
Modeling DNP3 Traffic Characteristics of Field
Devices in SCADA Systems of the Smart Grid

Huan Yang∗, Liang Cheng† and Mooi Choo Chuah‡
Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015

Email: ∗huy213@lehigh.edu, †cheng@cse.lehigh.edu, ‡chuah@cse.lehigh.edu

Abstract—In the generation, transmission, and distribution
sectors of the smart grid, intelligence of field devices is realized
by programmable logic controllers (PLCs). Many smart-grid
subsystems are essentially cyber-physical energy systems (CPES):
For instance, the power system process (i.e., the physical part)
within a substation is monitored and controlled by a SCADA
network with hosts running miscellaneous applications (i.e., the
cyber part). To study the interactions between the cyber and
physical components of a CPES, several co-simulation platforms
have been proposed. However, the network simulators/emulators
of these platforms do not include a detailed traffic model that
takes into account the impacts of the execution model of PLCs on
traffic characteristics. As a result, network traces generated by
co-simulation only reveal the impacts of the physical process on
the contents of the traffic generated by SCADA hosts, whereas
the distinction between PLCs and computing nodes (e.g., a
hardened computer running a process visualization application)
has been overlooked. To generate realistic network traces using
co-simulation for the design and evaluation of applications relying
on accurate traffic profiles, it is necessary to establish a traffic
model for PLCs. In this work, we propose a parameterized model
for PLCs that can be incorporated into existing co-simulation
platforms. We focus on the DNP3 subsystem of slave PLCs, which
automates the processing of packets from the DNP3 master. To
validate our approach, we extract model parameters from both
the configuration and network traces of real PLCs. Simulated
network traces are generated and compared against those from
PLCs. Our evaluation shows that our proposed model captures
the essential traffic characteristics of DNP3 slave PLCs, which
can be used to extend existing co-simulation platforms and gain
further insights into the behaviors of CPES.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) system
is a critical component of the smart grid, supporting infor-
mation exchange among field devices, local human-machine
interfaces (HMI), as well as remote control center servers.
Due to stringent requirements on electromagnetic compat-
ibility (EMC), intelligence of field devices in the genera-
tion, transmission, and distribution sectors of the smart grid
is implemented by programmable logic controllers (PLCs).
Another advantage of PLCs is its standardized programming
languages [1], such as ladder logic, which make it easy to both
debug new PLC programs and port existing ones.

To understand the behaviors of a cyber-physical energy
system (CPES) when certain events occur (e.g., transient faults
caused by a lightning strike), it is important to model the traffic
characteristics of PLCs because they are the major interfaces
between its cyber and physical parts: Control and protection
tasks typically require data (e.g., status of circuit breakers) and

actions (i.e., command execution) of multiple field devices.
As the smart grid continues to grow in complexity and
interconnectivity, failures of its cyber components, e.g., due
to software bugs or system events, can result in significant
impacts on its physical processes. Co-simulation (e.g., [2], [3])
allows us to leverage tools developed by various research com-
munities and comprehensively assess such impacts. Realistic
datasets generated by co-simulation are extremely valuable
because access to real SCADA datasets is strictly controlled
by SCADA system operators due to security and privacy
concerns. However, existing work on co-simulation mainly
focuses on the concrete mechanisms for information exchange
and synchronization among domain-specific tools. To enable
co-simulation platforms to generate realistic SCADA traffic
datasets for the design and evaluation of applications relying
on traffic profiles of SCADA hosts, it is important to incor-
porate traffic characteristics of PLCs and analyze the time it
takes for commands/data to get prepared for transmission over
the SCADA network because the network-induced delays are
comparable in magnitude to the processing delays incurred by
a PLC program. For instance, it is reported in [4] that, for
a SCADA network consisting of an Ethernet switch and 21
field devices, the maximum network-induced delays is about
200 µs. According to [5], it takes about 1 µs to execute a PLC
comparison instruction (e.g., the EQU instruction for equality
test). PLC programs of reasonable sizes can thus take up to
several hundreds of microseconds to execute.

