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1 Introduction

Einstein’s theory of gravity and spontaneously-broken gauge theory are two of the pillars of
our current understanding of the known fundamental interactions of Nature. While super-
symmetric field theories that combine gravitational interactions and spontaneous symmetry
breaking have been studied extensively at the Lagrangian level, the perturbative .S matrices
of these theories have largely been unexplored.

Modern work on scattering amplitudes in matter-coupled gravitational theories has
been largely focused on pure supergravities and on cases in which additional matter consists
of abelian vectors (i.e. Maxwell-Einstein supergravities) or fermion/scalar fields. A key tool
has been the double-copy construction [1, 2], which has led to a dramatic simplification of
perturbative calculations. For example, explicit expressions of one-, two-, three- and four-
loop amplitudes have been obtained for N' = 4, N' = 5 and N = 8 supergravities in refs. [2—-
14]. For the case of N < 4, one-loop four-point superamplitudes have been obtained for the
generic Jordan family of N' = 2 Maxwell-Einstein supergravity (MESG) theories [15-17],
for pure supergravities with /' < 4 [15, 17, 18], and for orbifolds thereof [15, 19].

The double-copy construction assumes the existence of presentations of gauge-theory
scattering amplitudes that exhibit color/kinematics duality. The duality states that, in
an amplitude’s Feynman-like diagrammatic expansion, one can find numerator factors
that obey Lie-algebraic kinematic relations mirroring the relations satisfied by the cor-
responding gauge-group color factors. Once found, the numerators may play the role of
these color factors in any gauge theory amplitude, and upon substitution one obtains valid
gravitational amplitudes. There is by now extensive evidence for the duality and for the
double-copy construction in wide classes of Yang-Mills (YM) theories and in the associated
(super)gravity theories. Examples where color/kinematics duality has been demonstrated
include: pure super-Yang-Mills (SYM) theories [1, 2, 20-22], SYM theories with adjoint
matter [15, 17, 18], self-dual Yang-Mills theory [23, 24], QCD and super-QCD [25, 26], YM
coupled to ¢3 theory [27], and YM theory extended by a higher-dimensional operator [28].
It has also been observed that the duality is not limited to YM gauge theories, but it also
applies to certain Chern-Simons-matter theories [29-31], as well as to the non-linear sigma
model/chiral Lagrangian [32] and to the closed (heterotic) sector of string theory [33].

Amplitudes in Maxwell-Einstein supergravities are obtained by a double-copy con-
struction of the form (pure SYM)®(YM coupled to scalars). Subgroups of the global
symmetries of Maxwell-Einstein supergravities can be gauged.! In the resulting theories
some of the vector fields become gauge fields of the chosen gauge group and transform in its
adjoint representation. Therefore, the only subgroups of the global symmetry that can be
gauged are those whose adjoint representation is smaller than the number of vector fields
that transform non-trivially under the global symmetry group. In five dimensions, gauging
only a subgroup of the global symmetry group in A/ = 2 Maxwell-Einstein supergravity
theories does not introduce a potential for the scalar fields and hence the resulting theory
is guaranteed to have a Minkowski vacuum state.

"While gauging part of the R-symmetry group is very interesting, here we will focus on gaugings that
only affect the other global symmetries.



The double-copy construction of a wide class of Yang-Mills-Einstein supergravity
(YMESG) theories was given in [27], where it was shown that one of the two gauge-
theory factors is a pure SYM theory, and the other is a bosonic YM theory coupled to
scalars that transforms in the adjoint representation of both the gauge group and a global
symmetry group. The latter theory has trilinear ¢® couplings, and hence we refer to it as
YM + ¢3 theory. Through the double-copy construction, the global symmetry of the non-
supersymimetric gauge-theory factor becomes a local symmetry, and the trilinear scalar
couplings generate the minimal couplings of the corresponding gauge fields. The gravi-
tational supersymmetry is directly inherited from the SYM theory, thus accommodating
N = 1,2,4 YMESG theories and N' = 0 Yang-Mills-Einstein (YME) theories. Earlier
work [34] introduced the same type of construction for single-trace tree-level YME ampli-
tudes. Recent work on YME amplitudes takes several different approaches, see refs. [35—41].

It is essential to explore the validity of the double-copy construction away from the
origin of the moduli space. In particular, a natural and physically-motivated extension
is to consider cases in which the supergravity gauge symmetry is spontaneously broken
through the Brout-Englert-Higgs mechanism. We will present such an extension in the
present paper. As a key result, we find that one of the two gauge-theory factors is the
spontaneously-broken pure SYM theory (or, alternatively stated, the Coulomb branch of
pure SYM theory), while the other is a particular massive deformation that explicitly
breaks the global symmetries of the YM + ¢ theory.

Identifying the relation between asymptotic states of the supergravity theory and the
corresponding states of the gauge-theory factors is an important aspect of the double-
copy construction. For gauge theories with only adjoint fields, the double copy gives
a supergravity state for every tensor product of gauge-theory states (not counting the
degeneracy of the representation). In cases in which the gauge-theory matter transforms
in non-adjoint representations of the gauge group, the double-copy construction allows for
better tuning of the matter content of the gravitational theory, since only certain tensor
products of the gauge-theory matter are allowed.

In ref. [19] color/kinematics duality was extended to non-adjoint representations in
the context of orbifolds of N' = 4 SYM, and the associated double copies were found to
be matter-coupled supergravity theories. The construction required that: (1) the gauge
groups of the two gauge theories should be identified, and (2) supergravity states corre-
spond to gauge-invariant bilinears that can be formed out of the gauge-theory states. This
construction correlates gauge- and global-group representations appearing in the resulting
gauge theories.

In ref. [17] color/kinematics duality was extended to theories with fields in the funda-
mental representation and used to construct pure N < 4 supergravity theories as well as
matter-coupled theories. In this construction, the necessary condition for the double copy
to be valid is that the kinematic matter-dependent numerators obey the same relations
as the corresponding color factors with fundamental representations. Upon replacing the
color factors with kinematic numerator factors one similarly obtains a double copy that
correlates the representations of the states of the two gauge-theory sides.

For the double-copy constructions of supergravity theories with spontaneously-broken
gauge symmetry, the identification of the asymptotic states will follow closely the non-



adjoint or fundamental cases. However, the details of the kinematic algebra obeyed by
the numerators will differ substantially compared to previous situations. The kinematic
Jacobi identities and commutation relations will be extended by additional identities which
are inherited from the Jacobi relations of the theory with unbroken gauge symmetry. We
stress that our construction works well with — but does not require — supersymmetry,
and similarly works in all dimensions in which the theories are defined, as it is expected
for color/kinematics duality.

The paper is organized as follows. In section 2 we review color/kinematics duality, and
identify matter-coupled gauge theories with fields in several different representations of the
gauge group and specific cubic and quartic couplings which obey the duality. We extend
color/kinematics duality and the double-copy construction to massive field theories, as well
as to field theories with spontaneously-broken gauge symmetry, paying close attention to
the construction of asymptotic states. In particular subsection 2.6 discusses extensions of
the double-copy construction and contains our main results of this generalization.

In section 4 we review, from the Lagrangian perspective, the Higgs mechanism in four-
and five-dimensional N = 2 Yang-Mills-Einstein supergravities. Such theories are uniquely
specified by their cubic interactions and provide simple examples of our construction. In
particular, we identify the four-dimensional symplectic frame in which the amplitudes from
the spontaneously-broken Yang-Mills-Einstein supergravity Lagrangian reproduce the ones
from the double-copy construction.

In section 5, we compute tree-level scattering amplitudes in the gauge theories dis-
cussed in section 3 and in the supergravity theories discussed in section 4. We find the
constraints imposed by color/kinematics duality on the cubic and quartic couplings of the
gauge theories, identify the precise map between supergravity states and gauge-invariant
billinears of gauge-theory states, and give the relation between the gauge-theory and su-
pergravity parameters.

In section 6, we discuss loop-level calculations in theories formulated in the earlier
sections. Section 7, discusses briefly spontaneously-broken N = 4 Yang-Mills-Einstein
supergravity theories. We review the bosonic part of their Lagrangians in five dimensions
and discuss how their amplitudes can be obtained through the double-copy construction
with a straightforward extension of the results obtained for N' = 2 theories.

2 Color/kinematics duality and double copy

In this section, we review the color/kinematics duality applied to gauge theories that have
fields in complex representations of the gauge group. Giving concrete examples, we write
down Lagrangians of several gauge theories where the duality should be present. We then
spontaneously (and explicitly) break the symmetries of these theories, and in the process
generalize color/kinematics duality to such situations. Finally, we give the double-copy
prescription for spontaneously- and explicitly-broken theories.
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Figure 1. The two cubic types of interactions for fields in adjoint representation and a generic
complex representation. We organize the amplitudes around cubic graphs with these two types of
vertices, and the corresponding color factors are contractions of the structure constants and the
generators.

2.1 Review: color/kinematics duality for complex representations

The scattering amplitudes in a gauge theory with fields in both the adjoint representation
and some generic complex representation? U of a Lie group can be organized in terms of
cubic graphs.® At L loops and in D dimensions, such amplitude has the following form*

A(L L1 gn=2+2L Z / dLDLED; Clz;% (2.1)
2w ’

iE€cubic

where ¢; are color factors, n; are kinematic numerators and D; are denominators encoding
the propagator structure of the cubic graphs. The denominators may contain masses,
corresponding to massive fields in the representation U. The S; are standard symmetry
factors that also appear in Feynman loop diagrams.

