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C. Introduction

Effective development of enhanced geothermal systems can significantly benefit from improved
modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed
350 °C, thermal and poro-mechanical processes play an important role in fracture initiation and
propagation. Models have been developed to study the fundamental mechanisms of fracture propagation
in hot poroelastic rocks and fracture coalescence, particularly in the near wellbore region of geothermal
reservoirs (e.g., Ghassemi and Zhang, 2005; Ghassemi and Zhang, 2004). However, a hydraulic fracture
simulation model capable of addressing the propagation of fractures in tensile or shear in rock is not
available and must be developed (MIT-led Report). Moreover, poro-thermo-mechanical analysis of
injection into fractures shows that high stress zones develop in the vicinity of the main fracture, indicating
potential for multiple initiation and propagation events (Ghassemi et al., 2007). Therefore, hydraulic
fracture models need to include poro-thermoelastic effects on fracture initiation in rock penetrated by the
main fracture. On the other hand, reservoir rock and in-situ stress heterogeneity often result in fracture
propagation involving tensile, shear and tearing modes, and as shown in Healy and Jones (2006), 2-D
numerical modeling and simple analytical approaches (Germanovich et al. 1997) are insufficient to
predict the fracture and a 3-D numerical analysis is required. Therefore, the objective of this work was to
develop 3-D numerical models for simulating models that can capture modes I, II, and III (tensile, shear,
and out-of-plane) propagation in geothermal reservoir stimulation using damage mechanics and the novel
approach of virtual multi-dimensional internal bond (VMIB).

The proposed research addresses the major technical issue of accurately predicting stimulation outcome, a
technology barrier addressed in the MIT-led report (lack of tools to predict propagation of fracture cluster
in mixed modes). Phase 1 of the work consisted of elastic model development. Starting with 2D work and
then developing 3D VMIB and damage models implemented into the FEM codes with hydraulic
propagation routines. This phase included simulations and comparison with published results and
laboratory experiments. Phase 2 of the work includes addition of thermoelastic material models in FEM
codes and addition of hydraulic fracture routine with joint elements and partitioning algorithms. Phase 3
was the testing and application phase and verification of the poro- and thermoelastic effects on fracturing;
assessing the accuracy of the method and making improvements. Finally, we applied the model to Lab-
scale stimulation experiments.

In this project hydraulic fracturing of hot subsurface rock mass is numerically modeled by extending the
virtual multiple internal bond theory and implementing it in a 3D finite element code. In addition, we
developed numerical model based on the non-local damage model. Detailed of these numerical strategies
are discussed next.

CHAPTER 1: VIRTUAL MULTIDIMENSIONAL INTERNAL BONDS

Simulation of 3D fracture propagation is complex because it often simultaneously involves all three
fracture modes (I, 1, III) over a contour. This is in contrast to 2D case where the zone of interest is only a
point, i.e., the fracture tips. Currently, a number of techniques are used to simulate fractures and their
growth in hydraulic stimulation process, including boundary element method (Sesetty and Ghassemi,
2015; Kumar and Ghassemi, 2016; Dobroskok et al., 2005; Koshelev and Ghassemi 2003 and 2004;
Vandamme and Curran, 1989; Curran and Carvalho, 1987) or the finite-element method (FEM). The
BEM such as the displacement discontinuity technique provides efficient and accurate results when
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modeling 2D fracture propagation in elastic media. A major challenge in modeling 3D fracture
propagation using the linear elastic FEM or BEM is the need of re-meshing as the fracture propagates. To
address the problem of re-meshing, nodal enrichment methods (Belytschko et al., 1999; Moes et al., 1999)
are mostly used in 2D. An alternative includes the Virtual Internal Bond (VIB) method (Gao and Klein,
1998) which was proven to be effective in 2D simulations. In VIB method, the solid is considered to
consist of micro material particles at micro scale and these material particles are bonded with internal
virtual bond. The cohesive law contains the information of fracture so that external fracture criterion is
not needed. (Zhang and Ge, 2005a; Zhang and Ge 2005b]; Zhang and Ge, 2006) modified the VIB
method and introduced the shear effect between material particles so that the extended VIB model,
defined as Virtual Multidimensional Internal Bond (VMIB), is applicable to material with different
Poisson’s ratio. In VIB-based constitutive model, the micro mechanism of Mode II and III is the same in
that both the two fracture result from the bond ruptures. Via bond evolution function, the fracture criterion
is actually implicitly embedded into the constitutive relation. Recently, this method has been extended to
simulation of pre-existing fractures (Min et al., 2010; Zhang and Ghassemi, 2010). In this work, the
VMIB is further developed, and is used to simulate the 3D propagation and interaction of multiple
fractures in rock subjected to compressive stresses and fluid pressure, including pre-existing natural
fracture. To represent the pre-existing fracture, the 3D element partition method (Huang and Zhang,
2010) is used to avoid re-meshing.

The VMIB model considers that the material is composited by the randomized mass particles connected
by virtual bonds with both normal and shear stiffness. According to the concept of VMIB, the macro
behavior of material is determined by the bond evolution in micro structure. In other words, a macro
constitutive relation derived from the cohesive law between material particles represents the macro
nonlinear behaviors.

1.1 Hyperelastic Theory
In the continuum mechanics, a change in the configuration of a continuum body results in displacement.
The displacement is composed by rigid-body displacement and deformation. The material points in the

undeformed configuration are described by the Lagrangian (Material) coordinates X = (X IREINS 3). The

corresponding material points in the deformed configuration is described by Eulerian (spatial) coordinates

*= (xl,xz,x3). The deformation gradient is given by:

Ox;
F,=— 1
il a X[ ( )
From deformation gradient, the Green-Lagrange strain tensor is given by:
1
E, = E(F;[F;J - 511) (2)

where O is the Kronecker delta. In the hyperelastic theory (Marsden and Hughes, 1983; Ogden, 1984),
@ is the strain energy density function. The Piola-Kitchhoff stress tensor is:

od

S, =
1J P EH

)



The material elastic tensor is:

oS, o°D
Coe = 3 == 5 aE
KL IJ KL

“4)

1.2 Material Constitutive Model of VMIB

The constitutive representation of a material varies with different scales, These are continuum based for
materials at macro scale and are particle based at the micro scale, shown as Figure 1. The macroscopic
mechanical behavior is determined by the material constitutive representation at micro scale. In the VMIB
method, the solid is considered as randomized virtual material particles at the micro scale shown in Figure
1(b). Virtual internal bonds between the material particles have both normal and shear stiffness as shown
in Figure 1(c). The bond constrains both normal displacement and rotation. The interactions of the bonds
govern the mechanical response of the material according to the relative displacements of paired particles.
These particles and bonds are not necessary to be realistic physical particles such as atom or molecule. In
this simplifying of microscopic structure, VMIB avoids the complicated and massive atom simulation.

mass particles

mass particle

S~ virtual bond

/y

(a) (b) (©)

Figure 1. Material constitution at (a) macro scale and (b) micro scale consisting of randomized
material particles that are bonded with (¢) virtual bonds.

1.3 Relative Displacements and Energy Potentials of Particle Pairs

From micro structure of material, derivation of the macroscopic constitution starts with the relative
position and displacements of each virtual particle pair. The relative displacements can be decomposed
into bond stretch / and bond rotation with angle g . Therefore, the virtual bonds between particles are

classified as normal bonds and shear bonds due to the different connecting and constraining mechanisms.
Normal bonds govern the normal relative displacement and interacting effects of a particle pair. On the
other hand, shear bonds restrict the relative rotations. In the small deformation cases, according to
Cauchy-Born rule, the stretch of normal bond in § direction is

I=l¢el; (5)

where /, is the original bond length, & = (sin @ cos #,sin @sin ¢, cos @) is the unit orientation vector of bond
in sphere coordinate system and &;is the strain tensor. The rotation angles of bond towards three

coordinate axes are respectively:



B = é‘gijﬂ}
B = igg/77; (6)
By = §i8ij777

where f,, B, and S, are the rotation angle towards axis x,, X, andx; respectively, n', n" and " is
the unit vectors perpendicular to the direction indicated by & of normal bond. Additionally, n’, 1" and
n” have to be in same planes determined with their correspondent coordinate axis vectors and &

respectively. Their mathematical expressions are

W =gx(xxg) -
= (sin2 @sin® ¢ + cos® O,—sin* O cos gsin g,—sin & cos pcos 0)
n' :gx(xz Xé) )
= (— sin” @cosgsin g, cos” 6 + sin’ @ cos” ¢,—sin @sin pcos 0)
n — X X X
0" =8 (x;x8) o)

= (— sin @ cos ¢ cos @,—sin @sin ¢cos b, sin’ 0)
According to two decomposed displacement / and f , the total energy potential U 1is given as:

U=U,+U, (10)

where U,, U p are the stretch energy potential and rotation potential respectively. U, and Uy, can be

written as:
1 1
U, =5k12 =5k(logy§i§j)z (11)

Ug=Us +Uy +Up
=lrﬂ2+lrﬂ2+lrﬂ2 (12)
27
21(81';'93:'77})2 + l(gyégz”;')z + l(gy"fi”;')z
2 2 2
where k is normal bond stiffness, 7 is the shear bond stiffness coefficient.

1.3.1 Fourth-order elastic tensor

The mass particles randomly distribute in the infinitesimal of material according to the assumption above.
Therefore, the bonds between the particles are also have randomized distributions and orientations, but
following a given spatial distribution density D(¢,6) in the sphere coordinate system. Since the

assumption of small deformation cases, £, and §;; reduce to the strain €; and stress Oj; respectively of

linear elasticity (Gao and Klein, 1998). By integrating the total energy potential and assuming the initial
length of normal bond is identical, the energy density is written as
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w,+W
o=—""wH=2 (13)
4
where V' is volume of infinitesimal, W, is

W, = jj” [[U.D(0.9)sin(0)aaip (14)

,and Wy is

Wy = fozn [0, D(0.9)sin(0)a6g + Lz [[U,0(0.9)sin(0)d6ag .
+ J-OM J‘:U 5.D(0,4)sin(0)d6dp

According to Egs. (3) and (4), by equaling the energy potential stored in the virtual bonds with the strain
energy potential stored on the continuum level in the same volume due to an imposed deformation, the
stress tensor is given as:

i»——=—j [k (8,8,06, )52, (0. 9)sin(0)d 6 g

v ] [ Dlo.g sin(o)aig
(16)

—~ j *[rB.2mD(0.g)sin(0)d6d
- j j rBENTD(0,4)sin(0)dad g

The fourth-order elastic tensor is written as:

82

+—J I rén;fmn;D(e,wsin(e)dedqﬁ

— [} [ K354 6.6,000.g)sin(oMaig

(17)
—j [rememp(0.9)sin(0)dcdg

—I Irf?]"’ "’D 9 ¢)s1n( )d6d¢

For an isotropic material, the bond distribution density in every direction is uniform, i.e. D(49,¢) =1.
In finite element method (FEM), the strain-stress relationship is expressed as:
6=Q-¢g (18)

. . 7 . . .
where 6 is the stress vector, i.e. 6 = [O'l1,022,033,012,0'13,0'23] , € is the strain vector, i.e.

r . . o . .
£= [6‘11,6‘22,833,6‘12,6‘13,6‘23] ,and Q is the elastic tensor C}jmn written in the elastic matrix form:
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Ciii Cim Ciiss %( Ciiir +Ciioy) %( Ciiso +Ciins) %( 1”3+C1131)
Coti Crm Cors %( Cooiy + Coot) %( 32+ Conns) %( 213+ Cosy )
o Cisti Cim  Cinss %( Cisiy + Cisat) %( a0 + Cins) %( 13+ Caaay) 19
Coii Crm  Cioss %( Ciyiz + Cit) %( Ciyo + Cis) %( Ciyi3 +Ciaiy)
Cyiy Cosmy Cosy %( a2+ Cosot) %( 330+ Czy) %( s+ Cozat)
Cii Cim  Ciass %( Ciaia +Cizat) %( Ciaza + Cizns) %( 1313+le)

Integrating Eq. (17) and substituting to Eq. (19) yields

k242 KE-r  KP—r 0 0 0 |
3ki;+2r ki —r 0 0 0
o 3kiF +2r 0 0 0 20)
ki§ +0.5r 0 0
symmetric ki3 +0.5r 0
ki} +0.5r

Equaling Eq. (20) with elastic matrix expressed by macroscopic material constants Young’s modulus £
and Poisson ratio v, the relationship between microscopic material constants £, » and macroscopic
constants can be obtained

3EV

T an(l- )2 @l

_ 3EV(1-4v)
e o o B

On the contrary, the Young’s modulus and Poisson ratio can also be expressed using microscopic material
constants &k, r, which means the macroscopic mechanical behaviors are determined by the micro bond

mechanical properties.

1.4 Bond Evolution Mechanisms

In the previous sections, the linear VMIB constitutive relationship was derived. For realistic materials
such as rocks, normally, the mechanical response can be classified as linear elastic phase, strengthening
phase and strain-softening phases as the deformation increases, shown in Figure 2. In VMIB system, the
bond is not broken when simulating the fracture propagating. The nonlinear macro properties of a
material such as softening and degradation are expressed by introducing the strength evolution of internal
virtual bonds. Thus, by introducing an evolution function f'(g), the nonlinear elastic tensor is given by:

Cimn == j [ r@sEE gL, v remé,m,
+ &M, + S, D(0,¢)sin(0)d6d p

(23)
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Stress

Linear elastic
phase

Strengthening
phase

Strain-softening phase

E &g
b .
Strain

Figure 2. Nonlinear mechanical response of material under uniaxial tensile load.

In this work, the strain based evolution function can be written as following:

f(g)=exp| —c @ -exp| — ¢ es"ss - (gt (24)

2
&p Ep

where ¢, is a micro coefficient, ¢, = ¢, if £'¢¢ >0 whereas ¢, =¢, if &'e£<0. ¢, and &, indicate the
strain at the peak stress in uniaxial tensile and compressive test, respectively. ¢ , n are the shape

coefficients which determine the shape of stress-strain curve. The term &’&& means the relative normal

deformation of bond and the term @TSTsé—(ﬁTS?;)Z represents the relative shear deformation of bond

shown in the Figure 3.

Figure 3. Geometrical relationship among undeformed bond vector &/, and deformed bond vector Elo

2. Three Dimensional Representation of Fracture Using Element
Partition Method

One of the challenges for 3D fracture simulation is the mechanical representation of pre-existing and
newly extended fracture surfaces. Propagating fracture geometry associated with the moving boundary
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conditions through fracture growth path makes hydraulic fracturing modeling especially difficult.
Additionally, besides the opening fracture, the contact and friction of closed fracture surface are also
significant mechanical behaviors for pre-existed fracture subjected to the compressive and shear stresses.
Several special treatments for fracture surface have been used in the fracture modeling in the framework
of finite element method. Remeshing and mesh refining for the newly extended fracture surface and tip
are common techniques, which have great advantages on the computational accuracy and efficiency on
the linear equation system solving. However, the remeshing and refining scheme implements are difficult
to be performed since that it is time consuming and mathematically challenging especially for 3D
problems with complex domain and fracture geometry. Extended finite element method (XFEM)
(Belytschko and Black, 1999; Moes et al., 1999) based on the generalized finite element method and
partition of unit method represents the fracture by enriching the solution space with discontinuous
function for fracture surface and asymptotic function for the fracture. The XFEM avoids the remeshing
problem and captures the stress singularity using the original mesh system, which compensates the
inconvenience of traditional FEM. However, the XFEM still has disadvantage that the added degrees of
freedom change the original structure of matrix and sparseness, numerical integration for each divided
parts of element is time consuming and difficult particularly for the element contains multiple fractures.

Different from the XFEM, taking advantage of simple geometry character of triangle and tetrahedron
element, element partitioning method (EPM) (Zhang and Chen, 2008, 2009; Huang and Zhang, 2010)
construct triple-node and quad-node contact element that needs no remeshing and mesh refinement during
the fracture propagation and uses original mesh configuration during the fracture propagation. Therefore,
the greatest advantage of EPM saves computational time and is easier to encode since that EPM
introduces no additional degree of freedom and global matrix structure remains the same. However, EPM
has a limitation that the elastic deformation of partitioned element is not considered. The error is arising
with increase of element size. Comparing the computational cost with the other fracture treatment
techniques, EPM is still more desirable since that the simulating domain and element size chosen is
relative small. In the functional test, performance of 3D EPM will be tested on representing mechanical
behaviors of the closed fracture surface subjected to the compressive and shear stress.

2.1 General Idea of Element Partition Method

(Zhang and Chen, 2008, 2009) developed the two-dimensional element partition method (2D EPM) to
represent the mechanical behaviors of fractured element cut through by pre-existing and newly extended
fracture. Taking advantages of the simple geometrical characteristic of three-node triangular element, the
stiffness matrix for a partitioned element is derived to account for the contact and friction effects between
fracture faces. Through 2D EPM, the fracture could be represented by transferring intact element to
partitioned element. Since the partitioned element shares the same nodes with intact element, no mesh
modification is needed. Based on similar concept, 3D element partition method (3D EPM) is developed
by (Huang and Zhang 2010) to describe the opening, contact and friction between the fracture surfaces.
The 3D EPM takes advantage of the geometry features of tetrahedron element to construct a four-node
contact element. When a fracture cuts through a tetrahedron element, two types of four-node contact
element, i.e., Type I and Type II, are formed shown as Figure 4. Tetrahedron element is chosen because
of its geometric simplicity. Therefore, only type I and II of the contact element with triangular and
quadrilateral fracture sections, respectively, will be generated, which avoids the complexity from more
types of partition element to be identified and calculated. The geometry aspects will be discussed in the
follow sections.
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A A
D

Figure 4. Partition modes of tetrahedron element: (a) type I: triangular fracture plane; (b) type II:
quadrilateral fracture plane.

2.2 Derivation of Stiffness Matrix for 3D EPM

To derive the stiffness matrix of 3D EPM, taking type I partition element shown in Figure 5 for example,
a local coordinate system needs to be established. The original point, x" and ' axis of the coordinate
system are on the fracture plane. The z'axis is perpendicular to the fracture plane. Therefore, the local

coordinates x’',y'and z'are defined as:

nn n,n 2

X =|-—= ,— 23 ,,/1—n3
\/1— 2 \/1— 2
i n; n;

(25)

n, n
Yy =|- T 90
i \/1—7132 \/1—n32
ZIZ[”la”2a”3]

where (nl,nz,n3) is the unit vector indicating the normal direction of the fracture plane calculated by the
plane equation n,(x —x,)+n,(y —y,)+ny(z—2,)=0. (xo, yo,zo) is the center point on the fracture

plane.

The following assumptions are made to derive the stiffness matrix of 3D EPM: (i) all the strain energy is
stored in a contact volume with the thickness / and the area 4 shown in Figure 6 if the fracture surface
is subjected to compression and shear stress; (ii) the contact volume is linear elastic; (iii) the
displacements of points m', m" and m" are equal to the displacements of node M , the displacements of
point i, j and k are equal to the displacements of /, J and K respectively; (iv) the contact areas 4,,,.,

Ajm~ and 4,,. shown in Fig. 3 are controlled by contact pairs i —m', j—m" and k —m" respectively.

J J J K K K M

u

1
xauy,uza xauy,uzauxy

1
v Uz, U

The displacements of nodes 7, J, K and M are denoted as u;, u

M M .
u, and u; respectively.
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0 >

o

Figure 6. Contact volume and contact areas for each node pairs (type I).

Based on a special case that local and global coordinate systems are parallel to each other, the strain
energy stored in the contact volume is:

W,.m,—lK,,g;"’ Almh+lKSg;’" A,.m,h=l(“ZM uZ[)Kn [ _“ZI)A,.m'h
2 2 2k h 26)
P e P A DR | e P e

where K, , K, are the shear and the normal stiffness coefficients of the contact element respectively. s,i"" ,

im'2

g, are the normal strain and shear strain of the contact area 4,,..

Similarly, the strain energy stored in the contact areas A L and A4, . are

W, =%Kng,{’""2/1jmnh +%ng;"""2Ajmﬂh =%(”M ;”ZJ )K,, (”M ;“ZJ )Ajmnh
27)
oL ' ;ui e o) e ) b))
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1 . 1 ” 1 M _ K M
W, .=~Ke" 4 h+—Ke" 4 == ' —u )Kn (' —ut) Ao
2 2 2 h h (28)
M K M K M K M K

1 \uy, —u u, —u 1 - -
+ ( Y Y )Kg‘ ( Y Y )Akmmh +_(ux ux )1{Y (ux ux )Akm’”h

2 h ‘ h 2 h ‘ h

1 . o .

where 4, =4, =A4,~==A, A is the area of fracture plane contained in the partition element.

To capture the opening, contact and slippage of the fracture plane in the partition element, two different
conditions are considered. The first condition is that the fracture surface is free to open if it is subjected to
tensile stress. The second one is that the fracture surface keeps the normal strength and surface friction to
support the closure and represent the slippage resistance respectively, when the fracture is subjected to
compressive and shear stresses. Therefore, the total strain energy stored in the contact volume is derived

as:
W =W, 1™ —u! )+ W, H = )+ W, H e —u¥) 29)
I x<0 . . . .
where H(x)= : 0 * < 0 indicates the fracture is closed, x > 0 indicates the fracture is opened.
x>

Substituting Eqs. (26), (27) and (28) into Eq. (29) yields

W—@[Kn(uy —uZI)Z+KS(u§4 —u;)2+KS(uiM —u{)ZJH(uiW —uﬁ)

2k
+%[Kn(uy—u;])z+[(s(uﬁ4—uj)2+Ks(uf—uxJ)z]H(uy—uj) (30)
T L R R RE A S Y )

For sake of simplicity, the displacements of element nodes are written as:
u; = [”1»”2»”3»”4»”5:”67“77“8»”95”107“115”12] €1y

F, = [E’FZ’FS’F4’F5’F6’F7’F8’F9’EO’E1’FIZ] (32)

1 1 1 . J o J . J _ . K K _ . K .M M
where Up =Uy Uy = U, Uy =U, Uy U Us = U Ug =UZ Uy = U Ug = Uy, Uy =U Uy = Uy Uy =U,
M _r! _ I J J J K K K
u,=uy and K =F ,F,=F ,F,=F' ,F,=F/,F,=F] ,F,=F/ ,F,=F',F,=F',F=FF,

]TlozFM’FlleyMaﬂzzFM-

Using the new notation, Eq. (30) can be written as:

A .
W= 212 [Kn (5121“1‘ — O3l; )2 +K, (51 LUy — O, )2 +K, (5101.141. -, )2]H(u12 _ u3)

A v
ZJZ [Kn (512,'“[ — gl )2 +K, (511i”i — 051 )2 +K, (510% — 641 )2 ]H(“u - ”6) (33)

+

Azkr;l [Kn (5121'”;' - 59i”i)2 +K, (5111'“1' - 581‘”1‘)2 +K; (5101'“;‘ —Oq; )Z]H(ulz - ”9)

+
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where o, 1s the Kronecker delta.

The complementary energy D is
=W -uF (34

According to the principle of minimum complementary energy in the elasticity theory, the stiffness matrix
of type I partition element is derived as:

o _ R
Y Oudu,
A
= %[Kn (5121' =0y )(5121' - 53i)+ K, (5111' - 521)(5111' - 52i)+ K, (5101 -0y )(5101' - 51;')]-’"(“12 - “3) (35)

A,
+ ;l [Kn (5121' =g )(512f = gi )"‘ K, (5111' - 55:‘)(5111' - 55f)+ K, (5101' =0y )(5101' =0y )]H(”lz - “6)

4y

+ hm” [Kn (512;' =0y )(5121' - 59i)+ K, (5111' =0y )(5111' = )+ K, (5101' - 57;')(5101' - 571')]]'1(”12 - ”9)

Za

Figure 8. Contact volume and contact areas for each node pairs (type II).

Similarly, Figure (7)shows the local coordinate system and node pairs for type Il partition element. The
contact node pairs such as i—m', j—m ,i—k' and j—Kk" control their contact areas A, , 4,,.,4, and

im'

A, respectively shown in Figure (8). The stiffness matrix of type I partition is derived as
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KD :LZ(D

Y Ou;0u;
A
= }lm [Kn (5121' =0y )(512,' - 53;')"‘ K, (5111' - 521')(5111' =0y ) +K, (5101' = )(5101‘ - 511‘)]]1(“12 - “3) (36)
A jm'
+ }/z [Kn (5121' = O )(5121' - 56:')Jr K, (51 1i = Osi )(51 T 55:')+ K, (5101' =0y )(5101' =0y )1H(“12 - “6)

A,

+ #[Kn (59[ =0y )(5% =0y ) +K, (58[ =0y )(581' - 52[)+ K, (57[ =0 )(57[ - 51[)]H(“9 - ”3)
A,

+ hflk[Kn (591' =G5 )(591' =05 ) +K, (581' =05 )(58,' - 55i)+ K, (571' =0y )(571' =0y )]H(“9 - “6)

1
where 4, =4, =4, =4, = ZA.
Based on the stiffness matrixes derived above for special case that the local and global coordinate systems
are parallel to each other, the general form of stiffness matrixes can be derived through the coordinate

system transformation as follow:
K,=0'K'0 (37)

where Q is the coordinate transform matrix.

2.3 Functional Test of 3D EPM

To test the performance of 3D EPM on representing the contact and slippage of the fracture surface, the
mechanical behavior of a rock block with a cut-through joint is tested in the section. The object geometry
and boundary conditions are shown in Figure 9. The number of element and node used in the simulation
are 8000 and 3362 respectively. Figure 10(a) shows the tetrahedron elements intersected with the joint.
Figure 10(b) gives the geometrical relationship between vertical and horizontal force components. Two
different shear stiffness coefficients K, and K, are used in the simulations to test the influence of the

coefficients on the slippage response of the joint surface. The material parameters are listed in Table 1.
The normal stress applied on the top of object is o, =1.0MPa . The simulation results are shown in
Figure 11 indicating the curve of the resultant force and relative displacements on the joint surface and
Figure 12 displays the relative slippage between joint surfaces by the deformed mesh configuration.

[ A AL

'

<
W@W‘

Im

0.25 m

(a) (b)

Figure 9. (a) Dimension of simulation object and (b) boundary conditions.
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Table 1. Simulation Parameters for 3D EPM Functional Test.

Parameters of intact element:

Young’s modulus, £ 10.0 GPa
Poisson’s ratio, V 0.16
Tensile strain strength, &, 0.1x107°
Parameters of 3D EPM:

Normal stiffness coefficient, K, /h 10.0 Gpa/m
Shear stiffness coefficient, K /h 10" Gpa/m
Shear stiffness coefficient, K, /A 10~ Gpa/m
Fracture width, 4 1.0 mm

According to the geometrical relationship between vertical and horizontal force components, the lateral
force balanced with the normal stress on the top is calculated to be F = 25kN . Therefore, the slippage
initiation forces for two different shear coefficients are both F =25kN in Figure 11. Due to different
shear stiffness coefficients, the consequent tendency of curves of lateral force F and relative slippage are
different in slope. When the shear stiffness coefficient K, is relatively small, the upper block of

simulation object is free to slide on the inclined surface due to the existing of cut-through joint. With the
increase of relative displacement between upper and lower blocks, shown in Figure 11, the lateral force
F keeps constant and balanced with the normal stress applied on the top indicating that the slipping
surface is smooth. For larger shear stiffness coefficient K ,, the lateral force increases linearly with the
relative displacement growth shown in Figure 11. In Figure 12, the deformed mesh configuration shows
the rigid body displacement of upper and lower blocks. The upper block is gradually climbing up along
the inclined surface. Therefore, these results verified the capability of 3D EPM of representing the
mechanical behavior of contact and slippage of the fracture surfaces.

0.5m

¥

(b)
Figure 10. (a) Tetrahedron elements intersected with fracture; (b) illustration of the geometrical
relationship between vertical and horizontal force components.
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Figure 11. Simulation results: relationship between the applied displacement and the resultant
force F: (a) shear stiffness coefficient K, =107 MPa; (b) shear stiffness coefficient

K, =10"MPa.
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Figure 12. Simulation results: the rigid body displacement indicating relative slippage between
joint surfaces.

3. Poroelastic Model

3.1 Poroelastic Constitutive Relations

Based on the assumption of linear relations between stress o, and strain g; , pressure p and fluid
content { respectively, the coupled mechanical equilibrium equations with pore pressure for isotropic
porous material could be described by the Biot’s theory(Biot, 1935, 1941):

o v a(l - 21/)

2%V s AV s
%756 2600 T o) P OY

_all-2v) 3
6= 2G(1 +v)(0kk "B p} (39)
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where the first equation considers the constitutive response for the solid skeleton, the second equation
correspond to the behaviors of porous fluid, ¢, is strain tensor that is positive for tension, o, denotes the
total stress tensor, p and ¢ are the pore pressure and the variation of the fluid content per unit volume

of the porous media respectively. G is the shear modulus and V' is the Poisson ratio. & is the Biot’s
coefficient, B is the Skempton’s coefficient. & and B are written as

05—1—£ 40
Tk (40)
3(v, ~v)

b= a(1—2v)(l+vu) 41

where K is bulk modulus, K| is the bulk modulus of solid phase, v, is the undrained Poisson ratio.

Eq. (38) can be written in terms of stress strain relation,

o, = 2G£4./. + %ekkﬁﬁ — apéy. (42)

Eq. (42) represents the constitutive equation for the linear system, in which we can find the effective
stress ¢/, by eliminates the last pore pressure term defined as

(43)

, 2G
o, = 2G£i/ + 7%@;‘

Effective stress o/ physically means the resultant stress applied on the rock skeleton. It is the exact stress

that the rock skeleton supports.

3.1.1 Balance law
Two equilibrium considerations compose the conservation law for poroelastic material. Firstly, the static
equilibrium leads to stress balance equation or equilibrium equation written as

o, =—F  (44)

,J !

where F, is the body force per unit volume. Usually the body force is assumed to be ignored if the

volume or dimension of objective of interest is small. Second one is the continuity equation for the fluid
phase considering the mass conservation:

0
_g +4q,;=7 (45)
ot

where 7 is the density of injection source.

3.1.2 Field equations

The equations in the previous sections explain the physical meaning of porous material and fluid.
However, only field equations lead to useful solution that is derived in this section. Associated with (i) the
constitutive equations for the porous rock (Eq. (42)) and porous fluid (Eq. (39)), (ii) the equilibrium
equation and continuity equation defined as Eqs. (44) and (45) respectively and (iii) Darcy’s law that
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governs the single phase fluid transport in the porous rock, the linear isotropic poroelastic coupling
processes are captured. By ignoring the body force of fluid, the Darcy’s law is written as

k
g9 =——P; (46)
Y7

where k is intrinsic permeability and 4 is the fluid viscosity.

By combining the strain-displacement relationship under assumption of small deformation,
1
&; =E(ui’j +uj,i) 47)

with the constitutive equations and the momentum equilibrium. The deformation field equations are
obtained as

GViu, + G2 u, ;—ap; =0 (48)

JJt

The diffusion equation is derived by substituting Darcy’s law (Eq. (46)) and constitutive equation (Eq.
(39)) into fluid mass conservation (Eq. (45)) in terms of pore pressure p :

g% 1@ kg

p=0 (49
o Mo P=o

where M is the Biot modulus defined as the fluid contents increase results from the unit increase of pore
pressure under constant volumetric strain, written as

___2Gly,-v)
a*(1-2v)1-2v,)

(50)

Based on the constitutive relations of porous rock and fluid, static equilibrium and mass conservation and
transportation function, the governing equations representing the fully coupled poroelastic behaviors are
therefore derived and written in terms of the displacement W and pore pressure p as

GViu+

V(V-u)-mavVp=0  (51)
1-2v

. 1. k
—a(V-u)—Mp+;V2p:Qi5 (52)

where m = [l,l,l,O,O,O]T for 3D problems and m = [l,l,O]T for 2D problems since the coupling term
maVp is only active in case of volumetric change of porous solid, Q. is injection rate at point source, &
is Kronecker’s delta function.

By solving the field equation system shown as Eqs. (51) and (52) for the primary unknown variables-
displacement U and pore pressure p , we can then calculate other unknowns such as strain € , total
stress O , effective stress ¢’ and flux ¢ according the constitutive relations. However, it is very

difficult to get a close form solution due to the complexity of the partial differential equations, except the
special cases with simple and symmetric geometries and material properties. Therefore, finding the
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solution of coupled equations generally relies on numerical techniques, for example, finite element
method, boundary element method and finite different method, etc. The problems contain more
complicate geometries and various properties of porous solid and fluid such as nonlinearity, anisotropy,
heterogeneity could be solved. In this work, we focus on the numerical solution using finite element
method.

3.2 FEM Formulation

In the following, the finite element solution for the problem of poroelasticity is presented. The field
equations (51) and (52) are spatially discrete by approximating the field variables of displacement, U ,
pore pressure p through interpolation functions written as,

u=Nu (53)
p=N,p (54)
where N, and N, are the shape functions for the solid displacement and pore pressure fields,

respectively. i and P are the displacements and pore pressure on nodes in each elements described
following an order as

ﬁ:[ui,ui,ul ulu’ul sug,uyull  (55)

zoWxosHysthz o

p=[p.p%....,0"] (56)

The shape functions for displacement and pore pressure are respectively,

N0 0 N 0 0 .. N' 0 0
N,=|0 N, 0 0 N 0 .. 0 N 0 (57)
0O N 0o o N .. 0 0 N’

N, =[N N2 N (58)

where 71 is the node order number depends on the chose type of element.