Recently, cyber threats targeting the smart grid, such as
malware and denial-of-service (DoS) attacks, have become a
major concern since there is a need to interconnect SCADA
systems of different power-system sectors. Among existing
methods for cyber-threat detection, those based on traffic be-
havior analysis (e.g., [6]) are well-suited for SCADA networks
because they do not depend on the packets payload and thus
can work with encrypted SCADA traffic data. In contrast
to computers running desktop operating systems, PLCs exe-
cute control programs in a significant different manner (see
Sec. III). It has been shown that SCADA traffic exhibits
characteristics that are significantly different from those of
the Internet [7]. To analyze cyber threats based on traffic
profiles of SCADA hosts, it is therefore essential to take
traffic characteristics of PLCs into account. For example, to
detect botnets, frequency-domain analysis techniques, such as
discrete Fourier transform (DFT), have been applied to dis-
cover the major frequencies resulted from the communication



between bot-infected hosts and command-and-control (C&C)
servers (e.g., [8], [9], [10]). In [10], flow-specific packet sizes
and packet inter-arrival timestamps within a configurable time
window are collected to create time series for DFT analysis.
To leverage frequency-domain features and develop algorithms
detecting cyber threats such as botnets in SCADA environ-
ments using co-simulators, it is indispensable to incorporate
accurate traffic models of PLCs into co-simulation platforms.

In this work, we model the traffic characteristics of PLCs
and establish a parameterized model that can be incorporated
into existing co-simulation platforms. We focus on the dis-
tributed network protocol (DNP3) [11], which is widely used
in existing SCADA systems in CPES. Taking the execution
model of PLCs into account, we propose to extract necessary
model parameters from PLC program and configuration files
to determine packet sizes. In addition, we take measurements
from real PLCs to find proper model parameters for timing
characteristics. Currently, we focus on PLCs working as DNP3
slaves, which are widely used in SCADA systems of CPES.
As DNP3 masters run sophisticated applications and can be
implemented on various devices such as high-end PLCs and
computers (e.g., using the Opendnp3 library [12]), the traffic
model for DNP3 masters is not discussed in this work. To
validate our approach, we construct a traffic model for a
real PLC running the DNP3 protocol as a slave node and
incorporate it into OMNeT++. Simulated traffic data is then
compared against network traces generated by another PLC
running the same program. Our evaluation shows that the
proposed approach captures essential traffic characteristics of
PLCs, which can be used to extend existing co-simulation
platforms and gain further insights into the behaviors of the
smart grid as an entirety.

II. STATE OF THE ART AND LIMITATIONS

The smart grid is a complex system consisting of interde-
pendent cyber and physical components. Co-simulation is an
effective way of analyzing the behaviors of a CPES because
interactions among its multiple cyber and physical components
are jointly modeled and simulated. To perform integrated
analysis, simulators from different domains can be leveraged
in co-simulation. For example, the INSPIRE co-simulation
environment [2] is a hybrid framework leveraging the high-
level architecture (HLA) and combining a continuous-time
power-system simulator (i.e., DIgSILENT PowerFactory), a
discrete-event network simulator (i.e., OPNET), and power-
system control and protection algorithms implemented in gen-
eral programming languages such as MATLAB and Java. By
implementing logical time synchronization strategies among
its domain-specific components, INSPIRE allows us to study
the impacts of communication delays on real-time smart-grid
monitoring. Emulation tools can also be exploited by co-
simulation platforms. To study the impact of cyber attacks
such as TCP SYN flood attack, a co-simulation testbed with
hardware-in-the-loop capability is developed in [13]. In [14],
the CORE emulator is used to model a SCADA network on
a single computer. However, the traffic traces generated by

system 

start-up

input 

scan
program 

scan

output 

scan

house-

keeping

program 

scan

cycle

Fig. 1. Program scan cycle of a PLC.

existing co-simulation platforms are not realistic for applica-
tions such as traffic-monitoring-based intrusion detection since
the distinction between field devices and computing servers is
overlooked.