The cubic form (2.1) directly follows the organization of the color factors c¢;, which
are constructed from two cubic building blocks. These are the structure constants f4¢ for
vertices linking three adjoint fields and the generators (t&)ij for the U-U-adjoint vertices,
as shown in figure 1. When isolating color from kinematics, the crossing symmetry of a
vertex only holds up to signs dependent on the signature of the permutation. These signs
are apparent in the total antisymmetry of f“ﬂ;é and may be made uniform by defining the

generators in the representation U to have a similar antisymmetry:

(t&)jg - _ (td): o fééi) _ 7]?3&6 ‘ (2.2)

The effect of such a relabeling is that any color factor picks a minus sign, ¢; — —c¢;, under
the permutation of any two graph edges meeting at a vertex.

The color factors obey simple linear relations arising from the Jacobi identities and
commutation relations of the gauge group,

fdac fcbe JZCZBé feae — f&éa fdaé
()5 (), = (8, (0 = 7 (e,

2By generic complex representation, we mean a representation that only has quadratic and cubic invari-

= G —C=Ck (2.3)

ants UU, and U (Adj) U, respectively. A canonical example of such an U is the fundamental representation.
3Quartic and higher-degree interactions are absorbed into the numerators of the cubic graphs. This
corresponds to having introduced suitably-chosen auxiliary fields to make the Lagrangian cubic.
“We use a different numerator normalization compared to ref. [2]. Relative to that work, we absorb one
factor of ¢ into the numerator, giving a uniform overall sZ~! to the gauge and gravity amplitudes.
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Figure 2. Pictorial form of the basic color and kinematic Lie-algebraic relations: (a) the Jacobi
relations for fields in the adjoint representation, and (b) the commutation relation for fields in a
generic complex representation.

these relations are shown diagrammatically in figure 2. The identity ¢; — ¢; = ¢, is under-
stood to hold for triplets of diagrams (i, j, k) that differ only by the subgraphs in figure 2
and otherwise have common graph structure. The linear relations among the color fac-
tors ¢; imply that the corresponding kinematic parts of the graphs, n;/D;, are in general
not unique. This should be expected, given that individual (Feynman) diagrams are gauge-
dependent quantities.

It was observed by Bern, Carrasco and one of the current authors (BCJ) [1, 2] that,
within the gauge freedom of individual graphs, there exist particularly nice amplitude pre-
sentations that make the kinematic numerator factors n; obey the same general algebraic
identities as the color factors ¢;. In the present context, this implies that there is a numer-
ator relation for every color Jacobi or commutation relation (2.3) and a numerator sign flip
for every color factor sign flip (2.2):

n; —nj = ng =4 C; — Cj = Ck,

n; — —ny = C; —> —Cj . (2.4)

In a more general context, there could exist color identities beyond the Jacobi or commuta-
tion relation, which would justify the introduction of corresponding kinematic numerator
identities. Indeed, we will encounter this in section 2.4 after introducing additional (bi-
fundamental) complex representations of the gauge group.

Amplitudes built out of numerators that satisfy the same general identities as the color
factors are said to exhibit color/kinematics duality manifestly. Theories whose amplitudes
can be presented in a form that exhibits this property are said to obey the color/kinematics
duality.

It is interesting to note that eq. (2.4) defines a kinematic algebra in terms of the
numerators, which suggests the existence of an underlying Lie algebra. While not much
is known about this kinematic Lie algebra, it should be infinite-dimensional due to the
momentum-dependence of the numerators. In the restricted case of self-dual YM theory
the kinematic algebra has been shown to be isomorphic to that of the area-preserving
diffeomorphisms [23] (see also ref. [42]).

A central aspect of the color/kinematics duality is that, once numerators have been
found to obey the duality, they can replace the color factors in eq. (2.1). This gives a



double-copy construction for amplitudes of the form

L L 1 n—2+2L dLDg 1 nmz
o =i () S [ e o, =
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which describe scattering in a gravitational theory.” The tilde notation is necessary since
the two copies of numerators may not be identical. The two sets of numerators entering
the double-copy construction may belong to different gauge theories, and at most one set
is required to manifestly obey the duality [1, 2].

While the double copy discussed here strictly applies to the construction of a gravita-
tional amplitude using the scattering amplitudes of two gauge theories as building blocks, it

is often convenient the shorten the description using the notation gravity = gauge ® gauge.
This emphasizes the tensor structure of the asymptotic states of the double copy, and at
the same time gives essential information about the theories that enter the construction.
The notation is also motivated by the observations that the double copy appears to have
extensions beyond perturbation theory [23, 43-45].

As examples of double copies, we note that pure Yang-Mills theory “squares” to gravity
coupled to a dilaton and a two-index anti-symmetric tensor: GR 4+ ¢ + B* = YM ®
YM [46, 47]. Pure Einstein gravity may be obtained by removing these extra particles via
a ghost-like double-copy prescription for massless quarks [17]. An asymmetrical double
copy, YM ® (YM + ¢?), is needed for the amplitudes that couple Yang-Mills theory to
gravity [27]. For the double copies of YM theories with matter in a complex representation
U, such as described in eq. (2.5), one obtains amplitudes that involve gravitons, dilatons,
two-index antisymmetric tensors and matter fields [17]. In supersymmetric extensions
of these theories, superamplitudes are labeled by the corresponding supermultiplets; the
tensor product of two supermultiplets is typically reducible to a sum of smaller multiplets
of the resulting supersymmetry algebra.

While the color/kinematics duality has a conjectural status at loop level, amplitudes up
to four loops for diverse theories (with and without additional matter) have been explicitly
constructed in forms consistent with the duality and the double copy [2—4, 6, 10, 11, 15, 17—
19, 24, 48-52].

At tree level, the double-copy construction restricted to fields in the adjoint represen-
tation is known [1, 53] to be equivalent to the field-theory limit of the Kawai-Lewellen-Tye
(KLT) relations [46, 47] between open- and closed-string amplitudes. Color/kinematics
duality has been used to derive a number of impressive results for string-theory ampli-
tudes [20, 21, 33, 54-57]; more generally, the duality combined with string-theory methods
provides powerful new tools for field theory [13, 14, 16, 22, 58-62]. Recently, the double-
copy construction has been extended to express certain Kerr-Schild-type solutions of general
relativity in terms of classical solutions of the Yang-Mills equations of motion [44, 45]. The
duality implies the BCJ amplitude relations [1] that limit the number of independent tree
amplitudes to (n — 3)! in the purely adjoint case, and otherwise to (n — 3)!(2k —2)/k! when
k > 1 fundamental-antifundamental pairs are present [25]. The BCJ amplitude relations

SIf vector contributions are absent in either n; or 7, then eq. (2.5) describes a non-gravitational sector.



have a close connection to the scattering equations and to the associated string-like for-
mulae for gauge and gravity tree amplitudes [63—72]. Finally, a formulation of the double
copy at the level of off-shell linearized supermultiplets was obtained in [73-76].

2.2 Scalar ¢3 theories

As a warm-up exercise, consider a simple scalar model that exhibits the properties described
in the previous section where all fields transform either in the adjoint of a group G, or in
a generic complex representation U of this group (and corresponding conjugate U).

Suppressing all G indices, assume we have a family of real massless scalars transform-
ing in the adjoint representation, labeled as ¢®. And, similarly, a family of identical-mass
complex scalars transforming in the U (U) representation, labeled as ¢; (). For a scalar
theory with at most cubic interactions the Lagrangian is then®

9 Lacatar = Tt (;am“a%“ g AP ¢b]¢c) + 0,8 i —m?Tpi + AT (F6705)
(2.6)
Note that the indices a, b, ¢, ... and 4, j, . .. are not G indices, but rather labels that distin-
guish fields in the same representation (see appendix A for a summary of notation). The
coefficients F?¢ and T i are arbitrary couplings between these fields, and ) is a dimension-
one constant (in four dimensions) such that all terms in Lgealar have uniform dimension.
For later convenience we have also introduced a dimensionless coupling g.
Denoting by (td)ij the generators” of G, in the representation U and expressing the
adjoint fields as ¢® = t $?¢, a more explicit form of the Lagrangian can be obtained,

Locatar = 000G 4 g A IG5 G54 15, G0V g1 — B+ g AT I G

) ) (2.7)
Here f¢ = —iTr([t?,t*]t°) are the structure constants of the group G, the coupling
constant g has been moved to the cubic interactions via the redefinition ¢ — g¢, v — g,
and the indices of the complex representation U remain suppressed.

The symmetry G. can be gauged, as we will do in the next section. Even before
gauging, scattering amplitudes from Ly have the same form as eq. (2.1), with the
coefficients ¢; given in terms of the generators and structure constants of G.. Anticipating
the gauging of G, we can constrain the Lagrangian (2.7) such that amplitudes expressed
in this form have numerators n; that obey the duality (2.4), in one-to-one correspondence
with those obeyed by the group-theoretic factors ¢;. This simple theory has no derivative
couplings, and therefore the numerator factors n; have no momentum dependence, they
are only built out of the couplings F2¢ and T J. An inspection of the Lagrangian shows
that the duality holds if the couplings are in one-to-one correspondence with the structure
constants and generators of G,

Fbe e 0 and T e (19)7 (2.8)

)

in the sense that the pair (F%¢, T?) obeys the same general algebraic relations as ( f &i’é, t).