The strain-displacement relationship expressed as Eq. (47) can be written in discretized form,
£=Bu (59)

where

B=LN, (60)

- T
9 9 0 2 o 2
ox oy Oz
L=|0 9 0 o 9 0 (61)
Oy ox 0Oz
o 0o 2 o & 9
i oz oy Ox |
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According to Egs. (53) through (61), using Galerkin’s method, the weak form of equation system Egs.
(51) and (52) can be derived as:

Ki-Ap=f (62)
~ATi-Sp+H,p=q (63)
where

K= IVBTDBdV (64)
A= JV B'amN dV (65)

1
_ T
S= J‘V‘)NP I N, dV  (66)

H, = In (VNp)r%(VNp)dV 67)

In these equations, ¥, is the volume of element, f is external mechanical loading, q is the injection

rate from a point source. In the following Eq. (63) is discretized in time domain since it is first order time
dependent. Though incremental formulation of matrix is required for strong nonlinear problem, the
present work adopts the total formulation since that the constitutive models (VMIB, nonlocal damage
model et al.) for the nonlinear rock behaviors are written in total form. Therefore the temporal
discretization of field variables performed between ¢, and f can be expressed as:

K, - AAp, =—(1- DK, u,, + (1 - A)Ap,, + Af, +(1-Df, (68)
~ AT, + (=S~ AAH )P, = A A1~ DH, ~STB +24, + (1= D,y (69)
where Ar =t —t, is the time interval, A is a coefficient with the range 0 < 4 < 1.

Egs. (68) and (69) are written in the matrix form:

K, -A U,
A" —AtAH, -S| P,
1-2 (70)

EK _EA i, f, +_/1 £,
=l 2" A 5 |7 1-4

—AT A= H, =S [Pl A+ — A,
For simplification purpose, set 4 =1 corresponding to an implicit schemes. Thus, the finite element
formulation of field equations through special and temporal discretization in terms of displacement and

pore pressure is obtained and Eq. (70) is reduced to

S —am—sn e Sl
~-A" —AH, -S| p, -A" =S| p, Atq,

Finally, by integrating the constitutive equations for the porous rock and fluid, the equilibrium equation,
continuity equation and single phase Darcy’s law, the fully coupled poroelastic field equations in FEM
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form are obtained and coded in FORTRAN language. Due to the time dependency of poroelastic problem,
using an appropriate time step is especially important. The stress and strain of porous rock propagates
relatively faster than fluid diffusion that requires small enough time step for accuracy consideration.
However, in fluid flow part, small time step will induce instable because of the pore pressure is nearly
unchanged in this small time interval. Meantime, element size is another influence factor for adopting
appropriate time step. Therefore, the time step is determined according to reasonable accuracy and
stability.

3.4 FEM Formulation Validation of Poroelastic Model

To validate the present model for poroelastic model, the numerical solution is compared with the
analytical solution of Terzaghi’s one-dimensional consolidation. Terzaghi consolidation theory provided a
solution for the fluid solid interaction in soil saturate with water, which has successfully inspired the
following research in soil mechanics and geotechnical engineering. The settlement of a saturated soil
column with thickness of /4 under a constant load from the top surface is analyzed. The column rests on
a rigid and impermeable boundary. The constant normal loading with magnitude of P squeezes the pore
water out from the top that induces a gradual settlement. The boundary conditions are written as follows:

——H@{)P z=0 (72)

p=0 z=0 V¢ (73)
P_o on Vi (74)
0z

(Detournay and Cheng 1993; Jaeger, Cook et al. 2009) give the detailed solutions for Terzaghi’s one-
dimensional consolidation. The solutions for pressure distribution are written as:

p(zt)= (”)(P)Z [ ";sze_c[”)t (75)

( ) m oddm”

Pzl o N g 2nh+z 2(n+Dh-z 76
o 1 ”Z:;)( 1) {erf{—(%t/yS)O‘S}rerf [—(4k/ S)OS}} (76)

and the solution for top settlement is

—n’7’kt
MBS 2G{( o /1+2G+a2MnZ;n2;zz (2h) [{ 4115 H 77

where & is the thickness of soil column, M is the Biot modulus expressed as Eq. (50), B is the

Skempton’s coefficient written as Eq. (41), S is storativity coefficient written as:

i a*(1-v, 1-2v)1+v) (78)

K(l - V)(Vu - v)

and erfd(x) is the coerror function (Abramowitz and Stegun, 1970), defined as

erfdx)=% ["evan (79)
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!
Figure 13. Problem geometry and boundary conditions of soil column.

The 3D finite element model with specified boundary conditions is used to reproduce Terzaghi 1D
consolidation. The soil column has 1m x 1m cross section and 10m height shown in Figure 13. The lateral
surfaces are impermeable and their normal displacements are confined to fulfill the same boundary
conditions as 1D Terzaghi’s problem. The bottom side is also impermeable with no displacements. The
top surface is exposed in air representing zero pore pressure boundary and subjected to a mechanical
pressure load P . Therefore, the water is drained from the top during the loading process. Table 2 lists the
input parameters used for analytical and numerical solutions. In the simulation, 38028 four nodes
tetrahedron elements with 8556 nodes are used.

Table 2. Input Parameters for Terzaghi’s 1D Consolidation.

Shear modulus, G 12.0 GPa
Poisson’s ratio, V 0.15
Undrained Poisson’s ratio, v, 0.29

Biot’s coefficient, & 1.0
Permeability, & 0.5md

Fluid viscosity, u 3.0x10%Pa-s
Load, P 1.0MPa

The comparisons of the transient pore pressure distributions between analytical and numerical solutions
are shown in Figure 14. The pore pressure contours at different time are plotted in Figure 15. Figure 16
shows the transient settlements at various depth comparisons between analytical and numerical solutions.
The comparisons indicate well agreement between the analytical and numerical solutions, which enhances
the confidence that the model can be adopted to simulate the porous rock and fluid during the hydraulic
stimulation in the following sections.
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Figure 14. The transient pore pressure distributions comparisons between analytical and numerical

Figure 15. The transient pore pressure distributions at (a) 1mins; (b) 5 mins; (¢) 20 mins; (d) 60 mins.

Figure 16. The transient settlements at various depth comparisons between analytical and numerical
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3.5 Fracture Flow Model

The theoretical aspects and mathematical derivation of classic poroelastic model are presented. The model
is continuum-based and well explains the coupled process of the porous fluid flow and rock mass
deformation for intact rock formation. However, to simulate the hydraulic fracturing process, a
modification is necessarily needed because of the different flow mechanisms and boundary condition due
to discontinuity of fracture surface. The conventional poroelastic model is not valid in an element that
contains a fracture. On the aspect of fluid flow only, the permeability of fractured element is artificially
increased to represent the conductivity enhancement by fracture creation. The pressure distribution along
the fracture and diffusion in the rock formation can be calculated using an equation system. The challenge
problem is applying the calculated pressure profile as pressure boundary on the fracture surface during the
propagation process. As mentioned, the coupling part of the poroelastic model is not valid for the
fractured element though the fluid diffusion part is still used to calculate the fluid pressure. Therefore, the
modification is made on the coupling part of poroelastic model. The original coupled part —A in Eq. (71)
is replaced with a new matrix derived based on the way of applying hydraulic pressure on the fracture
surface using 3D EPM. The original poroelastic equations system is written as:

K, -A u, 0 0 |(u, f,
T ~ |~ T ~ |7t (80)
-A" —-AtAH, -S|\ p, -A" =S|\p,) \Afq,

In Eq. (80), Ais the fully coupled term representing the porous fluid and solid mutual interaction. Eq.
(80) is used for the intact element. For the fractured element, the following equation system is used:

KA —APPM 0 0|1, f,
T ~ |7 T ~ |t (81)
-A" —AUH,-S|Pp,) |[-A -S|\po) \Aq,
In Eq. (81), the stiffness matrix of solid Kf "M has been changed to the one calculated by 3D EPM and is

no longer fully coupled with the porous fluid. The fluid flow in the fracture element will only follows the
Darcy’s law. In other words, the solid deformation will not influence the fluid pressure. The fluid pressure
will affect the solid deformation in a one-way manner. Next, Eq. (81) is rearranged as

Ko a0 0YE) (6 (ATF)
0 —AH,-S|p,) |0 -S[p,) (A, 0

AEPMﬁ, term can be considered as nodal forces applied on the right hand

After rearranging of Eq. (82),
side of equation system. Meantime, the pressure boundary condition on the fracture surface can be

successfully applied if A®" is well constructed. Another advantage is that the pressure boundary will be
possibly applied real-timely since that displacement and pressure are calculated simultaneously. Let’s
recall the method of representing the hydraulic pressure in fractured element, which is helpful for

understanding the mathematical and mechanical meaning of AEPME. The hydraulic pressure P in an

element is represented by the equivalent nodal forces F =P- A4, where A is the area of fracture in one
element. Take type I partition element for example, the pressure in the fracture surface uses the averaged
value of the pressure on these 4 nodes written as
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I o~y o~k ~
P=2 (P +P +P +P)m (83)
where n=[n_, n,,n, ] is the direction vector indicating the normal direction of fracture surface.
The equivalent nodal forces are rewritten as
| R R
F=[Fy. Py Bl =P- A= (B + P + 5, +5)m-A - (84)

| 1 1o ey ok~
~3F=[Fy, @,EZ']=—§P'A=—§Z(19{+pf+pf+pf”)'n-A (85)

1 1 11 - -5 - -
—3F=lFy, Jy,FJ,]=—§P-A=—§Z(pf+pf+p,’<+p?4>-n-A (86)

1 1 11
_gF [FK,C: Ky’ ,F ] EP A__gz(pt +pt +pt +pt ) n-A (87)

(a) (b)

Figure 17. Equivalent nodal forces representing hydraulic pressure for (a) type I partition element; (b)
type Il partition element.

Write Eq. (84)~(87) in matrix form shown as following:

lAnx lAnx lAnx lAnx IN?I
4 4 4 4 NfJ
e 1 1 1 1 P
e Fig Fie )= Aoy = 2 A gAn, gdn, odn ) | (88)
~An, —An, —An, —An. | DV

4 4 4 4
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_i N _i nx _i nx _iAnx ﬁ[
12 12 12 12 N’J
o~ | 1 1 1 1 2
[F}x'aF}y'aF}z']_AlyPelpt - _EAny _EAny _EAny —EAI’Z)} 5[1( (89)
L n iAn 1 n, -— ! n, | pM
M Tt Tt Tt |\
_L 5 —LAnx —LAnx —iAnx !
12 12 12 12 N’J
e | ] 1 1 1 p
[ij’sFJy’aFJz']_Atypelpt - _EAny _EAny _EAny _EAny ﬁ:K (90)
_i n — 1 —i — ! An M
R Tt Tt T |\
—LAnx —LAnx —iAnx —iAnx VA
12 12 12 12 Nf]
[Fies Figrs Fio 1= Ao = _LA” —LAn —LAn —iAn o 1)
y P AR A VA VAR A
1 1 1 1 ~M
——An, ——An, ——An, ——An
R Tt Tt Tt |\

The nodal force vector on the right hand of elemental matrix system is written as:

f:[F}x '7FKZ’5FM~C'9FA@'9FMz’] (92)

W F;

y"Fl

Z

W F,

X

W F,

o

74

Fieos Fyg

Combining and rearranging Eq. (88)~(92) yields:
f=ApaP  (93)

AM

type[]T for type I partition element.

K
Atypel

AJ

EPM I
where A " =[A wpel

typel — typel

Similarly, for type II partition element,
lAnx 1 An, lAnx 1 An, (B!
8 8 8 8 !

— |1 1 1 1 P
[Foes Fuys By 1= At D5 = gAny gAny gAny gAny ﬁ’K (94)
t
—An, lAnz lAnZ lAnz V!
8 8 8 8
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Combining and rearranging Eq. (92) and Eq. (94)~(97) yield

f=A VD, (98

EPM I J K M qT o

where Ay =[A o Al Agper Anpenr]  for type 11 partition element.
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Figure 18. Illustration of modified poroelastic model

Finally, the modified poroelastic model is derived and illustrated in Figure 18. In Figure 18, the red line
indicates a fracture. The blue rectangular with the red dot corner displays the permeability enhanced
element cut by the fracture. The arrows show the equivalent nodal forces normal to the fracture surface.
The fully coupled poroelastic model shown in Eq. (80) is adopted to simulate the fluid diffusion and
deformation in the intact rock formation. The modified poroelastic model shown in Eq. (81) changed the
matrix component based on 3D EPM that is capable to apply real-time hydraulic pressure calculated
simultaneously in the same equation system. For newly extended fracture, the elemental matrix will be

changed to 3D EPM formulation if the element is cut by the new fracture surfaces.

In traditional poroelastic modeling, the time step Af is predetermined to fit the problem of interests.
However, for hydraulic fracture simulation, the time step between each propagation step has specific
physical meaning that governs the fracture pressure distribution and leak-off volume into the formation.
Therefore, a reasonable value of Af is required. In present model, the injection time increment A¢ in Eq.
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(80) and (81) is calculated using the similar way as the one used in lubrication theory written as

At =L AwdA/ Q, . The equation means that the A¢ only takes account in the fluid volume that stays in
’

the fracture surface. The volume of diffuse fluid is neglect in Af calculation since that the leak-off
volume is difficult to get especially for complex fracture surface and moving boundary during the fracture
propagation. Therefore, A¢ is underestimated and needs more work in the future.

4. Thermo-mechanical Model

The influences of thermo-mechanical processes on fracture initiation and propagation are important to
geothermal systems development. Cold water injection and heat extraction in the geothermal reservoir
will cause dramatic temperature changes in the rock subjecting it to volumetric contraction (expansion). A
volumetric expansion or contraction results in variation of rock stress and rock properties. The processes
of thermal and mechanical coupling occur on various time scales and may have different influence upon
the problem of interest. The influence of thermo-poroelastic process on the near wellbore flow and
stresses has been addressed analytically (McTigue, 1990) and numerically (e.g., Ghassemi and Zhang,
2004; Zhou and Ghassemi, 2009). Generally, the thermal effects should be considered during long term
injection owing to low thermal diffusivity of rocks. High tensile stress are induced by cooling of the rock
fractures surfaces, indicating a potential for extension of the secondary thermal fractures (Bazant and
Ohtsubo, 1979, Tarasovs and Ghassemi, 2014, Feng and Jin, 2009, Tarasovs and Ghassemi, 2011, Huang
and Ghassemi, 2012). There is also experimental investigation (Geyer and Nemat-Nasser, 1982) showing
thermally induced crack in glass. (Bauer and Handin, 1979, 1983) presented experiments to measure the
thermal expansion of various water-saturated heated rocks under different effective confining pressure.
Microcrack developments have been found associated with thermal expansions from 25 C to 800 C . The
work inferred the permeability enhancement of interconnected micro crack due to thermal stimulation. As
a result, thermal stimulation has been suggested as a means of enhancing reservoir permeability.

Thermal fractures can result from the nonlinear deformation of the solid in response to thermal stress.
Before the rock reaches the final failure stage, material softening and bulk modulus degradation can cause
changes in the thermo-mechanical properties of the solid. In order to capture this aspect of the solid
fracture, a VMIB-based thermo-mechanical model is derived to track elastic, softening, and the final
failure stages of the rock response with the change of its temperature field in time. The thermo-
mechanical properties of rock changes as its bulk modulus evolves are derived from a nonlinear
constitutive model. On the other hand, to represent the thermo-mechanical behavior of pre-existing
fractures, the element partition method (EPM)(Huang and Zhang, 2010) is employed. The 3D EPM has
been used to simulate the propagation of 3D embedded mix-mode fracture (Huang, Zhang and Ghassemi,
2012). Taking advantage of EPM, the contact and friction of the fracture can be simulated without a
dedicated mesh.

By including an additional thermal term into the governing equations, a nonlinear thermo-mechanical
constitutive equation can be obtained as (Nowacki, 1976),

o.=C

ij ijmn Emn

—7ATS, (99)
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where o, and &; are the components of stress and strain tensor (tension is considered positive), AT is
the temperature change equal to (7' —7,), in which 7' and 7, are the current temperature and initial

temperature, respectively. 5, is the Kronecker’s detla. The thermal coefficient 7 in Eq. (99) is defined

as:
7=Ka, (100)
where K is bulk modulus defined as K = %CH wOu = lsz wOu = %C” 4O for an isotropic material, and

a,, 1s the thermal expansion coefficient of solid matrix. The above constitutive equations combined with

stress equilibrium and energy balance equations, yield the following Navier’s and thermal diffusion field
equations,

Cyuthy s — PAT;0, =0 (101)

T-c"V’T=0 (102)

In the following, the finite element method for the nonlinear thermo-mechanical problems is presented.
To approximate the field variables of displacement, U , temperature T , and total temperatures change,

AT, shape functions are used: u=N,u, T=N,T, AT=N,AT, where N, and N; are the shape

functions for the solid displacement and temperature fields, respectively. u and AT are nodal
displacements and total temperatures change. These approximations are substituted into Eq. (101) and
(102) (Galerkin method) yielding the following equations

Ki—VAT=T (103)

RT-UT=0 (104)
where

K= IBTDBdV(IOS)
v,
V= jBT;‘mNTdV (106)
v,
R = jNTTNTdV (107)
v,
U= j(VNT)TcT(VNT)dV (108)
v,

Using Crank-Nicolson method for time approximation scheme to discretize the heat diffusion equation
shown as Eq. (104), the final finite element formula can be obtained

— (R +0AfU)AT, = AFUT, (109)
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Where T‘,H is the temperature in the previous time step, and A'fn is the temperature change in the

present step.

Since the thermal-mechanical problem is not a fully coupled one, i.e., mechanical deformation does not
influence the thermal diffusion, the thermal coupling term in the elasticity equations can be taken as a
mechanical load caused by temperature changes during the calculation. Once the temperature field is
known, the thermal stress load can be obtained. Considering the coupling part, after rearrangement of
Eqn. (103), the field equation becomes

Kii=f + VAT (110)

The second term on the right side describes how the temperature changes influences the stress-strain field
through displacements.

fracture
fracture

1 1

Figure 19. Thermo-mechanical response of a fracture in traditional FEM. The arrows show the
cooling-induced nodal forces for contraction.

To achieve the volume change such as expansion by heating and shrinking by cooling in the finite
element modeling, equivalent node forces (ENFs) caused by the nodal temperature changes are applied on
the corresponding nodes and in the corresponding directions. The mathematical expression of equivalent
node forces (ENFs) is shown in Eq. (110), which is VAT . For example, we assume that the temperature
over a domain changes instantaneously and uniformly. The ENFs are canceled on the interior nodes
because of their same temperature change, and only the enforced ENFs on the boundary nodes will cause
a volumetric change (shown in 2D in Figure 19 for cooling process).
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fracture fracture

Figure 20. Thermo-mechanical response with original thermal properties.

In this work we use a 3D element partition method (3D EPM) for fracture creation so there is no need to
mesh for pre-existing fracture. If the i™ element is cut through by a fracture, the element will be

transferred to the partition element based on the original structured. The i™ element stiffness matrix K;

will be replaced by K™ before being assembled into global stiffness matrix K. However, the thermal

and thermo-mechanical coupling part of the partition element also needs to be modified. In Figure 20, the
elements with red boundaries have been changed into partition elements after being cut by fracture shown
as thick line. Having their original thermal and coupling properties, the object in the figure will perform
like a non-fractured one, because that the ENFs status in Figure 20 is equal to the resultant nodal forces in
Figure 21(a) and (b). If the thermally induced ENFs of the fractured elements are removed, shown in
Figure 21(a), the resultant nodal force shown in Figure 21(b) will be the same as the one in Figure 19.
Mathematically, before being assembled into the coupling part of global matrix V , the thermo-

mechanical coupling term in element level V/ should be multiplied by B which equals 0 if the i"

element is fractured. Therefore, the fractured element is now partitioned both with respect to its
mechanical properties and its volumetric thermal deformation so that deformation behavior of a fracture
under thermo-mechanical load is numerically represented. The same modification will be applied to
newly extended fractures. As a result, the fracture will be represented in a blunt sharp that related the size
and shape of the fractured elements. This could influence the precision of calculation if the element size is
relative large.
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Figure 21. (a) Thermo-mechanical response of fractured element; (b) thermo-mechanical
response of partition element after modification.

4.1 Numerical Simulation of Fracture Propagation under Mechanical Loading

4.1.1 Mode I fracture

To examine the performance of VMIB and 3D EPM in simulating tensile (Mode I) fractures propagation
and their interaction, a cubic specimen with two sawed horizontal rectangular fractures is simulated. The
geometry is shown in Figure 22. The uniaxial vertical tensile load is applied on the top of the specimen.
Table 4 shows the parameters used. The mesh consists of 12, 24 and 34 rows of nodes plotted on the x, y
and z direction respectively. The total element number is 41745 and the total node number is 9792.
Displacement controlled loading is employed in this simulation.

Table 4. Parameters of Simulations Using VMIB Model

Parameters of intact element:

Young’s modulus, F 30.5 GPa
Poisson’s ratio, V 0.20
Tensile strain strength, ¢, 0.105x107

Parameters of 3D EPM:

Normal stiffness coefficient, K, /A 10.0 GPa/m
Shear stiffness coefficient, K /A 10® GPa/m
Fracture width, 4 1.0 mm
Parameters of 3D VMIB:

c 0.15

n 4.0
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Figure 22. Problem geometry and boundary condition of a specimen with two horizontal
rectangular fractures, subjected to vertical tension.

Figure 23(a) shows the initial and final fracture patterns. From Figure 23(b) to (d), the fractures develop
from initial crack tips and propagate horizontally as typical Mode I fractures. As the fractures interact
with each other, the stress field around the fracture tips is disturbed. Consequently, the newly extended
fracture deviates towards the other one and coalesce. Figure 23(e) and (f) show the fracture surface and
deformed mesh configuration upon specimen failure.
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Figure 23. Fracture propagation: (a) initial fracture; (b-d) fracture propagation; (e) fracture surface at
failure,and (f) deformed mesh configuration (node displacements magnified 300 times).

4.1.2 Mode II fracture

The second simulation explores Mode II fracture propagation and interaction. A cubic specimen with two
sawed inclined rectangular fracture is simulated. The dimensions and boundary conditions are shown as
Figure 24. Material and model parameters showed in Table 4. The mesh consists of 26 rows of nodes
plotted on the each direction. The total element number is 78125 and the total node number is 17576.
Displacement controlled load is used in this simulation. Figure 25(a) shows the initial fracture. From
Figure 25(b) to (d), the fractures propagate from both wings of the initial cracks. The left wing of lower
initial fracture and the right wing of upper fracture yield newly-extended fracture firstly along the
direction perpendicular to the fracture surface.

-
05 m

—p—

1 m

Figure 24. Problem geometry and boundary conditions for the cubic specimen with two sawed inclined
rectangular fractures, subjected to vertical compression.

Then, the newly extended fractures develop along the vertical direction axis of the specimen in the
direction of the applied maximum stress. This agrees with experimental observation (Bobet and Einstein,
1998). The fractures extend from near side initial fracture tips and converge in the middle of the
specimen. Figure 25(e), (f) shows the fracture surface and deformed mesh configuration at failure. This
agrees with experimental observations in Figure 26.
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Figure 25. Fracture propagation: (a) initial fracture; (b-d) fracture propagation; (e) fracture surface at

failure, and (f) deformed mesh configuration (node displacements magnified 300 times).
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Figure 26. Experimental observation of wing crack growth in uniaxial compression (Bobet and Einstein,

1998).
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4.1.3 Embedded fracture (Mix Mode-I, II, III)

Simulating the propagation of an embedded fracture subjected to shear stresses is a challenging problem
in geomechanics. In this case, the fracture simultaneously involves Modes I, II and III. To model this
phenomenon, consider the simulation of embedded elliptical fracture. The dimensions and boundary
conditions are shown in Figure 27. Material and model parameters are given in Table 4. In presented
meshing scheme, there are 45 rows of nodes each plotted on the x, y and z direction. The total element
number is 425920 and the total node number is 91125. Figure 28(a) shows the initial fracture. The
processes of fracture propagation are shown in Figure 28(b)~(f). The normal direction of the initial

fracture plane is given as 60° .

1 m

1 m

Figure 27. Problem geometry and boundary conditions of a cubic specimen with an embedded elliptical

fracture.

The appearance of the crack tip after some crack growth has occurred is shown in Figure 28(b). It is
observed that the crack has not grown by extending its own plane but by generating multiple tiny fracture
surfaces which deviate from its original crack front. Similar phenomenon is captured in the experiment
for observing the crack propagation in anti-plane shear tested by (Knauss, 1970), which is shown in
Figure 29. The newly-extended fractures “straddle” the pre-existing straight crack tip. Then these tiny
fractures around the original crack tip will form new crack tip which will influence the orientation of
consequently opened fracture. Figure 28(c)-(f) shows that the fracture develops from upper and lower tips
of initial fracture in a typical Mode II fracture. The fracture propagation is slower on the sides tip as it
propagates outwardly to the lateral side of specimen. From Figure 28, the side fracture that initiated from
the side tip rotates from the initial crack tip toward the lateral side of specimen, which represents the
Mode III response.
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Figure 28. Fracture propagation stages: (a) initial fracture and (b—f) propagated fracture.

Figure 30 shows the fracture surface at failure from different viewpoints. For the purpose of visualization,
the failure specimen is sliced into 6 pieces which is shown in Figure 31 and Figure 32. Figure 33 indicates
the rotation angle of Mode III fracture between the middle slice and lateral surface of specimen. Also, it
shows the fracture surface tends to propagate along vertical direction, or the maximum stress direction.
As a result, according to the observed phenomenon, if the specimen is large enough, mode III fracture
will gradually turn to be mode I which open in the direction of maximum tensile stress. Mode II fracture
has the similar tendency that gradually propagates into mode I pattern which is shown in mode II fracture
simulation above.
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I—l crack surface
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Figure 29. Close-up view of crack extension from the direction normal to the original crack as observed in
experiments (Knauss, 1970).

This pattern of fracture propagation has been observed in experimental modeling of 3-D crack growth
from pre-existing circular crack by (Adams and Sines 1978). Also, (Dyskin et al., 2003) tested wing crack
model using a brittle material with the presence of the contact effect. In their experiments, (Dyskin et al.,
2003) observed secondary cracks (called “wings") branched towards the axis of compression from the
upper and lower tips of the initial circular crack due to mixed mode of Kj; and K,; related to the

contact between pre-existing crack surface (Figure 34)

Figure 30. Illustration of fracture surface at failure.
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Figure 31. Illustration of the location of the slices in the specimen.

|

Figure 32. Illustration of fracture geometry (surface orientation) in the specimen for different slices from
slice 1 to slice 6.
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Figure 33. The fracture rotates between the middle slice and the side slice of the specimen as it propagates
in mode II1.
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Figure 34. Two-dimensional wing crack growth ( K};) and 3D wing crack growth (mixed mode of K,

and K ).

4.2 Simulation Examples of Thermal Fracturing

4.2.1 Functional test I: Single fracture

To examine the performance of thermo-mechanical VMIB formulation and 3D EPM in simulating
thermal fracture propagation, a cubic sample of rock having a fracture at its top is simulated. The rock
block and fracture dimensions are shown in Figure 35. Table 5 shows the parameters used in the present
simulations. This dissertation assumed no friction between shearing fracture surfaces. Therefore, K is

set to be very small. A small sample is used so that we may focus on the ability of the new VMIB

constitutive model and its numerical implementation to capture softening by thermal stress. Since the size

of the object is relatively small, the conduction of heat through the rock sample occurs in a short period of

time. Therefore, a uniform cooling is assumed to test the mechanical response due to temperature change

without taking into account the transience of temperature diffusion (this is consideration in the next

section). The displacements of all rock surfaces except the top one are confined in the direction
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perpendicular to them. The total number of elements is 156,975 and the total number of node number is

35,280. For each simulation step, a temperature drop of 0.15°C is used with a total number of 120 steps.

Table 5. Simulation Parameters.

Parameters of intact element:

Young’s modulus, £ 30.5 GPa
Poisson’s ratio, V 0.20

Tensile strain strength, &, 0.105x107
Parameters of 3D EPM:

Normal stiffness coefficient, K,/ h 10.0 GPa/m
Shear stiffness coefficient, K /h 10® GPa/m
Fracture width, A 1.0 mm
Parameters of 3D VMIB:

c 0.15

n 4.0

Thermal properties of rock

Thermal diffusivity, ¢’ 1.6x10°m? /s

Thermal expansion coefficient, «, 1.8x10°5K"!
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Figure 35. The problem geometry showing size and fracture set.

Figure 36(a)~(f) shows the deformed mesh configuration amplified 1200 times for different temperature
drops. Figure 37(a)~(f) shows the middle slice of the maximum principal stress contour in the deformed
configuration. Firstly, significant thermally induced volumetric displacements takes place near the pre-
existing fracture surfaces due to the shrinkage of rock as shown in Figure 36(a). The fracture is forced to
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open, causing stress concentration at its tip. With increasing cooling, the thermal stress and displacement
increase, causing stress concentration at the fracture tip to rise bringing the tip region rock into softening
stage, and finally resulting in the formation of a newly extended fracture. Figure 38 shows a plot of «, K

verses the maximum principal strain for the element at the initial fracture tip. Bulk modulus K retains its
original value for a few steps and then, gradually degrades as the tensile strain reaches strain level at
ultimate strength. This example verifies that the present model is capable of simulating the nonlinear
process of thermal fracturing.
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Figure 36. Deformed mesh configuration (amplified 1200 times) when the rock was cooled by: (a) —3°C
;(b) —6°C;(c) —9°C; (d) —12°C; (e) —15°C; (f) —18°C.
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Figure 37. The middle slice of maximum principal stress contour with deformed mesh configuration
(amplified 1200 times) when the rock was cooled by: (a) —3°C; (b) —6°C; (c) —9°C; (d) —12°C; (e)
-15°C; (f) —-18°C.
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Figure 38. Thermal coefficient «, K verse maximum principal strain for the element at the initial

fracture tip.

4.2.2 Functional test II: Randomly distributed multiple fractures

The second simulation explores thermal fracture propagation and interaction. Taking advantage of 3D
EPM to represent thermal response of fractures, multi-fractures can be simulated with a structured mesh
without remeshing in the process of fracture propagation. A cubic specimen with 20 randomly distributed
small fractures is considered. The dimensions are shown in Figure 39 and the material and model
parameters are listed in Table 5. As before, uniform cooling is assumed to test the mechanical response of
fractures to a temperature change. The total number of element is 380,880 and the total number of node

number is 83,300. For each step, the temperature drop is 2.0°C with a total number of 19 steps.
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Figure 39. The problem geometry showing size and fracture set.

Figure 40 shows the propagation of thermal fractures. Initial fractures tend to open in the cooling process
and then propagate in their initial plane. However, the displacement and stress fields are changed due to
the existence of neighboring fractures. Therefore, fractures tend to converge during the cooling shown red
lines in Figure 40(c) and red circle in Figure 41(c). Figure 41 (a)~(c) shows the maximum principal stress
contour when the rock is cooled by (a)—28 C, (b)—34'C, and (c)—38 C. Thermal stress is concentrated
at each fracture tip as the fractures open due to material shrinkage. For the same reason, fracture opening
releases the stress on the both side of the fracture surfaces (displayed by green and blue color). Logically,
the thermal stress of areas surrounded by the fractures is largely released due to gradual loss of
confinement during the propagation of fractures as shown Figure 41(c) highlighted in the red dash box.
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Figure 40. Propagation of thermal fracture when the rock was cooled by: (a) —28°C ; (b) —34°C ; (¢)
-38°C.
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Figure 41. Maximum principal stress contour when the rock was cooled by: (a)—28°C ; (b) —34°C ; (¢)
-38°C.

4.2.3 Multiple fractures emanating from a wellbore
Next, a wellbore is simulated with multiple pre-existing cracks emanating from it. A number of 16 initial
cracks (3.33 to 4 cm in length) are equally spaced around the wellbore shown in Figure 42. Simulation

parameters for this example are listed in Table 5. The initial temperature in the matrix is 220°C and

40°C on the surface of wellbore. Because it is assumed that all fractures cut through the rock in z
direction and propagate in the x-y plane, a single layer of elements in z-direction is used, and all
displacements in the z-direction are constrained to be zero. In the present meshing scheme, the total
element number is 100,800 and the total node number is 40,800. Since the diffusion rate of temperature
tends to become slower as time goes on, a gradually increasing time step scheme is utilized. The initial
time step is 2 minutes, and then it is increased to 20 minutes after 20th step, 40 minutes after 50th step, 80
minutes after 100th step, 160 minutes after 150th step, 320 minutes after 200th step, 640 minutes after
250th step, respectively.