Although communication protocols specific to SCADA net-
work of CPES are implemented in different co-simulation
platforms, PLC system configuration parameters related to
traffic characteristics are yet to be incorporated. For instance,
INSPIRE implements IEC 61850 and object linking and em-
bedding (OLE) for process control (OPC), and communication
delays introduced by packet transmission over SCADA net-
works are modeled by propagation delays of communication
links. However, packet processing time induced by PLCs are
not taken into account. To study frequency-domain features
of PLCs, especially in the context of cyber-threat detection
(e.g., [10]), it is important to properly incorporate the impacts
of the execution model of PLCs on traffic timing characteris-
tics, e.g., by introducing additional timing parameters into the
network simulator/emulator.

We note that the execution model of PLCs has been lever-
aged in the design of the co-simulation framework proposed
in [3] to find the proper time step size of co-simulation,
balancing between computation complexity and simulation
accuracy. However, only the length of the program scan cycle
is taken into account in [3]. To generate accurate and realistic
network traces of SCADA networks, a more detailed model
of PLCs is yet to be developed for CPES co-simulation tools.

III. BACKGROUND – LADDER LOGIC EXECUTION MODEL

To control a power system physical process, a PLC (e.g.,
intelligent electronic device considered in the microgrid sys-
tem in [3]) is designed to execute its control program as a
control loop. Each iteration of the control loop is a program
scan cycle. The time it takes to complete a program scan cycle
is known as the scan cycle time. As illustrated in Fig. 1,
each program scan cycle consists of four phases [15] after
system start-up. In the input scan phase, status of all the
input terminals used by the control program is copied into
the input image, which is typically organized as a table of
input words/bits. In the program scan phase, the PLC control
program is executed using the data collected during the input
scan phase. The resulting logic is written into the output image,
which is then transferred to output terminals in the output scan
phase. Finally, internal checks on memory, execution speed,



and operation status are performed during the housekeeping
phase. Communication requests are also processed during this
phase: Packets received from the SCADA network are properly
parsed and serviced, and those generated by the PLC during
previous phases are transmitted. After the housekeeping phase
is completed, the PLC firmware moves on to perform input
scan for the next program scan cycle.

The actual scan cycle time depends on a variety of fac-
tors [15], including processor speed, control program size,
the types of instructions executed, and the actual true/false
conditions monitored by the control program. At the end of
each program scan, PLC firmware calculates the actual scan
cycle time and stores it in the system file. It is possible to
monitor scan time information (e.g., maximum scan cycle time
and the last scan cycle time) via PLC programming. In contrast
to computers running desktop operating systems, the execution
model of PLCs leads to a different traffic characteristics:
Communication requests are serviced during the last phase
of each program scan cycle, and the communication workload
will impact the actual scan cycle time. In addition, it should
also be noted that a PLC is not able to properly react to input
signals that change at rates close to (or even higher than) its
program scanning rate. In our proposed PLC traffic model, we
thus assume that PLCs deployed in a CPES are fast enough
to always keep up with the rates of input changes.

IV. PARAMETERIZED TRAFFIC MODEL FOR DNP3 SLAVE
PLCS

As discussed in Sec. I, modeling the traffic characteristics
of PLCs enables us to exploit network traces generated by co-
simulation in applications relying on realistic traffic profiles,
such as the design of a botnet detection algorithm based on
network monitoring [10]. In this section, we describe our
proposed DNP3 traffic model for PLC slave nodes, which
can be incorporated into the network simulator/emulator of
a co-simulation platform by creating a PLC class. In network
simulators such as OMNeT++ [16], this can be achieved by
sub-classing the class representing a generic network host. To
generate realistic SCADA traffic profiles, two sets of control
parameters (i.e., class attributes) need to be added to the
PLC class to model its communication architecture, namely
packet-size parameters and time parameters. By simulating the
communication architecture of PLCs, the packet processing
routine (e.g., handleMessage() in OMNeT++) controls
the network behaviors of simulated PLCs according to its
control parameters.