6Scalar and gauge-theory Lagrangians are written in mostly-minus spacetime signature, whereas gravity
Lagrangians use mostly-plus signature.

"We normalize the generators as Tr(tati’) = %6(’?’.



This implies that

1. (T*) Z-j =T J are the generators of a generic complex representation U’ of a “kine-
matic” Lie algebra® of some group Gj;. They can be taken to be normalized as

Tr(ToT?) = 6.
2. F%¢ are the structure constants of that algebra given by F¢ = —2iTr([T?, T°|T¢).

3. The ranges of indices a,b,c,... and i, 7, k, ... are the dimensions of the adjoint rep-
resentation of G, and its representation U’, respectively.

The resulting theory describes a G, ® G, invariant scalar field theory, with massless scalars
% in the “bi-adjoint” representation and massive complex scalar fields ¢ in the repre-
sentation U @ U’. This is one of the simplest realizations of a theory that exhibits a duality
of the type described in section 2.1 which is manifest in the Lagrangian.

Note that it is straightforward to modify the mass spectrum of the theory while preserv-
ing the duality. If the G, representation U and/or the Gy representation U’ are reducible,
the mass m in eq. (2.7) can carry labels identifying the irreducible components of U and
U’. Hence, the U @ U’ representations can be decomposed into irreps of G.® Gy, each with
a different mass term in the Lagrangian.

As a concrete example of this generalization, take the kinematic algebra to be Gy =
SU(N}), and let the representation U’ be Ny copies of the fundamental representation;
these copies are labeled by the flavor indices m,n = 1,..., Ny. Next take G. = SU(IV,),
and let the representation U be its fundamental representation. With these choices, the
scalar theory takes the form

1 N N 1 T T
écalar _ iau(baa@uqbaa + gg)\FabCfabcqsaagbbb(bcc
+ 0" pi — (M), i + gATG? U 0 0 (2.9)

where t and T are generators in the fundamental representation of respective group. The
fundamental SU(N.) indices 7, j are not shown explicitly. The mass matrix is assumed to
be diagonalized, m, = 4, m,, (no sum), corresponding to the mass eigenstates: ¢;3, and
" In the limit that m,, — 0 (or m, — m) this theory has SU(N.) x SU(Ny) x SU(Ny)
symmetry, where SU(Ny) is the flavor group. For generic m, the flavor group is explicitly
broken to SU(Ny) — U(1)Ns. The case Ny = 0 is that of the pure bi-adjoint ¢ theory,

1

2 gAFabcfdbé(bad(lsbb(bCé ’ (210)

1 X X

Lys = 5@#“8%““ +

which was identified in refs. [27, 34] to be useful for obtaining amplitudes in gravity theories

coupled to non-abelian gauge fields with SU(N},) symmetry.? See also refs. [77, 78] for other
applications of this theory in the context of color/kinematics duality.

8This name is convenient because, once the G, symmetry is gauged, the Lie algebra of G becomes a
subalgebra of the full kinematic algebra obeyed by the numerator factors.
9Compared to the notation used in ref. [27], we have renamed the two couplings: g — g, g’ — .



2.3 Yang-Mills-scalar theories: gauging G,

Let us now gauge the symmetry group G, and include the self-interactions of the corre-
sponding non-abelian gauge fields. In eq. (2.6) we may replace all derivatives by covariant
derivatives in the representation U, 0, — D,,, and add the standard pure-Yang-Mills La-
grangian with gauge group Ge.

Gauging the G. symmetry is not sufficient for the resulting theory to obey color/
kinematics duality; indeed, it is known from the Ny = 0 case [27, 79] as well as from
the case of fundamental and orbifold field theories [17, 19] that quartic scalar terms like
¢*, ¢*Bp and (@y)? are required. For the particular theories discussed in this subsection,
color/kinematics duality will uniquely dictate the ¢* and ¢*@p terms, whereas all terms
of (pp)? type will be unconstrained. However, if % and ¢ are in special complex rep-
resentations for which the color factors obey extra identities, then the (@y)? terms may
be constrained by color/kinematics duality. We will see that these special representations
include the ones arising from the spontaneous symmetry breaking of a larger gauge group.

In ref. [27] we showed that the specific ¢* term that is consistent with color/kinematics
duality is

Loy = _ffazéféa%a%b%aé(pbd _ (2.11)

In section 4 we will compute four-point amplitudes in the YM-scalar theories and see that
they obey color/kinematics duality only if the Lagrangian also contains the term

Lopgp = —g20 05 0, . (2.12)

There are several terms involving four fields in complex representations that can in principle
be freely added; we find that the combination

2
£(¢¢)2 = —g2¢lta(pj Pth; + %@Zta(pi Ejtagoj (2.13)

is particularly natural as it is in a certain sense (discussed in section 2.5.1) the complex
generalization of the adjoint contact term (2.11).

Thus, the Lagrangian with local symmetry G, and global symmetry Gy, giving
Yang-Mills theory coupled to scalar fields, takes the following form:

1 . R
£YM+scalar = —ZFﬁyFﬂya + Lgcalar oD + £¢4 + £¢2¢<P + £(¢¢)2 . (2.14)

For the particular choices of groups and representations that led to the theory (2.9), the
Lagrangian is

1_. ~ 1 . . 1 O
‘C/YM—&-scalar - _ZF;LVF/JZ/G + 5(Dud)a)a(D,LLd)a)a + ggAFabCfabcqsaagbbqucc

+ Dy DR i, — (M), MG ™ 0 + gAT 695 ™ 100,

2
g AT A AnT ~ 7 ~ 7 ~ "7, P
+ . fabefecd¢aa¢bb¢ac¢bd _ g2¢aa¢ab4pzmtatbspim
2

o ~ g s ~ 4 ~
©in @ "t Pim + Ewm‘t“wm D"t 0 . (2.15)

- 9*p



This theory has a local symmetry SU(N,.), a global symmetry SU(NNy), and a broken flavor
symmetry SU(Ny) — U(1)™s generically (for special choices of mass matrix, it is broken
to some subgroup SU(Ny)). We will derive the Lagrangian (2.15) in section 2.5.1 as a par-
ticular truncation of a gauge theory with broken global symmetry. We expect that it obeys
color /kinematics duality, at least at tree level, as it should inherit this property from the
broken theory considered in section 2.5. The corresponding BCJ relations for tree-level am-
plitudes in the theories (2.14) and (2.15) should be the same as those of QCD [25]. Note that
theories (2.14) and (2.15) do not admit obvious supersymmetric extensions unless A = 0.

In the next two sections we consider spontaneous symmetry breaking for dimensionally-
reduced YM theories (obtained by setting A = 0 and Ny = 0) including supersymmetric
extensions, and, similarly, explicit symmetry breaking in a YM + ¢ theory (obtained by
setting Ny = 0).

2.4 Adjoint Higgs mechanism: breaking G,

Here we briefly review Yang-Mills theories for which the gauge symmetry is spontaneously
broken by an adjoint Higgs field, and introduce the color/kinematics duality in this set-
ting. This a necessary ingredient in the double-copy construction of Yang-Mills-Einstein
supergravity theories with spontaneously-broken gauge symmetry. While supersymmetry
is not required by the construction, its presence facilitates the identification of gravitational
theories generated by the double-copy prescription.

Consider a YM-scalar theory that is the dimensional reduction of pure YM theory,

1 4 i 1 i i G2 ABE ODE ad BB ialt bE
‘CYMDR — 71‘;:;1”]_-WJA + 5(zz)uqba)A(ZD,LLan)A o ZfABEfCDEQbaA(ﬁbB@vabbD 7 (216)
where A,B, ... are adjoint gauge indices, and a,b,... are global symmetry indices. The

indices a,b = 0,1,... N é) — 1 run over the different real scalar fields in the theory. For
example, considering the particular cases N é) = 2or N (;) = 6 in D = 4 dimensions, we
obtain the bosonic part of the N' = 2 or N' = 4 SYM Lagrangians, respectively. In the
N = 4 case, the scalars transform in the anti-symmetric tensor representation of the R-
symmetry group SU(4), and in N' = 2 theories the scalars carry a charge only under the
U(1) part of the full R-symmetry group SU(2) x U(1).

It is well-known that the Coulomb-branch vacua of this theory are described by con-
stant scalar fields solving

[gba, gﬂ —0, ¢°= A (2.17)

where t4 are the generators of the gauge group. We choose a vacuum with scale V' such
that the vacuum expectation value (VEV) of the field ¢ is proportional to a single gauge
group generator to,

(¢%) = V9590 (2.18)

With this choice, we can interpret the theory with N/, = 2 as the dimensional reduction
of a spontaneously-broken half-maximal SYM theory in five dimensions where ¢° is the
scalar of the vector multiplet. The fact that our construction uplifts to D = 5 dimen-
sions will be useful when identifying the corresponding supergravity Lagrangian obtained
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Figure 3. Additional types of cubic interactions that are obtained after the gauge symmetry is
spontaneously-broken in a purely adjoint theory. The resulting amplitudes are organized around
cubic graphs where these vertices are included. The corresponding color factors are contractions of
the various types of structure constants.

by the double-copy construction. Similarly, for N é) = 6, the theory can be uplifted to
the spontaneously-broken maximally-supersymmetric YM theory in D < 9. For conve-
nience of presentation, in the following we will ignore terms containing fermions in the
supersymmetric Lagrangians.

