and 5 MPa in 
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the x- and y-directions (Table 17). Water was used for fracturing fluid and was injected to the center of 
the numerical domain. Constant fluid injection rate of 24 L/min was used and applied as a point-fluid-
source boundary condition into the numerical domain.  

 

HS
injQ

HS

hS

hS  
Figure 94. Numerical domain and boundary condition for Hydraulic fracturing simulation. 

 

Table 16. Rock properties of Westerly Granite (Mctigue, 1986). 

Inputs Values 

Young’s Modulus, E (GPa) 37.5 

Shear Modulus, G 15 

Drained Poisson ratio, υ 0.25 

Undrained Poisson ratio, υu  0.33 

Biot’s coefficient,   0.44 

Skempton’s coefficient, B 0.82 

Permeability, k (md) 0.01  

Porosity 0.01 

Fluid mass density, ρf (kg/m3)  1000 

Fluid viscosity, μ (Pas) 1.e-3  

Bulk modulus for fluid 3.291e9 

 

Table 17. Boundary condition and input parameters. 

Inputs Values 

x-dir. Far-field stress, SH (MPa) 10 

y-dir. Far-field stress, Sh (Mpa)               5  

Injection rate, qinj (L/min) 24 

Mohr-Coulomb parameter,f 10 

Cohesion, cF (MPa) 30 

Tensile strength, T (MPa) 7 

Weibull distribution parameters 
m1=1, a1=5 
m 2=1.1, a2=9 
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Figure 100. Comparison of wellbore pressure profile and injected fluid volume. 

 

 
Figure 101. Comparison of aperture and fluid pressure profiles at first step (t=0.6 sec). 

 

8.1.3	Hydraulic	fracturing	in	highly	heterogeneous	reservoir	
 

In this section, we examined the influence of the heterogeneity when the target reservoir had more 
heterogeneous geomechanical features. We increased the reservoir heterogeneity by modifying the 
Weibull parameters (m1=1, a1=4, m 2=1, a2=3, m 3=1, a3=3) (Figure 102).  Based on the simulation results, 
when a highly heterogeneous reservoir was assumed, the fracture length propagated slowly and leakoff 
volume increased greatly  (Figure 103). The high leakoff rate left only a small remaining fluid volume in 
the fracture and prevented the fluid flow from generating enough fluid pressure to create cracks. 
Therefore, injection efficiency also decreased and the fracture could not grow anymore. Wellbore 
pressure of the high-heterogenity case remained higher than the low-heterogeneity case (Figure 103) 
because the fracture length of the high-heterogeneity case did not increase as much as the low-
heterogeneity case. 
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We examined 2D hydraulic fracture propagation simulations in permeable rock and investigated the 
influence of the reservoir heterogeneity and the injection rate. The reservoir heterogeneity is a critical 
factor to determine the hydraulic fracturing strategy, because both mechanical deformation and fluid flow 
behavior are affected by the heterogeneity factor. Especially, high heterogeneity increases leakoff volume 
and reduces the injectivity of fracturing fluid. When the rock was highly heterogeneous, the injection 
efficiency was decreased to 0.57 Table 18. When the injection rate was increased by 6 times, the injection 
efficiency decreased only from 0.832 to 0.82. So that means the injection efficiency is a function of the 
heterogeneity factor and not a function of the injection rate. Based on the simulation results, the hydraulic 
fracturing strategy should carefully determine if the reservoir is highly heterogeneous.  
 

Table 18. Comparison of fluid volume and injection efficiency. 

  Time (s) 
Injected 
volume (ml) 

Fracture 
volume (ml) 

Leakoff 
volume (ml) 

Injection 
efficiency, εinj 

Homogeneous 10.67 4266.39 4258.413 7.977 0.998 
Low Hetero. 12.97 5189.38 4316.84 872.54 0.832 
High Hetero. 13.04 5214.275 2970.55 2243.73 0.57 
High injection  3.70 8878.55 7282.33 1596.225 0.82 

 

where the injection efficiency is defined as: inj
f i l

i i

V V V

V V


   . 