A. Communication Architecture of PLCs

The communication architecture of a PLC is comprised
of three major components, i.e., communication instruc-
tion/configuration, communication queues, and communica-
tion request queue. If a PLC initiates the communication with
another SCADA host, it sets up read/write request messages
using PLC communication instruction (e.g., the MSG com-
mand that prepares a message for transmission). The message
generated by a communication instruction is placed into the

start of a new 

program scan 

cycle

generate the 

response 

packet(s) for the 

request

generate 

unsolicited 

response 

packet(s)

1

3

5

2

4

state transition conditions

1. Request(s) are available to be serviced or unsolicited

response(s) need to be generated

2. There are still request(s) to be serviced

3. There is no request to be serviced

4. There are still unsolicited response(s) to be generated

5. There is no unsolicited response to be generated

Fig. 2. State machine for DNP3 response packet generation at PLCs.

transmit queue. If many packets are generated during the
program scan phase, those that cannot be accommodated by
the transmit queue are buffered in the communication request
queue, which works in first-come first-served (FCFS) mode.
Whenever a buffer in the transmit queue becomes available,
the first message request in the communication request queue
will be processed and the resultant message will be placed
in the transmit queue. Note that unlimited request buffering is
supported for the transmit queue of many PLCs, so the number
of packets that can be generated during a program scan is
not restricted. When a PLC processes requests from another
host (e.g., another PLC or computer serving as the master),
it places requests from the master into its receive queue.
Note that the receive queue has a limited size and request
buffering is not available. Request message from the master is
automatically parsed and processed by the PLC’s firmware: If
the read/write operation specified by the master is supported by
the PLC, it will process the packet by reading/writing proper
PLC files and/or generating a proper response message. In the
rare scenario where the number of requests from the master
exceeds the size of the receive queue, those that cannot be
buffered into the receive queue will not be served during the
current program scan cycle. If the master is not configured
to re-send the request, a communication failure occurs, which
can be monitored by reading its communication status bits.

To model such a communication architecture in network
simulation for PLCs working as DNP3 slaves, only the size
of the receive queue needs to be added to the PLC class
as an attribute. We denote the receive queue size by Nr.
Such information can be found in documentation on PLC
instruction set and hardware architecture. For instance, ac-
cording to [5], the MicroLogix 1400 PLC has 8 buffers in
its receive queue, i.e., Nr = 8. The state machine shown
in Fig. 2 can be incorporated into the packet processing
routine of the PLC class: If a DNP3 slave receives request(s)
from its DNP3 master, it parses the request and performs the



specified operation. In co-simulation environments, contents
of the packets may be generated by other domain-specific
tools. For example, in [2], voltage and current sensor readings
are collected from power system simulators, while system
commands are generated by control applications written in
general programming languages. For read request, data can be
queried from power-system simulator to prepare the response
message. For write request, data can be sent to power-system
control application and the execution status (e.g., return values
from a control application) needs to be collected to form the
response message. In the case where unsolicited response is
enabled, power-system simulator needs to be queried to detect
system events (e.g., status changes of input terminals). Note
that this state machine needs to be executed at a time step that
matches the scan cycle time.

B. Packet-Size Parameters

Open-source implementation of DNP3 protocol, such as the
Opendnp3 library [12], can be ported into network simulators
to generate packets that conform to the DNP3 packet layout
(e.g., [17]). However, the following parameters still need to
be extracted from a PLC’s DNP3 configuration to simulate its
traffic characteristics:

1) Maximum response size. A PLC sends DNP3 applica-
tion layer frame to fit into the pre-specified maximum
response size, which is denoted by Smax. If the size of
a response message exceeds Smax, it will be fragmented
into multiple response packets for transmission.