The Higgsed Lagrangian corresponding to (2.16) is obtained by splitting the scalar and
vector fields as

Al (AZ,WM,W;‘;) . gl = <¢a&,<pad,¢ad) , (2.19)

so that the index @ runs over the adjoint representation of the unbroken part of the gauge
group and the index & runs over the matter-like non-adjoint complex representations.
Under this split, the only non-zero entries of the structure constants fA5¢ are!?

S . - ATl » NN 5\ T A .
abé __ . a 4b| 4é a & - a B & [e% _ B _ . (67 B
f _—zTrqt ,t]t), 1% ——zTr<[t ,(t ) }t ) , f37_<fw) ——zTr<[t (t )T] ﬂ),
(2.20)
which are the structure constants of the unbroken part of the gauge group, the generators

and Clebsch-Gordan coefficients for the matter-like representations. Since the scalar VEV
has been taken along the gauge group generator t°, the mass matrix has the expression

mp =igv %P (2.21)

Expanding the original covariant derivative (D#QSG)A = 8u<b‘4a +yg fABéAE” gbéa and
the covariant field strengths around the scalar VEV, and decomposing these objects in

ONote that we may freely cyclicly permute the indices, e.g. fﬁ;“’ = f/;’& = fw;

- 11 -
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Figure 4. Pictorial representation of additional color Lie-algebra relations that are obtained after
the gauge symmetry spontaneously-broken in a purely adjoint theory. These are also pictorial
representations of the kinematic algebra that should be imposed on diagram numerators in the
context of color/kinematics duality. The relations are generalizations of the Jacobi identity. Curly
lines represent unbroken adjoint states (massless fields) and double lines represent broken non-
hermitian states (massive fields). Solid fat lines in (d) represent sums over all three types of states
(the massless and two conjugates of the massive ones), giving seven terms in the (d) identity.

representations of the unbroken part of the gauge group leads to'!
(Dud®)® + gW , fop® — g fAW,
(D™= (Dup®)a — i6(mWo)a + 98 (FWo)a + gW ufa® — 97" faWiu + g9 faW, | |
(D)% + i6% (W)™ — g (W, f2)° + gW u f2 0% — g fOW,,— gV, fo5°
F, 4+ 2gW, fAW,,
Fi=| 2Dy W))a +20WfaW,) — gWafaWs | - (2.22)
2(D, W) + 2gW (, fOW,) — gW . fOW,

In general, the matrix m dﬁ is block diagonal, with each block corresponding to different
irreducible representations. As usual, the mass of the scalar fields in the matter-like repre-
sentation corresponding to the generator t (©°%) depends on the choice of gauge. In the
unitary gauge its mass is infinite and this field decouples. In this gauge the Lagrangian is

1 A VA 1 ay A a\A 92 abé péde jaa (bb raé bd  —ad 3 a
Lyt = — 3w P10+ 5 (Dud®) A (Do) — T f foepeaghtncohd — gt (m?) o
= 2ig /% m. 6% + Va(o, ) (2.23)

where we have written explicitly the cubic term in the scalar potential of eq. (2.16).

HWe use the shorthand notation

B a4 T a B a4 el 6 4 B, a7 TreaT
VOPLIUs S VU, VIRUs 5 VIS, ViU s VU, VIRSTT S VT
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Focusing on the N, (; = 2 case (corresponding to the bosonic part of N/ =2 SYM) in the
unitary gauge, we have only one family of massive real scalars ¢4 = ! &; the other family,
cpo&, becomes the longitudinal component of the W bosons.

The structure constants, generators and Clebsch-Gordan coefficients obey relations
inherited from the Jacobi relations of the original gauge group. A first set of relations is

fdaé faéé _ fciz;a feae — fai;é fdaé
~ B B N l; 5 A oa At oA
FLEPT = PO = el
PP - Y = pe? (2.24)
€73 ) ) : :

These relations are necessary to ensure gauge invariance in any gauge theory (with or

>

a2

without massive vectors). Since they are components of the structure constants of a larger
group, and since they control the gauge invariance of massive vector interactions, the
Clebsch-Gordan coefficients fz f need to obey two further identities:
P =1 = 1T
(FAr S+ 155+ 140150 =@ o B) = 137057 (2.25)
é 8 Y 0

It is important to note that, for a given assignment of external masses, at most three terms
of the above seven-term identity can be non-zero. Hence, the seven-term identity can be
thought of as a compact notation for a set of distinct three-term identities. These three-
term identities will be the ones imposed on the numerator factors in a duality-satisfying
amplitude presentation.

We should also note that, depending on the field content, the relations in eq. (2.25)
could be relaxed, in the sense of replacing fzﬁ by another (more general) solution to
eq. (2.24). This is the case when the fields transforming in the matter representations are
scalars or/and fermions. However, if massive vectors transform in matter representations
of the unbroken gauge group, then these extra relations are required by the consistency of
the theory (as the massive vectors can arise only through a Higgs mechanism).

Color/kinematics duality for YM theories with gauge symmetry spontaneously broken
by an adjoint Higgs field is implemented by requiring that the kinematic numerators of
scattering amplitudes in these theories obeys identities that mirror the color identities in
eq. (2.24) and (2.25). Except for the Jacobi identity, these kinematic identities are picto-
rially shown in figure 4. Note that since these identities always break up into three-term
identities, they can in practice be mapped to the usual three-term numerator identities
considered in the framework of color/kinematics duality. Indeed, as it is well known (e.g.
see refs. [80, 81]), amplitudes in SYM theory on the Coulomb branch can be reinterpreted
as amplitudes in a (D + 1) dimensional unbroken SYM theory (see appendix B.1 for a
Lagrangian derivation of this). For a SYM theory on the Coulomb branch the kinematic
identities in figure 4 are simply obtained through a decomposition of the usual (D + 1)
dimensional kinematic Jacobi identity into states with zero (massless states) and posi-

tive/negative (massive states) momentum in the (D + 1) direction.'?

12Note that the type of kinematic algebra introduced here is more general; it need not be inherited
from (D + 1) dimensions. For example, it applies to the explicitly broken YM + ¢> theory considered
in section 2.5.
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An important consideration for color/kinematics duality to give well-behaved double
copies, is that that we construct amplitude presentations valid for arbitrary gauge groups
and arbitrary breaking patterns. This is to prevent the color factors from obeying accidental
algebraic relations beyond those of egs. (2.24) and (2.25), as it might happen for particular
choices of gauge groups and gauge-symmetry breakings. A A

It is useful to note that in the basis in which the mass matrix is diagonal, m;; = 6§ me
(no sum), there is a direct correspondence between the masses of the complex fields and
the non-vanishing structure constants involving the broken generators,

f%&;«éo & md—l-m:y:mﬁﬂ,
faB7 #0 & my =mg.
Such relations arise from the proportionality relation between the mass and the charge

with respect to the preferred U(1) generator in (2.21). As a trivial consequence of (2.21),
mass and charge obey the same three-term identities

qd-l-%:qé 54 md+m@:m[§,
=49 < my = Mg,

which can be seen as charge/mass conservation for the trilinear interactions. The double-
copy construction that we will spell out in section 2.6 requires the masses in the (su-
per)gravity theory to be equal to the ones in the two gauge-theory factors and relies on
the charge/mass conservation at each vertex. Interestingly, the close relationship between
masses and charges is similar to the double copy framework discovered in refs. [44, 45],
where charges of gauge-theory classical solutions were interchanged with masses of classi-
cal gravitational solutions.

In sections 4 and 5, we present tree- and loop-level amplitudes in spontaneously-broken
SYM that exhibit color/kinematics duality.

2.4.1 SU(N) examples

For the purpose of illustration, in this subsection we include two simple examples of spon-
taneous symmetry breaking. The simplest breaking pattern is

SU(N1+N2)—>SU(N1) XSU(NQ) X U(l) . (2.26)
This pattern can be obtained by giving a VEV
~1 0
@ =v MM , (2.27)
0 _EINZ

where we have absorbed a normalization constant in the VEV. As discussed, we denote the
corresponding generator as t° (with a proper normalization factor) and the generators of
the unbroken subgroup that commutes with t° as t?, with a = 1,2,..., N2 + N2 — 2. The
remaining “non-hermitian” generators can be divided into two conjugate sets,

(0.9 — 521455 and (t(kl))ij — 5!5;;, (2.28)

P =
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where we introduced the composite index o = (kl) with £ = 1,...,N; and | = Nj +

1,..., N1 4+ Ny. With this choice, the mass matrix is diagonal and has a single eigenvalue:
1 1

— V(5 + ) 2.29

mEIAN, T, (2:29)

The theory can be represented by a quiver diagram with two nodes and two lines with
opposite orientations connecting them. In the supersymmetric case each node corresponds
to a massless adjoint vector multiplet and each link corresponds to a massive bifundamental
vector multiplet.