To simulate the impact of the in-situ stress, 2 different in-situ stress schemes are used in the examples,
which are (a) S,; =6MPa, S, =6MPa ; (b) S;; =6MPa, S, =4MPa . The results are summarized in
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Figure 43 and Figure 44. Figure 43 shows the temperature field at 52.4 days after cooling process started.
Figure 44 displays the maximum principal stress (tensile stress considered positive). The magnitude of
thermal stress are indicated by the legends. The lighter shade shows higher thermal stress values (around
the wellbore) where the cooling zone is located. Figure 44 also shows fracture propagation. Since the
fracture creation relieves the stress of a fractured element to zero, the fractures are shown in dark color as
they propagate near the wellbore. Moreover, lighter zones are found at the fracture tips where stress
concentration occurs due to opening of fractures.

For the isotropic in-situ stress field, in Figure 44 (a), thermal fractures tend to propagate in radially. In
this case, the in-situ stresses have no impact on the main direction of fracture opening. On the other hand,
in Figure 44 (b), for anisotropic stress field, the dominant cracks grow in the direction of SH. It should be
noted that the fractures do not propagate symmetrically although the domain is symmetric. This is caused
by use of an asymmetric mesh scheme and the EPM in which newly extended fractures are combined
with the discontinuous fracture surface of the cracked elements. Moreover, the thermal fracture
propagation is very sensitive to the length of the fractures and the space between them, especially when
multiple fractures are competing to grow. A higher thermal-induced stress arises at the tips of the longer
fractures or the fractures with larger area in between (Tarasovs and Ghassemi, 2014, Geyer and Nemat-
Nasser, 1982). The fractures length and spacing could be slightly different during the transient cooling so
that the thermal fractures propagate in an asymmetric pattern. The contrast in magnitudes of the
maximum and minimum in-situ stress still plays the major role on the propagation orientations.

Figure 42. (a)The problem geometry and (b)fractures distribution.
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Figure 43. Temperature contour at 52.4 days after cooling process started
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Figure 44. Maximum principal thermal stress contour: (a) S, =6MPa , S, =6MPa ; (b) S, =6MPa ,
S, =4MPa .

Numerical simulation of 3D thermal fracture propagation in brittle rock was studied using VMIB model
combined with 3D EPM method. Nonlinearities of mechanical behaviors and thermal parameters of the
solid material were captured by introducing a nonlinear VMIB constitutive model. The 3D EPM
associated with thermal parameters modification for fractured elements provided a simple way to
represent the pre-existing fracture in structured mesh. The examples of functional test provided evidences
for the validation of presented method. Test I showed the reasonable results of nonlinear thermal response
and fracture development of rock when it is under uniform cooling. Test II was designed to perform the
ability of the model to treat the random distributed fractures with structured mesh. The simulations in
wellbore condition studied the thermal fracturing emanating from wellbore surface and the impact on the
propagation patterns from the in-situ stress. The present model provided a new way to predict 3D thermal
fracturing.

5. Modeling 3D Hydraulic Fracture Propagation Using VMIB

The hydraulic fractures in geothermal reservoirs and unconventional petroleum resources are subjected to
high in-situ stresses that highly influence the fracture propagation. To examine this, consider an
embedded elliptical fracture of finite area that is driven by a uniform hydraulic pressure in an infinite
underground space. The problem geometry is shown in Figure 45, and the material and the corresponding
model parameters are listed in Table 4. To increase the efficiency of the simulation, half of the embedded
fracture is simulated using the problem symmetry. In the presented meshing scheme, there are 26 rows of
nodes plotted on x direction, and both 42 rows of nodes on y and z direction. The total element number is
210125 and the total node number is 45864. Initially, a hydraulic pressure p, is applied to the fracture.

Then the fracture is increasingly pressurized by an increment of Ap =0.07MPa . A series of fracture

propagation case are studied using the following four in-situ stresses:
Casel: 0, =08, 0,=0.8, 0, =0.8, p,=1.6MPa ;
Casell: 0, =16, 0,=08, 0, =0.8, p, =2.4MPa ;

Caselll: o, =2.0, 5, =08, o, =08, p, =2.8MPa ;
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CaselV:0,=24,0,=08, 0,=0.8, p,=3.2MPa;

In Case I the angle of inclination, «, is set to be 45 degree to decrease the boundary effect. & in other
cases is set to be 30 degree. The simulation results for these cases are shown in Figure 46 to Figure 48.

Figure 45. Problem geometry and in-situ stress directions.

When the fracture is pressurized, both the strain and the stress are concentrated near its tip. However, in
case of the 3D embedded elliptical fracture, the fracture tip is an ellipse, and the stress strain state is
different along the tip contour depending on the certain geometry and in situ stress. Thus, different
fracture propagation modes might occur at different locations of the fracture tip contour. Figure 46a
shows the fracture propagation in the isotropic stress field (Case I). As the applied stress state is
symmetric for the 45-degree crack, the fracture propagates on its original plane under the action of the
applied stress field. The fracture advances straightforward when the applied uniform hydraulic pressure
exceeds the normal stress on the plane of the fracture. Figure 46b shows the fracture propagation for the
Case II. The upper and lower fracture tips develop slightly inclined to the vertical direction, that is, the
maximum stress direction. This can be observed more clearly in Case III, shown in Figure 46¢. The final
path is steeper than that of Case II, tending to the maximum in situ stress direction. As o), increases, the

pattern of fracture propagation at the upper and lower wings of original fracture changes from Mode I to
combined Modes | and II. To illustrate this, the middle slice of the rock block, which contains only the
upper and lower end tips, is considered, and the resulting fracture path is shown for each stress state in
Figure 47. Figure 48 shows the final propagation of the half elliptical fracture. In Case I, shown in Figure
48a, the fracture propagates as Mode I despite the location of the fracture tip. From Figure 48b—c, mixed
mode propagation (Modes I and II) occurs at both upper and lower edges of the original fracture. On the
side tips, the fracture develops outward and connects with the fractures on the upper and lower ends to
form a curved surface, a typical behavior of Mode III fracture.
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Figure 46. Simulated hydraulic fracture propagation paths: (a) Case I, (b) Case II, (c) Case 111, and (d)
Case IV

Case 1V, when o), is three times o, and o, is particularly interesting. As shown in Figure 47d and

Figure 48d, the tips of the upper and lower wings develop parallel to the vertical in situ stress. However,
the fracture propagation is different on the side tip. Two separate fractures are formed at the side tip
shown in Figure 48d. The reason for this is the strong tendency of the fracture propagation at the upper
and lower tips to develop vertically. Moreover, hydraulic pressure in the newly extended fracture tends to
force the fracture open in the direction normal to the hydraulic pressure. Consequently, the new fracture
on the side tip cannot connect the upper and lower parts of fracture. In other words, the upper and lower
parts are more favorable to propagate in their own direction, resulting in segmentation on the fracture
front. This is an important aspect of Mode III fracture propagation that is very challenging to numerically
simulate.

(a)
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(b)

(©)

(d)

Figure 47. . Illustration of fracture propagation path for the middle slice: (a) Case I, (b) Case I, (c) Case
111, and (d) Case IV.
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(b)

Figure 48. . Final shape of propagated hydraulic fracture: (a) Case I, (b) Case 11, (c) Case III, and (d) Case
IVv.

5.1 Mesh Size Sensitivity

In realistic material, the strength degradation causes by micro crack and void development. The material
failure results from interconnection of micro crack and emerging of macro crack. In element based
methods and strain softening constitutive models like VMIB, the micro-cracks growth are homogenized
in an implicit way within a representative volume that usually is the element size. Since one element size
is the minimum representative volume, the softening usually localized in a narrow region that is
controlled by the size of the element. Therefore, VMIB model becomes highly affected by the mesh size
and alignment causing non-physical predictions of fracture proceeding area.

F L F
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3u0 u 2 spring
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1 2 3 n
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‘ L ‘ n 2
‘ ‘ (b) (c)

Figure 49. (a) Softening behavior of a single spring; (b) spring system and (c) displacement-force
diagrams from different number of springs (Bazant and Planas, 1998).

(Bazant and Planas, 1998) described the phenomenon as mesh size dependency. It has been discussed in

numerical results from a 1D spring system with total length I shown in Figure 49(a). Figure 49(a) shows
the softening behavior of a single spring by stretching. Figure 49(c) shows the displacement-force curves
61



from different number of springs in the system. The post-peak behaviors, therefore, depend on the number

of springs in the system. When , springs are used, the post-peak curve will snap back to Euo. The
n

tendency of post-peak curve is turning back to the original point if the number of springs , goes infinite
that indicates the energy dissipation during the whole loading and failure process tends to be zero, which
is physically unrealistic.

The original VMIB model used unique cohesive law for all elements with different size. However, the
fracture energy is not conserved and model is subjected to mesh size dependency. Through analysis using
J-integral (Rice, 1968), the outline of localization zone is taken as the integral path r, the J-integral (23)
along r can be computed as

J= j(Wd -T. —d j -[ o, ‘Z;" dx:'[:; o, du, zhj:“ o,de, (111)

where W is the strain energy density, 7 and U are the traction and separation vector of cohesive zone
respectively, / is the length scale of localization zone, i, = h¢ is the normal separation, , * is the critical
separation when cohesive stress becomes zero, ¢ = /p. In J integral along r, a length scale / that is

proportional to the fracture energy in the VMIB model. Therefore, the bond density potential has to
consider strength and fracture energy conjugated with the localization zone size to eliminate the mesh size
dependency.

Figure 50. The path of J-integral contours along the outline of localization zone.

5.2 VMIB Model with Hyperelastic Bilinear Potential Considering Fracture
Energy Conservation

At different scales, the constitution of material has different representation. Generally, material is
considered as continuum at macro scale and particle at microscale shown as Figure 51. In VMIB theory,
material is consisted by randomized mass particles at the micro scale. The particles are connected by
virtual bonds that provide both longitudinal and rotational resistances in Figure 51(c). The behaviors of
bonds govern the mechanical response of material according to relative displacements of paired particles.
These particles are not realistic physical particles such as atom or molecule. The macroscopic continuum
behavior is descripted by microscopic interaction of particles through homogenization. By Cauchy—Born
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rule, the strain energy function in the VMIB model is characterized. A change in the configuration of a
continuum body results in displacement that is composed by rigid-body displacement and deformation.
The material points in the undeformed configuration are described by the Lagrangian (Material)
coordinates X =(X,,X,,X,) . The corresponding material points in the deformed configuration is

described by Eulerian (spatial) coordinates x = (x,,x,,x,). The deformation gradient is given by

F, = (112)
X,

From deformation gradient, the Green-Lagrange strain tensor is given by
1
E, =5(F;IF;J _5IJ) (113)

where §,, is the Kronecker delta. In the hyperelastic theory (Marsden and Hughes, 1983; Ogden, 1984),

W is the strain energy density function. The Piola-Kitchhoff stress tensor is

oY

S, = (114)
Vi aEU
The material elastic tensor is
oS oY
Ci = = (1 15)

0E,,  OE,0FE,

mass particles

mass particle

o virtual bond

(a) (b) (©)

Figure 51. Material constitution at (a) macro scale and (b) micro scale consisting of randomized
material particles that are bonded with (c) virtual bonds.

Each micro bond is described by a potential:

D=0, +D, (116)
where [ is bond stretch and £ is bond rotation angle. In small deformation case, £, and §,, reduce to the
strain ¢ ; and stress o, respectively of linear elasticity (Gao and Klein, 1998). According to the Cauchy—

Born rule (Milstein,1980; Tadmor et al., 1996), the bond deformation / contain:

l= loé:igg/é:j > B = figi,-’?;-’ B = ég;ﬂﬂ > By = é:igiﬂ?;' (1 17)
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where [ is the original bond length, & = (sinfcosg,sindsing,cosf)is the unit orientation vector of bond in
sphere coordinate system and ¢ is the strain tensor. ,, B, and g, are rotation angles of bond towards
three coordinate axes x,, x, and x, respectively. n', 0" and n" are unit vectors perpendicular to the

direction indicated by & of normal bond.

The average strain energy density of the representative volume element can be written as follows
1

lIf=;<c1>,+c1>ﬂ> (118)
where } is the volume of representative element and < . > = J' 2”I2”(...)D(g’¢) sin 8dad ¢ - D(6,9) is the bond
0 0

density function. The bracket (...) represents a homogenization process. The homogenization process

integrals and diminishes the individual behaviors of all micro bonds in the representative volume.

From Egs. (3) and (4) and assumption of small deformation, the stress tensor of the representative element
is derived as

o <®; Ay, o wa@@ﬂ> (1)

v os; V ds; Op, Og;, OP, Os; 0P, Os,
We assume ¢’ — 0D _ 0D _ 0D, and rewrite Eq. (9) yields
"o, op, op,
6\P 1 ’ ’ ’ ” A
gy = g = ;<q)l 'lofi‘fj +cDﬂ '(éinj +§i’7»/‘ + 5177‘,')> (120)

i
The modulus matrix Cyu is derived as

az‘lj l " ” ’ ’ " " " " 121
e, (TGS G O Eniun]  EmEint s G i) (121)

ijkl

For elastic and isotropic case, @], @ are constant and [(0,¢)=1.0. For material nonlinearity, a

phenomenological cohesive law is introduced to represent hyperelastic and softening behaviors. The
following exponential function (Gao and Klein 1998; Klein and Gao 1998; Zhang et al. 2002; Klein et al.
2001; Nguyen et al. 2004; Thiagarajan et al. 2004) is typical one used as bond density potential in VIB
model

@) = A(l -1, exp[- (1 -1,)/ B] (122)

where #is a Young’s modulus related parameter and £ is related to fracture energy. The nonlinear macro
properties of material such as softening and degradation are expressed by introducing the bond strength or
density evolution. The evolution law is characterized by mechanical behaviors of material failure test.

5.3 VMIB With Fracture Energy Conservation

Many works (Hillerborg et al., 1976, Bazant and Planas, 1998, Kyoungsoo et al., 2008) introduced a
localization zone size according to this length scale for the simulations. This is feasible for problems with
simple geometry and known fracture propagating direction and patterns. For complex stress state in three
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dimension and mix-mode fracture problem, the localization zone remains unknown before analysis.

Therefore, to capture fracture propagation without pre-assuming localization zone, the present work

considers every element as potential localization zone. If element type and shape are known, the length

scale /4 of each element is proportion to element volume. (Bazant and Becq-Giraudon, 2002) introduced

two fracture energies to G, and G, that are needed for accurate structural analysis considering size effect.

G, is total fracture energy that corresponds to total work under the softening curve. G, is the initial

fracture energy that primary depends on peak strength. Accordingly, (Park etc., 2008) described a bilinear

softening model for concrete shown as Fig.4. The bilinear softening curve was defined tensile stress ',

initial fracture energy G, and total fracture energy G, . The vertical coordinate of kink point is 4. w,_,

w,, w, and w, are crucial crack openings width during the softening process, which are determined by

the peak strength, fracture energy and location of kink point. According to Figure 52, the stress responds

to given crack opening is

w

—f, it O<w<w,
wcr
w—w .
ov=w)f, if w, <w<w,
Wcr_wl
(W_Wf)f; .
— if w,<w<w,
Wy —w,

0 if w,<w

and tangential stiffness is

filw, if O<w<w,

LW =) i w, <w<w,

S =) i w <w<w,

0 if w,<w
T
1!
i
|
I
I
I
l
I
ﬂft i _:__ 3
I
G, I\
| 71\ GG,
M}cr Wkwl Wf

(123)

(124)

Figure 52. Bilinear softening model for concrete where ¢, is tensile strength, g is initial fracture

energy; and G, is total fracture energy.

Adapting the idea of bilinear softening model, the bond cohesive law of VMIB incorporate the material’s

fracture energy shown as Figure 53, where g and &y are the fracture energy related coefficients

calculated by GpA=g:V" and @,A:ng. A is the fracture area in the element and ¥ is element volume.
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From Eq. (6), the bond longitudinal stretch / and rotational angle g are the functions of strain &€

according to the Cauchy—Born rule. Therefore, the longitudinal potential is rewrote as @,(&). The present
model assume the longitudinal potential q)l and rotational potential @ p in Eq. (10) evolution follow
same bond cohesive law. In loading process, the evolutions of rotational potential CDZ is proportional to
q);' , and (D”ﬂ oc CD;’ in brief. In Eq.(10), @ and CD; follows similar softening tendency in Figure 52

and are rewritten as CD; = f (S)k and (D; = f (8)1’ , where f(g) is bond evolution function, k and , are

longitudinal and rotational bond material constants respectively, which can be interconnected and

expressed by macroscopic material constants Young’s modulus £ and Poisson ratio , as

(o 3EV
4r(1-2v)I2 (125)
L 3EV(-4v)
4r(1+v)(1-2v)

Eq. (10) is written as

oY
ikl — A A 17
" Os,08, V

(f@MGEEES + f@rEnén +Emén +Ene) (126)

Similar to Eq. (14), the bond evolution function f(¢) is written as

1 if O<e<g,
1/(g, - if <e<
1) = (&,—-¢) if g <e<g, (127)

e, —¢g) if &,<e<e,

0 if E.<¢€

where ¢, , £, &, and ¢ are shape parameters determined by the peak strength & , fracture energies,

location of kink point go , and the size of representative volume.

\

& &, &, &,

Figure 53. Bond cohesive law for VMIB considering fracture energy o , and g, .
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representative

volume V' fracture surface 4

Figure 54. (a)Continuum based representative volume consumes strain energy and (b)fracture
surface and its area consumes fracture energy.

The VMIB is a particle-based and continuum-based model. The softening and energy consumption occur
in the representative volume that is element in FEM implementation, which is shown in Figure 54(a). The
fracture energy, on the other hand, is dissipated over the fracture surface shown as Figure 54(b). The
shape parameters ¢, , ¢ o€, and ¢ are quantified by relating the bond work to fracture energy. Firstly,

g, 1s the critical strain at tensile strength of material. £, &, and ¢ are related to the initial fracture
energy G, , total fracture energy G,and representative element volume. c, is the strain at the kink point
of softening segments in the bilinear cohesive law. ¢, is the extended line of segment ¢, - e, to
horizontal axis. The strength vanishes at o . According to Figure 53 and Eq. (17), the work of bond in
representative element is divided into three segments,

1
Wl :Engf‘l

w, :%V(gr —e)f (128)

1
Wy =2V~

where J is element volume, ,is the work on loading from zero to tensile strength, , + W, is related to

initial fracture energy G,» W, corresponds to G, — G,-

As the representative element is deformed and cracked, a crack is created in the element. The geometrical

parameters like the length scale of localization zone /4 and fracture area 4 need to characterized from the
volume of element,

(129)
A= }/Vg
where } is a coefficient related to the element geometry and shape.

The total strain energy dissipation by stretching volumetric element is equal to fracture energy required to
create crack surface in the element. We have
G A=W, +W,

G A=W, +W, +W,

(130)
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The shape parameters £, &, and ¢ shown in Figure 53 are derived with Egs. (18)-(20)

. 206Gy h=W)

r b f-t
g =g + 206y (131)
hpf,

81) = gr _ﬂ(gr _gb)
where g - G, /1G> b is bond force ratio indicating the location of kink point in softening curve.

In certain cases, the calculated ¢, is smaller than ¢, that makes present model no more validate to

capture fracture energy correctly. The present VMIB model can be applied if the length scale of
localization zone / is smaller than a critical value

p=2e7 (132)
Wl

And the critical element volume is

V{@GMJ (133)
W,

5.3.1 Verification

To verify the bilinear softening potential model in remedying the spurious mesh sensitivity, the three-
point bonding test of notched concrete beam made of micro-concrete (Ruiz G. 1998, Yu et al., 2008) is
simulated. The dimension and geometry of simulating specimen is shown in Figure 55. The parameters of
materials (Yu et al., 2008) are the Young’s modulus is £=305GPa, the Poisson ratio is v=02, the
uniaxial tensile strength f, =3.8MPa and the total fracture energy G » =62.5/m?. The critical strain is

calibrated as £, =0.286 x107. The fracture energy ratio 6is set as g - g /G, =05 and the ratio of bond

force is #=0.2. The element geometry and shape coefficient is calibrated as y =0.23. To examine the

effectiveness of the present method on element size dependency, three different mesh schemes are
simulated and shown in Figure 56. Finer meshes are generated above the notch sections with approximate
sizes of 5 mm, 2.5 mm and 1 mm respectively.

ey

[

50 mm 300mm

Figure 55. The dimensions of the simulated three points bending specimen.
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Figure 56. Mesh schemes with element sizes of: (a) 5 mm; (b) 2.5 mm; (¢) 1 mm; (d)0.5mm.

The simulation results are shown in Figure 57. Figure 57 (a) shows the comparison between the
experimental data (Ruiz G. 1998, Yu et al., 2008) and the numerical results by the VMIB with fracture
energy conservation. By comparing, the three numerical curves reasonably agree with the experimental
data. This suggests that the mechanical response can be quantitatively predicted in propagation process,
and the mesh size dependency is minimized considering the fracture energy dissipation and their
relationship with mesh geometry and size. Figure 57(b) used the VMIB model described in (Huang et al.,
2013) that applied one bond evolution function for all element size. Contrast to Figure 57(a), Figure 57(b)
shows the results that are strongly dependent on the element size. The curves not only show the weaker
peak loads when using smaller element size, but also less works indicated by areas under envelopes of
displacement-force curve with shrinking element size in three different mesh scheme. (Zhang et al., 2015)
discussed the influence of the fracture energy ratio @and the ratio of bond force fon mechanical
properties representation of material. Though, this paper uses constitutive relation with different
conception and expression, @ and g represent same meaning to the fracture energy and post peak
behaviors respectively. (Zhang et al., 2015) indicated the fracture energy ratio #dominates the peak
strength and the bond force ratio fdominates the post-peak ductility. Figure 58 shows the influence of

elemental geometry and shape coefficient ) that is a key parameter representing the fracture surface area

in an element by known element volume. Based on Eq. (19), higher ¥ indicates higher fracture area Ain

the element and higher fracture energy dissipation during the failure process. It interconnects the strain
energy and fracture energy dissipation. Therefore, the loading-displacement envelops become larger.
Figure 59 shows the deformed mesh configuration at failure for I mm mesh scheme.
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Figure 57. Comparison of the numerical force—displacement curves with different mesh sizes
with experimental results from (Yu et al., 2008). (a) VMIB with fracture energy conservation; (b) VMIB
model described in (Huang et al., 2013).
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Figure 58. Influence on the macro mechanical response of coefficient .

Figure 59. Deformed mesh configuration at failure for mesh scheme 1 mm.

5.4 Fluid-solid Coupled Model for Matrix and Fluid-Filled Fracture

The intact porous rock employs fully coupled poroelastic model. The nonlinear deformation and failure of
rock matrix are captured by VMIB model with fracture energy conservation. The fracture is initiated and
propagates through failure elements. For fractured elements, the fluid is equivalently modeled by porous
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media formulation and the permeability is enhanced since the high conductive zone created by fracture in
the element. For moving boundary hydraulic fracturing process, a modification to the continuum model is
necessary due to discontinuity of fracture surface. For intact element, the original poroelastic equations
system in FEM formulation is written as

K, -A gt _ 0 0 Eto N f, (134)
~A" —-AUH,-S|p,) |-AT -S|\p,) Ay,

where K is rock stiffness matrix, A is the poroelastic coupled term representing the mutual interaction
of porous fluid and matrix, Sand H,, are diffusion matrix, U and p, are the nodal displacements and pore

pressure. fis external mechanical loading, q is the injection rate from a point source, , is the present time,

t0 is the time at previous step, Af =¢—t0 is the time interval, Ais a coefficient with the range 0<A<I.

For the fractured element, the following equation system is used:

K, 0 U _{0 0, fE ) (AT, (135)
0 -AH, -S|p,) |0 -S|p,) (Adq, 0

where A #v 5 term is nodal forces applied on the right hand side of equation system to apply the fluid

pressure on the fracture surface. The fluid flow in the fracture element will only follows the Darcy’s law.
The fluid and solid are no longer coupled in the way described by the Biot’s theory. Eq. (25) is rewritten
as

A EPM ~ ~
0 -AH, -S|\p,) [0 -SSP,/ \AM,
After rearranging, the pressure boundary condition on the fracture surface can be applied by matrix A “"

. It is not needed to apply the nodal forces representing the fluid pressure on fracture after the pressure is
calculated. The pressurizing displacement and fluid pressure are calculated simultaneously.

The hydraulic pressure Pin a fracture element is represented by the equivalent nodal forces f = 4p ,

where A is the fracture area in the element. For example, considering fractured element with triangle
fracture area, the pressure on the fracture surface is calculated by averaging the pressures on all 4 nodes
of the element:

Vi) s e
p=1(p,’+pf 5K+ (137)

where n is the unit normal to the fracture surface, 5/ is the nodal fluid pressure on node I at time . As

shown in Figure 60(a), the element contains a triangle crack surface. Node M is the only one on the

upper side of fracture. The equivalent force of node M is representing the fluid pressure on the fracture,
F, =(F* F" F*y=AP=" A5 + 5/ + 55 + 5" n (138)
M T \Fx o8y o f - - 4 D D, D, D,

Each node /, Jand K on the other side are carrying 1/3 of the fluid load on the fracture. Their equivalent
nodal forces are
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F,=FJ=FK=—;iA(ﬁ[’+ﬁf+ﬁ[K+fa[M)n (139)
The nodal force vector on the right hand of the elemental matrix system is written as

t=(F/ F F F F/ F! FX FX FX FM F" F")h (140)
According to (Huang, dissertation), nodal force vector is derived as

f= AP (141)

where A M = [A’ A AF AM ] for fractured element with triangle crack intersection.

(@)

(b)
Figure 60. (a)Equivalent nodal force representing the fracture fluid pressure and (b) aperture
representing by relative displacement in element with triangle crack plane.

Based on similar concept, the fracture aperture \ is calculated based on the relative displacement and
orientation of the fracture surface, shown as Figure 60(b). The displacements of nodes along the normal
direction of fracture are written as §” = [u Tl ol ol ] . The aperture is calculated as

w:;[(u;& —u)+ ey =)+l —u) "

72



5.5 Numerical Modeling of Laboratory Scale Multiple Hydraulic Fractures
Fracture spacing is a crucial factor in the interactions between hydraulic fractures which can affect
fracture geometry and productivity. (Bunger et al., 2011) numerically studied the issue of curved growth
of a hydraulic fracture interacting with a previously placed hydraulic fracture. Figure 61(a) is the
configuration considered in (Bunger et al., 2011) that illustrates a small notch (HF2) at a distance H
above the pre-existing fracture (HF1). As HF2 grows, its growing path deflected due to the stress state
and mechanical interaction between hydraulic fractures. In Figure 61(b), local reopening of HFI1 in
response of tensile stress around the tips of HF2 results in that HF2 propagates towards HF1. If HF1
remains closed during growth of HF2, shown as Figure 61(c), slip of HF1 results in HF2 curving away
from HFI1. The closely spaced hydraulic fracture laboratory experiments (Kear et al., 2013) show
sequential hydraulic fracture growth in different spacing under various confining stresses. In Figure 62(a),
the experiment result of Block-4 shows that in the presence of Fracture-1, Fracture-2 tended to curve
towards Fracture-1 and eventually coalesced with Fracture-1. Fracture-4 repeated the curve in behavior
similar to Fracture-2. In the test on Block-6 shown in Figure 62(b), the fractures show nearly parallel
pattern due to higher vertical confining stress that suppressed the reopening of pre-existing fracture.
These two experiments gave excellent example of the phenomenon described above in Figure 61.

i O min i Omin § Fmin
" T e . a T
HF1 _ = ==
) a openég 4 sheéing 4
(a) (b) (c)

Figure 61. Two fractures interaction, a) problem configuration, b) HF2 grows towards HF 1, c)
HF?2 to curve away from HF1 (Bunger et al, 2011).
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Figure 62. Geometry of fractures for (a) block 4 with zero vertical confining stress and (b) block
6 with vertical confining stress reported by (Kear et al. 2013).

We simulate the mentioned closely spaced hydraulic fracture experiments. The experiments tested
350 x 350 x 350 mm blocks of Adelaide Black Granite. A 16 mm diameter borehole is drilled to a depth of
290 mm. 4 notches with 1 mm depth into the borehole circumference are scribed and the notch array is
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centered. The spacing between the notch intervals is 15 mm. Figure 62 illustrates the geometry of rock
block sample. Take advantage of symmetry of problems, a quarter of rock sample is simulated and shown
as gray. Two fractures are simulated to emphasis on their interaction illustrated in Figure 61. The fluid is
injected in the notch with red outline that is 15 mm above the previously placed fracture with blue outline.
Two limiting scenarios are designed in the experiments, which are cases with zero vertical confining
stress and with vertical stress restraining the reopening of underneath fracture. The simulation properties

is used according to the rock block used in the test. The Young’s modulus, £ and Poisson’s ratio, v are
102GPa and 0.27, respectively. The rock fracture toughness is K,  =2.3MPa- m'? | (Bazant and

Kazemi, 1990) discussed the relation between the fracture toughness K., fracture energy release rate

G, and fracture energy G . In linear elastic fracture mechanics it is shown that G, = K} /E and further

yields R :K,zc/ E , where R is critical fracture energy release rate. According to the size effect law,

fracture energy G, is expressed by G, =6}imR , where d is the sample size. (Hashida .and Takahashi,
—>0

1985) presented R value as a function of sample size d. When the sample size d reaches 350 mm, the

value of R/ G, is larger than 0.9 and approaching 1.0 as the size increasing. The present simulation uses

Gf =R and its value is 51.86 J/m? . The critical strain is calibrated as e, =0.922 x10"* . The fracture
energy ratio 6is setas g - g , /G, =05 and the ratio of bond force is £ =0.25. The element geometry and

shape coefficient is calibrated as y=0.12. For fluid flow in the rock and fractures, we consider that the
rock is nearly impermeable since extreme low permeability and short term injection. Therefore, a very
low permeability k., =1.0nd is given for the intact rock in the simulation. Major fluid flow and storage
occur in the fractures. As the theory mentioned above, the fractured elements are also treated as porous
media with constant enhanced permeability that is given by cubic law using constant aperture of 5x107°
meter. For fluid parameters, the viscosity is z=0.3¢”Pa , the injection rate is constant

O, =0.0038ml/ min . The total number of elements is 975,454 and the total number of nodes is 160,806.
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Figure 63. Geometry of rock block sample and simulation domain.
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Figure 64. Geometry of fractures in the numerical analysis.

Figure 65 gives the comparison of injection pressure evolution between numerical and experiment.
Though the rate of pressure build up and breakdown is not agree between the numerical results and
experiments, the magnitude of breakdown pressures are matched very well for both cases. Since that the
present work focus on the nonlinear mechanical response of rock, the fluid diffusion in fractured rock is
not rigorously captured, but is approximately calculated by constant permeability and applied as fluid
pressure boundary condition on the fracture surface. Take advantage of mechanical model presented
above, the breakdown pressure is captured that is indirectly indicating the initiation of fracture
propagation. The simulated breakdown pressure of Fracture-2 for case Block-4 and Block-6 are 21.25
Mpa and 46.34 MPa respectively. The experiment breakdown pressure for each fracture of Block-4 range
from 23.46 MPa to 26.98 MPa. For Block-6, the range is from 39.44 MPa to 45.70 MPa.
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Figure 65. Comparison of injection pressure vs time between numerical and experiment results
for the cases (a)without and (b)with vertical confining stress.

Figure 66 and 67 show the numerical results for the fracture aperture. The changes in color also indicate
the evolution of fracture geometry with injection. The red dots in Figure 66(i) and 19(i) indicate injection
pressure and time for each fracture geometry. For Block-4 case with zero vertical stress, upper fracture
tends to curve towards and eventually coalesces with the underneath fracture. In the numerical model, the
previously created fractures are treated as joint elements. Since no suppression by vertical confining stress
and the presence of a larger applied horizontal stress, the 1% fracture is reopened locally in response to the
induced tensile stresses by the propagating fracture tip. As the upper fracture growing, the location and
aperture of opening area are changing with the growing fracture. After two fractures coalesced, the
injection pressure dropped rapidly since the fluid leaked into the larger fracture. Therefore, the aperture is
decreased once the 2™ fracture contacts the 1% one. For Block-6 case, the 1% fracture almost remains
closed during the injection process restrained by higher 14.4 MPa vertical stress. Therefore, nearly
parallel fracture is formed. Such behaviors are also observed in the numerical simulations of the same
experiment by (Ghassemi, 2016). As the fracture developing in Block-6 case, the injection pressure
gradually approach the vertical confining stress that is also observed in the laboratory test shown in
Figure 65(b). The partial reopening caused by propagating fracture is shown in Figure 68. The blue area
indicates where the fracture remain closed since the compression from fluid pressure from the another
fracture. The opening area relocates outwardly as the growing fracture becomes larger and the moving of
fracture tip. Figure 69 finalizes the fracture pattern for case Block-4 and Block-6 by comparing with
experimental fracture patterns. Though only two fractures are simulated, the simulated fracture patterns
agree with the fracture pairs of Fracture-1 and Fracture-2 for both case that are curve in and parallel to the
pre-existing fracture respectively.
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Figure 68. Aperture of 1¥ facture showing the partial reopening caused by propagating fracture.
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Figure 69. Fracture pattern for case Block-4 and Block-6 by comparing with experimental results.