2) DNP3 data object and configuration parameters. When
configured as a DNP3 slave node, the mappings between
data elements in PLC data files (e.g., input file and
counter file) and DNP3 data objects of class levels
0∼ 3 need to be specified. For instance, to link a PLC
binary input file with the DNP3 binary input object,
the identifier of the binary input file (e.g., an integer
file number) is used. In addition, a binary input object
configuration file is used to specify the class levels of
individual elements in the binary input file. If unsolicited
response is enabled for a particular class level, the
corresponding DNP3 protocol configuration bit will be
set and a threshold on the number of events will be
specified.

These parameters allow us to determine the response packet
sizes when a request from a DNP3 master is received. For in-
stance, suppose that a poll request for class 1 and class 2 events
is received by the PLC. It then retrieves events for DNP3 data
objects of these two class levels. The events (e.g., new input
terminal status) are then used to generate a DNP3 response. In
the case where unsolicited response for a particular class level
is enabled, the PLC generates an unsolicited response when the
number of queued events reaches the specified threshold. If the
length of the response is larger than Smax, it is fragmented into
multiple response packets. These parameters can be extracted
from PLC program and configuration files and then added as
attributes of the PLC class. In fact, when the control scheme
based on DNP3 is developed (i.e., before its implementation in

DNP3 

slave
DNP3 

master

tresp

tfrag

(a) DNP3 response without

confirmation from master

DNP3 

slave
DNP3 

master

tresp

(b) DNP3 response requiring

confirmation from master

tfrag

...

tcon_frag

DNP3 

slave
DNP3 

master

(c) DNP3 unsolicited response

requiring conformation from master

tcon_frag

tcon_frag

Fig. 3. Parameters modeling the response preparation time of DNP3 slave
PLCs.

PLCs), such parameters are already available. In co-simulation
tools modeling network behaviors and control logic of SCADA
hosts separately (e.g., [2]), these parameters may be shared
between the network simulator and the control applications.

C. Time Parameters

To model the interactions between a DNP3 slave PLC with
its master node, we need to consider the following parameters:

1) Response preparation time. As a DNP3 slave may
generate responses upon requests and/or unsolicited re-
sponses, three timing parameters shown in Fig. 3 need
to be introduced. For response packets generated upon
a master request that do not require confirmation from
the master (e.g., a poll request on class 0 data objects),
tresp is the time it takes for the slave PLC to process
the request and send out the first response fragment.
In addition, parameter tfrag is introduced to model the
time spacing between two consecutive DNP3 response
fragments. For solicited/unsolicited response packets re-
quiring confirmation from the master, tcon frag is the time
it takes for the slave to process the confirmation from
master and send out the next response fragment. Note
that it is possible that the response fragment preceding
the first unsolicited response fragment shown in Fig. 3c
does not require confirmation. In this case, the time
between these two fragments should be modeled by tfrag.

2) Confirmation timeout and retransmission count. When
a response fragment requires confirmation from the
master, the slave will not send the next response frag-
ment until the confirmation is received. The confir-
mation timeout is used to determine when the slave
should retransmit the fragment or abort operation. In
co-simulation, if the network-induced delay for a certain
fragment (e.g., propagation and queuing delays) is larger
than the confirmation timeout, it should be deleted from
the scheduled event list when the timeout event occurs.
In addition, a retransmission may be performed if the
retransmission count of the PLC is set to a non-zero
value.

3) Hold time after events. This parameter is only for unso-
licited responses, and it is combined with the threshold
for class-specific events. If the threshold is reached or
the time elapsed after the a class-specific event enters



DNP3 

master

PLC under test

measurement PC 

running Wireshark

Ethernet hub

Fig. 4. Test bed for collecting network traces from a slave PLC.

the queue reaches the specified hold time, unsolicited
response for the particular class will be generated.