The simplest example with several masses involves the breaking pattern

SU(Ny + Ny + N3) — SU(Ny) x SU(Ny) x SU(N3) x U(1)? . (2.30)

It can be realized by choosing a scalar VEV with three diagonal blocks

Uy, 0 0
@) =v| 0o Iy, 0 . (2.31)
0 0 -—uder

In this case, the broken generators can be divided into six sets. The three upper-diagonal
sets of generators are

(t(kl))ij _ 5%65;’ (t(kr))ij — §kgsd

1T

()7 = gts) (2.32)

17T

withk=1,...,N;l=14+N1,...,Ni+ No;r=14+ N1+ No,..., N1 + Ny + N3, and the
corresponding eigenvalues are

U1 V2 U1 V1 + V2 V2 V1 + V2
—V (5 -w) m=av(y ). m=av(5 ).
my=4g N, N, ma2 =4 N, + N m3=4g Ny + N
(2.33)

with mg = my +ms3. In this case, the quiver diagram has three nodes and six links pairwise

connecting the nodes.

2.5 Explicit breaking of the global group G

Returning to the YM-scalar theories, in ref. [27] amplitudes in the generic Jordan family
YMESG theories were constructed by double-copying the pure A/ = 2 SYM theory with a
bosonic YM + ¢ theory (setting N ¢ = 0), where the latter is described by the Lagrangian:

1

Lymigs = —ZFSVF“W +

1

S (D (DR 4

3!
2 N . “ a
_ QZ fabe peed yAa g Bb yAC yBd (2.34)

Ag FABC fai)a ¢Ad ¢Bi) ¢ce

The global G symmetry acting on the A, B, C indices becomes, through the double copy,
a local (gauge) symmetry in the resulting supergravity theory. Since our goal is to describe
the latter theory with broken gauge symmetry, it is natural to discuss the breaking of the
G, symmetry before the double copy is taken.
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To reduce the global symmetry, Gy, — fod', while preserving the G symmetry at high

3 we shall follow a pattern similar to the adjoint Higgs mechanism discussed in the

energies,!
previous section and break the symmetry by adding to the Lagrangian terms with dimension
smaller than four (in D = 4) — i.e. quadratic and cubic terms. To this end, we single out
one generator, 77, define G}f’d' to be spanned by the generators of G that commute with

79, and decompose the adjoint representation of G}, in representations of Gfd',

¢Ad — (gbad?@ad’ (p&a) ) (235)
The first field transforms in the adjoint representation of Grked' and the latter two transform
in conjugate complex representations of G;fd'. Note that these latter fields carry an adjoint
index of the G, gauge group and an index of a complex representation of Grked' and are

thus different from the fields ¢ which appeared in section 2.3.
With this decomposition, the symmetry-breaking terms we introduce are

e (i P A A S R (2.36)
We take the mass matrix to be

mp = %p)\Foﬁa, (2.37)

where p is a free real parameter, F” = —iTr ([T°,(T*)1) T?), and T* are (non-hermitian)
generators of G}, that do not commute with the 79.'% For the normalization of the cubic
term, it is convenient to introduce the diagonal matrix

A = 59 <m - 1) 50§00 (2.38)
With this notation, the Lagrangian with broken G} symmetry that we will use is
Lonigr = — 1 Fa P 4 5 (D) (DR6") + (D®)” (D) — (m?), 50
T % g\ Frabe fai;a ¢ad (bbi) ¢cé +g) Aab Fe B fi)aa ¢ba¢a£ (pﬁé
+ % g\ F“B ¥ fai)a %f@ﬁi) %é + % g\ Fo/B’y fai)a@aa g%13@7@
_ !f faBé féa(i ( ¢a& ¢aé I 2604& S%é) ( ¢bl§ ¢b(i i 2¢5i) @5(2)
4 922 faz}é féédaa& soa%ﬁé s%d7 (2.39)

where the structure constants F%” and F%7 are defined in the usual way,

Fof =~ ([, oy 77) Py = (Fﬂl)T = —iTx ([, (P9 T7) , (240)

with T'® being hermitian generators of Grked.

13This is necessary as, on the one hand, the unbroken and the spontaneously-broken phases of a super-
gravity theory (or any theory) are, from the perspective of the integrand, the same at high energy and
on the other the high-energy limit of the supergravity integrand is given by the high-energy limit of the
integrands of the two gauge theories.

1This pattern is akin to that in which a symmetry is spontaneously broken; the main difference here is
that none of the fields in eq. (2.34), including the one corresponding to TP, have a vacuum expectation value.
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We will motivate the symmetry-breaking terms through calculations in section 4 and
appendix B.2. In section 4 we calculate amplitudes and show that color/kinematics duality
requires that these terms be present. Moreover, in appendix B.2 this Lagrangian is derived
as the dimensional compactification/reduction and truncation of the unbroken (D +1) the-
ory. This does not imply that the amplitudes of the explicitly broken theory are equivalent
to (D + 1)-dimensional amplitudes; indeed, they are not, as there are no massive vectors
in the Lagrangian (2.39). See appendix B.2 for more details.

Returning to the color/kinematics duality, we expect that it should be possible find
amplitude presentations such that for each three-term Jacobi identity of G, there exists a
three-term numerator identity. The latter requires Gy relations which are decompositions
of the Jacobi identity (decomposed following eq. (2.35)). Thus we have the following
correspondences:

Ci — Cj = Ck 54 n; —nj = Ng,

-~

Fdachbe - dechae — Fachdce
Fify BFba’Y _ Fb_y,BFaa’Y — FachCO/j
f&a@f@éé . J&Zi)aféaé _ Jzaiyé]zdaé o) F WF%Z —F ﬁF%W _ F%EFZ B . (2.41)
FOfE ’YF65 _FOé 5F657 :Fo(zseF’)éﬂ

€ o Bl B _ 8
\ 4r [0 Fﬂ e 2Fa[5aFav] = I F5€7

The last identity for the F’s has seven terms, but given fixed assignments of the free indices

at most three terms contribute (the integer factors in the seven-term relation compensates
for the antisymmetrization over indices).!®

The Lagrangian in eq. (2.39) can be generalized to fields p,% that transform in a
complex representation of the gauge group while preserving the numerator relations and,
simultaneously, replacing the color Jacobi relations by the five identities in eqs. (2.24)
and (2.25). This can be done in several different ways, all leading to the same formal
expression for the Lagrangian but each emphasizing different properties. For example,

labeling by Greek hatted indices a complex potentially reducible representation of G,

a —ad

one may simply replace ¢ % — @aé‘ and @** — %4 while making the corresponding
replacements of indices on the f%¢ structure constants and requiring that the resulting
coefficients obey the relations in eqs. (2.24) and (2.25). This construction, which is quite
general, does not require any correlation between the representation of the gauge and global
symmetry groups. One may also decompose the adjoint color indices into adjoint and
complex representations of a subgroup (the latter being denoted by hatted Greek letters),
assign to complex gauge and global indices, & and «, the U(1) charge corresponding to
the diagonal of the preferred generators f° 3d and Foga and project onto the fields with
vanishing charge. This restricts the gauge group to the chosen subgroup and introduces
a correlation between the irreducible representations under this and global group, i.e. the

fields carry only certain combinations of the irreducible components of the representations

15The fact that the seven-term identity is not affected by the symmetry-breaking terms when insisting
on color/kinematics duality is a rather non-trivial fact, as we shall see in section 4.
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denoted by the & and « indices. By construction, the remaining components of the f‘ii’é
structure constants obey the relations in egs. (2.24) and (2.25). Due to the closer similarity
between the gauge and global symmetry representations carried by fields one may interpret

16

the resulting Lagrangian'® as a more refined example of color/kinematics duality:

a va a\a a\a o & B _—a &
IYM+/¢Y3/ 4FWF“ (Du¢ )" (D"¢")" + (Dup®) 4 (Dpa)® = (m?) ) Paos

3' AFabCfabc¢aa¢bb¢cc + g)\AabFa ﬁfa 5¢ba a[ggol;/

+ 59”%”&%%‘“@2@3 + 59A 9 s i,
2
9" yabe peed jaa jae b bd 6 4 ¢b B aa yab—a

. Zfabef66d¢aa¢ac¢bb¢bd o QQfGA’Yf A,quaa(ﬁab(paA s00{(:«

- ngOé Bfﬁegaad@o?@%@ﬁ& + fe afe ’Y—aacpa % ’ysoﬁd : (2.42)
Indeed, explicit calculations summarized in section 4 confirm that the tree-level scattering
amplitudes following from this Lagrangian obey color/kinematics duality. Note that the
kinematic numerators of the amplitudes coming from the theory (2.42) can be chosen to be
the same as those of the theory (2.39), since the change of G. representations only affects
the color factors of the amplitudes.'”

It is important to note that the introduction of the Lagrangian (2.42) together with a
specific correlation between the irreducible components of the complex gauge and global in-
dices can be motivated from the double-copy construction between a spontaneously broken
SYM and the current theory that we will define in section 2.6. To guarantee the required

properties of the fields ¢, that they are double-copied with N = 2 SYM fields with the
same mass, it is necessary to impose the condition

2V [0 0L = AFO g (2.43)
The general solution to this equation is that the fields ¢, have a block structure in the
space of irreducible components of the « and & indices and all fields inside each block
have equal mass. Identifying the gauge groups of the YM—i—;ﬁZ and N = 2 SYM theories,
eq. (2.43) together with eqgs. (2.21) and (2.37), implies that fields in the same representation
of the gauge group have equal masses.