 

8.2	3D	Modeling	of	Hydraulic	Fracturing	Experiments	
 

Hydraulic fracturing has continued to become more important for the oil and gas industry. Optimization 
of the hydraulic fracturing treatment is necessary to save developing cost. Lab experiments and numerical 
hydraulic fracturing models give valuable information for the optimization procedure. Laboratory-scaled 
hydraulic fracturing experiments have frequently been used previously. Many researchers have conducted 
laboratory-scaled hydraulic fracturing tests (Daneshy, 1974; Lamont and Jessen, 1963; Teufel and Clark, 
1984; Zoback et al., 1977). These laboratory experiments are useful to examine an insight into the process 
of hydraulic fracturing treatment, because they provide guidelines for evaluating laboratory environments 
and the influences of different factors (e.g., injection schedule, fracturing fluid, and confining pressures) 
that can be monitored in the hydraulic fracturing treatment. Compared with field tests, laboratory tests can 
reduce developing cost significantly. Laboratory tests are also used to validate numerical hydraulic 
fracturing models (Bai et al., 2006).  This chapter compares the fully 3D hydraulic fracturing model with 
the laboratory hydraulic fracturing tests of Niobrara shale that was performed by TerraTek (Ghassemi and 
Suárez-Rivera, 2012). The numerical simulation provides a sophisticated understanding of the complex 
process of hydraulic fracturing. We investigated the hydraulic fracturing simulation in both homogeneous 
and heterogeneous blocks. 

8.2.1	Large‐scale	laboratory	hydraulic	fracturing	test	
 

The laboratory scale hydraulic fracturing test was performed in TerraTek’s large block multiaxial stress 
frame. Using the multiaxial stress frame (Figure 107), the in-situ effective stress conditions were 
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generated in three principal directions by high pressure flatjacks. The tested Niobrara shale (Figure 107) 
was obtained from a quarry located in Colorado and prepared for 27.25-in. × 27.25-in. × 32-in. 
dimensions of the block. The wellbore was drilled in the middle of the testing block. Vertical completion 
with a cased borehole was placed, and a 7-in. long openhole section located was 15 to 22-in. from the top 
face of the block. Two slots of 12-mm penetration were sandblasted along the length of the openhole 
section to facilitate fracture initiation and breakdown. 37 acoustic sensors were installed on the faces of 
the block to evaluate fracture geometry and propagation during the hydraulic fracturing test. Glycerol, 
which has high viscosity of 1,000 cp, was used for the fracturing fluid, and a constant injection rate of 
1,000 mL/min was pumped into the block sample subjected to anisotropic in-situ stresses.  

 

 
Figure 107. TerraTek’s large multi-axial stress frame and Niobrara boulder acquired from the quarry in 

Colorado (Ghassemi and Suárez-Rivera, 2012). 

8.2.2	Numerical	modeling	for	laboratory‐scaled	hydraulic	fracturing	test	
 

As we explained earlier, the hydraulic fracturing process was modeled using the fluid-driven fracturing 
problem. So rock deformation was modeled for poroelastic solids, and fracture propagation was modeled 
by a quasi-static assumption. The fluid flow in the propagating fracture was solved by the lubrication 
equation. In this 3D hydraulic fracturing simulation, the fracture propagation process is more simplified 
because of complexity of numerical description of fracture tip contour of the non-planar fracture growth. 
It is assumed that the main hydraulic fracture plane was propagated constantly with given crack increment 
in the direction of the maximum far-field stress. That is, the crack increment law and an angle of fracture 
direction are not considered in the 3D simulation. In the 3D hydraulic fracturing simulation, once the 
fracturing tip contour met with the maximum tensile criterion, the fracture plane is extended with the 
given crack increment at every time step.  
 
The laboratory-scale large block was modeled using a 3D finite-element model and meshed using 26,400 
tetrahedron elements (Figure 108). Since quasi-static planar fracture propagation is assumed, our interest 
zone is the middle zone of the numerical domain. So, finer mesh is applied in the middle zone to capture 
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Number of nodes 6,300 

 
 

Table 20. Fluid properties for Glycerin. 

Inputs Values 

Fluid mass density, ρf (kg/m3) 1261 

Fluid viscosity, μf (Pas) 1 (1,000 cp) 

Bulk modulus for fluid              4.35e9 

 

Table 21. Rock properties of Niobrara Shale.  

Inputs Values 

Young’s Modulus, E (GPa) 3.7 

Shear Modulus, G (GPa) 1.42 

Drained Poisson ratio, υ 0.3 

Undrained Poisson ratio, υu  0.46 

Biot’s coefficient,   0.866 

Skempton’s coefficient, B 0.949 

Permeability, k (md) 0.01  

Porosity,   0.1 

 
 

8.2.3	Hydraulic	fracturing	in	homogeneous	block	
 
In a homogeneous block, only major planar fracture growth propagated (Figure 113). With the planar 
fracture growth, fluid pressure distributions changed with time.  Figure 113 (a to h) captures continuous 
changes of the fracture plane and the fluid pressure distribution. In Figure 110, the fluid pressure profile 
changed quickly with time and the fracture aperture opened gradually. As the fracture plane grew, the 
fluid pressure profile stabilized. 
 