The time parameters and the interaction patterns illustrated
in Fig. 3 are used to specify how a particular response
generated according to the state machine in Fig. 2 should
be processed. However, it should be noted that the execution
of the state machine in Fig. 2 occurs in the housekeeping
phase of the program scan cycle. In co-simulation platforms,
solicited/unsolicited responses should be generated immedi-
ately when data/request from the power-system simulator or
control application allows. The scan cycle time and the extra
time incurred by packet processing during the housekeeping
phase are modeled by tresp. For instance, if the class 1
events collected from the power-system simulator trigger the
generation of an unsolicited response, tresp models the time
between the moment the condition for generating this response
becomes true and the moment its first fragment is sent.

D. Finding Time Parameters Through Measurements

As mentioned in Sec. III, the scan cycle time is not a con-
stant. Although execution time of PLC instructions under dif-
ferent logic conditions (e.g., the actual true/false condition on
a ladder logic rung) can be found in the documentation (e.g.,
Appendix A of [5]), it is hard to determine the time consumed
by a particular program scan cycle without actually evaluating
the logic conditions for all the PLC program instructions.
Since our goal is to establish a traffic model capturing the time
and packet size characteristics of DNP3 slave PLCs, we find
the models for the time parameters tresp, tfrag and tcon frag by
analyzing traffic traces taken from real PLCs. Fig. 4 shows the
configuration of our test bed for collecting PLC network traces.
An Ethernet hub (or an Ethernet switch with port mirroring
properly configured) interconnects the DNP3 master, the PLC
under test, and the measurement PC. Note that the DNP3
master in a real SCADA system may be implemented by high-
end PLCs or even a computing server because it needs to
process a large number of solicited/unsolicited responses.

To measure tresp, we configure the master to generate DNP3
poll request for class 0 data objects and find the time it takes
for the slave to send out the first fragment of its response.
Note that the PLC under test needs to be configured to disable
confirmation for its responses. Similarly, tfrag can be measured
by analyzing the network traces and finding the time spacing
between consecutive response fragments requiring no master
confirmation. To measure tcon frag, we enable class 1 and class
2 events in the PLC under test and adjust the maximum

t
resp

68 70 72 74 76 78

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
t
resp

 for PLC1

model

(a) Normalized probability distribu-
tion of the time parameter tresp of
PLC1 and its fitted normal distribu-
tion model

t
resp

66 68 70 72 74 76 78

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
t
resp

 for PLC2

simulated t
resp

(b) Normalized probability distribu-
tion of the time parameter tresp of
simulated PLC vs. that of PLC2

Fig. 5. Model for tresp constructed based on network traces from PLC1 and
simulated PLC traces compared against those from PLC2.

response size so that unsolicited responses are fragmented
into multiple packets. Using network traces captured by the
measurement PC, we find tcon frag by analyzing the time
spacing between fragments for the same unsolicited response
and their confirmation messages from the master.

V. MODEL CONSTRUCTION AND EVALUATION

To evaluate the quality of our proposed DNP3 traffic model
for slave PLCs, we use our test bed to collect traffic data from
a MicroLogix 1400 PLC (PLC1). A time parameter is modeled
as a random variable and its samples are extracted from
the network traces collected by the measurement PC running
Wireshark. A proper distribution is fitted to the collected sam-
ples, which is then incorporated into OMNeT++ to generate
simulated network traces. Then, we replace the PLC under
test with another PLC of the same model (PLC2) running the
same PLC program with exactly the same configuration. The
network traces collected from this PLC are then compared
against the simulated traces to see whether they have similar
distributions. We configure PLC under test as a datagram end
point so requests from the master and solicited/unsolicited
responses from the slave are all transmitted via UDP.