2.5.1 SU(N) example

An interesting example involves the generation of several different (flavored) massive
scalars. The global symmetry group is broken as

SU(Ny + Ny) — SU(Ny) x U(1)N7 . (2.44)

16 Alternatively, we could have constructed this Lagrangian directly as a YM-scalar Lagrangian which (1)
has the same gauge group as the unbroken gauge group of a spontaneously-broken theory of the form (2.23),
(2) contains additional scalar fields with the same masses as the fields in eq (2.23) and conjugate gauge-group
representations, (3) has cubic couplings analogous to the ones of (2.34), and (4) has the cubic and quartic
couplings selected by requiring relations between kinematic numerators that mirror relations between color
factors.

7 This is particularly clear in the construction of (2.42) through projection.
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Different flavors carry different charges under the U(1) factors. Such a breaking can be
obtained by choosing TP to be

vp - 0 0
™=\ " (2.45)
0o -- va 0
0O--- 0 UOINk
tracelessness requires that vg = — Ei\zl vn /N and the v; are normalized as Tr(7°7T°) = 1.

The symmetry generators of the original SU (N, + Ny) symmetry group can be divided
into six sets (the generators in the second through fifth sets are broken):

SU(Ny) adjoint T, (a=1,...,N}—1)

SU(Ny) fund. & flavored (T(’m))ij = 55(5%,

SU(N},) fund. & flavored (T(;m))ij = 5?5#, 0 46
U(1)Ns bi-flavored (7)) = 576, (n < m) (246)
U(1)Ns bi-flavored (T(nm))ij = 75, (n <m)

U(1)"s un-flavored (Tm).) = 6167, — N%VINk , (no sum)

where k = Ny +1,..., Ny + N}, are fundamental indices, and n,m = 1,..., Ny are flavor
indices. The eigenvalues of the corresponding mass matrix are

M(gn) = ,0)\(2}0 - Un) ’ M(nm) = p)\(’Un - ’Um) ) (247)

where we use the convention that conjugate representations have masses of opposite signs
just like the charges (all physical quantities depend only on the squared masses).

Lagrangians discussed in earlier sections may be obtained from the Lagrangian (2.39)
and the generators (2.46) by restricting to a subset of its fields. While this truncation is
not always technically consistent (in the sense that the equations of motion of the fields
that are truncated away contain sources depending only on the remaining fields) we may
nevertheless define such a restricted theory. Its tree-level S matrix however cannot be
obtained from that of the parent by simply restricting the external states to those of the
daughter theory; rather, it is necessary to also eliminate all the (Feynman) graphs with
truncated fields appearing on the internal lines.

By truncating away the U(1)-flavored modes corresponding to the generators Tmm),
Tiamy, T (") and T° we can recover a theory that is very similar to the one in eq. (2.15).
Under this truncation the only surviving structure constants are

Fobeand  F°UY = (7%).9 57 — (T, 0 - (T%),7 57, (2.48)

(im)

where in the second structure constant the term, —(7°%),” (5{ , has been dropped due to
the truncation. The only difference between this theory and the one described by the
Lagrangian in eq. (2.15) is that while there the complex scalars in eq. (2.15) transform in
the fundamental representation of the gauge group, here the complex scalars are in the

adjoint. The two Lagrangians may nevertheless be mapped into each other by identifying
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the gauge group generators in the adjoint representatlon and replacmg them with the ones

18 og.
except for the quartic terms for which the color/kinematics-satisfying result is obtained as:

aafacb

in the fundamental representation, v — ©*t°pg. This is straightforward

2
G% i ond . B PN B
5 pote pood [ (g0 + 257008 ) (6094 + 23570 ) — 25700 Il (2.49)
2
9% abs send TN PP S
— . fabefecd [¢aa¢ac¢bb¢bd _ 4(paa¢ab¢acgpa 490 (P (,0 9001 + 2(,0aa§0ab80ﬁc(,0
2 T A AnT ~ ~ 7 7 ~ ~ ~ ~
94 fabefecd¢aa¢ac¢bb¢bd _ g2¢a¢a¢awa _ g2¢at6¢6¢ﬁtegpa + 92 @ate@aaﬁte@ﬂ )

On the second line, a Jacobi relation was used to reorganize the (pp)? terms. Using
a = (im), = (jn), the manipulations above lead exactly to the Lagrangian in eq. (2.15)
with massive fundamental scalars and symmetry SU(N,) x SU(Ny) x U(1)Ns

2.6 The double copy for spontaneously-broken theories

Here we spell out a double-copy construction which combines the ingredients introduced
in the previous sections to produce amplitudes in Yang-Mills-Einstein supergravities, some
of which have spontaneously-broken gauge symmetry. The case of unbroken Yang-Mills-
Einstein supergravities is a review of ref. [27].

Let us assume that expressions for gauge-theory scattering amplitudes are available
such that the kinematic numerators n; satisfy the same general Lie-algebraic relations as the
corresponding color factors ¢;. By general Lie-algebraic relations we mean relations that are
not specific to a given gauge group or symmetry-breaking pattern, but are more generally
valid, such as the Jacobi identity and commutation relation in figure 2, and the kinematic
relations for theories with broken symmetry in figure 4. The double-copy construction
states that, regardless of the spacetime dimension, a valid (super)gravity amplitude is
obtained by replacing color factors with numerators in a gauge-theory amplitude, and by
replacing the gauge coupling with its gravitational counterpart:

¢ —»n; and g— (2.50)

K
5
This statement can be taken as a conjecture to which we will give non-trivial supporting
evidence in the case of spontaneously-broken Yang-Mills-Einstein supergravities.

We note that if two different gauge theories are considered, and the numerators of the
first theory are replacing the color factors of the second theory,' then it is convenient to
take the two gauge groups, and thus the color factors, to be identical. Since the double
copy does not depend on the details of the color factors, there is no loss of generality.

A familiar property of the double copy, which also holds for spontaneously-broken
theories, is that it is sufficient for one set of numerators n; to be manifestly duality-
satisfying, while the other needs not to obey the duality manifestly. This is because, once

'8Such a replacement can also be done at the level of (Feynman) graphs.

19 As indicated by their common graph label, if 72; and ¢; belong to different theories they still need to
dress the same cubic-diagram specified by the poles 1/D; in their respective amplitudes, thus ensuring that
the mass spectra of the two theories are aligned.
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color factors are replaced by kinematic factors with the same algebraic properties, the
second kinematic numerators can in principle [27] be brought to a duality-satisfying form
through generalized gauge transformations [1, 2].

Using eq. (2.50) gravity scattering amplitude will take the same general form already
given in eq. (2.5); however, the details will differ depending on the gauge theory and
whether it is unbroken or (spontaneously) broken. To understand the precise outcome of
this prescription, it is essential to identify the proper tensor products of the asymptotic
states that appear in the various theories introduced.

Before we discuss the explicit theories introduced in previous sections let us look at
the asymptotic states from a uniform formal perspective. In particular, we have intro-
duced gauge theories where fields transform in massless adjoint representations and massive
complex (conjugate) representations. Let us assemble the fields into sets, or multiplets,
corresponding to these three types:

(v.v(m?),V(m?), (2.51)

where V is the set of massless fields and m? labels the massive ones. By this notation it is
understood that there are distinct massive multiplets V (m?) and V(m?) for each allowed
mass m in the spectrum. The gauge-group indices of the fields have been suppressed, and
since they are asymptotic fields for all practical purposes we may think of them as having
been stripped of their color dependence.

The asymptotic fields produced by the double copy (2.50) are then given by the gauge-
invariant subset of tensor products of gauge-theory fields of the left (L) and right (R)
theories. We obtain the supergravity states

(VL ® VR, VL(mQ) & VR(mQ),VL(mQ) ® VR(m2)> , (2.52)

gauge invariant

where for each allowed m? there is a distinct pair of tensor products that contribute to
the supergravity spectrum. It is important to note that the tensor-product structure of
eq. (2.52) is not an independent prescription but rather follows from eq. (2.50). This is
because the gauge-theory asymptotic states already have a double-copy structure, between
the kinematic and color wave functions (e.g. AH® ~ g#c® and WE ~ etcg). After the
replacement (2.50) the gravitational theory inherits such a structure.

Connecting to previous work, one can associate to each field a charge that is uniform
within the multiplets V,V(m?), V(m?) but otherwise distinct, as was explicitly done in
theories constructed through orbifold projections in refs. [15, 19]. For example, in our
case this charge may be given in terms of the t° generator. From this point of view
it is convenient to take the fields of the left and right theory to have opposite charges.
The consistency of the construction through orbifold projection then requires the set of
supergravity states to be given by the set of zero-charge bilinears constructed from the
states of the two gauge theories, as in eq. (2.52).

Let us now be concrete and describe the asymptotic states that enter the double
copy (2.52) for each of the theories of interest.
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Gravity coupled to YM Left gauge theory | Right gauge theory
N =4 YMESG theory N =4 SYM YM + ¢3
N =2 YMESG theory (gen.Jordan) N =2SYM YM + ¢3
N =1 YMESG theory N =1SYM YM + ¢3
N =0 YME + dilaton + B* YM YM + ¢3
N =0 YMpg-E + dilaton + B* YMpr YM + ¢?