6. Conclusions
Special algorithms were developed and used to address the mesh-sensitivity of the VMIB approach. In
particular, the fracture energy conservation was considered in the proposed VMIB model. Through
incorporation of the fracture energy in the bond evolution function, the mesh-size sensitivity was
minimized for the element size simulated in this work. The model served as a mechanical constitutive
relation in a fully 3D hydraulic fracturing model to simulate laboratory scale experiments. Taking
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advantage of 3D EPM, the pre-existing fractures were treated as “joints” so that the contact and reopening

behaviors were captured when interacting with a propagating fracture. For each case, curved and parallel
growth of fractures under different confining stresses was captured with reasonable agreement with
experimental observations. The critical element size, however, limits the maximum size that satisfies

fracture energy conservation and the effectiveness of the model. Therefore, it limits the size of simulation
domains to small and possibly meso-scale.
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CHAPTER 2: MODELING HYDRAULIC FRACTURE PROPAGATION USING A
THERMO-HYDRO-MECHANICAL FINITE ELEMENT METHOD WITH
BRITTLE DAMAGE MODEL

this chapter we use a related but alternative approach to model the complex hydraulic fracturing
processes including rock deformation induced by hydraulic pressurization, fluid flow (fluid pressure)
within the fractures caused by fluid injection, and fracture propagation. To simulate the coupled processes,
the following key factors are considered for hydraulic fracturing design in complex settings:

. First, the nonlinear mechanical behavior of a rock mass is described by elastic/brittle
constitutive modeling using continuum damage mechanics (CDM). The failure mechanism
of brittle rock is described using a mechanical damage evolution law at the elemental scale
within the finite element method. So, at current stage, no rate/time-dependent behaviors
such as plasticity are taken into account.

o Second, the heterogeneity of rock mass is considered using spatial distributions of material
properties (Young’s modulus, strength, and permeability). The spatial distribution curves
are described by the Weibull distribution function (Weibull, 1939). The random variable
approach of the Weibull function is popularly used to represent rock heterogeneity because
of its simplicity (Fang and Harrison, 2002a; Tang and Hudson, 2011; Tang et al., 2002;
Wong et al., 2006; Yuan and Harrison, 2005) and have been used in stimulation (Lee and
Ghassemi, 2010).

o Third, the porous rock mass is assumed to be fully saturated with fluid flow governed by
Darcy’s law, and the reservoir response by the coupled processes of rock deformation, pore
pressure, and temperature during hydraulic fracture propagation were described using the
fully coupled thermo-hydro-mechanical (THM) analysis under the governance of mass,
momentum and energy conservation laws (Noorishad and Tsang, 1996).

o Fourth, the fluid flow inside fractures is assumed as incompressible and single phase, with
Newtonian flow, so that the hydraulic pressure distribution inside fractures is solved using
the lubrication equation with a no-flow boundary condition at the fracture tip.

o Fifth, the quasi-static crack growth algorithm is developed to describe hydraulic fracture
propagation. The Mohr-Coulomb failure criterion with tension cut-off was used to capture
shear and tensile crack initiation. A moving-boundary scheme is developed to describe the
transition of hydraulic pressure through the fracturing paths.

1. Methodologies

Developing a numerical model for the hydraulic fracturing process requires clear understanding of the
rock failure mechanism, fluid flow in deformable fractures, and numerical modeling for crack
propagation. Especially, numerical capability to capture fracture propagation under different failure
modes is critical for hydraulic fracturing model design. Rock heterogeneity is also an important factor
because of its influence on fluid flow and fracture pattern. Numerically, crack paths are very difficult to
replicate because of the complexity of mechanical behavior and strong discontinuity of cracks in
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heterogeneous rock. To solve for the fracturing problems, different numerical approaches based on the
boundary element method (BEM), the finite element method (FEM) with VMIB and the discrete element
method (DEM) can be used for crack propagation, depending on different purposes. However, each
method has both cons and pros. DEM, which uses interaction between bonds of particles, gives good
crack-path estimation for the discontinuous aspect of crack propagation. But it requires numerous
particles to obtain accurate results, which lead to high computation costs and limit the method to small-
scale geological models. Also, especially for fully coupled poroelastic analysis, it is very difficult to
model realistic particle geometries and to determine the material parameters required to define
mechanical relationships between these “micro-scale” particles, causing significant errors during
simulation. BEM has the advantages of reducing computational model dimensions and generating a
simple mesh, compared with FEM and DEM that use a full-domain discretization method (Jing and
Hudson, 2002). BEM is especially suitable for linear-elastic fracture problems in homogeneous material.
BEM formulations can be extended for coupled hydro-mechanical processes (Ghassemi et al., 2001; Pan
and Maier, 1997). However, when dealing with rock heterogeneity in numerical domains, the BEM may
not be a suitable method, because the basic BEM formulation cannot have sufficient sub-domains to
represent the material’s heterogeneity, in contrast with FEM and DEM. In addition, the BEM is not as
efficient as the FEM for simulating nonlinear material behavior such as plasticity and damage evolution,
because it requires sub-domain integrals (Jing, 2003). On the other hand, FEM has disadvantages when
the discontinuous crack behavior is embedded on a continuum-mechanics-based FEM formulation. When
many fracture elements are included, the FEM solution tends to yield an unstable and ill-conditioned state.
Despite these disadvantages, FEM is the most popularly used numerical method in the engineering field
because of its wide applicability. Particularly, the FEM is efficient for handling of rock heterogeneity,
nonlinear material behavior, complex boundary conditions, and dynamic problems (Jing and Hudson,
2002). The FEM method has been used for hydraulic fracturing simulation by several researchers (Boone
and Ingraffea, 1989; Boone et al., 1991; Carrier and Granet, 2012; Sarris and Papanastasious, 2011).
However, a simple fracture plane has generally been assumed in these simulations. The VMIB presented
in the last chapter remedies some of these shortcomings. An alternative approach is presented in based on
damage mechanics approach. Several failure mechanisms of brittle rock and influences of pore pressure
and confining pressure are investigated and the Weibull distribution function is introduced for rock
heterogeneity as a stochastic approach.

1.1 Failure of Brittle Rock

Rock failure is a very complex process because of anisotropy and heterogeneity, so that numerically
replicating the rock failure mechanism is still a very challenging issue in rock engineering. Thus only
simplified descriptions of real rock behavior based on convenient mathematical descriptions are available
(Fjeer et al., 2008). Typically, rock specimen is tested in the laboratory using uniaxial and triaxial tests to
measure mechanical properties of the rock. From these experiments, rock strength, which is a critical
parameter for rock failure, is measured. Figure is a typical stress/strain curve from a uniaxial compression
test. During the rock-failure process, three regions are generally observed: the elastic region, where elastic
rock deformation is reversible; the ductile region, where rock deformation (microcrack growth) is
irreversible; and the brittle region, where sudden loss of strength leads to totally irreversible rock
deformation (microcrack coalescence and macrocrack growth).

Typically the ductile region is very small, so the deformed behavior can be modeled as a simplified
elastic/brittle constitutive relationship. In a triaxial compression test, the compressive rock strength is
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varied with confining pressure variation, and post-failure behavior also changes accordingly. In this study,

the complex failure mechanism is numerically modeled as a simplified stress/strain relationship using
CDM, rock heterogeneity, and a crack propagation model with an FEM formulation.

Axial stress (g (Pa))

%10
5_
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35

Elastic Ductile Brittle
I} 0z 0.4 06 0a 1 12
Axial strain (g w107

Figure 1. Typical stress-strain curve of brittle material from microcrack to macroscopic crack-growth.

1.1.1 Fracture modes

Three basic modes of fracture are illustrated in Figure 2Figure 2. Mode I is a tensile mode: the crack tip is
opening; Mode Il is an in-plane shear mode: the crack tip is sliding; and Mode III is an anti-plane shear
mode: the crack tip is tearing. The tensile mode is the most important and dominant mode in hydraulic

fracturing, but the importance of the shear-mode fractures is increasing during hydraulic fracturing
treatments in naturally fractured and heterogeneous reservoirs. This is because most fractures are initiated

by mixed modes and in practice; there are no single mode fractures because of heterogeneity.

A

P4 -
—»
¢ y
(a) Tensile crack (b) Shear crack (c) Shear crack
(opening) (sliding) (tearing)

Figure 2. Schematic of fracture modes: (a) Mode I, (b) Mode II, (c) Mode III
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1.1.2 Tensile failure

When the effective tensile stress at the crack tip exceeds the critical stress limit called ftensile strength,
Eqn. (4.1), tensile failure occurs. That is, the tensile crack initiates when the minimum principal stress, or
the maximum tensile stress component during compression, reaches the critical tensile strength of the
material. The tensile strength represents the opening mode of fracture toughness. The tensile failure
criterion is usually combined with the Mohr-Coulomb failure criterion as a tension cut-off condition as
explained in Figure 3.

0, 2—-0y, 4.1)
where o is tensile strength of material and o is the minimum principal stress, which is also the

maximum tensile stress.

A
T

T Tension cut-off —_—

Tensile failure

| |
o, o, o

Figure 3. Tensile failure with the Mohr-Coulomb failure criterion.

\/

1.1.3 Shear failure

When rock is subjected to compressive loading, shear mode failures are commonly observed. In the
uniaxial and triaxial tests, shear localized fracturing dominates fracture growth. Generally, a shear crack
initiates when effective compressive stress in the material reaches a specific value, which called
compressive strength. Failure occurs along the failure plane when the shear stress increases on the failure
plane to a specific value which is a function of the normal stresses in Eqn. (4.2). The Mohr-Coulomb
criterion is commonly used to explain this shear localized fracturing behavior; it can predict the angle of
the fracture plane and the stress state when the shear failure occurs.

T, =c,+0, tang, (4.2)
where 7, and o, are the shear and normal effective stresses on the failure plane respectively, and the

cohesion strength ¢,. and friction angle ¢f are rock-strength parameters.
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Figure 4. Shear failure on the Mohr-Coulomb failure plane.

1.1.4 Compaction failure

In highly porous or heterogeneous materials, pore collapse and grain reorientation are normally observed
under compaction, as shown in Figure 5. 5. The pore collapse might be caused by breaks of grains and
then filled into open pore space under pure hydrostatic loading. For instance, when a highly porous chalk
is under compaction, the possibility of pore collapse increases because the grain size is much smaller than
the pore-space dimension, so that the pore-collapse mechanism becomes the dominating fracture mode in
that case (Fjer et al., 2008).

However, microscopically, after compaction failure, shear fracture is initiated by the contact between
breaking grains; hence, the pore collapse can be regarded as shear-failure distribution in macroscopic
view. Therefore, in this study, the compaction failure mechanism is not considered because of its
complexity and uncertainty. And our target is tight reservoirs which have relatively low porosity, so the
compaction failure has not effectively happened.

Figure 5. Grain reorientation by compaction forces.

88



1.1.5 Pore pressure effect

In porous rock, the pore space is filled with water, oil, or gas under in-situ stresses. The pore fluid may
affect the failure of the rock, because the pore pressure is equally acting in all normal directions but not
affected by shear stresses (Jaeger et al., 2007). In the Mohr diagram of Figure 6, the effect of pore
pressure is translated to all the stress circles to the left and close to the failure line for shear and tensile
failures. Therefore, increasing pore pressure significantly affects the destabilizing process of a rock and
causes the rock to soften.

Effect of pore pressure

kS oy, O,—p o, o

Figure 6. Effect of pore pressure on effective stress state.

Conventional triaxial tests illustrate that the stress/strain relations of geological materials change as
applied confining pressure increases. In Figure 7(a), the slope of the stress/strain curve of Rand quartzite
is nearly linear elastic, and both the yield strength and the compressive strength increase as the confining
stress increases. Complete brittle fracture behavior is found after the yield points regardless of the
confining stress variation. In Figure 7(b), a different type of behavior is shown with Carrara marble. As
the confining stress increases, more ductile behavior is exhibited. The rock fails by brittle fracture at a
low confining zone, transitions from brittle to ductile, and undergoes stress hardening at a high confining
zone. The brittle behavior is also seen in other results at various confining stresses (Samieh and Wong,
1997). Figure 8.(a) shows the stress/strain responses of Athabasca oil sand specimens at different
confining stresses. Figure 8 (b) presents the results of triaxial compression tests on Labiche shale. Except
for swollen shale and Carrara marble, the general mechanical behavior of rock is observed as
elastic/brittle behavior during triaxial compression tests.
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Figure 7. Stress/strain curves for (a) Rand quartzite and (b) Carrara marble (Jaeger et al., 2007).
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Figure 8. Results of drained triaxial compression tests on oil sand and clay shale (Samieh and Wong,
1997).

For capturing the failure of the brittle rock, the simplest and most commonly used criterion is Mohr-
Coulomb theory. The Mohr-Coulomb failure criterion is the most general failure criterion for brittle
material such as concrete, rock, and soils. The shear stress causing failure across a plane is resisted by the
cohesion of the material and the normal stress across the plane. The Mohr-Coulomb criterion is expressed
as:

L0 —0

2

:[0-3 ;O-l }sin¢f+cF-cos¢f (4.3)

where o, and o, are the maximum and minimum principal stresses. ¢f and ¢, represent the internal

friction angle and cohesion strength, respectively. This criterion has the form of an irregular hexagonal
cone in a 3D principal stress space. The principal stress space is obtained in 3D coordinates of the
principal stresses, and it is more convenient to use stress invariants to obtain the principal stresses. So the
stress invariants ([, 1, Iy) are defined in Cartesian coordinates:

1
I :ﬁ(o-“ +to, +O'ZZ) (4.4)
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I =£\/(0'xx —GW) +(ayy —O'zz) +(o.—-0,) +60,, +60, +60, (4.5)

1. -3J6J

I,=—sin" | —— 4.6
0 3 ( It3 ] ( )
where
Jy=5,55 —50, —5,0,—50,+20,0.0, 4.7
20 -0, —0_
s, = ( - = ) (4.8)
3
Mean effective stress and deviatoric stress are defined as:

1o W3
p=—"FS, qg=—rt 4.9)

V3 V2

The principal stresses are expressed as stress invariants as:
o, =p'+%q'sin(19 —2—”j (4.10)
3 3
, 2, .

o,=p +§q sin/, (4.11)
o, :p,+§q,sin([€+27”j (4.12)

Then, the Mohr-Coulomb failure surface is expressed as shown below. The shear strength of rock at
failure, 75, is given by the Coulomb failure criterion,

T,=¢,to, tang,, (4.13)

,
where 7 and o, are the shear and normal effective stresses on the failure plane respectively. The
cohesion strength, ¢,., and friction angle, ¢f , are rock strength parameters. The Coulomb failure criterion

can be rewritten in terms of stress invariants using Mohr’s effective stress circle as follows;

cosl, sinl,sin 9,

f=—p’sin¢f+q( \/3 3 J—chosgzﬁf:O (4.14)

So for the stress state falls inside of the yield surface, < 0, while it is on the yield surface for f= 0, and it
is outside the yield surface, /> 0. When the effective stress state is on the yield surface or outside the
yield surface, the rock is indicated by shear failure. In addition, to introduce the tensile failure, the
maximum tensile strength criterion, Eqn. (4.1), is combined with Mohr-Coulomb failure criterion as a
tension cut-off condition as described in Figure 9. .
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Figure 9. Schematic of Mohr Coulomb failure criterion with tension cut-off.

1.2 Rock Heterogeneity

Micromechanically, rock is a heterogeneous material that contains lots of different sizes, properties, and
types of particle stack. That is, local rock properties may vary by composition and fabrication of the
particle stack. Rock heterogeneity leads to various formations of multiple-crack branching during
hydraulic fracture propagation. The effect of the rock heterogeneity has been studied experimentally by
several researchers (Brace, 1961; Fredrich et al., 1990; Mahabadi et al., 2012; Wong et al., 2006), but the
effect on strength and deformation has not been well understood. Especially, when the heterogeneity of
large geological media is considered, it is almost impossible to characterize the heterogeneity from field
observations. This uncertainty has led to use of a stochastic approach to represent a distribution of
material properties and to take into account rock heterogeneity on numerical models.

Characteristics of various microdefects such as size, strength, and location can be determined by
statistical aspects of a random function. The Weibull distribution function is widely used for modeling
rock failure because of its simplicity (Fang and Harrison, 2002b; Liu et al., 2004; Tang and Hudson, 2011;
Wong et al., 2006; Yuan and Harrison, 2005). Although failure processes of heterogeneous rock are
complex, the stochastic approach can account for a variety of possibilities of rock heterogeneity. However,
the stochastic approach cannot explain all different types of rock heterogeneity because each rock has a
different form of heterogeneity and each unique statistical model can explain these heterogeneities (Wong
et al., 2006). Also, the parameters of the Weibull distribution function are uncertain and highly dependent
on the choice of input parameters, so the stochastic model may need to be evaluated on the basis of
microstructure analysis and image analysis. For further improvement, the correlation between Weibull
parameters and rock composition must be investigated. This issue is essential for numerical design for
rock experiments; however, it is beyond the scope of my study, since lots of uncertainties in rock
heterogeneity make it quite difficult.

The Weibull distribution function is used to account for a variety of rock fabric possibilities and has been
used by several researchers (Fang and Harrison, 2002a; Lee and Ghassemi, 2010; Tang and Hudson, 2011;
Tang et al., 2002; Yuan and Harrison, 2005). The Weibull distribution function is defined by the
following probability density function (Weibull, 1939):
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where m;, a scale parameter, determines the mean value of the random variable, and a;, a shape parameter,

determines shape of the distribution function. A random variable m for heterogeneity is generated using

the Weibull distribution function with parameters m; and «,. In Figure 10, the effect of a scale parameter

showed that the distribution curve was shifted by the scale parameter change. A shape parameter

determines the range of the distribution function. In

Figure 11(a), the distribution curve becomes narrow when the shape parameter increases. That means the

material heterogeneity decreases as the shape parameter increases and until it nears homogeneous

material behavior. In

Figure 11(b), since the scale parameter represents a mean value of the distribution curve, a larger value of

m; indicates a hard, heterogeneous rock, while a smaller m; indicates a soft heterogeneous rock.
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Figure 10. Distribution curves of random variable m by a scale parameter.
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2. Constitutive Modeling of Brittle Rock Failure

Various types of mathematical theories such as linear elastic, hyperelastic, plastic, viscoelastic, and
viscoplastic are available to describe a realistic constitutive model of material behavior. However,
constitutive modeling of realistic behavior of heterogeneous rock is quite difficult using mathematical
formulation via numerical methods, because of the largely discontinuous, anisotropic, inhomogeneous
and nonelastic behavior of a rock mass (Harrison and Hudson, 2000). Failure mechanism and fracture
patterns are strongly dependent on the mechanical behavior of rock, so that finding a suitable constitutive
model for the rock is an essential part of rock engineering.

In this work, the idealized elastic/brittle constitutive relations used for brittle materials are illustrated in
Figure 12. The idealized elastic/brittle behavior of brittle rock is modeled by employing the elastic/brittle
constitutive model using continuum damage mechanics. When brittle rock is under compressive forces,
the mechanical behavior of the rock is changed by its confining pressure. Normally, as the confining
pressure increases, the brittle rock has larger compressive strength and more ductile behavior, so
confining pressure-dependent constitutive relations were developed using compressive-strength data from
the experimental results. The constitutive relations needed to be calibrated with experimental results,
since realistic strain-softening behavior must be described physically to predict damage and failure
mechanisms of brittle materials and capture macroscopic cracking behavior (Bazant, 1986; Mazars and
Pijaudier-Cabot, 1989). The material degradation of the brittle rock, where a localized, severely damaged
zone defines a failure plane in the form of a macrocrack, was macroscopically characterized using the
idealized elastic/brittle damage model. The damage variable represents average material degradation and
considers various damage types at the micro scale such as nucleation, coalescence, and growth of voids,
microcracks, cavities, and other microscopic defects (Budiansky and O'connell, 1976; Lubarda and
Krajcinovic, 1993; Voyiadjis and Kattan, 2009).

The failure mechanism of brittle material is believed to involve growth of microcracks through the
interaction of material inhomogeneities and applied stresses. Coalescence of these microcracks leads to
macroscopic crack and damaged zone expansion as microcrack population and intensity increase. The
brittle behavior is characterized by a sudden drop of the stress/strain curve right after the yield point
caused by loss of cohesion, while ductile behavior is characterized by continuous deformation without
downward change of the stress/strain curve after the yield point (Mogi, 2007). The initiation and growth
of damage variables can be described using CDM (Kachanov, 1986). Usually, the critical value of the
damage variable is used to decide the macroscopic crack growth. However, an important issue is how a
macroscopic crack can be defined and at what amount of damage. Usually, the critical value chosen is in
the range of 0.5 to 0.9 (Al-Rub and Darabi, 2010; Kachanov, 1986; Krajcinovic, 1989, 2000). In principle,
CDM can be applied to porous materials weakened by microvoids of all shapes (Krajcinovic, 2000).
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Figure 12. Idealized stress/strain behaviors based on compressive and tensile failure corresponding to
confining pressure variation.

2.1 Continuum Damage Mechanics

The initial model of CDM was proposed by Kachanov(1958). From a microscopic point of view,
breakage of atomic bonds causes damage and crack initiation. The breakage means degradation of
material strength, and material strength degradation can be represented by a damage variable. Depending
on material behavior (isotropic, transversely isotropic, anisotropic, etc.), a scalar, vector, or tensor damage
variable (D, Dj D) can be used to describe the isotropic or anisotropic stiffness degradation
(Krajcinovic and Fonseka, 1981; Voyiadjis and Kattan, 2009). Among the different types of damage
variable, the scalar damage variable is frequently used for an isotropic material for simplicity. The
assumption of an isotropic damage variable has been found to be effective in predicting local failure in
structural components (Lemaitre, 1984). The concept of scalar damage parameter and the “effective
stress” approach were introduced by Kachanov(1958) and Rabotnov(1969). From the force balance

oA= aeﬁ.Z , where 4=A4— A4 , 1s the effective area or the undamaged area in the total area 4 in Figure

13(a)-(b).

A
o= Zaeff (5.1)
For an isotropic case, the damage parameter has the same value in all directions, and it can be defined as:
A 4
D=1-—=-2, (5.2)
A A4

where A is the total area of the specimen and A is the total damaged parts of the area (all microcracks,
voids formed) of the specimen in Figure 13(a). Propagation and coalescence of the microcracks lead to
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growth of the damage variable. By substituting Eqn. (5.2) into Eqn. (5.1), the effective stress is expressed
as:

ff

o, =2 _0<D<l (5.3)
D

Because the damage model is isotropic, either damaged or undamaged material is still under linear elastic
behavior before the strain level reaches breaking point, so the effective stress is governed by the Hooke’s
law (Kachanov, 1986):

o, =Ee 5.4)
Combining Eqn. (5.3) and (5.4), the stress/strain relation is obtained as:
o=(1-D)Ee (5.5)

In CDM, the damage parameter D is considered a macroscopic-state variable that affects stiffness
degradation of the material (Kachanov, 1986), so that the effective Young’s modulus is defined as:

E' :(I—D)E (5.6)
The damage evolution equation can be characterized by a function of strain as the simplest method, as
described in Figure 13(c) (Jirasek, 2004; Jirasek and Zimmermann, 1998).

o
D-E-&
= (1-D)-E-&:
(@) (b) ()

Figure 13. (a) Damaged configuration, (b) Effective stress equivalence principle (Kachanov, 1986) (¢)
Linear softening damage evolution (Jirasek and Zimmermann, 1998).

2.1.1 Nonlocal damage Model

Local strain-softening phenomena modeled using finite element analysis causes spurious mesh sensitivity
due to strain localization in the damaged zone. In order to avoid the strain localization, nonlocal
continuum approach was introduced (Erigen and Edelen, 1972; Kunin, 1968) and the nonlocal theory was
extended to the nonlocal damage model by (Bazant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and
Bazant, 1987). The nonlocal damage model is formulated to explain the mesh size effects and prevent
instability of strain localization. In the nonlocal theory, the stress is considered as a function of the mean
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of the strain from a certain representative volume of the material, which plays a central role in the physics
of heterogeneous materials to predict their effective properties. The representative volume is defined by a
characteristic length. The characteristic length is usually determined by microstructural statistics using
image analysis (Graham and Yang, 2003). For concrete, the characteristic length can be roughly estimated
as 2 to 7 times the maximum aggregation size (Bazant and Pijaudier-Cabot, 1988).

The principle idea of the nonlocal damage theory is that the nonlocal damage variable is defined by
spatial averaging over the representative volume (Bazant and Pijaudier-Cabot, 1988). The spatial
averaging form was derived from a thermodynamic approach, and the state of material can be
characterized by its free energy density, which is defined as:

1
'4 :Eag/‘gij > (5.7)

where yis the free energy density, p is mass density, and o;; and ¢;; are the stress and strain tensors. From
the stress/strain relation for an isotropic damage:

o, =(1-D)Ce, (5.8)

ij
Substituting Eqn. (5.8) into Eqn. (5.7), the following relation is obtained for the specific free energy, py ,
per unit volume:

1-D

Py :ng'jczjklgkl (5.9

In Figure 13(c), when the material is damaged, the strain energy in the failed zone begins release the
stored energy during the failure process, so that the damage variable could be defined by the rate of strain
energy dissipation. The energy dissipation rate is expressed as:

po_ o) opv)D (5.10)
ot oD ot

and the damage energy release rate, which is the driving force for the growth of damage, is defined as
(Pijaudier-Cabot and Bazant, 1987):

olpy) 1
Y:—%:Equjklgkl (511)

Based on the nonlocal damage theory (Pijaudier-Cabot and Bazant, 1987), the mean value of the damage
energy release rate is evaluated over the representative volume. The spatial average of the damage energy
release rate over the representative volume is defined as:

~ 1
= 12
Y, v [ yar, (5.12)
where V,is a representative volume.

2.1.2 Damage evolution law for brittle rock

Employing an idea from the nonlocal damage theory, the damage energy release rate was evaluated by
spatial averaging integral over the damaged volume instead of the representative volume:

_
Y, =72j&d¥ v, (5.13)
d
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where V; is a total volume of damaged elements and V., is a damaged element volume. In Figure 14,
constitutive relationships of the brittle rock are differently described by failure type, so that a threshold
value for the damaged release rate is calculated for tensile and shear failure, respectively. Each damage
evolution equation for tensile and shear failure can be defined by a function of the damage energy release
rate for monotonic damage growth. The type of softening curve could be obtained from a realistic shape
of the stress/strain relationship on the basis of experiments. In this work a linear strain softening,

schematically shown in Figure 14. 14, was assumed for numerical simplicity. The tensile strength (o)

and compressive strengths (o

cl?

0, ) by various confining pressures are obtained from experimental data.

Based on the material strength information, the material coefficients (e, &;, €., &cir» €2, Ecr) are
determined to control the relationships. In case of a heterogeneous material, the constitutive relationship
of each element is varied by employing random variables.

0,

O'cz """""""""""""""

Tensile damage

&

tr

gcl gclr 8C2 &

c2r

Shear damage
-------------- o

O;

Figure 14. Schematic constitutive relationship based on tensile and shear damage.

To calculate the damage energy release rate of Eqn. (5.11), the elastic strain energy per unit volume of
linear elastic material is used as follows:

1
Ue = Eo-ijgij

(5.14)

The elastic strain energy per unit volume is rewritten using the stress/strain relation of an isotropic solid,
which is described as:

0, =A0,&y +2u.8, (5.15)
where J;; is the Kronecker delta, and Lamé’s constants 4, u; are defined as below:
vE E
SHMp =
(1+v)(1—2v) 2(1+v)
Then, substituting into Eqn. (5.14), the elastic strain energy per unit volume can be expressed in terms of
strains:

(5.16)
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~ 1
U, =5/154.].gkk8” + UEE; (5.17)

In this thesis, the damage dissipated energy rate is assumed to decrease linearly with the principal strain
and the damage variable has a different stain softening curve for tensile and shear failure, which are
determined by the Mohr-Coulomb failure criterion. The evolution equation of the damage variable is
modeled by the damage energy release rate and the softening function, g(¢) which is determined using:

0 ife<eg,e2¢,

(s 5.18
g(2)=1(s=1¥, ife <z<s, G-19)
gt - gtr

where &, is the maximum tensile stain, and ¢,, released tensile strain for tensile damage and Y, is the
initial value of damage energy release rate, ¢, is determined by the tensile strength, o7, in Figure 15 and s
is a parameter for strain softening rate, which has 0<s</. The softening parameter for the tensile damage
is assumed 0.1, while the softening parameter for the shear damage is decided by a confining pressure.
We assumed the softening parameter is increasing linearly with the confining pressure. So, the softening
parameter for the shear damage is calculated by s=Pc(i)/max(Pc(n))*0.99, where Pc(i) indicates a current
confining pressure and max(Pc(n)) represents the maximum confining pressure during triaxial
compression tests. If the confining pressure is high, the softening parameter becomes closed to 0.99. That
means the stress/stress curve does not softening and the material is nearly perfect plasticity. When the
state of the current equivalent strain, & , is between ¢, and ¢,,, the dissipated strain energy is computed by

multiplying of the softening function with (E _5;)- After the equivalent strain is over the softening
region ( £ >2¢, ), the damage variable is gradually increased up to 0.99, which is calculated by an

equation of 1 —s- feo /U .- The damage evolution law can then be expressed as:

0 ife<e,
g)(z-¢)+Y
poli8EE-a) e o o (5.19)
-5 ifz>e

In cases of shear damage, ¢, and &, are used instead of ¢ in Eqn. (5.18) and (3.19). €., and ¢, are
calculated when the shear failure is detected. The shear strains are determined by compressive strength o,
and o,,, which are obtained from experimental results for a rock. All these tensile and shear strengths are
also varied through the simulation domain (when needed) by employing random variables. Hence, the
constitutive relationship of each element could vary by confining pressure, material heterogeneity, and
type of failure.
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Figure 15. Schematic of softening parameter variation by tensile and shear damage.

3. Thermo-Hydro-Mechanical Rock Response

The fully coupled processes involving thermal, hydrologic and mechanical effects have been studied for a
nuclear-waste repository in fractured rocks during the early 1980s (Stephansson et al., 1996; Tsang, 1987,
1991; Tsang et al., 2004). Through the international cooperative DECOVALEX (acronym for
DEvelopment of COupled models and their VALidation against Experiments) project, these coupled
processes have made significant progress and results have been published in a series of reports and books
(Jing et al., 1993, 1995, 1996; Stephansson et al., 1996). Similar coupling procedure operates in the
gas/oil recovery industry and geothermal energy development. The coupled THM process can be
extended for chemical effect by the swelling of shale for wellbore stability analysis (Ghassemi and Diek,
2003; Ghassemi et al., 2009; Zhou and Ghassemi, 2009). The coupled THM process is described using
the constitutive relations for the porous matrix, the pore space, and the fluid and heat diffusions within the
conservation laws for momentum, mass, and energy. Terzaghi’s 1D consolidation theory of soils was
proposed for its pore-pressure effect on soil deformation (Terzaghi, 1923) and it was extended to linear
poroelasticity for elastic porous media considering effective stress change by variations of pore pressure
under fluid loading using the isothermal consolidation problem (Biot, 1941). Hooke’s law of elasticity
with the concept of infinitesimal displacement hypothesis, Darcy’s law of flow in porous media, and
Fourier’s law of heat transfer were adopted. The effective heat transfer concept, which generally assumes
that temperature is the same in both rock solids and pore fluid, was also adopted since local heat transfer
is rapid enough for equilibrium of temperature, unlike in global heat and fluid diffusion models.

Then, based on the framework of Rice and Cleary formulation (Rice and Cleary, 1976) and Kurashige’s
approach for thermal effects (Kurashige, 1989), the thermo-poroelastic model was extended to combined
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thermal and hydraulic stress for fully-saturated homogeneous rock (Mctigue, 1986; Palciauskas and
Domenico, 1982). The deformation processes are considered as quasistatic states, since the inertia effect
of rock mass is assumed to be neglected (Li, 1998).