A. Modeling tresp

Before data collection is initiated on the measurement PC,
we first adjust the rate at which DNP3 requests are generated to
match the program scan cycle time such that a single request is
processed during each program scan cycle. The PLC program
of the slave consists of a set of 100 counters. The input
logic condition of all the counters are tied to the same input
terminal, which is connected to a function generator. During
each program scan cycle, a false-to-true transition is fed to
the input terminal, triggering the counters to increment by 1.
When a request is received, the PLC under test collects all
counter values and generate a DNP3 response. We find that a
normal distribution can be fitted to the samples of tresp. For
the particular PLC program, we have tresp∼N (72.9µs, 2.4µs).
Fig. 5a compares the fitted distribution with the actual data
collected from PLC1. The distribution of tresp of simulated
PLC traces is compared against that of the data collected from
PLC2 in Fig. 5b. The two distributions resemble each other,
indicating that the proposed measurement-based approach is
suitable for modeling tresp.



t
frag

2 3 4 5 6 7 8

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
t
frag

 for PLC2

simulated t
frag

(a) Normalized probability distribu-
tion of the time parameter tfrag of
simulated PLC vs. that of PLC2

t
con_frag

3 4 5 6 7 8 9 10 11

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
t
con_frag

 for PLC2

simulated t
con_frag

(b) Normalized probability distribu-
tion of the time parameter tcon frag
of simulated PLC vs. that of PLC2

Fig. 6. Models for tfrag and tcon frag.

B. Modeling tfrag and tcon frag

To measure tfrag and tcon frag, we set the maximum response
size to 50 bytes to generate multiple response fragments.
Note that class 1 and class 2 events are enabled for the
counter objects to generate unsolicited responses, with each
class level assigned to 50 counter objects. Fig. 6a compares
the distribution of tfrag of the simulated PLC against that
of PLC2. The normal distribution N (4.9µs, 0.4µs) is used
as the model for tfrag. Fig. 6b compares the distribution of
tcon frag of the simulated PLC against that of PLC2. The
normal distribution model for tcon frag is N (6.7µs, 0.8µs). We
observe that the constructed models for tfrag and tcon frag are
good approximations to the actual distributions. Combining the
time parameters models, our traffic model generates simulated
packet traces with timing characteristics closely resembling
those of real PLC traffic.

C. Computing Packet Sizes

In our simulation, we incorporate packet-size parameters
(see Sec. IV-B) into the PLC class without implementing the
DNP3 protocol. As a result, only the packet sizes generated by
the simulation are compared against the PLCs traces collected
from our test bed. We find that our proposed model can be used
to generate accurate packet size information. We note that,
however, this is possible because the PLC program used in our
evaluation is simple enough to analyze. For the co-simulation
of a realistic CPES, additional information that impacts the
packet sizes, such as the number of events generated during
each program scan cycle, can be obtained from the power-
system simulator.

VI. CONCLUSION

In this work, we propose a traffic model for PLCs serv-
ing as DNP3 slaves that can be incorporated into existing
co-simulation platforms to generate more realistic network
traces suitable for evaluating applications relying on traffic
characteristics of SCADA hosts, such as cyber threat detection
algorithms based on traffic monitoring (e.g., [10], [8], [9]).
To correctly compute packet sizes, we identify parameters
that need to be extracted from DNP3 slave configuration
and incorporated into network simulation. To model the tim-
ing characteristics of DNP3 slave PLCs, we introduce time
parameters and propose that proper models for them can

be established via measurements. We evaluate our proposed
approach using real PLCs. Our evaluation results show that
the proposed approach establishes realistic traffic model for
PLCs.

As our future work, we will enhance our proposed approach
and model other end point types supported by PLCs (e.g.,
listening end point and dual end point [5]). In addition, we will
also consider extending our model for DNP3 masters running
on different types of devices, such as computing servers and
high-end PLCs.