A viscous fracturing fluid is inducing a steep rise of wellbore pressure and eventually leads the initiation 
of a fracture. Wellbore pressure profile (Figure 109) quickly dropped with the fracture growth. 
Breakdown pressure in this simulation was 30.12 MPa (4368.55 psi) and wellbore pressure stabilized 
around 10.6 MPa (1537.4 psi). Since the block was assumed as homogeneous, the leakoff volume was 
small (48 ml). In Figure 111 112, the compressive stress increased the pore pressure near the fracture 
plane. Pore pressures near fracture tips were nearly zero due to the opening mode of fracture. Maximum 
opening stresses were concentrated in this region. 
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Figure 109. Wellbore pressure profile and injected fluid volume. 

 

  
Figure 110. Fluid pressure change and aperture change during hydraulic fracturing. 

 
Figure 111. σzz distribution and pore pressure distribution at t=14.28 seconds in homogenous block. 
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Figure 112. Maximum compressive stress and fluid pressure distribution (from center cut-view) at 

t=14.28 seconds in homogeneous block. 

 
(a) t=0.68 seconds 

 

 
(b) t=2.85 seconds 
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(c) t=7.05 seconds 

 

 
(d) t=14.28 seconds 

 

 
(e) t=27.59 seconds 
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(f) t=45.56 seconds 

 

 
(g) t=73.45 seconds 

 

 
(h) t=112.25 seconds 

Figure 113. Fracture plane growth and fluid pressure distribution with time. 
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Table 23. Comparison of experimental results and numerical simulations. 

 
Breakdown 
pressure 

Stabilized 
pressure 

Treatment 
time (s) 

Experimental results (by TerraTek) 
28.97 MPa 
(4202 psi) 

10.93 MPa 
(1585 psi) 

130 

Num. Homogeneous block 
30.12 MPa 
(4368.55 psi) 

10.6 MPa  
(1537.4 psi) 

112.25 

Num. Heterogeneous block 
28.75 MPa 
(4169.84 psi) 

10.6 MPa  
(1537.4 psi) 

129.8 

 
 

 
Figure 119. Comparison of wellbore pressure profile with experimental results. 

 
 

8.3.5	Sensitivity	of	numerical	model	by	material	property	
 

In Figure 121, we investigated the sensitivity of the 3D hydraulic fracturing simulation against Young’s 
modulus. Since mechanical deformation of a rock is dependent on the Young’s modulus of the rock, 
hydraulic fracturing behaviors are also influenced by the change of the mechanical deformation. When 
the rock was softer (E=2.7GPa), less breakdown pressure was obtained and more simulation time was 
required, because the fractures opened wider in the soft rock. In contrast, when the rock was harder 
(E=4.5GPa), breakdown pressure was higher and shorter simulation time was required, because the 
fractures opened less in the hard rock.  
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Figure 121. Comparison of wellbore pressure profile and injection volume by Young’s modulus changes. 

 
Viscosity of fracturing fluid: In the hydraulic fracturing stimulation, choice of fracturing fluid is another 
important issue, because fracture opening (i.e. aperture) is highly affected by viscosity of the fracturing 
fluid. Generally, high viscosity fluid opens more, while low viscosity fluid opens less. Because the high 
viscosity fluid induces strong tensile force, higher breakdown pressure is observed than the low viscosity 
fluid. In this section, influence of the fluid viscosity on the hydraulic fracturing was investigated.  

 
Cases of μ=1000cp vs. μ=100cp:  

 

Previously we used glycerin for the fracturing fluid, which has high fluid viscosity (μ=1000cp). Lower 
viscosity fluid (μ=100cp) was used instead of the glycerin. When same amount of injection rate 
(qinj=1L/min) was used, low breakdown pressure (Pb=13MPa) was observed and the fracture plane did not 
propagated since the low injection rate could not induce enough tensile forces at fracturing tips (Figure 
121). So, when the injection rate was changed to qinj=10L/min, higher breakdown pressure (Pb=28MPa) 
was obeserved and the fracture plane was fully propagated (Figure 121). When the low viscosity result 
(μ=100cp, qinj=10L/min)  was compared with the high viscosity result (μ=1000cp, qinj=1L/min) (Figure 
121), the low viscosity case required shorter treatment time than the high viscosity case because the 
injection rate of the low viscosity case is ten times higher than the high viscosity case. Because of the 
high injection rate of the low vicosity case, amount of injected fracturing fluid (Vf =2,500mL) is higher 
than the high viscosity case (Vf =1,900mL).  