3.1 Constitutive Relations

In deriving the coupled THM equations, the total stress, o, (tensile positive convention); pore pressure, p,
for compressive positive; and temperature, 7, are considered as the coupled variables. The general
constitutive equations for fully saturated thermoelastic porous material can be written based on
thermodynamics principles as follows (Cleary, 1976, 1977);

&, =Cuoy+B,p+a;6,T (5.20)

g [ U gy
T
¢=Byo,+pp+a,lT (5.21)
where o; denotes the components of the total stress tensor, ¢; is the strain tensor from the solid
displacements, p and T are the pore pressure and temperature, ( is the variation of the fluid content per
unit volume of the porous material, 0‘; is the linear thermal expansion coefficient tensor, and apT is the

thermal expansion coefficient of the pore space. The elastic tensors Cy; and B;; for isotropic materials are
described as:

Cijkl = é[é‘iké‘ﬂ +0,0, — %5,]51{1) (5.22)
B, = 3(v,—v) 5, (5.23)
' 2GB(1+v)(1+v,) ’ '
where B is Skempton’s pore pressure coefficient defined as (Skempton, 1954):
3(v, —v)
B= (5.24)

- a(l—Zv)(1+vu)
ﬂ:l[l_LJ_i (5.25)

B\K K,) K,
K:M (5.26)
3(1-2v) '

Kurachige’s work introduced an assumption that pores thermally expand while their volume remains the
same, so the volumetric thermal expansion coefficient of pore space can be expressed as:

a; = ¢am (5.27)
K and G are bulk and shear moduli, ¢ is the porosity, K, are the bulk of solid matrix, a is Biot’s

coefficient, and v and v, are the drained and undrained Poisson’s ratio. Rearranging Eqn. (5.20) using
above relations and presenting it in a more convenient form,

1 v a(l—2v) o
e Y s |+ AT s s
& 2G[O-” T4y M ”)+2G(l+v)p”+ 30

where oy 1s the first invariant of the stress tensor:

(5.28)
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2G(1+v) 2G(1+v)

o, = g, —3ap——a T 5.29
e (1—21/) ek p 3(1—21/) m (5.29)
Eqn. (5.28) can be presented in terms of strain:
2G 2G(1+v)
o; = 2G8ij +(K —Tjgkké‘ij +apé;.]. +WamT5y (5.30)

The change of fluid content also can be presented as:

- 3(v,—v) so a1 1
2G6B(1+v)(1+v,) 7" B\K K,

Simplifying Eqn. (4.12) by applying Eqn. (1.10) gives the following relationship:
If1r 1 9(v,—v
| ——|= - ( “ ) (5.32)
B\K K, ) 2GB*(1+v)(1+v,)

3(1/ —V) I{1 1
= - oy+—|———|p-\la,—a,|p|AT 533
d 2GB(1+v)(1+v,) ¥ B\K K, i’ (( nma)9) 439
Substituting Skempton’s coefficient, B, into the equation above and simplifying Eqn. (5.33), then
summarizing from Eqn. (5.30) and (5.35), finally obtains the following constitutive relations:

jp—((af ~a,)p)AT  (531)

o, =2Geg; + [K —%) Ew0,; tapd, +Ka, TS, (5.34)
a(l-2v) 3
§ZM(Gkk+EpJ_((“f‘“m)¢)AT (5.35)

where a,, and oy are the thermal expansion coefficients of solid and fluid.

3.2 Conservation Laws

Three conservation laws are applied for the coupled THM processes. First, a momentum balance or
equilibrium equation with no body force assumption is described as:

=0 (5.36)

Second, to express effective force of the fluxes of fluid, the fluid flow in porous rock was assumed to be
governed by Darcy’s law with no phase change:

Oy

k
4, =——P,; (5.37)
y7j
The fluid mass balance equation is obtained as:
0
—§+qii =0 (5.38)
ot ’
Finally, to express the effective force of the heat transfer, the Fourier equation is used for heat transfer.
h=—k'T, (5.39)

The energy balance equation is used for an element unit volume (Combarnous and Bories, 1975):
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opCT
M.,.h” =0 (5.40)
ot ’
where p and C; are the mass density and specific heat capacity for the bulk material, £ is the permeability,
w is the fluid viscosity, and &” is the thermal conductivity.

3.3 Governing Equations

The momentum, fluid mass, and energy balance equations can be combined with the above constitutive
and transport equations and yield the following field equations. First, substituting these small deformation
relationships into Eqn. (5.34):

1
g =E(u,.j+uﬁ) (5.41)
Ey = Uy (5.42)
The deformation field equation is obtained from Eqn. (5.34) and (5.36):
2Ga,, (1+v)

Gu. .. +

i,ij

u, . —ap, T.=0 5.43
1oy i TP 3(1-2v) G4

Second, for the fluid-diffusivity field equations, differentiating Eqn. (5.30) and (5.42) twice leads to:
I+v I+v
O-ii,jj =2G (Egkk’jjj — 3ap,jj — 1—2v ZGamZJj (544)
(5.45)

Differentiating Eqn. (5.43) with respect to x; solving for u;; and substituting into Eqn. (5.45) and then
into Eqn. (5.44), the compatibility equation can be obtained in terms of stresses:

+2a(1—2v) +4G(1+V)a T —o 5 46
o.. . ; L= .
i, jj I—V p,JJ 3(1—V) m=,jj ( )

Differentiating Eqn. (5.43) with respect to x; and substituting into Eqn. (5.46), the following equation can
be described:

Epie, iy = Wi jj

B a(l—2v)Hi_2a(l—2v)} ﬁ_&iv)a ,

= =y, AT 5.47
T2G(1+v) [\ B (1-v) m’ff} ALy 47)

Then, solving for p; from Eqn. (5.47) and substituting into Eqn. (5.38), the fluid diffusivity field equation

can be obtained as:
. 20 (1-2v)
_
°=¢ {4&*( T ‘%]Tw} (549)

where, C 1 is the fluid diffusion coefficient, which is defined as:

. 2kBG(1-v)(1+v,)
/= (5.49)
ou(l-v,)(v,-v)
Then, differentiating Eqn. (5.35) with respect to time and substituting into Eqn. (5.38) with Darcy’s law,
Eqn. (5.37), and applying the relationships of oy and &y, the fluid diffusion field equation can be
expressed in terms of pore pressure:
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where M is the Biot modulus, which is defined as the change of fluid contents as a result of pore pressure
variation under constant volumetric strain per unit volume.

_ 2G(v,-v)
a’(1-2v)(1-2v,)
Finally, for the thermal diffusivity field equation can be obtained from Eqn. (5.39) and (5.40) as:

(5.51)

T=IVT (5.52)
where ¢’ is the thermal diffusivity coefficient for the bulk material.
kT
¢’ = (5.53)
pC

where p and C, are the mass density and specific heat capacity for the bulk material, and &” is the thermal
conductivity.

Finally, three governing equations (Eqn. (5.48), (5.50), (5.52)) for the coupled THM processes are
derived from the momentum, fluid mass, and energy balance equations combined with the constitutive
and transport equations above. For convenient forms for the fully coupled Thermo-Hydro-Mechanical
model, following governing equations could be written;

(K+ng(V-u)+GV2u+m(an+7/1VT)=O (5.54)
. . koo ;
a(V-u)+B,p-—Vp-y,VT=0 (5.55)
7
T-cVT=0 (5.56)

where u is displacement vector and m=[1,1,1,0,0,0]" for 3D problems. The coefficients in Eqn. (5.54) and
(5.55) are defined as following;

a-¢ ¢

= 2 5.57
B, X + X, (5.57)

n=Ke, (5.58)
7, =aa,+(a,-a,)p (5.59)

Then the coupled equations are usually treated by numerical solution techniques using FEM, BEM, FDM,
and FVM for practical conditions such as nonlinearity, anisotropy, heterogeneity, and complex
geometries (Borgesson et al., 2001; Li, 1998; Millard, 1996; Noorishad and Tsang, 1996; Noorishad et al.,
1992; Rutqvist et al., 2001; Schrefler, 2001). Among these numerical methods, FEM formulation is
popularly used; and previously, the 3D, fully coupled, and nonlinear THM model has been developed
within a finite element formulation using damage mechanics (Lee, 2011; Zhou and Ghassemi, 2009).

3.4 Poroelastic Parameter Changes

Since mechanical behavior of the fully coupled THM model is controlled by damage mechanics. It is
necessary to consider the change of the poroelastic parameters such as bulk modulus, Biot’s coefficients,
and other related parameters (f,, y;, y2) and when failure is detected and stress-strain relation is no longer
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elastic. So, based on the status of the effective stress at a gauss point of an element, type of failure is
decided by the Mohr-Coulomb failure criterion with tension cut-off and damage variables are calculated
by the damage evolution law proposed in Chapter 3. We used linear 3-node triangular element for 2D
simulation and 4-node tetrahedron element for 3D simulation in this thesis and both triangular and
tetrahedron elements have one Gaussian point. So, according to the damage variable at the gauss point of
the failed element, the poroelastic parameters are newly calculated. Since the effective Young’s modulus

is updated by E':(I—D)E , the bulk modulus should be re-calculated by K = E'/ 3(1—21/). In

addition, we assumed that Biot’s coefficient is changed to 0.99 when the damage variable is over 0.8. By
the changes of the bulk modulus and Biot’s coefficient, related parameters (5, y;, y.) are updated
accordingly.

3.4.1 Time step of the coupling process

The complexity of the THM problem is often attributed to uncertainty of parameter values and
unpredictable geometrical complexities of rock fractures with various dimensions under thermal,
hydraulic, and mechanical loadings (Jing, 2003). Numerically, the coupled THM process is a challenge
issue because of wide differences among the three processes in temporal and spatial scales (Tsang et al.,
2004). While the thermal effect has relatively longer time and spatial scales, mechanical effect has a
shorter time scale. This is because mechanical response can transfer with the speed of elastic waves, and
various dimensions of fractures, joints and faults dominated its deformability (Tsang, 1991). Also,
hydraulic effect is sensitive in both small-scale pore distribution and fracture networks with longer flow
and solute transport time. Hence, finding an appropriate value for the time step is a critical aspect of the
coupling process. The time increment should be small enough to capture the rock deformation accurately
because of the high speed of stress waves in porous rock, however, too small of a time increment is not
suitable for the fluid flow and the heat transfer equation as changes from one time step to another would
be too small. Therefore, generally the smaller time increment is preferred to use. Moreover, smaller time
step requires larger computational costs in time-dependent problems, thus the largest possible time step
should be chosen by stability and accuracy analysis.

3.4.2 Fluid flow analysis in fractures

A common approach to fluid flow analysis in rock fractures is to assume idealized parallel plates
separated by a constant aperture. In that approach, as described in Figure 16, fracture propagation is
driven by injection of an incompressible Newtonian fluid at a constant volumetric injection rate Q;. The
incompressible fluid is described by the Poiseuille (lubrication) equation (Batchelor, 1967). The
lubrication equation can be used to solve the fluid pressure distribution along the fracture. Fluid flow
inside the fracture length depends on the aperture, roughness of the walls, and geometry of fractures.
When the aperture is large and the fracture surface is smooth, large bulk flow dominates and Darcy’s law
is no longer valid. The various laboratory results showed that the assumption of laminar flow in the
fractures is valid for Reynolds number less than about 2300 (Witherspoon et al., 1980). The Reynolds
number can be defined for fluid flow in the fracture:
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where u is an average flow velocity in the fracture, 4, the fluid viscosity of the fracturing fluid, w, the

Re (5.60)

fracture aperture, and p is an density of the fracturing fluid. The lubrication equation for the fluid flow

1s described as:

3

- _L% (5.61)

124, ox

Two-dimensional fluid flow in the fracture plane is expressed as:

124,

V2pf(x9y7t):_3—q(x’yat) (562)
Wf (.X', y: t)
3
w,(x, y,t)
v, ./12# V.0, (x, 1) =, (x,0,t)=0, (1) (x—x,,y—,) (5.63)
’

iy op,
Boundary conditions, e =0 on 04,
" A

0O, (1) =0, at injection point
where V, is the two-dimensional divergence operator in the fracture plane, g, is the fluid viscosity, v, is

the leakoff fluid from the fracture plane, ps(x,y,t) is the fluid pressure in the fracture, w, is the fracture
aperture, Q,(¢) is the fluid injection rate, and A, is area of the fracture plane.

So, the fluid flow inside fractures is governed by the Poiseuille equation. The continuity equation and
boundary conditions for the fluid flow in the fracture plane describe the point where the fluid injection
rate is equal to the fluid flux at a wellbore and no flow at the crack tip is assumed. This boundary
condition is valid when the fracturing fluid is fully filled inside the fracture. That is, there is no fluid lag,
defined as an empty zone ahead of the fluid front to the fracturing tip, in the fluid flow analysis. If the
fluid lag is included, there is additional unknown of the problem (Garagash and Detournay, 2000).
Tracking of both the fluid front and the fracturing tip is required to account for the fluid lag, however it is
not easy since the fluid lag length is unknown. In addition, the no fluid flux boundary condition is
difficult to implement in finite element methods, because an arbitrary constant pressure assumption
between the fracturing tip and neighbor is impracticable in the coupling algorithm. Because the pressure
level inside the fracture is unknown, the zero flux boundary condition is not applicable to use in FEM.
Therefore, zero pressure boundary condition at the fracturing tip is assumed instead of the zero flux
boundary condition. Due to opening mode of fracture by hydraulic pressurization near the fracturing tip,
pressure level at this region is near zero so the zero pressure assumption is appropriate and practicable to
use in FEM.
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Figure 16. The fluid-driven hydraulic fracture propagation process.
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3.4.3 Fluid leakoff

Leakoff during hydraulic fracturing has been shown to significantly affect fracture growth (Economides
and Nolte, 2000). The leakoff volume affects the efficiency of the treatment. The injection efficiency, &iy;,
can be defined as the volume of fluid in the fracture divided by the total volume of injected fluid. The
volume of fluid in the fracture can be defined as the total volume of injected fluid minus the leakoff
volume.

= (5.64)

where V; is the total volume of the fractures, V; is the leakoff volume, and V; is the total injected fluid
volume. In this paper, the fluid lost by the injected fluid leaking off into the rock matrix is expressed
using Darcy’s law:

_k, Ip(x,y,2,1)
Ly on

where £, is the rock matrix permeability and # is the normal direction of the fracture plane. The pressure

1z (x,y,t) = (5.65)

differential between the fracture and the rock matrix and the permeability change of the rock formation
are key factors that affect the volume of the leakoff.

3.4.4 Numerical modeling of fracture propagation

In this thesis, the fracture propagation model was developed based on three requirements: a possibility to
describe continuous crack geometry, a capability to apply a moving-boundary scheme for transition of
hydraulic forces through fracturing path, and simplicity of implementation with low computational effort.

To satisfy these requirements, a few guidelines for the fracture propagation model have been established.
First, the crack path can only propagate through the inside of elements, as with cohesive element
modeling and XFEM. Second, for low computational cost, the crack path should be expressed without
modifying the mesh information. No redefinition of the element mesh is required after crack propagation.
Third, there is no pre-assigned crack path, which means cracks can grow in arbitrary directions without
restriction; this approach puts no limitation on the direction of the crack propagation. Last, to apply a
moving-boundary scheme of hydraulic forces, crack surfaces are assumed inside the cracked element, and
the direction of crack propagation is decided by the proportional direction of the maximum principal
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stress at a fracture tip. Furthermore, a specialized 2D and 3D crack partitioning algorithm was employed
to calculate the splitting surface in the cracked element for several scenarios.

When the fully coupled thermo-hydro-mechanical (THM) analysis is modeled via finite-element methods
(FEM), an 8-node quadrilateral element is recommended for use; the 4 corner nodes are used for pore
pressures and temperature, while all 8 nodes are used for displacements (Aboustit et al., 1985; Christian,
1977). However, in our fracture propagation modeling, the conventional rectangular element mesh is not
efficient, because our fracture propagation model assumes that the crack path can grow arbitrarily without
redefining mesh information. This approach is hugely beneficial for computational time and simplicity in
numerical implementation. From the standpoint of the fracture propagation approach, if a rectangular
mesh is used, the fracture propagation path shows a zig-zag crack band (Figure (a)). Moreover,
mathematical formulation of the EPM is unavailable and should be developed. Splitting a rectangular
element is more complicated than using a triangular element and it may increase computational costs. A
triangular mesh (Figure 5.1(b)) clearly represents the arbitrary fracture propagation more flexibly than a
rectangular mesh. By the same token, in the 3D crack propagation problem, a 4-node tetrahedron element
has more flexibility to express the arbitrary growth of the 3D crack than an 8-node or 16-node cubic
element. We used 3-node triangular and 4-node tetrahedron elements for the fracture propagation model
in this project.

______________ Crack tip 4 4
/. """ location T/

Crack path

(a) Rectangular element (b) Triangular element
Figure 17. Description of fracture path by mesh type (re-drawing from (Bazant and Planas, 1997)).

3.4.5 Fracture initiation for hydraulic fracturing

Stresses applied to the rock by various loading mechanisms introduce crack nucleation, propagation,
interaction, and coalescence, but there is no universally accepted theory for the fracture initiation and
propagation. Practically, fractures can be initiated by various failure mechanisms such as tensile, shear
and compaction. Among these failure mechanisms, the tensile fracture is dominating failure mechanism
in the hydraulic fracture propagation. So, we assumed there is only tensile mode fracture available at a
fracture tip. The fracture initiation criterion is checked at Gaussian point of the crack tip elements. For
capturing the hydraulic fracturing failure of the brittle rock, the most commonly used criterion is the
maximum tensile strength criterion, defined as:
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o, 2—0,, (5.66)
where o7 is a tensile strength of material, and 0 is the minimum principal effective stress, which is

also the maximum effective tensile stress for poroelastic analysis. So, we checked the fracture initiation
criterion at a fracture tip. Once the fracture initiation criterion met, the fracture tip is extended by the
fracture propagation algorithm, described in following.

3.4.6 Fracture propagation algorithm

Once the fracture initiation criterion was met at crack tips, the hydraulic fracture is extended with certain
length and direction as shown in Figure 19. . So, tracking the fracture propagation is one of the main
issues for hydraulic fracturing simulation. Developing a tracking algorithm for the crack-tip location and
path information was necessary to apply correct boundary conditions for fluid pressure inside fractures
and for estimating the propagating location of fracture. In order to extend the fracture, crack length
criterion for quasi-static crack increments and crack direction criterion for angle of the fracture
propagation are required.

First, the crack length criterion is adopted from Paris’ law, which is proposed to compute a crack
increment by the stress intensity factor under fatigue stress regime (Paris and Erdogan, 1963). Usually,
the crack tip is assumed to advance in a quasi-static manner meaning that the crack is propagating at a
constant speed in the hydraulic fracture propagation simulation. So every time a crack tip fails, the crack
is assumed to advance by a fixed length, but crack should grow at different speeds during various stages
because the energy required to propagate the crack could be different at different stages, particularly
through heterogeneous materials. So, we adopted the propagation criterion suggested by (Renshaw and
Pollard, 1994) to extend crack tips at every step. The crack increment is calculated by the energy
accumulated at the crack tips.
Utip ‘

ladv lmax U (5 67)

max

where Uy, is the strain energy accumulated at the crack tip, Uma is the maximum stain energy
concentration at the crack tip, /4, is an increment crack length, /,,x is the maximum increment crack
length at any propagation step, and y is an empirical velocity index. The crack incremental method is a

Paris-type law (Paris and Erdogan, 1963). Renshaw and Pollard (1994) defined /.« as the initial flaw size,
because they assumed the maximum incremental length could be representative of the fracture processing
zone (Irwin, 1958), which is a nonlinear zone characterized by progressive softening (stress decreases as
increasing deformation). Renshaw and Pollard (1994) demonstrated by experimentation that the empirical
velocity index of 0.35 yields realistic fracture propagation for the opening mode fractures of brittle rock.
However, there is no detail information for the hydraulic fracturing simulation, so that we assumed input
parameters by Renshaw and Pollard’s crack incremental method. We assumed that /,,,, is same as a pre-
existing crack length and the empirical velocity index is assumed as 0.35. In addition, Uy, the maximum
strain energy concentration at the crack tip, is assumed ten times larger than U,;,, which is the minimum
strain energy required to advance the crack tip and defined;

1 1
Umin =EGT8T =EGT2 (5.68)
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where 07 is the tensile strength of rock, £ is Young’s modulus.

Second, the fracture propagation angle is assumed to follow the direction of perpendicular to the
maximum circumferential tensile stress. It is determined by the normal direction of the maximum tensile
stress. Because the fracture propagation induced by hydraulic pressurization is usually attributed to tensile
mode opening, the orientation of the failure may simply be determined by the maximum principal stress
direction as described in Figure 18. The principal angle is computed at the crack tip (Figure 19). The
rotation angle, 6,, is calculated using the normal stresses and the shear stress as follows:

tan (20, ) =—2— (5.69)

Figure 18. Illustration of the maximum principal stress direction.

‘\ 0,
ladv -------
\'\\_Crack tip .4 <
location
Pre-existing crack ======---- Newly extended crack

Figure 19. Illustration of crack propagation with crack increment and angle.

3.4.7 Moving boundary scheme using element partition methodology (EPM)

Another challenging issue for the hydraulic fracture propagation is applying transient boundary conditions
on the propagating fracture surfaces at every step. The hydraulic pressure through the updated fracturing
path, which is computed by the fluid flow analysis, must be applied as a boundary condition for the rock
deformation analysis. So, a “quasi-static” hydraulic loading algorithm is used to provide the proper
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boundary conditions for fluid pressure inside fractures. In this approach, when the propagation criterion is
satisfied at the crack tip, the fracture geometry is extended by the propagation algorithm and the new
crack geometry is calculated by EPM algorithm. Figure 20 briefly shows the boundary procedure to
transfer from internal fluid pressure distribution to nodal forces. The pre-existing and newly propagated
cracks are identified as equivalent crack elements (Zhang and Chen, 2008). The major features of the
quasi-static hydraulic loading algorithm are identifying the newly extended fracture surface using the
intersection points on the edges of the cracked element and applying the resulting nodal forces on the
equivalent crack elements.

The EPM is used to compute the fracture areas subjected to the hydraulic pressurization. In this
methodology, a crack plane intersecting the existing triangular element is defined using points on the
edges of the existing element. When an element is cut by the newly propagated crack plane, the
intersection points on the element edges are stored and updated at every time step. The EPM takes
advantage of the continuous geometric features in both triangular and tetrahedron elements to construct
fracture surfaces when a newly propagated crack path is cut through the triangular element (Huang and
Zhang, 2010; Zhang and Chen, 2008). So the method does not require redefined mesh information during
crack propagation, and the total number of degrees of freedom and the dimensions of the general stiffness
matrix are not changed. The greatest advantage of the fixed mesh approach is low computation time and
easier to encode for numerical implementation. However, the fixed meshes can lead poor definition of the
fracture tips when the mesh size is too big, so that moderate size of the mesh is desired to use the EPM
approach. When mesh size is too coarse to represent the fracture tips correctly, special care like the sub-
mesh scheme near the fracture tip should be employed to obtain accurate results in the fixed mesh case.
However, the sub-mesh scheme is computationally expensive and difficult to implement. Another
disadvantage of the fixed mesh approach is resolution issue. This is because fracture elements
representing the fracture geometry is too few at the early time, while the fracture elements are too many at
the later time. In order to reduce the resolution issue, re-meshing scheme can be employed to make
efficient use of computation time by controlling number of elements. Since the re-meshing method has
great benefits to save computation time and to reduce the resolution issue, the method is recommended to
use for larger scaled problem (i.e. reservoir scaled problem). However, developing the re-meshing scheme
is not quite easy. Especially, the 3D re-meshing algorithm may require lots of efforts and mathematical
challenges. As a result, we conclude that the fixed mesh approach is more desired than other approaches
(sub-mesh, re-meshing), because numerical domains shown in this thesis is relatively small scale.
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Figure 20. Schematic illustration of boundary condition description using EPM ((Huang and Zhang, 2010;
Zhang and Chen, 2008).

4. Implementation of Damage Mechanics Hydraulic Fracturing Model

As mentioned above, the hydraulic fracturing could be defined as a fully coupled fluid-solid interaction
problem. Each fluid and solid part is calculated by a separate solution, so that it is necessary to construct
coupling algorithm between the fluid and solid analysis. When constructing the coupling algorithm
between two analyses is handled, the consistency of solutions from these analyses remains an important
issue. Especially for the hydraulic fracturing problem, the mechanical analysis of fracture opening is
coupled with the fluid flow analysis. That is, the fluid pressure obtained from the fluid flow analysis is
used to compute the fracture opening in the mechanical analysis. So, the opening amount should be
consisted with the amount of injected fluid into the fractures by the mass conservation law. Since the fluid
pressure and the fracture opening are calculated by a separate analysis, the iterative method is necessary
to introduce to get converged solution between the fluid and solid analysis.

The coupling of the solution scheme for the fluid-driven fracturing problem was studied previously.
Numerical modeling of the hydraulic fracturing was studied using mathematical formulation for the fluid-
driven fracturing problem of simple planar geometry (Adachi and Detournay, 2008; Detournay, 2004).
The fluid-driven propagation in poroelastic media was simulated using FEM technique and the influence
of the poroelastic effects on fracture propagation was studied (Boone and Ingraffea, 1989; Boone et al.,
1991).
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The major difficulty in solving the coupled processes is the non-linear relationship between the fracture
opening and the fluid pressure (Adachi and Detournay, 2008). Boone and Ingraffea (1990) proposed a
partially coupled solution scheme with constant time step (Boone and Ingraffea, 1990). Adachi (2008)
adopted the Picard iteration method (Picard, 1890) to solve the coupled fluid-driven fracturing problem.
The Picard iterative process is useful to get approximation solution using iteration from a given trial
solution. Figure 21 is a flowchart of the fully coupled iteration process.

START
1

Input injection rate, g,

[
Estimate initial p(0)
1
Calculate fracture aperture,w,(0)
Update time step, #,(0)

Calculate fluid pressure, py(n)
Calculate leak-off, g;(n)

L

Compute Equivalent node force
Calculate fracture aperture,wy(n)
Update time step, #,(n)

Check convergence
gr< tolerance

wy(nt1)= ww (n)+H(1- @)wy(n-1)
Update time step, #(n+1)

Fracture propagation model
Update crack information
l
Damage model (Failure analysis)
Modity stiffness/parameters

1;;> treatment time

END

Figure 21. Flow chart of the fully coupled solution procedure.

Once a numerical model is constructed with an initial fracture, and input material parameters (£, v, k,, etc)
and necessary boundary conditions (in-situ stresses, Injection rate, etc) are estimated, it is needed to get a
converged solution within a given initial fracture geometry before advancing to the next step. We used the
iterative method to achieve the converged solution.
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The basic procedure of the iterative process is straightforward: i) estimate initial fluid pressure
distribution in the fractures, p,(0) and initial time step for an injection time, #,(0); ii) solve the coupled
poroelastic equation for fracture opening, wy(0) and update time step, #,(0) using the total mass balance
equation (Eqn. (6.2)) ; iii) solve the fluid flow equation for new fluid pressure inside the fractures, p(n)
and calculate leakoff rate, g; (n); iv) solve the poroelastic equation for new fracture opening, wy(n) and
update the time step, #, (n) using the total mass balance equation (Eqn. (6.2)); v) the convergence of
iterations is examined with given tolerance of the average error in the fluid pressure distribution in
fractures as described in Eqn. (6.1), if not converged, return to iii) re-solve the fluid flow equation with
the newly updated aperture profile and the time step, w(n+1) and #(n+1). The newly updated aperture

profile is computed by w, (n + 1) =ow, (n) +(1 - a)) w, (n-l) , where w is a convergence parameter, 0<

 <0.5, to control extreme changes of the solutions. #(n+1) is also calculated based on the newly updated
aperture profile using the total mass balance equation (Eqn. (6.2)). If the solution converges within a
given tolerance, the iteration process is terminated and the fracture propagation and failure analysis
processes, described in below, are begun to update the crack information (tip location, path).

The convergence of the iteration is determined by the average error in the fluid pressure during the
iteration process (Adachi and Detournay, 2008; Adachi et al., 2007; Taleghani, 2009).

NE
Z ‘pf(i) (n) ~Pra (n- 1)‘
g =+ NE
;‘pm) (n)‘

where ¢ is an average error of fluid pressure distribution during iteration, p,(n) is the fluid pressure at the
current iteration, and p,(n-1) is the fluid pressure at previous iteration.

< tolerance (6.1)

The time step in the simulation is calculated from the total mass balance. The total injected fluid volume
is a summation of the fracture volume and the fluid leakoff volume. Schematic description of the
summation of the leakoff volume is described in Figure 22:

qinj .ts = Vf + QI ’ ts (62)

where ¢, is the time step, V; is the fracture volume, ¢;, is an injection rate as an input value, and g; is
calculated by summation of the leakoff volume on the fracture surface from Eqn. (5.65). The total leakoff
volume is computed by a following equation:

1 o ko, A

=q, =2 |~ 4 (p.— P (6.3)
2™ Z;L Hy ! ( ’ )J

where nf'is the number of fracture elements, A»"f is the area of fracture surface in the fracture element, p ,’n

is an average of pore pressure in rock matrix, and p} is an average of fluid pressures in the fracture

element. So, we know the fluid injection rate, g;,;, the volume of the fractures, };, and the leakoff volume,
q- Then, the time step, ¢, can be obtained from Eqn. (6.2).
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Figure 22. Schematic description of leakoff flow and summation.

Before proceeding to the fracture propagation analysis, the crack initiation criterion is examined at the
crack tips. If the maximum tensile stress at the crack tip does not meet with the maximum tensile failure
criterion, the hydraulic fracturing simulation is terminated and we should change input parameters such as
fracturing fluid injection rate or viscosity of the fracturing fluid to increase the hydraulic fracturing. Once
the crack initiation criterion is met, the hydraulic fracture will be extended based on quasi-static crack
growth assumption. In the fracture propagation process, the hydraulic fracture is extended by the
propagation angle and the incremental length computed from Eqn. (5.69) and (5.67). And then, fracture
elements are identified by the newly extended crack path, and the cutting fracture surfaces are calculated
by EPM for equivalent nodal forces of the hydraulic pressurization inside the fracture elements. In this
process, the crack path is traced and stored information of the fracture elements at every time step.

One of the advantages of our model is using fixed mesh information for both solid and fluid analysis.
That is, it is unnecessary to modify the size of global matrix at every time step, and this feature is
beneficial for significant savings of computational cost when a large geological problem is considered. In
the fluid-flow analysis, the hydraulic conductivity and pressurization are continuously updated using the
crack path information. If the hydraulic fracture is extended, fracture elements are activated in the global
matrix. For fluid flow modeling inside the fracture, the fractured elements are considered as fluid
networks. As for applying boundary conditions on identified crack tips and injection points, the fluid flow
equations are solved in this geometry.

Apart from the crack propagation model, intact elements in the rock matrix are examined by the failure
criterion to identify failures. Beside with the crack propagation path, the rock is failed when the failure
criterion is met. Especially in a heterogeneous reservoir, the rock failures near the primary fracturing path
by the hydraulic pressurization is increasing and the failure events have critical role for the leakoff rate
increase. Based on state of the effective stress at the intact element, the M-C failure criterion provides
type of failure and can calculate the damage variable by a damage evolution law proposed in Chapter 3.

By the calculated damage variable, the effective Young’s modulus is calculated by E’ :(l—D)E .

Poroelastic parameters (f,, y;, y2) related with bulk modulus and Biot’s coefficients updated in the failed
elements as described in Chapter 4.

4.1 Model Verification

The hydraulic fracture propagation is a complicated and coupled problem of fluid-solid interaction; thus,
it is very difficult to find suitable analytical solutions. In the fluid-driven fracture problem, the correct
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relationship between the fracture aperture and the fluid pressure is important. According to the lubrication
theory, the fluid pressure distribution has cubic relationship with the fracture aperture, so that the solution
from the lubrication equation is quite sensitive to the fracture aperture value. Hence, to verify the
numerical model, the fracture opening and stress near the crack tip are compared with available analytical
solutions using a pressurized, penny-shaped crack problem (Sneddon, 1946).

4.1.1 A pressurized crack

When the infinitely thin crack is subjected to uniform pressure Ap at the crack surface described in Figure
23, the stress and displacement fields are given by the solution with Possion’s ratio v and shear modulus
G along the x-direction (Sneddon, 1946).

2Apa(l—v) x’

D,(x,07) = l—a—2,0<x<a (6.4)

where D, is a displacement in y-direction, a the half-length of the fracture, and x the computational point
within the half length of the fracture. The normal stresses o,, along the uncracked part of the crack plane
are expressed as:

Ap

o ———2—Ap,x>a (6.5)
/1_L
a2

The rock material is assumed as a linear elastic material and fracture length is 2 m within a 10-mx10-m
rectangular model. The material parameters are set as described in Table 1 and uniform pressure, Ap=5
MPa, is applied at the fracture surface as a boundary condition. The uniform triangular mesh is used for
the numerical solution, and element size is 0.1-m x0.1-m each. Figure 24 compares the numerical and
analytical solutions about the fracture opening and normal stresses near the crack tip under uniform
pressurization on the line crack. Therefore, the fracture permeability estimated by the lubrication equation
is validated, since the simulated fracture opening has good agreement with the analytical result in Figure
23. However, error increased for the numerical results near the crack tip is, because a uniform mesh was
used instead of a fine mesh near the crack tip (Figure 23).

Table 1. Material parameters for the verification problem

Inputs Values
Young’s Modulus, £ (GPa) 37.5
Poisson ratio, v 0.25
Shear Modulus, G (GPa) 15
Number of Elements 20,000

Yy i

A
a
I N e =

X
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Figure 23. Uniformly pressurized crack problem
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Figure 24. Comparison between numerical and analytical solutions for normalized fracture opening and
normal stresses distribution.