ACKNOWLEDGMENT

The material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000779.

REFERENCES

[1] “Programmable Controllers - Part 3: Programming Languages,” IEC
61131-3:2013, International Electrotechnical Commission (IEC), Febru-
ary 2013.

[2] H. Georg, S. C. Mller, C. Rehtanz, and C. Wietfeld, “Analyzing Cyber-
Physical Energy Systems: The INSPIRE Cosimulation of Power and
ICT Systems Using HLA,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 4, pp. 2364–2373, November 2014.

[3] V. Kounev, D. Tipper, M. Levesque, B. M. Grainger, T. Mcdermott, and
G. F. Reed, “A Microgrid Co-simulation Framework,” in Proceedings
of the 2015 Workshop on Modeling and Simulation of Cyber-Physical
Energy Systems (MSCPES), April 2015, pp. 1–6.

[4] D. M. E. Ingram, P. Schaub, R. R. Taylor, and D. A. Campbell,
“Performance Analysis of IEC 61850 Sampled Value Process Bus
Networks,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,
pp. 1445–1454, August 2013.

[5] “MicroLogix 1400 Programmable Controllers Instruction Set Reference
Manual,” Rockwell Automation Publication 1766-RM001F-EN-P, May
2014.

[6] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and
D. Garant, “Botnet Detection Based on Traffic Behavior Analysis and
Flow Intervals,” Computers & Security, vol. 39, Part A, pp. 2–16, 2013.

[7] R. R. R. Barbosa, R. Sadre, and A. Pras, “Difficulties in Modeling
SCADA Traffic: A Comparative Analysis,” in Proceedings of the 13th
International Conference on Passive and Active Measurement (PAM),
2012, pp. 126–135.

[8] J. Kwon, J. Lee, H. Lee, and A. Perrig, “PsyBoG: A Scalable Botnet
Detection Method for Large-Scale DNS Traffic,” Computer Networks,
vol. 97, pp. 48–73, March 2016.

[9] G. Bottazzi, G. F. Italiano, and G. G. Rutigliano, “Frequency Domain
Analysis of Large-Scale Proxy Logs for Botnet Traffic Detection,”
in Proceedings of the 9th International Conference on Security of
Information and Networks (SIN ’16), July 2016, pp. 76–80.

[10] P. Narang, C. Hota, and H. T. Sencar, “Noise-Resistant Mechanisms for
the Detection of Stealthy Peer-to-Peer Botnets,” Computer Communica-
tions, vol. 96, pp. 29–42, December 2016.

[11] “IEEE Standard for Electric Power Systems Communications - Dis-
tributed Network Protocol (DNP3),” IEEE Std 1815-2012 (Revision of
IEEE Std 1815-2010), pp. 1–821, October 2012.

[12] Opendnp3 project, https://github.com/automatak/dnp3.
[13] R. Liu and A. Srivastava, “Integrated Simulation to Analyze the Impact

of Cyber-Attacks on the Power Grid,” in Proceedings of the 2015 Work-
shop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), April 2015, pp. 1–6.

[14] V. Venkataramanan, A. Srivastava, and A. Hahn, “Real-Time Co-
Simulation Testbed for Microgrid Cyber-Physical Analysis,” in Pro-
ceedings of the 2016 Workshop on Modeling and Simulation of Cyber-
Physical Energy Systems (MSCPES), April 2016, pp. 1–6.

[15] F. Petruzalla, Programmable Logic Controllers, 5th Ed. McGraw-Hill
Education, January 2016.

[16] A. Varga, “OMNeT++ Simulation Manual Version 5.0,” Available at:
https://omnetpp.org/doc/omnetpp/manual/, 2016.

[17] C. Queiroz, A. Mahmood, and Z. Tari, “SCADASim - A Framework
for Building SCADA Simulations,” IEEE Transactions on Smart Grid,
vol. 2, no. 4, pp. 589–597, December 2011.