 
Consequently, when the lower viscosity fluid is used, higher injection rate is required to create hydraulic 
fracturing. Unless the injection rate is increased, the fracture plane could not be extended. Hence, high 
pumping equipment is required when the fracturing fluid has low viscosity property.  
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Figure 121. Comparison of wellbore pressure profile and injection volume by fracture fluid viscosity and 
injection rate. 

 
In this section, development a fully 3D hydraulic fracturing model for the large-scale laboratory hydraulic 
fracturing test was presented. The model was successfully validated using a lab-scale experiment 
performed by TerraTek. Planar fracture propagation was observed in both numerical simulations and 
experiment, as expected. In the case of the heterogeneous block test, both main planar fracture growth and 
widely distributed micro-fractures were observed. The greatest difficulty of the 3D hydraulic fracturing 
model is tracking the crack tips, because the crack tip is no longer 2D and the 3D variation of the crack 
tips makes them difficult to identify. In our 3D hydraulic fracturing simulation, we assumed the main 
planar fracture plane was propagating toward the maximum in-situ stress direction. However, the fracture 
could turn or intersect natural fractures. Capturing these complex fracture interactions would require 
further development of the presented 3D model.  

9.	Three‐dimensional	(3D)	Thermal	Fracture	Propagation	
 

In geothermal reservoir development, thermal stresses arise from conductive and convective heat transfer. 
These stresses become important for long injection times and may result in thermal fracturing (Min and 
Ghassemi, 2011). Basically, three mechanisms of heat transferring—conduction, convection and 
radiation—could be acting on the porous rock. Conduction is transferring heat through solid material 
from high temperatures to low temperatures. Convection is a process of heat transfer by a flowing fluid. 
Radiation is a heat transfer process of electromagnetic waves moving through space, so there is negligible 
radiation effect through the porous rock, and usually it is not considered as an important heat transfer 
mechanism (Pratt, 1982). Among these three heat transfer mechanisms, heat conduction is a dominant 
heat transfer mechanism in porous rock (Settari, 1989). Therefore, in enhanced geothermal system (EGS) 
design, thermally induced stresses might be used to create reservoir permeability. When cold water was 
injected into the geothermal reservoir, the reservoir rock gradually lost its heat and the rock shrank due to 
the cooling process. Eventually, the thermally induced stresses nucleate fractures when the strain energy 
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Table 24. Material properties and input parameters for Thermal fracturing. 

Inputs Values 

Young’s Modulus 54.5 GPa 
Poisson ratio 0.25 
Permeability 0.001 md 
Porosity 0.19 
Biot’s effective stress coefficient 0.966 
Thermal diffusivity 1.6×10-6 m2/s 
Thermal expansion of solid phase 1.8×10-5 K-1

Thermal expansion of fluid phase 3.0×10-4 K-1 
Num. of element 275,556 
Num. of nodes 49,019 
Reservoir dimension 150-m×100-m×80-m 
Thermal loading ∆T=90°C 

 
No initial cracks were applied in our FEM model. Crack initiation and propagation were detected by both 
the damage variable and the maximum principal strain criterion. Pore pressure changes around the 
fracture surface were influenced by the temperature variation through thermo-poroelastic effects. The 
cooling zone was extended by the cooling injection over time  (Figure 123), the distribution of εzz and the 
maximum tensile value of εzz were concentrated on the fracture surface, and the tensile-strain 
concentration led to crack growth perpendicular to the preexisting fracture surface (Figure 125). When the 
heterogeneous reservoir was subjected to temperature change, the fracture volume increased; the amount 
of the volume change was dependent on the thermal expansion coefficient of the rock. The considerable 
difference of thermal expansion coefficient between damaged rock and intact rock will increase the 
effective volumetric stress in the heterogeneous reservoir. The volumetric stress change will initiate 
thermal fractures and increase a significant positive pore pressure in the thermally induced fractures. And 
the continuous change of volumetric expansion of the pore space will cause further propagation of the 
thermal fractures. Figure 126  shows crack initiation at early (a) and later (b) stages of cooling. Clearly, 
the longer cracks grew mostly in the central area of the main fracture surface. The length of the fracture 
was limited by the extent of the cooled zone. Tension failure by thermal loading created several cracks 
perpendicular to the major fracture surface at various locations due to the heterogeneous nature of the 
rock matrix. . In this simulation, we assumed that the initial pore pressure of the rock matrix was 20 MPa 
and the pore pressure of the fractured element was 25 MPa. However, the low matrix permeability 
prevented rapid communication of the hydraulic pressure with the rock matrix until the thermal fractures 
grew. The pore-pressure distribution at this stage is shown in Figure 127. 
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Chapter	3.	SUMMARY	AND	CONCULUSIONS		
 