4.1.2 2D biaxial tension

The center-cracked plane problem under uniform biaxial tension (uniform pressure, Ap=5 MPa) is shown
in Figure 25. Analytical solutions of the fracture opening and the normal stresses o,, under biaxial tension
are same in described in Eqn. (6.4) and (6.5) (Sneddon and Elliott, 1946). In Figure 26, it is observed that
the numerical results have good agreement with the analytical solutions.
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Figure 25. Center-cracked plane subjected to equally distributed biaxial tension.
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Figure 26. Comparison between numerical and analytical solutions for (a) normalized fracture opening
and (a) normal stresses distribution.
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4.1.3 3D pressurized elliptical crack

For the model verification of the 3D model, the same material properties in Table 1 were used, but a
circular crack, »=0.4 m, was placed in the center of the 2-mx2-mx2-m cubic model. Uniform pressure
Ap=10 MPa was applied on the elliptical crack surface. The model included 16,000 (20x20x40)

structurally meshed tetrahedron elements. Same as previous 2D examples, the numerical results of the 3D
model are consistent with the analytical solutions in Figure 27.
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Figure 2. Comparison between numerical and analytical solutions for normalized fracture opening of the
uniformly pressurized elliptical crack.
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5. Numerical simulation of Compression Tests

Generally, stresses applied to brittle rock by various loading mechanisms cause crack nucleation,
propagation, interaction, and coalescence in different ways. Especially, when the applied forces are
compressive, the rupture paths are governed by shale-localized failures. These rupture paths are also
variable and depend on material deformation properties and strength and heterogeneity (Hoek and Brown,
1990; Jaeger et al., 2007). Characterization of the fracture growth pattern in a brittle and heterogeneous
reservoir is a difficult and challenging issue because of the complexity of rock properties and physical
aspects of rock failure and fracture. Frequently arbitrary and randomly grown fractures are observed in
well stimulation of petroleum and geothermal reservoirs. So numerical modeling of core-sample
experiments is useful to investigate the suitability of the damage model of heterogeneous rocks and the
numerical core analysis is applicable to use in a larger geological problem.

The elastic/brittle constitutive model of brittle rock, described in Chapter 3, is used to express the
confining-dependent stress/strain relation of core samples. The multistage triaxial tests of Newberry Tuff
and AltaRock Granite core samples performed by (Wang et al., 2012a). The multistage triaxial tests were
performed at five different stages of confining pressure to determine the rock properties. In each stage
except the last stage, the sample was unloaded when the maximum value of volumetric strain was
observed on the stress-volumetric strain curve. During the last stage, the rock was loaded until complete
failure to measure the compressive strength of the rock at the prescribed confining pressure. The
confining-dependent stress/strain curves of the Tuff and Granite samples are listed in Figure 28-29. Tuff
sample appears to be hard, inelastic and brittle, while Granite sample shows hard, elastic and brittle. Rock
mechanical properties and Mohr-Coulomb parameters (friction angle, cohesion) obtained from the
multistage triaxial tests (Tables 2 and 3) are used as input parameters for the numerical modeling of the
triaxial compression tests. The heterogeneity of the rock was characterized using the Weibull distribution
function.
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Figure 28. Stress-strain relations of Tuff after Multi-stage triaxial test (Wang et al., 2012a).
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Figure 29. Stress-strain relations of Granite after Multi-stage triaxial test (Wang et al., 2012a).

5.1 Laboratory Multistage Triaxial Test of Tuff and Granite

Laboratory experiments on rock specimens give general stress/strain curves under different confining
pressures Figure 28 and 29. The data used in this work came from triaxial laboratory experiments that
provided input data of Young’s modulus, Poisson’s ratio, estimated compressive strength, uniaxial
compressive strength, friction angle, and cohesion, all of which were incorporated into our numerical
model. Relationships between petrophysical, mechanical and failure properties are important in reservoir

development problems including wellbore stability and hydraulic fracturing.

Table 2. Multistage triaxial test data of Tuff (Wang et al., 2012a).

P, psi 1500 2000 2500 3500 4500

’ (10.34 MPa) (13.79 MPa) (17.24 MPa) (24.14 MPa) (31.03 MPa)
Compressive  strength, 24,380 26,758 29,135 33,890 38,645

. (168.14 (184.53 (200.93 (233.72 (266.52
pst MPa) MPa) MPa) MPa) MPa)
E. psi 7,807,493 7,940,565 7,544,256 7,099,090 6,822,836

’ (53.84 GPa) (54.76 GPa)  (52.03 GPa) (48.96 GPa)  (47.04 GPa)
Possion’s ratio, v 0.32 0.34 0.37 0.39 0.41
UCS, psi 12,818 (88.38 MPa)
Friction angle 40.7

Cohesion, cr (psi) 3,955 (27.27 MPa)
Inclinati

nf:llnatlon angle of 65.4°
failure plane, B
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Table 3. Multistage triaxial test data of Granite (Wang et al., 2012a).

Pe, psi 500 1500 2500 3500 4500
(3.45MPa) (10.34 MPa) (17.24 MPa) (24.14 MPa) (31.03 MPa)
Compressive  strength, 15873 24,080 35,024 40,827 52,875
. (109.47 (166.07 (241.54 (281.56 (364.65
pst MPa) MPa) MPa) MPa) MPa)
E. psi 4,996,970 6,165,314 6,741,385 6,918,957 6,998,963
’ (34.46 GPa) (42.52 GPa) (46.49 GPa) (47.72 GPa) (48.27 GPa)
Possion’s ratio, v 0.37 043 0.47 0.47 0.46
UCS, psi 11,246.59 (77.56 MPa)
Friction angle 55.3
Cohesion, cx (psi) 1,756.36 (12.11 MPa)

Inclination angle of

72.7°
failure plane, B

5.1.1 Heterogeneity of Tuff and Granite samples

Petrographic analyses are conducted to describe rock textures, classify and determine the relative amounts
of mineral constituents, to identify minerals, and to detect evidence of mineral alteration (Wang et al.,
2012a). The identification of mineral constituents and determination of texture and micro-structural
features allows the recognition of rock properties that may influence the mechanical properties of the rock.

According to the petrographic analysis, the tested Tuff specimen has an aphanitic fine-grained texture
(Wang et al., 2012a). In Figure 30, the images of Tuff show a heterogeneous rock containing different
types of grains and various minerals. The Tuff mainly consists of two types of minerals and may have
rock properties in brittle with fine-grained crystals. In addition, grain size, grain shape, texture and
structure were randomly distributed. All these heterogeneity factors could affect fracture pattern creation.
Effective rock properties are a function of rock composition and properties of the components. The
description of petrographic images in Figure 31 is about the Granite sample and thin section of the
Granite is composed of course-grained quartz, hornblende, plagioclase, biotite, and muscovite minerals
with grain sizes ranging from 0.1 to 0.35 um. The quartz, feldspar, and biotite are dispersed with various
sizes. As explained previously, in order to represent the rock heterogeneity into a numerical domain.
Random variables generated by Weibull distribution function are distributed to material strength and
Young’s modulus as multiplying the random variables at Gaussian point in an element. So, in the finite-
element (FEM) formulation, the microscopic heterogeneity can be described only at the elemental scale.
Therefore, further improvement, would require the correlation of Weibull parameters with rock
composition from mineralogical and textural characterization. This is an important issue for the practical
modeling of rock samples; however, the issue would require extensive rock mechanical and petrological
analysis and is beyond the scope of this thesis.
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Figure 30. Petrographic images of Tuff rock from Newberry (Wang et al., 2012a).

Figure 31. Petrographic images of AltaRock Granite by (Wang et al., 2012a).

5.1.2 2D numerical modeling for triaxial tests

Two-dimensional numerical domain and 10,000 uniformly meshed triangular elements were used for
triaxial compression Figure 32. 2D plane strain is used to approximate an axial section through an
axisymmetric triaxial test specimen. This plane strain approximation is commonly taken by other
researchers (Fang and Harrison, 2002a; Tang et al., 2000; Wang et al., 2000; Yuan and Harrison, 2005).
In order to express the fracture pattern of the rock specimen, the 2D plane strain approximation is suitable
since 2D axi-symmetry model cannot represent a fracture pattern throughout the specimen. Ultimately 3D
numerical model might be the best for the triaxial compression tests, however the 3D simulation still
requires huge computational costs despite of recent development of computational capacity and lots of
mathematical and numerical difficulties such as uncertainty of heterogeneity effect by three-dimensional
micromechanical grains, and highly non-linear and anisotropic mathematical formation are remaining to
develop 3D model. Therefore, numerically efficient 2D plane strain model is preferred to use in this
research and development of suitable 3D numerical model remains for future improvement.

Boundary conditions of the compression test were that the bottom surface of the specimen was restricted
in the y-direction, and force was applied on the top surface of the specimen using the same displacement
increment as in an experimental test, and confining pressure was applied to both sides Figure 32(a). For
heterogeneity characterization, we used random variables generated by Weibull distribution function,
since it gives wide possibilities. In order to obtain approximate values of Weibull parameters, few pre-
tests are performed. For example, if three cases of m;=0.5, 1.0, 3.0 were simulated, we can estimate
appropriate values of Weibull parameters. For Tuff sample, we obtained m;=0.9, a,;=10 for stiffness
distribution, and m,=0.9, a,=15 for strength distribution. For Granite sample, m,=0.8, a;=10 for stiffness
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distribution, and m,=0.9, a,=10 for strength distribution were estimated. In Figure 32 (c), average value
of stiffness is about 51 GPa, which shows that stiffness was distributed to each element by random

variables. Darker colored elements represent higher stiffness, while lighter colored elements represent

lower stiffness.
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Figure 32. Numerical simulation model for triaxial compression tests (a) Boundary conditions, (b) Mesh
(NE=10,000), (c¢) Heterogeneity index.

Table 4. Material parameters and input parameters for 2D triaxial.

Inputs

Values

Element type

Young’s Modulus, GPa
Poisson ratio

Num. of elements

Size of element

Aspect ratio (D:H)
Cut-off strength, MPa

Incremental displacement

Weibull parameters

Triangular

53.84 (Initial)

0.32 (Initial)

10,000

0.02

1:2

15

0.1e-3

m1=0.9, a,=10 for stiffness(Tuff)
m,=0.9, a,=15 for strength(Tuff)
m1=0.8, a;=10 for stiffness(Granite)
my=0.9, a,=10 for strength (Granite)

Numerical simulation for Tuff at Pc=15 MPa:

The simulation result of Tuff sample about the fracture process at 15 MPa confining pressure is shown in
Figure 34. The results show that local failure events initiate at random locations and gradually propagate,
and then the localized failure tends to concentrate on the weaker elements of the rock specimen. The
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strain localization leads to shear plane development by irreversible friction. After the shear plane takes
place, the fracture surface slips and more failure is concentrated on the fracture plane.

In Figure 34, Region I is a reversible elastic zone behaving elastically; that is, the deformation is
instantaneously reversed to its initial point when the forces are removed. Region II is an irreversible
inelastic zone, which means the deformation could not reverse to its initial point when the forces were
removed. In Region II, the rock was dilated by heterogeneous microcrack growth. Region III is a brittle
fracture zone, which means sudden loss of strength happened across the fracture plane. In Region I1I, the
deformation becomes totally irrecoverable. The fracture plane is formed when shear, compression, and
tension forces break molecular bonds. As a result, the compressive forces lead to lots of microcrack
growth in Region II, and then combined compressive/tensile macroscopic failures are observed in Region
II (Jaeger et al., 2007). In Figure 33(a), initiation of microcracks was detected at an early stage and
dilation occurred simultaneously with the microcrack growth. Then the accumulation of microcrack
events hikes before reaching its peak stress. When the fracture plane was formed, both tensile and shear
damages were found near the fracture plane. This is because slippage related to the shearing behavior
caused tensile failures near the localized shear-fracture plane. Therefore, both tensile and shear failures
occurred during the triaxial compression test, and the combined failures triggered the fracture initiation
and propagation.

In Figure 33(b), the numerical result was compared with the experimental multistage triaxial result, tested
at Pc=17.24 MPa. It shows general agreement between two results. Specifically, at the early stage, the
strain curve has good agreement with the experiment, while at later stages the experiment’s results have
more inelastic behavior than the numerical result. The numerical result has less inelastic behavior than the
experiment’s because the volcanic Tuff sample shows hardening behavior and our constitutive model was
developed based on the elastic/brittle assumption. However, the volumetric strain curve has somewhat
similar behavior in both the simulation and the experiment even though the discrepancy of axial strain
curves.
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Figure 33(a) Failure events detection during fracture process at Pc=15 MPa; (b) Comparison of
numerical with experimental result.
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Figure 34. Axial and volumetric strain curve at Pc=15 MPa and micro/macro crack growth of brittle
fractures in heterogeneous rock.

Stress-strain relations of Tuff by confining pressure:

In this section, the influence of confining pressure was studied. As discussed in Chapter 2, the stress-
strain relations of a rock were highly affected by the confining pressure. Similarly, fracture patterns are
also influenced by the confining pressure variation. Under uniaxial compression (i.e. no confinement), a
rock tends to by failed by somewhat irregular longitudinal splitting, while with a moderate amount of
confining pressure, the longitudinal fracturing is suppressed and clearly defined plane of fracture is
formed through the rock specimen (Jaeger et al., 2007). The fracture plane is characterized by shearing
displacement (i.e. shear fracture) and typically inclined at an angle less than 45° from the axial direction.
If the confining pressure is increased highly and the rock becomes fully ductile, small shear fractures,
accompanied by plastic deformation of the individual rock grains, are observed (Jaeger et al., 2007).

Numerical results show that both the stress-strain relations and the fracture pattern were affected by the
confining pressure variation in Figure 35 and 36. As peak strength increases, absorbed fracture energy
increases during the fracturing process. Inclination angles of the fracture plane were varied by the
confining pressure. As increasing confinement, the inclination angle of the fracture plane is about 45°.
Furthermore, the angle of dilation depends on the confining pressure and the angle of dilation of the
higher confinement case has a larger angle than other cases.
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In cases of higher confinement, more damaged events were detected and the damaged events could lead
to more dilation during the failure process. This is because the angle of dilation is controlled by an
amount of plastic volumetric strain developed during fracture shearing. In Figure 36, we observed that the
fracture pattern after the multistage triaxial simulation has brittle fracturing patterns. Based on the study
of confining pressure, the peak strength of the brittle rock undergoing deviatoric loading is highly affected
by the confining pressure. The peak strength and shear dilation have strong effects on the fracture pattern.

In Figure 46, a fracture pattern of Tuff sample was observed at an angle of 62° after the multistage triaxial
compression test at Pc=4500psi (=<31MPa). From the front and side view (Figure 46(b), small fractures
are observed along the rock sample. However, a fracture pattern from the numerical simulation at
Pc=30MPa (Figure 36) shows clearly formed fracture plane at an angle of 45°. This is because the stress-
strain relation of numerical simulations at Pc=30MPa (Figure 35) has elastic-brittle behavior; on the other
hand the stress-strain relation of experimental results has ductile behavior. Hence, the fracture patterns
from numerical results are somewhat disagreement with the experimental results when high confining
pressure is applied. However, the multi-stage triaxial test is not a good experiment to characterize the
fracture pattern variation by the confining pressure, since micro-fractures could be formed due to multi-
loading/unloading during the multi-stage test.
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Figure 35. Stress/strain relations of Tuff by various confining pressure
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Figure 36. Fracture patterns of Tuff by various confining pressure at NE=10,000
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Figure 37. Stress-strain relation of Tuff at Pc=30 MPa compared with experimental result (Pc=31MPa)

(a) Before multistage tests (b) After multistage test from side and front

Figure 38. Fracture pattern of Tuff rock before and after multistage triaxial test (Wang et al., 2012b).
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Numerical simulations for Granite at Pc=25 MPa:

The simulation result of Granite sample about the fracture process at 25 MPa confining pressure is shown
in Figure 39. Similar with previous Tuff example, compressive failures were mostly observed and
accumulated at random locations. While the fracture plane was formed, small amount of tensile failures
are observed during the shear fracturing process (Figure 39(a)). The stress-strain relation of the Granite
sample shows less inelastic behavior before complete failure and brittle behavior when the rock is
completely failed. These small inelastic and brittle behaviors are good agreement with the experimental
results (Figure 39(b)). The Granite sample shows less ductile behavior than the Tuff sample (Figure
33(b)). So, it is found that the elastic-brittle constitutive assumption is suitable for the Granite rock
sample than the Tuff sample.
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Figure 39. (a) Failure events detection during fracture process at Pc=25 MPa; (b) Comparison of
numerical with experimental result.

Stress-strain relations of Granite by confining pressure:

As discussed earlier, the confining pressure is critically influencing the stress-strain relations and fracture
patterns of a rock. Numerical results show that the stress-strain relations and the fracture pattern were
affected by the confining pressure variation in Figure 40 and 41. The fracture patterns of the Granite
sample show irrelevant results than the Tuff cases. Under uniaxial compression, somewhat longitudinal
splitting fractures were found and clearly formed fracture planes were observed under various
confinements. In Figure 43, a fracture pattern of Granite sample was observed at an angle of 72° after the
multistage triaxial compression test at Pc=4500psi (=31MPa). However, observed fracture pattern from
the numerical simulation at Pc=32MPa was inclined at an angle of 50°. This is because a formation of
rock heterogeneity is also a critical factor for the fracture plane forming. As mentioned above, the
characterization of the rock heterogeneity is an important issue for the practical modeling of rock samples,
but this issue is beyond the scope of this thesis, because it requires extensive research about micro-
mechanical structures of the rock.
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In Figure 42, the stress-strain relation of the numerical result (Pc=32MPa) and the experiments result
(Pc=31.03MPa), which is the last stage of the multi-stage triaxial test was compared until complete failure.
General behavior of axial and volumetric strains is almost similar in both numerical and experimental
results. The experimental results show high volumetric changes when the complete failure occurred.
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Figure 41. Fracture patterns of Granite by various confining pressures.
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Figure 42. Stress-strain relation of Granite at Pc=32 MPa compared with experimental result (Pc=31MPa).
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(a) Before multistage tests (b) After multistage test from side

Figure 43. Fracture pattern of Granite before and after multistage triaxial test (Wang et al., 2012b).

5.1.3 Numerical study of the influence of heterogeneity parameter

Because most rocks are brittle and heterogeneous, heterogeneity commonly causes multiple and randomly
distributed crack propagation. The brittle rock is composed of different sizes of micrograins and different
distributions of microdefects, so that correct representation of rock heterogeneity is a key factor of the
numerical core analysis. However, a large part of the material properties of rock is uncertain, and it is

very difficult to characterize the mechanical behavior of the heterogeneous rock in both microscopic and
macroscopic views.
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In this study, the Weibull distribution function was used to characterize the rock heterogeneity. The
Weibull function is commonly used in rock engineering (Fang and Harrison, 2002b; Tang and Hudson,
2011), although the approach cannot be a perfectly suitable method to characterize the rock heterogeneity
because its randomly generated variables cannot exactly represent texture, orientation, and shape of
micrograins. However, the Weilbull distribution function may be the easiest method for generating
heterogeneous properties of rock, and it is also easy to implement in an FEM formulation (Fang and
Harrison, 2002a; Tang and Hudson, 2011; Tang et al., 2002; Wong et al., 2006; Yuan and Harrison, 2005).
So far, no numerical method can express the complicated mineralogy and microstructures of the brittle
rock perfectly, so the heterogeneity study in this section could give valuable interpretation of rock
heterogeneity effects on the fracture pattern. This section discusses the simulated influence of the Weibull
shape parameters on stiffness and strength distributions using numerical simulations of Tuff samples.

Stiffness mean value parameter:

Figure 45 shows different fracture patterns by controlling of Weibull parameter for average value of
stiffness distribution curve. In this simulation, lower value of m; means the mean value of Young’s
modulus of rock becomes smaller, but strength of rock specimen was not changed, because it was
determined by confining pressure from experimental data in our numerical model. In this section,
influence of different mean values on stiffness distribution was tested without strength variation, because
we generally assumed that stiffness variation does not mean corresponding change of material strength.
Figure 44 shows that case of m;=1.5 has higher compressive strength than other cases. In addition, as we
discussed, fracture patterns are depend on distribution curve of random variable which means we cannot
control the specific location of weaker or stronger elements. In case of m;=0.5, fracture plane was mostly
observed at upper of the specimen, while other cases have clearly inclined fracture plane. In addition, we
applied same loading condition of Ad=0.1e-3, so that upper of the rock sample could be failed earlier
when a rock is weaker (m;=0.5). This is because relatively large loading condition was applied on the
weaker rock sample and the high stress concentration near loading points, where a top surface of the rock
sample, lead shear failures near the top surface. From observation of, both dilation angle and peak
strength were influenced by the value of Weibull parameter change.
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Figure 43. Stress/strain curve by stiffness mean value parameter change.
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Figure 45. Fracture patterns by changing the stiffness mean value (left to right: softer rock to stiffer rock).
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Stiffness shape parameter:

In this section, a shape parameter effect of the stiffness distribution was simulated with values of a;=5, 10,
20, 100. In Figure 11, a larger value of @; means more homogeneity and narrow distribution, while a
lower value of @; means more heterogeneity and wider distribution. Figure 46 and 47 show effects of the
shape variation of the stiffness distribution on the fracture patterns. According to the simulation results,
the influence of the stiffness shape parameter wasn’t significant because two sets of Weibull parameters
were used to represent the rock heterogeneity in our model. One was used for the grain-size distribution,
while the other was used for the microdefects distribution. As explained earlier, we assumed that the
stiffness variation did not correspond with any change of the material strength, so that the combination of
the two sets has strong randomicity on the fracture patterns. That is, the distribution of the microdefects
more significantly influenced the material heterogeneity. However, the stiffness shape parameter could
influence crack initiation and its patterns. In Figure 47, as the shape parameter increases, the fracture
plane becomes more clearly formed, since larger shape parameter represents more homogeneous
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distribution. On the other hand, more randomly distributed crack growth was found when the stiffness
shape parameter was small (a;=5), which means the matrix was more heterogeneous.
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Figure 46. Stress/strain curve by stiffness shape parameter change.
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Figure 47. Fracture patterns by stiffness shape parameter change.

Strength mean value parameter:

Similar with previous section, mean values of strength distribution were changed accordingly and
simulated in Figure 48. Based on material strength estimation from numerical results, Weibull parameter
change on mean value of strength distribution has strong influence the material strength. It is better to
compare the numerical estimation with experimental results, but it is very difficult to use same
heterogeneity conditions in experimental test. In every case, fracture plane was fully ruptured through the
specimen. Although dip angle and fracture pattern is different, this difference is not critical issue here
because rock property has a lot of uncertainty and complexity. Due to these uncertainty and complexity of
rock mechanics, it is hard to estimate fracturing phenomena of brittle heterogeneous rock.

133



E ——— Axial strain

= 600 ———— Volumetric strain
g 8

§)

|

5

x m2=1.3

° m2=1.1

v m2=0.9

. m2=0.7
I T T TN TS T [N T T T T T S T [N S S |
001 0005 0 0005 001 0015 002

Strain

Figure 48. Stress/strain curve by strength mean value parameter change.

m2= 0.7 m2= 0.9 m2=1.1 m2=1.3

Figure 49. Fracture patterns by strength mean value parameter change.

Strength shape parameter:

In this section, the effect of the shape parameter on the strength distribution was simulated and discussed
with values of @,=5, 15, 30, 100. Figure 50 shows that the strength shape parameters of a,=15, 30, 100
indicated a similar compressive strength, while the strength shape parameter of a,=5 has a much lower
compressive strength than other cases. As mentioned earlier, a lower Weibull parameter means that the
rock has more heterogeneity. That is, the strength shape parameter change has a strong influence on the
material strength. In Figure 50, fracture planes were formed differently through the fully ruptured path in
the specimens. Because every case has different formations of heterogeneity, the fracture patterns are
strongly influenced by the heterogeneity formation.
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Figure 50. Stress/strain curve by strength scale parameter change.
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Figure 51 Fracture patterns by strength shape parameter change.

5.1.4 Numerical simulation for mesh size effects

In this section, three different sizes of mesh (0.01, 0.02, 0.04) were used for the multistage triaxial
simulation (Figure 52). For rock heterogeneity, Weibull parameters of m;=0.9, a;=10 for stiffness
distribution and m,=0.9, a,=15 for strength distribution were used to generate random variables; this
allowed us to apply similar heterogeneity density to the numerical models. Table 5 and Figure 53
compare compressive strengths estimated by the numerical simulations, and the simulation results show
that the estimated strengths generally match well with the experiments. However, the coarse mesh case

shows some discrepancy in the high confinement tests, while the intermediate mesh size of 0.02 gives
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better estimates than other mesh cases. In Figure 54, multiple and unconfined fractures were initiated and
propagated during the triaxial compression test. When the confinement increased, the fracture patterns
formed with less inclination angle. According to the simulation results, the finer mesh case can capture
multiple crack growths; however, computational costs might be exponentially increased. The coarse mesh
case shows inaccurate fracture patterns in Figure 56. Especially, at the high confinement cases, fracture
patterns are significantly different from other mesh cases. Also, estimated compressive strength has larger
errors.
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(a) size=0.04(NE=2,500)  (b) size=0.02(NE=10,000)  (c) size=0.01(NE=40,000)

Figure 52. Numerical models with different mesh sizes.

Table 5. Comparison of experiment and simulations of Tuff samples.

Confining Pressure

(Unit=MPa) 0 5 15 30 40
Multistage Triaxial tests 88.4 126.9 190.3 261.6 309.2
NE=40,000 (size=0.01) 84.9 107.3 197.5 263.4 339.2
error(%) 4.12 18.27 3.65 0.68 8.84
NE=10,000 (size=0.02) 86.6 124.1 201.1 279.9 321.2
error(%) 2.08 2.26 5.37 6.54 3.74
NE=2,500 (size=0.04) 87.7 132.1 202.9 339.2 385.1
error(%) 0.8 3.94 6.21 22.9 19.7
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Figure 54. Stress/strain curve by various confining pressure at NE=40,000 (size=0.01).

137



: 'Dan"rag'e. . Da.mag.e

! é.s S ! é.s
Pc=0MPa Pc=5MPa Pc=15MPa Pc=30MPa Pc=40MPa

Figure 55. Fracture patterns by various confining pressure at NE=40,000 (size=0.01).
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Figure 56. Stress/strain curve by various confining pressure at NE=2,500 (size=0.04).
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Figure 57. Fracture patterns by various confining pressure at NE=2,500 (size=0.04).
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5.1.5 Mesh dependency issue

Mesh dependency is significant in FEM analysis. A stress-strain relation predicted in finite-element
analysis usually depends on the mesh density. The mesh dependency may increase significant errors
during analysis of practical problems (Pande et al., 1990). Thus, reducing mesh dependency is a critical
issue in both numerical and practical aspects. In order to reduce the mesh effect, the hypothesis of
equivalent energy dissipates rate was proposed and the dissipate energy based constitutive model was
developed in Chapter 3. In this constitutive modeling, it is generally assumed that the energy dissipation
rate required to initiate/propagate cracks should be similar regardless of finite element size. That is, initial
amount of fracture energy and the energy dissipation rate per unit volume for crack initiation/propagation
should be consistent in different finite element sizes. So, required fracture energy for bigger element size
(NE=2500) should be four times higher than intermediate element size (NE=10000) and sixteen times
higher than smallest element size (NE=40000). Also, the energy dissipation rate should be assigned same
value regardless of finite element size to maintain the similar softening part of stress-strain curve to keep
the fracture energy constant during crack propagation. During the triaxial compression simulation, elastic
energy stored by mechanical deformation is computed at each element and the energy dissipation rate is
assigned based on the confining pressure, as explained in Chapter 3. Hence, the constitutive relation of
each element is governed by the elastic energy variation. When same loading and boundary conditions are
applied, the stress-strain relations of three cases (NE=2500, 10000, 40000) show similar behaviors
(Figure 58), because the fracture energy kept constant.

Based on this hypothesis, the damage model based on energy dissipation rate could be a possible solution
for the mesh dependency problem. In Figure 58, strain-stress curves of the three different mesh sizes
show similar behavior. That means total amount of dissipated energy of the three different mesh cases are
similar and it indicates less mesh dependency solutions. Consequently, the mesh sensitivity issue has been
successfully reduced in numerical analysis; however fracture patterns of the three different mesh cases
show different patterns (Figure 59). This is because the fracture patterns are strongly related with
distribution of the rock heterogeneity. In our method, the rock heterogeneity does not consist in the three
different mesh cases, so that different fracture patterns are obtained in the different mesh cases. In
addition, as mentioned earlier, in order to obtain proper fracture pattern and approximated compressive
strength, coarse mesh case are not recommended and intermediate finite element size is recommended
based on calculation of error estimation and computational cost.
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Figure 59. Fracture pattern at Pc=15 MPa with different element size.

5.2 3D Numerical Simulation of Compression Tests

In this section, uniaxial compression test was used to study brittle fracture phenomena in a heterogeneous
rock. When compressive forces are applied to the brittle rock, the fracturing patterns are complex, and
replicating the shear localized fracturing patterns is challenging using numerical methods, especially for
the three-dimensional simulation. The shear-faulting phenomenon depends on many parameters such as
strength, heterogeneity, initial flaws, composition pattern, and grain size of rock. Because of the model’s
complexity, rather than attempting to consider grain size in numerical simulations, a probability
distribution function was used to characterize the strength of fine- and coarse-grained rock in this study.
The heterogeneity of brittle rock was characterized by the Weibull distribution function (Weibull, 1951),
which was chosen for its flexibility. Random values generated by Weibull distribution function were
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applied to both stiffness and compressive strength to represent the heterogeneous character of the rock. In
this study, Weibull distribution parameters, m;=1, a;=5 for stiffness distribution and m,=1, a,=4 for
strength distribution are used to characterize rock heterogeneity. The cylindrical specimen of rock with a
size ratio of 2:1 and material properties in Table 6 were used in this simulation. The numerical domain for
the uniaxial compression test is described in Figure 60. We used 57,153 uniform tetrahedron elements and
applied displacement loading on the top surface of the cylindrical specimen. Boundary condition was that
the bottom surface of the specimen was restricted in the z-direction, and the axial force was loaded on the
top surface of the cylindrical specimen using displacement increments of Ad=3.55x107. Heterogeneous
distribution of element stiffness was applied to each element by random variables with an average
stiffness value of 73.5GPa (Figure 60). Lighter-colored elements represent weaker rock, while darker

colored elements represent stronger.
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Figure 60. Numerical model and heterogeneity index (Unit=Pa).

Table 6. Material properties and input parameters for 3D uniaxial.

Inputs Values
Element type Tetrahedron
Young’s Modulus, GPa 73.5 GPa
Poisson ratio 0.32

Num. of elements 57,153

Size of element 0.05

Aspect ratio (D:H) 1:2

Tensile strength, MPa 15-30
Incremental displacement 0.1e-3

Weibull parameters

m=1, a;=5 for stiffness
my=1, a,=4 for strength
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5.2.1 Numerical simulation of uniaxial compression

When rock heterogeneities were applied on both the stiffness and compressive strength of each element,
fully penetrated cracking was found (Figure 61). Because the rock specimen was modeled as very brittle
material, fully ruptured fracturing occurred in a very short period (Steps 175-195). Multiple failures were
initiated at Step 175 when the total applied displacement on the top surface was Ad=6.21x10"". Also, we
can see very broad and spotted damage propagation due to the rock heterogeneity (Figure 62). The rock
specimen is more damaged near the fracture plane after contact and shear faulting fully ruptured
fracturing of the specimen. Figure 61 shows damage propagation with deformation over the step, so that
the part with more deformation in the damaged zone is clearly visible.

In Figure 63, the maximum principal stress is mostly focused in the damaged zone and strain localization
follows crack element propagation. According to the uniaxial compression simulation, the compressive
failure of brittle rock predominated at the earlier period of rock fracture. The compressive stress led to
shear faulting of the brittle rock after that, and the shear faulting dominated mostly during the fracture
propagation.

e e e T —— - —_— EE e

Figure62. Damage events during uniaxial compression (step= 175,185, 190, 200).
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Figure 63. Principal stress propagation (Unit=Pa) (step= 175,185, 190, 200).

5.2.2 Snapback issue during triaxial compression

In this section, 3D numerical simulations were performed for triaxial compression test. Numerical model
is same as previous 3D uniaxial simulation and material properties (Table 7) were used. When
confinement is applied to the rock specimen, snapback issue is found Figure 64 and 65. From the
numerical results, it is observed that fully ruptured fracture plane is successfully formed through the rock
specimen. However, stress-strain curves show snapback behavior during crack propagation (Figure 64
and 65). The snapback behavior occurs for brittle materials when more fracture energy dissipated than the
stored elastic energy during crack propagation. In the case of brittle materials, crack propagation causes
sudden drop of the load and it could lead unstable response of stress-strain relation. The instability of
mechanical behavior represents the snapback phenomenon. The snapback issue is normally caused by
numerical destabilization, because more energy is dissipated than it actually should (Bazant and Planas,
1997). The snapback issue does not occur in 2D triaxial simulation, while only 3D triaxial simulation
shows the snapback issue. This is because more energy is dissipated during crack propagation in the 3D
triaxial simulation. Since we used scalar relation between the normal stress and strain for 3D constitutive
modeling, the scalar degradation model could not represent the compressive failures in triaxial
phenomenon, in which failure is triggered by lateral expansion and shear slip on inclined mircroplanes.
Therefore, in order to consider the triaxial variation of elemental degradation model, tensor type of
damage model is recommended and the tensor damage model might be a solution of the numerical
destabilization by the snapback phenomenon. However the tensor type of damage modeling is requiring
complex mathematical formulation and high computational efforts. So, this issue is out of scope of our
research and development of the tensor damage model is remaining for future improvement.