Table 1. The double-copy constructions that appeared in ref. [27]. These give amplitudes in YME
gravity theories for various amounts of supersymmetry, corresponding to different choices of the
left gauge theory. The right theory labeled by YM + ¢3 corresponds to the YM + scalar theory
with Ny — 0. The /' = 1 YMESG theory is a particular truncation of a generic Jordan family
N = 2 YMESG theory in which the scalar and one fermion is dropped from every nonabelian vector
multiplet together with the vector field and one of the gravitini in the graviton multiplet. The last
row corresponds to dimensional reductions of a higher-dimensional left gauge theory; this row has
the same bosonic content as the previous cases, given that the original theory lived in D = 10,6,4,4
dimensions, respectively.

2.6.1 GR+ YM =YM ® (YM + ¢3)

The case of Yang-Mills-Einstein supergravities was first treated in [27], here we give a
summary of that construction. The massive multiplets V (m?) are absent in the unbroken
case. Following the discussion above, the massless multiplets of the pure-adjoint unbroken
left gauge theories,

N =4SYM: V= At \L234 g ¢012345
N =2SYM: V=A@ \2qg ",

N=1SYM: V,=A'® )\, (2.53)
pure YM : Vi = A*,
YMpr : V= Al @ ¢,

are to be double copied (2.52) with the right theory
YM + ¢3: Vr =A@ ¢ : (2.54)

We recall that YMpg stands for the dimensional reduction of some higher-dimensional pure
YM theory. As explained in ref. [27] the double copy of these left and right theories gives rise
to amplitudes in (super)gravity coupled to pure Yang-Mills theory. The supersymmetric
N = 4,2 theories can be uplifted to D = 10,6 dimensions, respectively, without spoiling
the construction. Similarly the bosonic theories can be considered in any dimension.

The tensor product between Vj, corresponding to YMpg (for some higher dimension)
and Vg corresponding to YM + ¢? is part of all of these gravitational theories; it is given by

VL ® VR — (h'mla Qb, Blﬂlv AIJ@’ A#a,, ¢aa’) ) (255)

where a is an Gj index and «’ is either a R-symmetry index or an additional global index.
The construction is summarized in table 1.
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Gravity coupled to YAT Left gauge theory | Right gauge theory
N = 4 YNESG N =4 SYNT YM + &%
N =2 YNESG (gen.Jordan) N =2 SYAT YM + ¢
N =0 ¥¥pg-E + dilaton + B* YR YM + ¢

Table 2. New double-copy constructions corresponding to spontaneously-broken YME gravity
theories for different amounts of supersymmetry. The dimensionally-reduced YMpgr theory must
have at least one scalar to provide the VEV responsible for spontaneous symmetry breaking. See
the caption of table 1 for further details.

VR VR(mz) VR(mz)
7 Rt ¢, BR | Ak Aua” (baa’ 0 0
Vi (m?) 0 W, ¢ 0
Vi(m?) 0 0 whe g

Table 3. The spectrum of the double-copy of ¥¥Mpr and YM + ;érz/ The bosonic spectra of the
N = 4,2 YMESG theories are similar. Here a,a are G}, indices and a’ is an R-symmetry index.

2.6.2 GR + ¥YM = ¥YM ® (YM + %)

The multiplets of the pure-adjoint spontaneously-broken left gauge theories are as follows:

N =4 SYN[: V= A @ AL234 @ g0L2345 1 (;m2) = Wh @ AL234 @ 12345
N =2SYN: V=A@ 2@ ¢!, Vi(m?) =WHra A2 g !,
YATpR Vi = AF @ ¢ Vi(m?) = Wh e o,
(2.56)
where for brevity have suppressed the mass dependence of the component fields in V7, (m?).
Similarly, for brevity, we do not display the set of conjugate fields V1 (m?) since it gives
no additional information.

The above fields are to be double copied with the right theory asymptotic fields
YM + ¢ V=A@ ¢, Vr(m?) = pq. (2.57)

This construction gives rise to amplitudes in (super)gravity coupled to pure spontaneously-
broken Yang-Mills theory. The supersymmetric N = 4,2 theories can be uplifted to D =
9, 5 dimensions without spoiling the construction, and similarly the bosonic theories can be
considered in any dimension. The various supergravity theories constructed in this section
are collected in table 2.

The spectra of the above supergravity theories share their bosonic part of the spectrum
with the double-copy between the spontaneously-broken dimensionally-reduced YM theory
and the YM theory coupled to ¢3 scalar theory with broken global symmetry. The result,
(¥MpR) ® (YM + ¢?), is shown in table 3.
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3 Spontaneously-broken Yang-Mills-Einstein supergravity theories

The double-copy construction described in the previous section should give amplitudes of
large classes of Yang-Mills-Einstein theories, with or without supersymmetry, and with
or without spontaneously-broken gauge symmetry. Given a procedure to compute all the
tree-level scattering amplitudes of a field theory, it is in principle possible to reconstruct its
Lagrangian order by order in the number of fields. However, since gravitational Lagrangians
of the type discussed here involve quantities depending non-polynomially on the scalar
fields, this procedure can be impractical.

However, there exist a very special class of N' = 2 supergravity theories in four and five
dimensions for which the full non-polynomial Lagrangian can be reconstructed from the
three-point interactions. Such theories provide the simplest examples of our construction
and are reviewed in this section.

3.1 Higgs mechanism in five-dimensional N' = 2 YMESG theories

N = 2 Maxwell-Einstein supergravity theories describe the coupling of an arbitrary number
n of vector multiplets to N' = 2 supergravity. An N/ = 2 vector multiplet in five dimensions
consists of a vector field A,, a symplectic Majorana spinor A" and a real scalar ¢. The
bosonic part of the N' =2 MESG theory in five dimensions can be written in the form [82]

-1

e 1L = —*R - *CLIJFIVFWJ - %gwy( 0u¢") (0" ¢Y) + GfCIJKEWPU)‘F;{uF;?]oAK7 (3.1)
where AL (I =0,1,...n) denote the vector fields of the theory including the bare gravipho-
ton Ag, and F, }{V are the corresponding abelian field strengths. The scalar fields are labeled
as ¢* (x,y,...=1,...,7), and gy is the metric of the scalar manifold. The Lagrangian
is completely determined by the constant symmetric tensor Crjr. Using this tensor one
defines a cubic form

V(&) = Cryré'e’e™, (3.2)
in the ambient space coordinates ¢/. The (7 + 1)-dimensional ambient space spanned by

LJ 3 é §J ’ ’

while the n-dimensional scalar manifold M5 is the co-dimension one hypersurface given by
the condition [82]:

V(h) = Crjxh'h/h =1 with Al = ggf (3.4)
and is parameterized by the coordinates ¢®. The metric g, is the induced metric on the

hypersurface Ms, whereas the “metric” ay J(¢) in the kinetic-energy term of the vector
fields is given by the restriction of ays to the hypersurface Msy,

3 o¢l o¢”’ .
5 a ., arJ )
2 0% v |\,

9y (9) = ars(¢) = arsly—1 - (3.5)

The ambient space indices are lowered and raised with the metric ar 7(¢) and its inverse.
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Definin
g e = ‘f S (3.6)
T 20¢% '

R'hy =1,
hphr = hsh! =0,
ary = hihy + hihY gay -

one finds the following identities:

Next, we consider a group G of symmetry transformations acting on the ambient space as
5o = (M,)! &7, (3.10)
where M, satisfy the commutation relations
[My, M) = fr "My . (3.11)

If G is a symmetry of the Lagrangian of the five-dimensional MESG theory, then its C-
tensor is invariant under it, and it satisfies the relation

(M) {Crryr, = 0. (3.12)
The vector fields of the theory transform linearly under the action of G,
5o Al = (M) ;A Q" (3.13)
and G acts as isometries of the scalar manifold Mg
dap” = K a", (3.14)

where K is a Killing vector of M3 given by

K* = —\/E(MT)J,thII . (3.15)
The h'(p*) transform linearly under G just like the vector fields,
5ah1(90x) = (Mr)ljhj(@x)ar . (3.16)

Spin-1/2 fields undergo rotations under the maximal compact subgroup of the global sym-
metry group G,

Sadl = L®Noam | with L% = (M), plepT — qedgr (3.17)

where Q2 is the spin connection of M5 and a,b,... = 1,2,...7 denote the flat tangent
space indices. The remaining fields (gravitini and graviton) are inert under the action of G.
We should note that using the identity (3.9) one can write the kinetic term of the

vector fields as
. 1o 1

1
e W vee = -1 arg ]:iV}-WJ _ _Z]:'gyfﬂl/o _ Zgﬂﬁy]:ﬁufwy’ (3.18)
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where

A = Al AL = hjALL (3.19)

Supersymmetry rotates Ag into the gravitini and Ajj into gaugini. Therefore in a given
background the physical graviphoton and the physical gaugini are given by the linear
combinations <h1)A£ and (h}”>A£, respectively.

Yang-Mills-Einstein supergravity theories are obtained by gauging a subgroup K of
full global symmetry group G of the corresponding MESG theories [83-85]. A subset of the
vector fields, denoted as Aj, must then transform in the adjoint representation of K. We
consider only gaugings of compact groups K such that the other non-gauge vector fields
are spectator fields, i.e. they are inert under K. In this case the non-zero entries of the
matrices M, are simply

(M) = 7 (3.20)

Throughout the paper it will be convenient to formally introduce group structure constants
in which the indices can assume values outside the range corresponding to the adjoint
vectors A, i.e. 17K Such structure constants will always vanish if one or more of the
indices correspond to a spectator vector field.