The objective of this work was to develop advanced numerical models for better understanding of brittle 
fracture process including mixed fracture propagation and hydraulic fracturing treatment considering rock 
heterogeneity. The research work carried out included numerical description and interpretation of rock 
properties and fracture patterns, and analysis of triaxial experiments; improved understanding of complex 
fractures affected by brittle/ductile behavior of rock; 2D and 3D hydraulic fracturing models for 
laboratory block experiments and its application to larger-scale problem   

 
Hydraulic fracturing process was modeled using fluid-solid interaction analysis incorporating fluid flow, 
fracture mechanics, rock deformation and moving boundary problem. The hydraulic fracture propagation 
and moving boundary scheme were modeled using the VMIB and damage mechanics with the element 
splitting technique applied to three-node tetrahedron and four-node tetrahedron elements. The 3D 
hydraulic fracturing models were validated using large scale hydraulic fracture laboratory experiments. 
   
Numerical simulation of 3D fracture propagation in brittle rock was studied using the VMIB evolution 
function at the micro scale. The results showed that typical features of 3D tensile and compressive 
fracture propagation can be well represented. Especially, simulation results by 3D VMIB and 3D EPM 
demonstrated the propagation of Mode III fracture. Such simulations improve understanding of 3D 
fracture propagation mechanism and provide a means of designing multiple hydraulic fractures for 
reservoir stimulation. Furthermore, 3D simulation of multiple hydraulic fractures showed good agreement 
with the results of theoretical analysis. In addition, an interesting manner of hydraulic fracture 
propagation in Mode III has been observed showing the formation of multiple fractures from the original 
crack.  
 
The influences of coupled processes (poroelastic and thermoelastic) on fracture propagation were 
simulated using VMIB and Continuum Damage Mechanics (CDM) along with the discontinuous crack 
propagation algorithm.  Numerical simulation of 3D thermal fracture propagation in brittle rock was 
studied using the VMIB model combined with 3D EPM method. In VMIB theory, the macro behavior of 
material is attributed to the strength evolution of micro virtual bonds subjected to applied loads. With this 
hypothesis, thermally induced failure of rock was simulated in this work, showing the advantages of 
VMIB in simulating the failure process. Nonlinearities of mechanical behavior and thermal parameters of 
the rock material were captured by introducing a nonlinear VMIB constitutive model. A 3D EPM 
associated with thermal parameters modification for fractured elements provided a simple way to 
represent the pre-existing fracture in a structured mesh. The advantage of the 3D EPM is that it is 
unnecessary to mesh the fractures and thus, remeshing is not needed during fracture propagation. This is a 
major convenience especially for multiple fractures in complex geometry.  
 
Several examples were provided to test the functionality of the model and to provide evidence for its 
verification. Test I showed reasonable results for the nonlinear thermal deformation and fracture of rock 
when subjected to uniform cooling. Test II which was designed to check the model’s ability to treat a 
randomly distributed set of fractures with a structured mesh was also successful, and illustrated the 
interaction and growth of fractures in a cluster under thermal loading. The final example illustrated the 
behavior of fractures emanating from a wellbore and showed the model captures the impact of cooling 
and the in-situ stress on the propagation patterns.   
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Special algorithms were developed and used to address the mesh-sensitivity of the VMIB approach. In 
particular, the fracture energy conservation was considered in the proposed VMIB model. Through 
incorporation of the fracture energy in the bond evolution function, the mesh-size sensitivity was 
minimized for the element size simulated in this work. The model served as a mechanical constitutive 
relation in a fully 3D hydraulic fracturing model to simulate laboratory scale experiments. Taking 
advantage of 3D EPM, the pre-existing fractures were treated as “joints” so that the contact and reopening 
behaviors were captured when interacting with a propagating fracture. For each case, curved and parallel 
growth of fractures under different confining stresses was captured with reasonable agreement with 
experimental observations. The critical element size, however, limits the maximum size that satisfies 
fracture energy conservation and the effectiveness of the model. Therefore, it limits the size of simulation 
domains to small and possibly meso-scale.  
 