Table 7. Material properties and input parameters for 3D tiaxial simulation.

Inputs Values

Young’s Modulus, GPa 53.84 ~54.76 Gpa
Poisson ratio 0.32~0.34

Tensile strength, MPa 15-30

Incremental displacement 0.1e-3

Confining pressure, Pc 5MPa, 15MPa

Weibull parameters m=1, ;=9 for stiffness
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m»=0.9, a,=10 for strength

;::7 120 ——— Axial strain

E L —r——-- Volumetric strain
<

|

&

TR T —
-0.002 -0.001

Strain

Figure 64. Plot of damage events and stress-strain curves of snapback at Pc=5MPa.
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Figure 65. Plot of damage events and stress-strain curves of snapback at Pc=15MPa.

6. Numerical Simulation for Mixed-mode Fracture Propagation

Hydraulic fracturing paths, especially for fractures emanating from inclined wellbores and closed natural
fractures, often involve mixed models of Mode I, Mode II, and Mode III fracture patterns. When an
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embedded inclined fracture is subjected to compression, the fracture tips are restrained by the surrounding
materials so that it does not propagate as predicted by a single-mode fracture (Min et al., 2011). In this
section, two- and three-dimensional mixed-modes fracture growths from an initially embedded crack
were studied using damage mechanics implemented within a finite element method (FEM). Especially,
simulation of three-dimensional fracture propagation is complex as it often simultaneously involves all
three fracture modes over a contour. Whereas in a 2D case, the zone of interest is only a point (fracture
tips), in a 3D case, the fracture tip is a closed boundary, making development of a fracture criterion for
predicting propagation at different points along its edges difficult.

6.1 Wing-crack Model

In this section, two-dimensional and three-dimensional wing crack growths were studied under
compressive forces. As shown in Figure 67, the extension of secondary cracks in the brittle rock forms by
mixed mode fracture. In 2D crack growth, the wing cracks (tensile fracture) grow towards the direction of
maximum compression, while the secondary cracks (shear fracture) grow by sliding toward the lateral
direction of the maximum compressive force due to the transverse shear localization. Primary cracks,
describing of the wing crack, are originated from points of highest tension stress. Secondary cracks,
describing of the shear fractures, are originated from points of compressive stress concentration. After the
tensile stress concentration initiates the primary cracks, the compressive stresses originated from the
sliding of the upper and lower areas of the pre-existing crack, and the shear concentration leads to growth
of the secondary cracks opposite the primary cracks. Sequential growths of the primary and secondary
cracks were observed in experimental tests (Bobet and Einstein, 1998; Lajtai, 1973; Wong and Einstein,
2009). Practically, 3D crack growth mechanism is more complicated. As shown in Figure 67, the primary
cracks are originated from upper and lower areas of the pre-existing plane. By the compressive stress
concentration, the secondary cracks are growing on the opposite side of the contact surface by Mode 11
conditions and the additional secondary crack could grow in the lateral direction due to Mode III
conditions. In Figure 68 and Figure 69, the mixed modes of fracture propagation have been observed in
experimental modeling (Bieniawski, 1967; Bobet and Einstein, 1998; Dyskin Av, 2003; Germanovich and
Dyskin, 2000; Sagong, 2001). The experimental observations show tensile and shear crack growth in
compression. The shear crack growth in compression is difficult to observe during the experiments,
especially for Mode III, because the tensile mode, not the shear mode, is the dominant fracture
mechanism in compression. However, when the confining pressure is high, as occurs when the rock is
deep underground, the shear modes cracks may be the dominant fracture mechanism.
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Figure 69. Crack growths of 3D wing-crack in uniaxial compression (Dyskin et al., 2003; Germanovich
and Dyskin, 2000).

6.2 Numerical Results of 2D Wing Crack Model

Two-dimensional plane strain and 40,000 uniformly meshed triangular elements were used in this
simulation, described in Figure 70 (b). Boundary conditions of the wing-crack model, described in Figure
70(a), were that the bottom surface of the specimen was restricted in the y-direction and the compressive
force was applied on the top surface of the specimen using a displacement increment of Ad=1x107.
Material properties and numerical input values for the 2D wing crack simulation are shown in Table 8. A
pre-existing crack was located at center of the specimen with a 45° inclination angle (71(b)). The pre-
existing crack is assumed an open flaw same as the experimental test (Figure 68). In order to express the
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open flaw in numerical domain, crack elements overlapped with the initial crack geometry are modeled
by assigning high damage variable (D=0.9). In addition, same as the experiment the crack elements are
assumed as frictionless. If the pre-existing flaw is rough, crack initiation and propagation from the closed
flaw are much different with the open flaw propagation. The closed flaw propagation was discussed in
(Bobet and Einstein, 1998). Three cases are compared below: a tensile-dominated case, a shear-dominated
case, and a mixed-modes case. The influence of various confinements on crack propagation and the mesh-
dependency issue are discussed in this section.
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Figure 70. Numerical modeling of 2D wing crack model (a) Boundary condition (b) Meshed domain with
inclined pre-existing crack.

Table 8. Material properties and input parameters for 2D Wing crack.

Inputs Values
Young’s Modulus, E (GPa) 37.5
Poisson ratio, v 0.25
Number of Elements 40,000
Number of Nodes 20,301
Element type Triangular
Ratio of specimen(D:H) 1:2

6.2.1 Tensile dominated wing crack growth (Mode I)

We assumed zero confining pressure applied on the specimen and Mohr-Coulomb parameters are
assumed as shown in Table 9. In Figure 61, it was observed that tensile failure is a dominant failure
mechanism under compression in the wing-crack model. In Figure 72, tensile stresses were concentrated
at upper and lower areas of the pre-existing crack and the primary cracks (wing crack) initiated at step=25
and propagated until step=90 with the longer primary cracks. It was also observed that the maximum
tensile stress concentration was following at the tensile crack tips and high compressive stress was
developed at lateral directions of the pre-existing crack (Figure 71 (c)), but the secondary cracks (shear
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crack) were not developing until step=90. The compressive stress eventually leads to initiation of the
secondary crack (shear crack).

Table 9. Mohr-Coulomb parameters for tensile dominating crack (Mode I).

Inputs Values
Mohr-Coulomb parameter, ¢f 10
Cohesion, ¢ (MPa) 50
Tensile strength, o, (MPa) 10
Incremental displacement, Ad (mm) 1
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(a) step=90 (b) step=25 (c) step=90

Figure 71. (a) Failure type (1:tensile, 2: shear), (b) Maximum tensile stress (unit=MPa), (¢) Maximum

compressive stress (unit=MPa).
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Figure 72. Maximum tensile stress (unit=MPa) with tensile crack growth.
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6.2.2 Shear dominated wing crack growth (Mode II)

For the shear dominated crack simulation, we applied a confining pressure of Pc= 20 MPa on the
specimen and Mohr-Coulomb parameters are assumed as shown in Table 10. When a high confining
pressure is applied, shear failure becomes a dominant failure mechanism in the wing crack model and the
shear dominated crack propagation can be observed (Figure 73). Since tensile cracks were restrained by
the applied confining pressure, compressive stresses concentrated at the lateral areas exceeded shear
failure criterion and led to initiation of the secondary cracks (shear crack). In Figure 74, the secondary
cracks were initiated at the crack tips towards the lateral direction, and the shear-dominated cracks grew
obliquely. The oblique shear crack growth was also observed from experiments in Figure 68 (Bobet and
Einstein, 1998). The shear failure is a dominant failure mechanism when high confining pressure was
applied on the rock.

Table 10. Mohr-Coulomb parameters for shear dominating crack (Mode II).

Inputs Values
Mohr-Coulomb parameter, ¢f 10
Cohesion, ¢ (MPa) 50
Tensile strength, o, (MPa) 15
Incremental displacement, Ad (mm) 1
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Figure 73. (a) Schematic of shear dominant crack growth (b) Damage propagation (c) Maximum

compressive stress (unit=MPa).
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(a) step =54 (b) step =40 (c)step=110 (d) step = 145
Figure 74. Maximum compressive stress (unit=MPa) with shear crack growth.

6.2.3 Mixed modes wing crack growth (Mode I+1I)

In this section, we investigated a sequential growth of the primary cracks (tensile crack) and the
secondary cracks (shear crack). We assumed zero confining pressure and Mohr-Coulomb parameter are
assumed as shown in Table 11. In Figure 75, it was observed that the primary cracks grew first until
step=70 and the second cracks were initiated from step=80. Since a tensile strength of a rock is much
lower than a compressive strength, tensile failure is dominant failure mechanism at early stages.
Experimental data typically shows that the ratio of the uniaxial compressive strength/the tensile strength
is much greater than 2 (Jaeger et al., 2007). So, after an amount of growth of the tensile crack, the shear-
induced crack was initiated from the crack tips, and it grew laterally to the pre-existing crack. The results
agree with experimental observations in Figure 68 (Bobet and Einstein, 1998).

i 70
50
30
10
(a) step=70 (b) step =80 (c) step = 100 (d) step=110

Figure 75. Maximum compressive stress (Unit=MPa) for mixed mode crack growth.

151



Table 11. Mohr-Coulomb parameters for Mixed modes 2D Wing crack (Mode I+II).

Inputs Values
Mohr-Coulomb parameter, [ ¢f O 10
Cohesion,Jcr (MPa) 30
Tensile strength, o, (MPa) 10
Incremental displacement, Ad (mm) 1

6.2.4 Influence of confining pressure

As we discussed earlier, tensile crack initiation is favored over shear crack initiation because the tensile
toughness of the rock type material is lower than the shear toughness (Bieniawski, 1967). However, when
the confining pressure on the rock becomes higher, the confinement will constrain the tensile crack
initiation; thus, the shear failure becomes dominant in failure mechanics. Especially, a rock at deep depth
is under high confining pressure, and it cannot fail by one dominant mechanism. In that case, the crack
propagation is highly influenced by the confining pressure. In order to investigate the influence of the
confining pressure, we simulated several numerical examples of the wing-crack model with various
confining pressures. We compared crack propagation patterns in Figure 76. Results of Pc=0MPa and
Pc=0MPa are crack propagation at step=90, while results of Pc=0MPa and Pc=0MPa are crack
propagation at step=120. The simulation results show the effect of confining pressure on a change in
failure mechanism. From the simulation results, tensile cracking was dominant when the confining
pressure is low, while shear cracking becomes dominant when the confining pressure is high.

Table 12. Mohr-Coulomb parameters for confining influence on 2D Wing crack.

Inputs Values
Mohr-Coulomb parameter,[] ¢f O 10
Cohesion,Jcr (MPa) 35
Tensile strength, o, (MPa) 10
Incremental displacement, Ad (mm) 1

152



0.8
0.4
0

(a) Pc=0MPa (b) Pc=5MPa (c) Pc=10MPa (d) Pc=20MPa

X X

Figure 76. Mixed modes crack propagation at various confining pressure.

Mesh dependency issue for crack propagation:

Similar with the previous sections, the mesh-dependency issue in crack propagation is an important issue
in FEM analysis. If the mesh-dependency issue is not considered, crack growth rate could depend on the
mesh size. Usually, finer mesh is preferred for use in crack propagation modeling, since the finer mesh
can describe more realistic crack growth.

(a) size=0.04(NE=2,500) (b) size=0.02(NE=10,000)  (c) size=0.01(NE=40,000)

Figure 77. Numerical model by different mesh size.
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However, the finer mesh increases computational cost exponentially. Therefore, reducing the mesh
dependency is important to reduce the computational cost. In this section, we compared three different
mesh cases using a 2D wing-crack model. We assumed zero confining pressure and Mohr-Coulomb
parameters are assumed as shown in Table 9. In Figure 77, three cases (size=0.04, 0.02, 0.01) are
described with an inclined, pre-existing crack. Using the damage model developed using the hypothesis of
equivalent energy dissipation rate from Chapter 3, we examined the influence of mesh size on crack
growth rate. According to the simulation results in Figure 78, crack propagation rates at step=110 are
similar in three cases. In all three cases, both tensile and shear crack growth are modeled by a similar
pattern. However, larger size (size=0.04) shows much thicker damage zone than smaller size (size=0.01).
This is because our crack propagation model is assumed that the crack is only propagating through
elements. Thus, larger size case is only shown the thicker damage zone than other cases. But, growth rate
of crack propagation is similar in all three cases, which means the mesh dependency was successfully
reduced.

15

0.5 0.5

0 0

0 05 T 0 05 1 0 05 1
X X x

(a) size=0.04(NE=2,500)  (b) size=0.02(NE=10,000)  (c) size=0.01(NE=40,000)

Figure 78. Damage propagation (step=110) at different mesh size.

6.3 Numerical Results of Three-dimensional Wing Crack Model

This section explains the development of three-dimensional wing-crack growth under uniaxial
compression from an initially embedded circular crack. In addition, it examines the extension of
secondary cracks in a brittle rock under uniaxial compression. The failure mechanism of the three-
dimensional mixed mode crack growth is more complicated than the two-dimensional model. The tensile
crack (wing crack) propagates toward the direction of maximum compression, while the secondary crack
grows on the opposite side of the pre-existing crack, as observed by Mode II (sliding), or in the lateral
direction due to Mode III (tearing). The numerical domain has the size of 0.1-m x 0.1-m % 0.2-m, and the
radius of the pre-existing circular crack is 0.02 m; inclination angle is 45°.
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6.3.1 Tensile dominated wing crack growth (Mode I)

Similar to the two-dimensional wing-crack model, when tensile failure is the dominant mechanism, wing
cracks are initiated from the upper and lower crack boundaries (tip contour) toward the direction of

maximum compression. In Figure 79, the wing-crack growth is similar to the experimental observation in
Figure 69.

Wing crack )
(Tensile crack) —~—

Figure 79. (a) Tensile dominated crack, (b) Failure type (1:tensile, 2: shear); (c) Damage propagation.

6.3.2 Shear dominated wing crack growth (Mode II+III)

When the brittle rock is highly confined, the tensile crack initiation is constrained and shear failure is
dominant during crack propagation. Due to frictional forces on the pre-existing crack surface, shear
cracks are initiated by the transverse shear localization. The shear friction force leads to growth of
secondary cracks on the opposite side of the pre-existing crack. Figure 80 shows that the secondary
fracture develops from the upper and lower tips by the Mode II fracture, and the secondary fracture
propagates outwardly to the lateral side of specimen by Mode III. The side fracture that initiated from the

side tip rotates from the initial crack tip toward the lateral side of the specimen, which represents the
Mode III response. The shear-induced fracture is oblique.
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Figure 80. (a) Shear dominated crack, (b) Failure type (1: tensile, 2: shear); (c) Damage propagation.

6.3.3 Mixed modes dominated wing crack growth (Mode I+ II+III)

In Figure 81, wing cracks grow to the major compression first, and then secondary cracks grown by shear
forces act on both the upper and the lower part of the pre-existing crack. However, no secondary crack
appears in the lateral direction of the pre-existing crack in this example. Because only compressive force
is applied on the top, the secondary crack is hard to initiate by Mode III (tearing). If confinement is
applied to sides of the specimen, the failure mechanism might transition to a shear-dominant mode as
shown in Section 8.2.4. This pattern of fracture propagation has been observed in experimental modeling
of 3D crack growth from pre-existing circular cracks (Adams and Sines, 1978). Also, Dyskin et al. tested
the wing-crack model using a brittle material and including the presence of the contact effect.
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Figure 81. Mixed modes crack, (a) Failure type (1:tensile, 2: shear), (b) Damage propagation.
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7. Hydraulic Fracture Propagation in Impermeable Rock

In unconventional geothermal reservoir (EGS) development, multiply-fractured reservoirs can be
developed vertically or horizontally. Three areas of investigation are of special interest in the study of
unconventional reservoir stimulation: the importance of mixed fracture modes and correct wellbore
positioning, the estimation of crack paths from the inclined perforation, and the influence of tortuous
fracture path on net injection pressure increase. In this chapter, these were investigated using models of
fracture propagation induced by hydraulic pressure. Generally, when the perforations are misplaced
within the maximum in-situ stress direction, high pumping pressure is required to open and initiate cracks.

7.1 Facture Propagation from Fractured Wellbore

The hydraulic fracturing treatment usually starts from an initial path for the fracture, which is created by a
“perforation” technique. The perforation, a finger-like hole, is designed to give orientations. Consider a
wellbore with a short initial crack on its boundary. The crack is either oriented along the maximum stress
direction or is inclined as shown in Figure 82. Radius of the wellbore is 0.1 m, and it is situated in a 3m %
3m block (Figure 83). The numerical domain is meshed by 4-noded triangular elements (Figure 83). The
initial crack is created by perforations before hydraulic fracturing stimulation. The length of the
perforations is assumed as 0.1 m. The rock is subjected to anisotropic far-field stresses applied in the x-
and y-directions and material properties of the rock are shown in Table 13. The wellbore/fracture system
is pressurized incrementally using a pressure-boundary condition. The pressure level is updated at every
time step and applied on both existing and newly propagated crack elements using a moving-boundary
scheme. Slow fluid injection increases the hydraulic pressure uniformly over the fracture surfaces except
in the crack tip area. Due to the highest fluid loss in the fluid-lag region, the applied hydraulic pressure
decreases rapidly near the fracture tip (Papanastasious, 1997). Also, the low-pressure region indicates
fracture-tip effects, since the fracturing fluid never quite reaches the fracture tip (Smith and
Shlyapobersky, 2000). So in the simulation, the fracture tip pressure is assumed to be the zero. Except the
fracture tips, we apply uniform pressurization in the fracture plane and increase incrementally until the
fracture tips are propagating. Once the fracture propagated, we adjust lower uniform pressurization in the
fracture and increase incrementally again until the fracture tips are propagating. It is also assumed that the
process is isothermal and the rock is impermeable.
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Figure 82. Fractured wellbore with perforations under in-situ stress.
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Figure 83. Numerical domains for the fractured wellbore.

Table 13. Material properties and input parameters for 2D HF model.

Inputs Values
Young’s Modulus, £ (GPa) 37.5
Poisson ratio, v 0.25
Number of Elements 19,200
Number of Nodes 9,760
Element type Triangular
Mohr-Coulomb parameter, ¢ 10
Cohesion, ¢ (MPa) 40

Tensile strength, o, (MPa) 25

7.1.1 Parallel perforated wellbore

As a boundary condition (Table 14), the far-field stresses are 4 MPa in the x-direction and 1MPa in the y-
direction. As expected, the hydraulic fracture propagates toward the maximum principal stress direction
(Figure 84). Note that the wellbore pressure decreases during fracture propagation. Since we used uniform
pressure boundary condition (except fracture tips), required pressurization is decreasing with the growth
of the fracture length. Applied total force in the fractures is increasing by multiplying the uniform
pressure by the fracture length. In addition, when the injection rate remains the same during fracture
propagation, the hydraulic pressure applied to the fracture surface is proportional to the fracture length.
When the fracture is not propagating, the wellbore pressure increases until the fracture propagates and the
wellbore pressure drops. In Figure 85, the wellbore pressure decreases continuously with fracture length.
The rapid variations in the wellbore pressure profile are caused by propagation increments. The resulting
aperture changes are smooth and continuously vary during crack propagation in Figure 85.
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Table 14. Boundary conditions for parallel fractured wellbore.

Inputs Values
Max. Far-field stress, Sy (MPa) 4

Min. Far-field stress, S, (MPa) 1
Initial hydraulic pressure (MPa) 4
Incremental hydraulic pressure (MPa) 0.2
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Figure 85. Wellbore pressure change and aperture change during hydraulic fracturing.
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7.1.2 Inclined perforated wellbore

The inclination angle, 45°, of the initial crack is assumed in the example. As a result, the direction of
crack propagation changes with increasing length as the fracture reorients itself in the maximum far-field
stress direction. At early time, the hydraulic fracture is propagating with the same initial crack angle, and
then the hydraulic fracture turns toward the maximum far-field stress direction. That is, the initial fracture
is opened by the hydraulic pressure and slips under the anisotropic in-situ stress. So both tensile
propagation and shear slip are detected near the turning zone of the crack path. As can be observed in
Figure 85, the wellbore pressure is decreasing at early time when the crack propagates in its original
direction, but after time steps, the wellbore pressure increases again as the crack turns, reflecting crack-
path tortuosity. When the mixed mode fractures are combined during hydraulic fracturing, required
wellbore pressure increases to create fracture propagation. Despite the high hydraulic pressurization, the
fracture aperture change (Figure 86) is not larger than the aperture change for the straight propagation
segment. The shear slip of the opened fracture causes highly compressive stress near the wellbore and the
curved section of the fracture (Figure 89).

Figure86. Damage propagation at early time and later time.
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Figure 87. Wellbore pressure change and aperture change during hydraulic fracturing.
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Figure 88. Principal tensile and compressive stress distributions.

7.1.3 Fracture propagation from long perforation

When the initially fractured perforation is relatively large compared with the wellbore size, the influence
of the wellbore could be neglected. A larger scale reservoir model with an initial fracture is modeled 10-m
x 10-m block and meshed uniformly in Figure 8.8. Material properties described in Table 13 and 20,000
uniform triangular elements were used in this simulation.

0
X X

Figure 89. Schematic numerical domain of reservoir model w/o wellbore geometry.

Parallel perforation:

The initial fracture is assumed to be long enough to ignore the wellbore geometry effect. Initial fracture
length is assumed as 0.6 m, and the far-field stresses are 10MPa and SMPa in the x- and y- direction,
respectively. As can be observed in Figure 90, crack propagates straight, and the wellbore pressure profile
is similar with the previous simulation with a wellbore. Trend of the wellbore pressure is decreasing with
the growth of the fracture length and aperture profile is gradually increasing (Figure 91). Basically, tensile
failure is dominating during hydraulic fracturing, but when shear failures were combined during fracture
propagation, the wellbore pressure increases to overcome the shear toughness and propagates the
hydraulic fracture. Because of the mixed mode fractures, wellbore pressure is going to up and down
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during hydraulic fracture propagation (Figure 91). Compared with the previous parallel fractured wellbore
case, the applied max/min in-situ stress ratio is changed from 3:1 to 2:1, and due to relatively higher far-
field stress contrast, the crack path shows some turns but the main crack propagating direction follows the
maximum far-field stress. The simulation results show that the fracture tortuosity is not severe and the
crack path is relatively straight.

Table 15. Boundary conditions for parallel perforation.

Inputs Values
Max. Far-field stress, Sy (MPa) 10
Min. Far-field stress, S, (MPa) 5
Initial hydraulic pressure (MPa) 7
Incremental hydraulic pressure (MPa) 0.5

Figure 90. Damage propagtion and Maximum tensile stress distribution.
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Figure 91. Wellbore pressure change and aperture change during hydraulic fracturing.

Inclined perforation:

The inclination angle, 45° and the fracture length of the initial crack are assumed as 0.55 m in the
example. The reservoir dimensions are 10 m each. The far-field stress is given by 10MPa and 5MPa
applied in the x- and y- directions, respectively. Similar with the previous simulation, the hydraulic
fracture turns to the maximum far-field stress direction and shows tortuous crack propagation (Figure 92).
At early time, tensile propagation is dominating and the hydraulic fracture is propagating with the same
initial crack angle. At later time, the hydraulic fracture turns with shear slip and lots of damages are
identified near the hydraulic fracture. In Figure 92, higher damage zones (red) indicate the main hydraulic
fracture, while the lower damaged zone indicate secondary or microscopic fractures. As explained above,
the wellbore pressure drops sharply during propagation and increases again when mixed mode fractures
are combined. In addition, since the initial perforation is inclined, the wellbore pressure to overcome the
anisotropic far-field stresses is higher than the parallel perforation case. In order to create tensile
propagation, more pumping is required in the inclined perforation case. Therefore, it could be an
indication of shear failure during hydraulic fracturing stimulation, when the wellbore pressure goes up
after initial wellbore pressure drop.
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Figure 92. Damage propagtion and Maximum tensile stress distribution.
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Figure 93. Wellbore pressure change and aperture change during hydraulic fracturing.

8. Hydraulic Fracture Propagation in Impermeable Rock

Hydraulic fracturing can be defined as coupled fluid-solid interaction problem. This interactive problem is
very challenging to interpret via numerical methods, because of lots of numerical complexity such as the
moving boundary issue, dynamic crack growth, and complex geometry. Therefore, one approach to solve
the hydraulic fracture propagation problem has been quasi-static fluid-driven fracturing (Adachi et al.,
2007; Boone, 1989; Papanastasious, 1997). Although the quasi-static assumption might be invalid for
realistic crack growth behavior, it has given a reasonable solution so far. Hydraulic fracturing can be
divided into three coupled processes of fluid flow, hydromechanical deformation, and fracture
propagation. The fluid flow inside fractures is modeled using the lubrication equation, and the
hydromechanical deformation of rock is solved using fully coupled poroelastic analysis. Fracture
propagation is modeled as quasi-static crack growth. So at each time step we solved an iterative solution
for rock deformation and fluid pressure using the coupled iterative algorithm explained in Chapter 5. In
this chapter, we present 2D hydraulic fracture propagation simulation using the quasi-static fluid-driven
fracturing model. The influence of reservoir heterogeneity on hydraulic fracturing stimulation is of special
interest. The heterogeneous feature of the rock could affect multiple fracture propagation and fluid flow in
the fracture by increasing leakoff volume, so that reservoir heterogeneity is an important factor to
determine the hydraulic fracturing strategy. Through the numerical study of hydraulic fracturing, the
numerical model could help to design an optimized hydraulic fracturing strategy and save developing
costs in was such as minimizing unnecessary experimental tests.

8.1 Two-Dimensional Numerical Modeling

Similar to a previous simulation, a 10-m x 10-m 2D reservoir model was used. The numerical domain
was meshed by 20,000 uniform triangular elements (Figure 94). The length of the perforation was
assumed as 1.2 m, which is placed in the center of the numerical domain. Material properties of westerly
granite were used (Table 16), and boundary conditions of the far-field stresses were 10 MPa and 5 MPa in
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the x- and y-directions (Table 17). Water was used for fracturing fluid and was injected to the center of
the numerical domain. Constant fluid injection rate of 24 L/min was used and applied as a point-fluid-
source boundary condition into the numerical domain.

Si

|

f

Sh
Figure 94. Numerical domain and boundary condition for Hydraulic fracturing simulation.

Table 16. Rock properties of Westerly Granite (Mctigue, 1986).

Inputs Values
Young’s Modulus, E (GPa) 37.5
Shear Modulus, G 15
Drained Poisson ratio, v 0.25
Undrained Poisson ratio, v, 0.33
Biot’s coefficient, o 0.44
Skempton’s coefficient, B 0.82
Permeability, & (md) 0.01
Porosity 0.01
Fluid mass density, ps(kg/m3) 1000
Fluid viscosity, u (Pa-s) l.e-3
Bulk modulus for fluid 3.291e9

Table 17. Boundary condition and input parameters.

Inputs Values
x-dir. Far-field stress, Sy (MPa) 10
y-dir. Far-field stress, S; (Mpa) 5
Injection rate, g;,; (L/min) 24
Mohr-Coulomb parameter, ¢ 10
Cohesion, c¢r (MPa) 30
Tensile strength, o7, (MPa) 7

= 1 =
Weibull distribution parameters mi=1, ;=5
mo=1.1, a,=9
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8.1.1 Hydraulic fracturing in homogeneous reservoir

According to the simulation results, the hydraulic fracture in homogeneous rock propagated toward the
maximum far-field stress direction without branching or multiple crack growth (Figure 97). The small
formation damage near the fracture plane limited the leakoff volume to a very small value. That is, most
of the injected fracturing fluid remained inside the fracture volume. The remaining fracture volume was
highly influenced by the fluid pressure distribution in the fractures. The injected fluid flow defined the
fluid pressure distribution (Figure 95). The fluid pressure induced the mechanical deformation (opening)
of the fractures. The fluid pressure distribution and aperture changes varied with fracturing time and
fracture propagation. We solved iteratively the aperture changes and fluid pressure distribution with the
fracture growth during the hydraulic fracturing treatment (Figure 96). The pore pressure at the crack tip
was nearly zero due to opening modes along the fracture; while compressive fluid pressure forces pushed
the pore pressure near the fracture was higher (Figure 97). Because of curvature of the hydraulic fracture
path, pore pressure near the curvature area shows higher distribution. This is because compressive stresses
by the hydraulic pressurization are concentrated at the curvature area. Wellbore pressure decreased and
stabilized near 9MPa as the hydraulic fracture propagated (Figure 98).
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Figure 95. Aperture profile and Fluid pressure profile at first step (t=0.6seconds).

166



0.8

Aperture(mm)
o o

e
[N

o

o t=0.48s
. t=1.18s
a t=2.07s
B t=2.92s
v t=4.05s
v t=5.27s
o t=6.57s
. t=8.30s
<&

*

T T

t=9.72s
t=10.67s

CrMmTT T T T B TR P T TR

2 3
Length(m)

Pressure(MPa)

T T T T

» > = O

* O @ O 4 4

t=0.48s
t=1.18s
t=2.07s
t=2.92s
t=4.05s
t=5.27s
t=6.57s
1=8.30s
t=9.72s
t=10.67s

2 3
Length(m)

5

Figure 96. Aperture profile and Fluid pressure profile during hydraulic fracturing.
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Figure 98. g,, distribution and Wellbore pressure change during hydraulic fracturing.
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8.1.2 Hydraulic fracturing in heterogeneous reservoir

In this section, we investigated an influence of reservoir heterogeneity on the hydraulic fracturing design.
In order to represent the reservoir heterogeneity, we assumed values of Weibull parameters Table 17 and
applied to the numerical model. The random variables generated by the Weibull function are applied to
distributions of material strength, Young’s modulus, and matrix permeability. If the random variables
were applied to porosity or Poisson’s ratio, by wide distribution of the random variables the porosity
could be over 1 and the Poisson’s ratio could be over 0.5. There is violation of general rules, so that it is
inappropriate to apply random variables to the porosity and Poisson’s ratio. The combination of the
distributions represents reservoir heterogeneity (Figure 99). Boundary conditions were same as in the
homogeneous case. According to the simulation results, a lower wellbore pressure profile (Figure 101), a
smaller opening, and lower fluid pressure distribution were obtained by the heterogeneous influence
(Figure 102). Due to the heterogeneous feature, injected fluid volume and leakoff volume increased
(Figure 100). Therefore, we can conclude that the hydraulic fracturing in the heterogeneous reservoir
requires more fluid injection and more time to create the same length of fracture as in the homogeneous
reservoir (Figure 100). In addition, breakdown pressure is lower than the homogenous case because
locally distributed strength and stiffness vary randomly. The pore pressure near the fracture is varied and
sparsely concentrated because of the stress heterogeneity and the pore pressure at the curvature area is
higher because of compressive stress concentration (Figure 99).
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Figure 99. Heterogeneity distribution (Unit=GPa) and Pore pressure changes after fracture propagation.
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Figure 100. Comparison of wellbore pressure profile and injected fluid volume.
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Figure 101. Comparison of aperture and fluid pressure profiles at first step (t=0.6 sec).

8.1.3 Hydraulic fracturing in highly heterogeneous reservoir

In this section, we examined the influence of the heterogeneity when the target reservoir had more
heterogeneous geomechanical features. We increased the reservoir heterogeneity by modifying the
Weibull parameters (m =1, a;=4, m =1, a,=3, ms=1, a;=3) (Figure 102). Based on the simulation results,
when a highly heterogeneous reservoir was assumed, the fracture length propagated slowly and leakoff
volume increased greatly (Figure 103). The high leakoff rate left only a small remaining fluid volume in
the fracture and prevented the fluid flow from generating enough fluid pressure to create cracks.
Therefore, injection efficiency also decreased and the fracture could not grow anymore. Wellbore
pressure of the high-heterogenity case remained higher than the low-heterogeneity case (Figure 103)
because the fracture length of the high-heterogeneity case did not increase as much as the low-
heterogeneity case.

169



e
e Bl

60
50
40
30

4 i'l' ’ f
’ J i
114 ""—.
o v
A
Wi " 4 Oy
F 4 " 4 i

]

Figure 102. Heterogeneity distribution (Unit=GPa) and Pore pressure changes after fracture propagation.

-
s
L}

-
LS

Wellbore Pressure
—_—— Length (m)

20
18

16

7000

6000

- Injected volume(ml)
Leakoff volume{ml)

- Fracture volume(ml)

o E g
S 1or 14 5000 |- ®
T - ] - N
1 | 1 — - r
§ 8 12 E E somfF
L 4 = o F
g X 1°% £ t
s & S 1 & 3 ool
£ x ] - = N
2 : .0 B r
<. A T
= At L ] N y:
)Gﬁ_)s‘u" -4 5 *
2 'ap* 1 1000 | a{e/
1z o
3 - LT
Ll I L Ll L1 7dgseggﬂq2*r.ﬁ—\—\\\lwwwwlw\\\l\\\\l\\
0 2 6_ 8 0z 14 ° °8 4 6_ 8 10 14
Time (s) Time(s)

Low heterogeneous
High heterogeneous

>

(e

Low heterogeneous
High heterogeneous
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8.1.4 Hydraulic fracturing in heterogeneous reservoir with high injection

When an injection rate of fracturing fluid is increasing, faster fracture growth is expected. According to
the simulation results, the treatment time decreased from 12 seconds to 4 seconds when the injection is
increased from 24 L/min to 144 L/min (Figure 105). The high injection rate induced a large fluid pressure
profile in the fracture, and the increased fluid pressure caused secondary fracture propagation from the
primary fracture (Figure 104). The secondary fractures were initiated from crack tips of the primary
facture, because concentrated tensile stresses largely exceed the tensile strength. The main trend of the
fracture propagation was similar in both lower and higher injection cases, but the secondary fractures
grew along with the primary fracture growth in the higher injection case (Figure 104). The creation of the
multiple fractures increased the leakoff volume d twice much as the low injection case (Figure 105). In
addition, breakdown pressure was as high as 14.5 MPa and the wellbore pressure quickly dropped with
fracture propagation (Figure 105). The high injection rate led to large mechanical deformation (aperture
profile) and high pore pressure near the fracture tips (Figure 106)).
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(a) gi,=24L/min (b) gi=144L/min
Figure 104. Comparison of hydraulic fracture propagation at lower injection rate vs. higher injection rate.
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We examined 2D hydraulic fracture propagation simulations in permeable rock and investigated the
influence of the reservoir heterogeneity and the injection rate. The reservoir heterogeneity is a critical
factor to determine the hydraulic fracturing strategy, because both mechanical deformation and fluid flow
behavior are affected by the heterogeneity factor. Especially, high heterogeneity increases leakoff volume
and reduces the injectivity of fracturing fluid. When the rock was highly heterogeneous, the injection
efficiency was decreased to 0.57 Table 18. When the injection rate was increased by 6 times, the injection
efficiency decreased only from 0.832 to 0.82. So that means the injection efficiency is a function of the
heterogeneity factor and not a function of the injection rate. Based on the simulation results, the hydraulic
fracturing strategy should carefully determine if the reservoir is highly heterogeneous.

Table 18. Comparison of fluid volume and injection efficiency.

Time (s) Injected Fracture Leakoff Injection
volume (ml) volume (ml) volume (ml) efficiency, &,
Homogeneous 10.67 4266.39 4258.413 7.977 0.998
Low Hetero. 12.97 5189.38 4316.84 872.54 0.832
High Hetero. 13.04 5214.275 2970.55 2243.73 0.57
High injection 3.70 8878.55 7282.33 1596.225 0.82
S , ) V, V.-V,
where the injection efficiency is defined as: €,; = 7 = v
i i

8.2 3D Modeling of Hydraulic Fracturing Experiments

Hydraulic fracturing has continued to become more important for the oil and gas industry. Optimization
of the hydraulic fracturing treatment is necessary to save developing cost. Lab experiments and numerical
hydraulic fracturing models give valuable information for the optimization procedure. Laboratory-scaled
hydraulic fracturing experiments have frequently been used previously. Many researchers have conducted
laboratory-scaled hydraulic fracturing tests (Daneshy, 1974; Lamont and Jessen, 1963; Teufel and Clark,
1984; Zoback et al., 1977). These laboratory experiments are useful to examine an insight into the process
of hydraulic fracturing treatment, because they provide guidelines for evaluating laboratory environments
and the influences of different factors (e.g., injection schedule, fracturing fluid, and confining pressures)
that can be monitored in the hydraulic fracturing treatment. Compared with field tests, laboratory tests can
reduce developing cost significantly. Laboratory tests are also used to validate numerical hydraulic
fracturing models (Bai et al., 2006). This chapter compares the fully 3D hydraulic fracturing model with
the laboratory hydraulic fracturing tests of Niobrara shale that was performed by TerraTek (Ghassemi and
Suarez-Rivera, 2012). The numerical simulation provides a sophisticated understanding of the complex
process of hydraulic fracturing. We investigated the hydraulic fracturing simulation in both homogeneous
and heterogeneous blocks.

8.2.1 Large-scale laboratory hydraulic fracturing test
The laboratory scale hydraulic fracturing test was performed in TerraTek’s large block multiaxial stress

frame. Using the multiaxial stress frame (Figure 107), the in-situ effective stress conditions were
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generated in three principal directions by high pressure flatjacks. The tested Niobrara shale (Figure 107)
was obtained from a quarry located in Colorado and prepared for 27.25-in. x 27.25-in. x 32-in.
dimensions of the block. The wellbore was drilled in the middle of the testing block. Vertical completion
with a cased borehole was placed, and a 7-in. long openhole section located was 15 to 22-in. from the top
face of the block. Two slots of 12-mm penetration were sandblasted along the length of the openhole
section to facilitate fracture initiation and breakdown. 37 acoustic sensors were installed on the faces of
the block to evaluate fracture geometry and propagation during the hydraulic fracturing test. Glycerol,
which has high viscosity of 1,000 cp, was used for the fracturing fluid, and a constant injection rate of
1,000 mL/min was pumped into the block sample subjected to anisotropic in-situ stresses.

i e '-"_:;z':

Figure 107. TerraTek’s large multi-axial stress frame and Niobrara boulder acquired from the quarry in
Colorado (Ghassemi and Suarez-Rivera, 2012).

8.2.2 Numerical modeling for laboratory-scaled hydraulic fracturing test

As we explained earlier, the hydraulic fracturing process was modeled using the fluid-driven fracturing
problem. So rock deformation was modeled for poroelastic solids, and fracture propagation was modeled
by a quasi-static assumption. The fluid flow in the propagating fracture was solved by the lubrication
equation. In this 3D hydraulic fracturing simulation, the fracture propagation process is more simplified
because of complexity of numerical description of fracture tip contour of the non-planar fracture growth.
It is assumed that the main hydraulic fracture plane was propagated constantly with given crack increment
in the direction of the maximum far-field stress. That is, the crack increment law and an angle of fracture
direction are not considered in the 3D simulation. In the 3D hydraulic fracturing simulation, once the
fracturing tip contour met with the maximum tensile criterion, the fracture plane is extended with the
given crack increment at every time step.

The laboratory-scale large block was modeled using a 3D finite-element model and meshed using 26,400
tetrahedron elements (Figure 108). Since quasi-static planar fracture propagation is assumed, our interest
zone is the middle zone of the numerical domain. So, finer mesh is applied in the middle zone to capture
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the fracture plane propagation. The dimensions of the block were modeled as 1-m % 1.2-m X 1-m. We
assumed a center-located pre-existing fracture plane of radius of 0.1-m for an open-hole perforation in the
experiment. In the numerical domain (Figure 108(b)), elements overlapped with the initial fracture plane
geometry (r=0.1m) are treated as crack elements. The crack elements are used to compute equivalent
nodal forces by EPM. For quasi-static fracture propagation modeling, the crack increment is given as
Ar=0.05m. A fracturing fluid injection rate of 1,000 mL/min was applied as a point-source boundary
condition at the center of the propagation fracture plane. For in-situ stress conditions, the vertical stress
was applied in the y-direction and the maximum and minimum in-situ stresses were applied in the x- and
z-directions respectively (Table 19). Fluid properties of glycerin appear in Table 20. Since the material
properties of the Niobrara shale were not given, we approximated the material properties from Colorado
shale test data performed by (Regehr, 2012). Approximate material properties of the Niobrara shale are
shown in Table 21 Assumed Mohr-Coulomb parameters and tensile strength also appear in Table 19.

(a) Boundary conditions (b) Finite element mesh

Figure 108. 3D numerical model and meshed finite element model for laboratory-scaled hydraulic
fracturing test.

Table 19. Boundary conditions and input parameters.

Inputs Values
Vertical in-situ stress, S, (MPa) 31(4,500 psi)
Maximum in-situ stress, Sy (Mpa) 20.7(3,000 psi)
Minimum in-situ stress, S, (MPa) 6.9 (1000 psi)
Injection rate, g,,; (mL/min) 1,000
Mohr-Coulomb parameter, ¢ 10

Cohesion, cr (MPa) 30

Tensile strength, o, (MPa) 7

Number of elements 26,400
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Number of nodes 6,300

Table 20. Fluid properties for Glycerin.

Inputs Values
Fluid mass density, pr (kg/m3) 1261

Fluid viscosity, uy(Pa-s) 1 (1,000 cp)
Bulk modulus for fluid 4.35e9

Table 21. Rock properties of Niobrara Shale.

Inputs Values
Young’s Modulus, £ (GPa) 3.7
Shear Modulus, G (GPa) 1.42
Drained Poisson ratio, v 0.3
Undrained Poisson ratio, v, 0.46
Biot’s coefficient, 0.866
Skempton’s coefficient, B 0.949
Permeability, £ (md) 0.01
Porosity, ¢ 0.1

8.2.3 Hydraulic fracturing in homogeneous block

In a homogeneous block, only major planar fracture growth propagated (Figure 113). With the planar
fracture growth, fluid pressure distributions changed with time. Figure 113 (a to h) captures continuous
changes of the fracture plane and the fluid pressure distribution. In Figure 110, the fluid pressure profile
changed quickly with time and the fracture aperture opened gradually. As the fracture plane grew, the
fluid pressure profile stabilized.

A viscous fracturing fluid is inducing a steep rise of wellbore pressure and eventually leads the initiation
of a fracture. Wellbore pressure profile (Figure 109) quickly dropped with the fracture growth.
Breakdown pressure in this simulation was 30.12 MPa (4368.55 psi) and wellbore pressure stabilized
around 10.6 MPa (1537.4 psi). Since the block was assumed as homogeneous, the leakoff volume was
small (48 ml). In Figure 111 112, the compressive stress increased the pore pressure near the fracture
plane. Pore pressures near fracture tips were nearly zero due to the opening mode of fracture. Maximum
opening stresses were concentrated in this region.
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Figure 110. Fluid pressure change and aperture change during hydraulic fracturing.

Figure 111. 0., distribution and pore pressure distribution at t=14.28 seconds in homogenous block.
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z z
Figure 112. Maximum compressive stress and fluid pressure distribution (from center cut-view) at
t=14.28 seconds in homogeneous block.

(b) t=2.85 seconds
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(e) t=27.59 seconds
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(h) t=112.25 seconds
Figure 113. Fracture plane growth and fluid pressure distribution with time.
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8.2.4 Hydraulic fracturing in heterogeneous block

Because the real testing block is characterized by heterogeneous fabric, we applied the heterogeneities to
the numerical block using random variables generated by the Weibull distribution function. There are no
initially assigned cracks in the numerical block. Generated random variables applied to stiffness,
permeability, and strength of each element for representation of the block heterogeneity. Selected Weibull
parameters are shown in Table 22. The heterogeneity of the block is described in Figure 117. During
hydraulic fracturing in the heterogencous block, lots of failures were detected with the main planar
fracture growth (Figure 117). The secondary failures are induced by the hydraulic pressurization in the
main fracture plane. However, the spotted failures are not directly connected with the main fracture plane,
so that the secondary failures could not be opened by fluid pressure. The spotted failures have been
increasing with time and fracture plane growth. Figure 118 captured failures in orthogonal direction of the
major fracture plane are captured. The lateral growth of the fracture is also observed in experiments.

The wellbore pressure profile (Figure 115)) was similar to the homogeneous case. Breakdown pressure in
this simulation was slight lower at 28.75 MPa (4169.84 psi) and wellbore pressure is stabilized around
10.6 MPa (1537.4 psi). Because of effect of the heterogeneity, leakoff volume is increasing to 385 ml
(Figure 115). In Figure (116), pore pressures near the fracture plane are high due to the compressive
forces of fluid pressurization. The pore pressure is more widely distributed than the homogeneous case
and the heterogeneous pore pressure increase could affect failures, because increased pore pressure moves
the failure envelope left to right. The pore pressure effect triggered tensile or shear failures are. In
addition, because the maximum opening stresses concentrated on the fracturing tip region, pore pressures
near the fracturing tip region are nearly zero by the fracture opening.

Table 22. Weibull parameters for Block heterogeneity.

Inputs Values
Distribution for stiffhess mi=1, a;=5
Distribution for permeability mo=1.1, a,=10
Distribution for strength ms=1, a;=6
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Figure 114. Representation of stiffness heterogeneity (unit=GPa).
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(g) t=75.15 seconds (h) t=129.8 seconds

Figure 117. Fracture plane growth and failure events in heterogeneous block.
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(a) Colored by step (b) Colored by damage

Figure 118. Failure events colored by step and damage at t=129.8 seconds.

In Figure 117 and 118, the main fracture plane is represented by iso-surface, while the multiple and
spotted failures are indicated by points. The spotted failures have been detected by damage events during
hydraulic fracturing simulation. In Figure 117(a), the initial fracture plane is pressurized by fracturing
fluid injection and after a short time (t=0.73 seconds), wellbore pressure reaches breakdown pressure (P,=
28.75MPa) and the fracture plane propagates toward the maximum in-situ stress direction. We only
observe a few failures in the heterogeneous block until t=3.02 seconds and then the multiple and spotted
failures are detected after t=7.82 seconds (Figure 117 (¢)). After t=28.10 seconds, the multiple failures are
concentrated on near the primary fracture plane toward orthogonal direction of the primary fracture plane
(Figure 117 (e)-(h)). These orthogonal failures are an indication of branching of the hydraulic fracture
propagation. In Figure 117 (g)-(h), the fracture plane has almost reached the boundary of the block. The
fracture plane is highly opened and leakoff volumes are also increasing (Figure 115).

8.3.4 Comparison of numerical and experimental results

In Figure 119, we compared the wellbore pressure profile of the numerical simulation with the
experimental results. According to the comparison, the breakdown pressure of the homogeneous block is
slightly higher than in the experiments, while the breakdown pressure of the heterogeneous block is
almost similar with the experiments. The simulation time of the homogeneous block case is shorter than
in the experiments and the heterogeneous block (Table 23). A major difference between the wellbore
pressure profile of the numerical simulation and the experiments appears after breakdown pressure.
Wellbore pressure of the experiment is shown to drop more quickly than the numerical simulation. This is
because we assumed the fracture propagation would grow in a quasi-static manner. However, practically
speaking, the fracture grew dynamically and the speed of growth was faster than our simulation.
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Table 23. Comparison of experimental results and numerical simulations.

Breakdown Stabilized Treatment
pressure pressure time (s)
28.97 MPa 10.93 MPa
E imental Its (by TerraTek 130
xperimental results (by TerraTek) (4202 psi) (1585 psi)
30.12 MPa 10.6 MPa
Num. H block 112.25
Hm. Homogerieous biot (4368.55 psi)  (1537.4 psi)
Num. Heterogeneous block 28.75 MPa 10.6 MPa 129.8

(4169.84 psi)  (1537.4 psi)
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Figure 119. Comparison of wellbore pressure profile with experimental results.

8.3.5 Sensitivity of numerical model by material property

In Figure 121, we investigated the sensitivity of the 3D hydraulic fracturing simulation against Young’s
modulus. Since mechanical deformation of a rock is dependent on the Young’s modulus of the rock,
hydraulic fracturing behaviors are also influenced by the change of the mechanical deformation. When
the rock was softer (E=2.7GPa), less breakdown pressure was obtained and more simulation time was
required, because the fractures opened wider in the soft rock. In contrast, when the rock was harder
(E=4.5GPa), breakdown pressure was higher and shorter simulation time was required, because the
fractures opened less in the hard rock.
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Figure 121. Comparison of wellbore pressure profile and injection volume by Young’s modulus changes.

Viscosity of fracturing fluid. In the hydraulic fracturing stimulation, choice of fracturing fluid is another
important issue, because fracture opening (i.e. aperture) is highly affected by viscosity of the fracturing
fluid. Generally, high viscosity fluid opens more, while low viscosity fluid opens less. Because the high
viscosity fluid induces strong tensile force, higher breakdown pressure is observed than the low viscosity
fluid. In this section, influence of the fluid viscosity on the hydraulic fracturing was investigated.

Cases of p=1000cp vs. u=100cp:

Previously we used glycerin for the fracturing fluid, which has high fluid viscosity (u=1000cp). Lower
viscosity fluid (u=100cp) was used instead of the glycerin. When same amount of injection rate
(qin/=1L/min) was used, low breakdown pressure (P,=13MPa) was observed and the fracture plane did not
propagated since the low injection rate could not induce enough tensile forces at fracturing tips (Figure
121). So, when the injection rate was changed to qi,7=10L/min, higher breakdown pressure (P,=28MPa)
was obeserved and the fracture plane was fully propagated (Figure 121). When the low viscosity result
(1=100cp, qin=10L/min) was compared with the high viscosity result (u=1000cp, gi,=1L/min) (Figure
121), the low viscosity case required shorter treatment time than the high viscosity case because the
injection rate of the low viscosity case is ten times higher than the high viscosity case. Because of the
high injection rate of the low vicosity case, amount of injected fracturing fluid (V¢=2,500mL) is higher
than the high viscosity case (V¢=1,900mL).

Consequently, when the lower viscosity fluid is used, higher injection rate is required to create hydraulic
fracturing. Unless the injection rate is increased, the fracture plane could not be extended. Hence, high
pumping equipment is required when the fracturing fluid has low viscosity property.
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Figure 121. Comparison of wellbore pressure profile and injection volume by fracture fluid viscosity and
injection rate.

In this section, development a fully 3D hydraulic fracturing model for the large-scale laboratory hydraulic
fracturing test was presented. The model was successfully validated using a lab-scale experiment
performed by TerraTek. Planar fracture propagation was observed in both numerical simulations and
experiment, as expected. In the case of the heterogeneous block test, both main planar fracture growth and
widely distributed micro-fractures were observed. The greatest difficulty of the 3D hydraulic fracturing
model is tracking the crack tips, because the crack tip is no longer 2D and the 3D variation of the crack
tips makes them difficult to identify. In our 3D hydraulic fracturing simulation, we assumed the main
planar fracture plane was propagating toward the maximum in-situ stress direction. However, the fracture
could turn or intersect natural fractures. Capturing these complex fracture interactions would require
further development of the presented 3D model.

9. Three-dimensional (3D) Thermal Fracture Propagation

In geothermal reservoir development, thermal stresses arise from conductive and convective heat transfer.
These stresses become important for long injection times and may result in thermal fracturing (Min and
Ghassemi, 2011). Basically, three mechanisms of heat transferring—conduction, convection and
radiation—could be acting on the porous rock. Conduction is transferring heat through solid material
from high temperatures to low temperatures. Convection is a process of heat transfer by a flowing fluid.
Radiation is a heat transfer process of electromagnetic waves moving through space, so there is negligible
radiation effect through the porous rock, and usually it is not considered as an important heat transfer
mechanism (Pratt, 1982). Among these three heat transfer mechanisms, heat conduction is a dominant
heat transfer mechanism in porous rock (Settari, 1989). Therefore, in enhanced geothermal system (EGS)
design, thermally induced stresses might be used to create reservoir permeability. When cold water was
injected into the geothermal reservoir, the reservoir rock gradually lost its heat and the rock shrank due to
the cooling process. Eventually, the thermally induced stresses nucleate fractures when the strain energy
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from the thermal load is sufficient to create initial cracks in an intact rock mass (Tarasovs and Ghassemi,
2010). The secondary thermally induced fractures initiate perpendicular to the preexisting major fracture
(Tester et al., 1989), and the creation of thermally induced fractures could provide larger contact area by
increasing fracture permeability near the preexisting fracture networks, increasing injectivity and
productivity of the geothermal reservoir. Especially, serial processes of cooling and heating in geothermal
reservoirs could enhance reservoir permeability due to the secondary thermal fracture growth (Min and
Ghassemi, 2011). We investigated the basic fracture mechanism of the thermally induced fracture growth
and the role of the heterogeneity in a geothermal reservoir. The thermal stresses were calculated using the
coupled thermo-hydro-mechanical (THM) analysis, and their influence on crack propagation during
reservoir stimulation was simulated using numerical simulation.

The size of the section of interest is 150-m % 100-m x 80-m (Figure 122) and the upper and lower zone
have 20 m and 75G Pa each, while the zone of interest is 40 m thick and has a variable modulus, between
45 and ~ 55 GPa (figure 123). In the center of the zone, a preexisting fracture is assumed, and its surface
is considered cooling. The closed fractured surface is simplified as an elliptical surface as in a hydraulic
fracture. In the thermal coupling part, conductive heat transfer is considered between the rock matrix and
the cooled fracture. In addition, the boundary conditions of the numerical model are simplified; a zero
pore-pressure boundary condition is applied to top and bottom surfaces of the model. Table 24 shows the
statistically generated heterogeneities applied to the zone of interest in the geothermal reservoir. The
randomly generated variables are applied to materical stiffness, matrial strength, and permeability.
Hydraulic, thermo-physical, and mechanical properties for simulation domain are described in Table 24.

Upper zong
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Figure 123. Representation of stiffness heterogeneity (unit=Pa).

187



Table 24. Material properties and input parameters for Thermal fracturing.

Inputs Values
Young’s Modulus 54.5 GPa
Poisson ratio 0.25
Permeability 0.001 md
Porosity 0.19

Biot’s effective stress coefficient 0.966
Thermal diffusivity 1.6x10° m%/s
Thermal expansion of solid phase 1.8x10° K
Thermal expansion of fluid phase 3.0x10* K
Num. of element 275,556
Num. of nodes 49,019
Reservoir dimension 150-mx100-mx80-m
Thermal loading AT=90°C

No initial cracks were applied in our FEM model. Crack initiation and propagation were detected by both
the damage variable and the maximum principal strain criterion. Pore pressure changes around the
fracture surface were influenced by the temperature variation through thermo-poroelastic effects. The
cooling zone was extended by the cooling injection over time (Figure 123), the distribution of ¢,, and the
maximum tensile value of ¢. were concentrated on the fracture surface, and the tensile-strain
concentration led to crack growth perpendicular to the preexisting fracture surface (Figure 125). When the
heterogeneous reservoir was subjected to temperature change, the fracture volume increased; the amount
of the volume change was dependent on the thermal expansion coefficient of the rock. The considerable
difference of thermal expansion coefficient between damaged rock and intact rock will increase the
effective volumetric stress in the heterogenecous reservoir. The volumetric stress change will initiate
thermal fractures and increase a significant positive pore pressure in the thermally induced fractures. And
the continuous change of volumetric expansion of the pore space will cause further propagation of the
thermal fractures. Figure 126 shows crack initiation at early (a) and later (b) stages of cooling. Clearly,
the longer cracks grew mostly in the central area of the main fracture surface. The length of the fracture
was limited by the extent of the cooled zone. Tension failure by thermal loading created several cracks
perpendicular to the major fracture surface at various locations due to the heterogeneous nature of the
rock matrix. . In this simulation, we assumed that the initial pore pressure of the rock matrix was 20 MPa
and the pore pressure of the fractured element was 25 MPa. However, the low matrix permeability
prevented rapid communication of the hydraulic pressure with the rock matrix until the thermal fractures
grew. The pore-pressure distribution at this stage is shown in Figure 127.
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Figure 124. Temperature distribution changes by cooling injection.

(a) Time = 2 hours
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Figure 125. Distribution of &,, changes by cooling.

In this simulation, the minimum element size was about 0.2 m. This means that the minimum crack length
growth at each step was at least 0.2 m, so it was difficult to see thermal fracture growth clearly in this
coarse mesh. In Figure 128, crack propagation is scattered at early stages, while the spacing of the cracks
decreases at the later stages of fracturing. Red spots indicate early crack growth and orange spots indicate
later crack growth. Since tensile stresses were concentrated in the center of the fracture surface, cracks
nucleated mostly from the interior regions of the fracture surface, and later cracks initiated from the outer
boundary of the closed fracture as the tensile region transferred to the edge of the cooled fracture surface.
However, the fracture spacing should eventually increase as the fractures interact and some cease to

propagate.

(a) Crack initiation stage
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(b) Crack propagation stage
Figure 126. Thermal fracture growth represented by the isothermal surface.
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(b) Pore pressure distribution at the later stage of thermal fracturing

Figure 127. Pore pressure distribution during thermal fracturing.
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(b) Crack growth at the later stage
Figure 128. Thermal fracturing growth using scatter image in sequential stages.

This evaluation showed that thermal fractures propagate perpendicular to the original natural fracture.
Because of heterogeneity, some fractures align differently, but the major trend of thermal fracturing is
similar to previous work (Tarasovs and Ghassemi, 2010). Characterization of the thermal fracture spacing
is difficult with the current simulations. The major difficulty of thermal fracturing characterization is
applying a crack-propagation and branching scheme. In many cases, simulation results produce unstable
configurations when propagation is very fast. Thus, it is necessary to carefully determine the step size and
the critical criterion for crack propagation and branching. Also, to characterize very small fracture growth
from a large fracture surface, a finer mesh is needed; however, a drawback of the finer mesh model is
increasing computational cost. For future research, long-term thermal fracturing growth will be simulated
and characterized using a finer mesh case.
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Chapter 3. SUMMARY AND CONCULUSIONS

The objective of this work was to develop advanced numerical models for better understanding of brittle
fracture process including mixed fracture propagation and hydraulic fracturing treatment considering rock
heterogeneity. The research work carried out included numerical description and interpretation of rock
properties and fracture patterns, and analysis of triaxial experiments; improved understanding of complex
fractures affected by brittle/ductile behavior of rock; 2D and 3D hydraulic fracturing models for
laboratory block experiments and its application to larger-scale problem

Hydraulic fracturing process was modeled using fluid-solid interaction analysis incorporating fluid flow,
fracture mechanics, rock deformation and moving boundary problem. The hydraulic fracture propagation
and moving boundary scheme were modeled using the VMIB and damage mechanics with the element
splitting technique applied to three-node tetrahedron and four-node tetrahedron elements. The 3D
hydraulic fracturing models were validated using large scale hydraulic fracture laboratory experiments.

Numerical simulation of 3D fracture propagation in brittle rock was studied using the VMIB evolution
function at the micro scale. The results showed that typical features of 3D tensile and compressive
fracture propagation can be well represented. Especially, simulation results by 3D VMIB and 3D EPM
demonstrated the propagation of Mode III fracture. Such simulations improve understanding of 3D
fracture propagation mechanism and provide a means of designing multiple hydraulic fractures for
reservoir stimulation. Furthermore, 3D simulation of multiple hydraulic fractures showed good agreement
with the results of theoretical analysis. In addition, an interesting manner of hydraulic fracture
propagation in Mode III has been observed showing the formation of multiple fractures from the original
crack.

The influences of coupled processes (poroelastic and thermoelastic) on fracture propagation were
simulated using VMIB and Continuum Damage Mechanics (CDM) along with the discontinuous crack
propagation algorithm. Numerical simulation of 3D thermal fracture propagation in brittle rock was
studied using the VMIB model combined with 3D EPM method. In VMIB theory, the macro behavior of
material is attributed to the strength evolution of micro virtual bonds subjected to applied loads. With this
hypothesis, thermally induced failure of rock was simulated in this work, showing the advantages of
VMIB in simulating the failure process. Nonlinearities of mechanical behavior and thermal parameters of
the rock material were captured by introducing a nonlinear VMIB constitutive model. A 3D EPM
associated with thermal parameters modification for fractured elements provided a simple way to
represent the pre-existing fracture in a structured mesh. The advantage of the 3D EPM is that it is
unnecessary to mesh the fractures and thus, remeshing is not needed during fracture propagation. This is a
major convenience especially for multiple fractures in complex geometry.

Several examples were provided to test the functionality of the model and to provide evidence for its
verification. Test I showed reasonable results for the nonlinear thermal deformation and fracture of rock
when subjected to uniform cooling. Test II which was designed to check the model’s ability to treat a
randomly distributed set of fractures with a structured mesh was also successful, and illustrated the
interaction and growth of fractures in a cluster under thermal loading. The final example illustrated the
behavior of fractures emanating from a wellbore and showed the model captures the impact of cooling
and the in-situ stress on the propagation patterns.
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Special algorithms were developed and used to address the mesh-sensitivity of the VMIB approach. In
particular, the fracture energy conservation was considered in the proposed VMIB model. Through
incorporation of the fracture energy in the bond evolution function, the mesh-size sensitivity was
minimized for the element size simulated in this work. The model served as a mechanical constitutive
relation in a fully 3D hydraulic fracturing model to simulate laboratory scale experiments. Taking
advantage of 3D EPM, the pre-existing fractures were treated as “joints” so that the contact and reopening
behaviors were captured when interacting with a propagating fracture. For each case, curved and parallel
growth of fractures under different confining stresses was captured with reasonable agreement with
experimental observations. The critical element size, however, limits the maximum size that satisfies
fracture energy conservation and the effectiveness of the model. Therefore, it limits the size of simulation
domains to small and possibly meso-scale.

Continuum Damage Mechanics (CDM) was also used to describe the inelastic response of micro-crack
growths and the macroscopic fracture (in 2D and 3D). Damage mechanics allowed representation of both
micro and macro crack propagation and severely damaged zone. The brittle failure mechanism of
heterogeneous rock was studied using CDM within FEM formulation. Generally, rock fractures in mixed
mode which requires complex criteria for predicting the failure/fracture; however theoretical approaches
are not sufficient to do it. So, simplified constitutive relations were proposed to describe the general
strain-softening behavior corresponding with confining pressure, although it is more ideal to use different
constitutive relations for different types of material to give a more realistic physical interpretation. In
addition, an isotropic damage variable was used to represent stiffness degradation and crack
initiation/propagation for simplicity of numerical implementation. The elastic/brittle constitutive model of
the brittle rock was developed and simulated to study the influence of confining pressure through
calibration with the multistage triaxial experiments. The numerical results showed a reasonable
approximation for the stress-strain relations and fractured behavior with core samples after the triaxial test.
Also, the three basic types of mechanical deformation processes—reversible elastic, irreversible inelastic,
and irreversible friction—were generally captured. The elastic-brittle constitutive assumption is suitable
for rock material such as granite, but not for Newberry tuff, because as confining pressure increases tuff
becomes more ductile and the fracture plane is affected. The model did not include plastic hardening
deformation, so the stress-strain relation did not perfectly match laboratory experiment results. Thus, to
consider ductile behavior, it is necessary to introduce plasticity into the elastic/brittle constitutive model,
along with an additional damage variable that could represent the plastic hardening behavior. Rock
heterogeneity was represented by spatial distribution curves using Weibull function.

Numerical simulations of mixed modes fracture propagation in brittle rock was studied using 2D and 3D
wing-crack models. In 2D simulation, mixed modes fracture of Mode I and II and the influence of
confinement on the crack growth were studied. The dominant failure mechanism depends on the
confinement and the local stress conditions determine the direction of crack propagation. In 3D
simulations, a wing crack has initially grown in the major compression direction, but its direction changed
due to the presence of the free surface of the 3D specimen. In 2D case, since there is no Mode III
fractures, the secondary crack could grow farther toward the compression direction, but 3D secondary
crack growth from the pre-existing circular crack involves mixed modes (Il and III), so that 3D fracture
propagation becomes more complicated. It is necessary to further study 3D crack propagation to improve
understanding of the fracture propagation mechanism for designing multiple hydraulic fractures.
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Moreover, hydraulic fracture propagation in permeable rock was simulated to investigate the influence of
the reservoir heterogeneity and the injection rate. The reservoir heterogeneity is a critical factor because
both mechanical deformation and fluid flow behavior are affected by rock heterogeneity. Especially, high
heterogeneity increases leakoff volume and reduces the injectivity of fracturing fluid. When the rock was
highly heterogeneous, the injection efficiency was decreased to 0.57. When the injection rate was
increased by 6 times, the injection efficiency decreased very little.

3D hydraulic fracturing modeling of laboratory block experiment was simulated using the coupled fluid-
solid interaction analysis. This problem was very challenging to interpret via numerical modeling,
because of numerous complexities such as the moving boundary issue, dynamic crack growth, and
complex geometry. Therefore, the hydraulic fracture propagation problem was treated in a quasi-static
manner. The hydraulic fracturing process was divided into three coupled processes of fluid flow,
hydromechanical deformation, and fracture propagation. The fluid flow inside fractures was modeled
using the lubrication equation, and the hydromechanical deformation of rock was solved using fully
coupled poroelastic analysis. Fracture propagation was modeled as quasi-static crack growth. A coupled
iterative algorithm was introduced to solve the coupled rock deformation and fracture pressure. The
coupled iterative solution for the fluid-driven fracture propagation problem is very difficult to construct,
because of the nonlinear relationship of rock deformation and fluid flow in fractures. Hence, the rock
deformation, computed by a fully coupled THM analysis was iteratively coupled with the fluid flow
behavior, which was computed by using the lubrication equation. Numerical study of the coupled
hydraulic fracturing simulation was successfully validated using a large-scale laboratory hydraulic
fracturing experiment performed by TerraTek.
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