Continuum Damage Mechanics (CDM) was also used to describe the inelastic response of micro-crack 
growths and the macroscopic fracture (in 2D and 3D). Damage mechanics allowed representation of both 
micro and macro crack propagation and severely damaged zone. The brittle failure mechanism of 
heterogeneous rock was studied using CDM within FEM formulation. Generally, rock fractures in mixed 
mode which requires complex criteria for predicting the failure/fracture; however theoretical approaches 
are not sufficient to do it. So, simplified constitutive relations were proposed to describe the general 
strain-softening behavior corresponding with confining pressure, although it is more ideal to use different 
constitutive relations for different types of material to give a more realistic physical interpretation. In 
addition, an isotropic damage variable was used to represent stiffness degradation and crack 
initiation/propagation for simplicity of numerical implementation. The elastic/brittle constitutive model of 
the brittle rock was developed and simulated to study the influence of confining pressure through 
calibration with the multistage triaxial experiments. The numerical results showed a reasonable 
approximation for the stress-strain relations and fractured behavior with core samples after the triaxial test. 
Also, the three basic types of mechanical deformation processes—reversible elastic, irreversible inelastic, 
and irreversible friction—were generally captured. The elastic-brittle constitutive assumption is suitable 
for rock material such as granite, but not for Newberry tuff, because as confining pressure increases tuff 
becomes more ductile and the fracture plane is affected. The model did not include plastic hardening 
deformation, so the stress-strain relation did not perfectly match laboratory experiment results. Thus, to 
consider ductile behavior, it is necessary to introduce plasticity into the elastic/brittle constitutive model, 
along with an additional damage variable that could represent the plastic hardening behavior. Rock 
heterogeneity was represented by spatial distribution curves using Weibull function.  
 
Numerical simulations of mixed modes fracture propagation in brittle rock was studied using 2D and 3D 
wing-crack models. In 2D simulation, mixed modes fracture of Mode I and II and the influence of 
confinement on the crack growth were studied. The dominant failure mechanism depends on the 
confinement and the local stress conditions determine the direction of crack propagation. In 3D 
simulations, a wing crack has initially grown in the major compression direction, but its direction changed 
due to the presence of the free surface of the 3D specimen. In 2D case, since there is no Mode III 
fractures, the secondary crack could grow farther toward the compression direction, but 3D secondary 
crack growth from the pre-existing circular crack involves mixed modes (II and III), so that 3D fracture 
propagation becomes more complicated. It is necessary to further study 3D crack propagation to improve 
understanding of the fracture propagation mechanism for designing multiple hydraulic fractures. 
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Moreover, hydraulic fracture propagation in permeable rock was simulated to investigate the influence of 
the reservoir heterogeneity and the injection rate. The reservoir heterogeneity is a critical factor because 
both mechanical deformation and fluid flow behavior are affected by rock heterogeneity. Especially, high 
heterogeneity increases leakoff volume and reduces the injectivity of fracturing fluid. When the rock was 
highly heterogeneous, the injection efficiency was decreased to 0.57. When the injection rate was 
increased by 6 times, the injection efficiency decreased very little. 

3D hydraulic fracturing modeling of laboratory block experiment was simulated using the coupled fluid-
solid interaction analysis. This problem was very challenging to interpret via numerical modeling, 
because of numerous complexities such as the moving boundary issue, dynamic crack growth, and 
complex geometry. Therefore, the hydraulic fracture propagation problem was treated in a quasi-static 
manner.  The hydraulic fracturing process was divided into three coupled processes of fluid flow, 
hydromechanical deformation, and fracture propagation. The fluid flow inside fractures was modeled 
using the lubrication equation, and the hydromechanical deformation of rock was solved using fully 
coupled poroelastic analysis. Fracture propagation was modeled as quasi-static crack growth. A coupled 
iterative algorithm was introduced to solve the coupled rock deformation and fracture pressure. The 
coupled iterative solution for the fluid-driven fracture propagation problem is very difficult to construct, 
because of the nonlinear relationship of rock deformation and fluid flow in fractures. Hence, the rock 
deformation, computed by a fully coupled THM analysis was iteratively coupled with the fluid flow 
behavior, which was computed by using the lubrication equation. Numerical study of the coupled 
hydraulic fracturing simulation was successfully validated using a large-scale laboratory hydraulic 
fracturing experiment performed by TerraTek.   
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