The bosonic sector of the N/ = 2 YMESG theory in five dimensions has the Lagrangian

-1 0 I Juv - vpo } L pJ g
e L= 5 ZGJJ-; v a 2gmyD,u90$D“90y 6\/601'][(6“ 7 { pvt potia

3 ! ! 3 ! ! ! /
+ 50 oy FLATAT AL + gggAfL oy AFAT (Ko AKX AL } (3.21)
where

Dup® = 0up” + gs AL KT (3.22)
‘F.l{V = 28[HAII,] + gs ]JKA/_{Af . (323)

To preserve supersymmetry, gauging also requires the introduction of a Yukawa-like term
r— _%gsj\ia/\?Kr[a Z] 7 (3.24)

into the Lagrangian. However, in five dimensions, N' = 2 YMESG theories without tensor
fields do not have any scalar potential terms, and therefore all their vacua are Minkowskian.

One can break the non-abelian gauge symmetry to a subgroup by giving a VEV to
some of the scalars while preserving full N/ = 2 supersymmetry. In this paper we study
the double-copy construction of the amplitudes of spontaneously-broken YMESG theories
obtained by gauging the compact isometries of the N'= 2 MESG theories belonging to the
generic Jordan family. Their cubic forms are of the form

N(¢§) = Cryr&'e?e™ =2 (€)= () — - = (€")) , (3.25)
corresponding to the C-tensor

V3 V3

C1011 = 5 COTS = _75T$7 rs = 27 Ty

5 (3.26)

N
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and the base point?®

ol = <\}§,1,0,--- ,0) . (3.27)

The global symmetry group of the MESG theories belonging to the generic Jordan family
is SO(1,1) x SO(n,1). Since one can embed the adjoint representation of any simple
group into the fundamental representation of an orthogonal group, SO(72), one can obtain
a YMESG theory with an arbitrary simple gauge group by gauging of the generic Jordan
family of MESG theories. We should note however that in five dimensions these YMESG
theories will have at least one spectator vector field in addition to the graviphoton.

Starting from a YMESG theory belonging to the generic Jordan family with gauge
group K we will spontaneously break the gauge symmetry by giving a VEV to the scalar
partner of a gauge field in the adjoint of K following [86, 87], where the breaking of SU(2)
gauge group down to its U(1) subgroup was studied. This can be achieved by expanding
the Lagrangian around the VEV shifted base point

1
e = <\/§,1,V8,O,O> , (3.28)

corresponding to giving a VEV to h2. The resulting theory describes YMESG theory cou-
pled to some massive BPS vector multiplets. The vector fields acquire their masses, via the
Higgs mechanism, from the term that is quadratic in the vector fields in the covariantized
kinetic-energy term for the scalar fields,
1 1 2

—igmyDugpr“goy = _igmya#gﬂa%y — 9592y A K 0,0Y — %ngnyngALA“s ,(3.29)
and the gaugini acquire their masses through the Yukawa-like term (3.24). To preserve
N = 2 Poincaré supersymmetry the masses of the gauge fields and gaugini must be equal.
At first glance the mass terms appear different. However, as was pointed out in [86], the
mass term for the gauge fields can be written in the form

2
s T T S 1 T wz r
5 9ry KT KYAL AP = S ALAM G WoogWayg™ s Way = B Ky - (3.30)

Comparing this with the mass term for the gaugini,

(NN (gsWoay) (3.31)

| =

one sees that they have the same mass as required by supersymmetry. Therefore under
this Higgs phenomenon, the gauge field corresponding to each broken generator “eats”
one scalar field, and we end up with a massive BPS vector supermultiplet consisting of a
massive vector and two massive spinor fields.

20The base point is the point where the scalar metric as well as the “metric” of the kinetic energy term
of the vector fields become the Kronecker delta symbol.

—97 —



3.2 Higgs mechanism in four-dimensional N' = 2 YMESG theories

Dimensional reduction of the five-dimensional N' = 2 YMESG theory of the previous
subsection leads to a four-dimensional YMESG theory with an additional abelian spectator
vector multiplet. Hence the spectrum of the resulting four-dimensional N' = 2 Yang-Mills-
Einstein supergravity with gauge group K includes one graviton multiplet and 7+ 1 vector
multiplets. Each four-dimensional vector multiplet consists of a vector Alﬂ, two spin-1/2
fields A/ and a complex scalar z/. In addition to dim(K) vector multiplets in the adjoint
representation of K, we have (7 — dim(K) + 1) spectator vector multiplets that do not
partake in the gauging. As in the previous subsection the vectors furnishing the adjoint
representation will be denoted as AJ,.

The bosonic part of the four-dimensional N' = 2 Yang-Mills-Einstein Lagrangian can
be written in the form [88-93]%!

_ 1 1 et
e L = —5R- 917D D'E ZImNAB}'fI,}'B“” — ?ew Re NapF, Fl + g2Pu,
(3.32)
where the gauge covariant derivatives and the four-dimensional potential term P, are

given by
D2 =0, —|—gsAif§KzK, (3.33)
Fiy = 200, A0 + g5 [ ATAL (3.34)
P, = _%engIJfIKLfJMNZKZLZMZN . (3.35)

In the symplectic formulation, the target-space metric g; 7 and the period matrix Nap
are obtained from an holomorphic prepotential F', which depends on 7 + 2 complex vari-
ables. For YMESG theories obtained by dimensional reduction, the prepotential is ex-
pressed in terms of the five-dimensional C-tensor as

2 . AVAVAS
33 K= 7= >

where Z—! = Z4=—1. The construction goes as follows. The prepotential is associated to

F(Z4 = - (3.36)

a (holomorphic) symplectic vector

Z4(2)
v(z) = ( OF (Z)> : (3.37)
074

where the Z4(z) are 7 + 2 arbitrary holomorphic functions of 7 + 1 complex variables 2/,

which need to satisfy a non-degeneracy condition. The specific choice for such holomorphic
functions is related to the choice of the physical scalars and will be discussed shortly. The
symplectic vector v(z) defines a Kéhler potential K(z, 2),

- - . OF  _, OF
e ® = —i(v,0) = —i (ZAaZA - ZA(?ZA) . (3.38)

21For further references on the subject we refer to the excellent book by Freedman and Van Proeyen [94].
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One then introduces a second (non-holomorphic) symplectic vector,

A K
V(z,2) = (X ) = 5u(2), (3.39)

and its target-space covariant derivatives,

D; X4 = 9; X! + %(al—lc)X“‘,

DiFa = 0pFa + 5(0K)Fa (3.40)
The scalar metric and the period matrix are expressed in terms of the quantities above as

gry = 010;K (3.41)
Nap = (Fa DiFa)(XP D;XP)71. (3.42)

As in the previous subsection, we will focus on the generic Jordan family of Yang-Mills-
Einstein supergravities whose C-tensor was given in eq. (3.26) and only consider compact
gaugings of the isometry group SO(1,1) x SO(n — 1,1). It is important to note that,
thanks to their five-dimensional origin, the Lagrangians of the theories we are considering
are uniquely specified by the choice of C-tensor and by the compact gauge group K that
is a subgroup of the global symmetry of the five-dimensional theory. This fact allows us to
identify a theory simply by its three-point interactions as both the C-tensor and the gauge
group appear explicitly in the expressions for the three-point amplitudes.

The choice of five-dimensional base-point (3.28) is equivalent to specifying the set of
non-degenerate functions entering the symplectic vector Z4(z) as follows

Z4(z) = (1, %4—20, \%—l—zl, %VS—%zQ, 23, ..., zﬁ> , (3.43)

with real V. We have chosen to label 20 and z! the scalars belonging to the two universal

spectator vector multiplets and 22, 23, ..., zdim(K)+1

the scalars transforming in the adjoint
of compact gauge group K.

It should be noted that for theories in the generic Jordan family all base points can be
brought into this form with a SO(dim(K)) transformation.??

For Vi = 0 we obtain a Yang-Mills-Einstein supergravity with unbroken gauge group.
In contrast, a non-zero Vs breaks the gauge symmetry group K down to an unbroken
subgroup K. In general K will have at least a U(1) factor since the choice of base point
corresponds to an adjoint scalar acquiring an expectation value, i.e. a non-zero value of V;
takes us on the Coulomb branch of the theory, similarly to the gauge theory case discussed
in section 2.4. To write explicitly the Lagrangian of the spontaneously-broken theory we
split the indices running over the vectors of the theory A, B = —1,1,...,7n as

A= (a,a,a), (3.44)

*2This SO(dim(K)) transformation will in general not belong to K and can be thought of as a redefinition
of the Lie algebra generators.
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so that the index a runs over the gluons of the unbroken gauge-group K as well as the
spectator vectors, while a and & run over two conjugate representations of the unbroken

gauge group. Consequently, the vector fields are written as??
At = (A5, Wy, W) - (3.45)

In general, the unbroken gauge group will not necessarily be semisimple and the indices

a, @ may give a reducible representation. Similarly, the scalars z! = x! + iy! are split as>*

al = (arl Paa @3), yh = (yi, Pyas @3) : (3.46)
Under this split, the only non-zero entries of the structure constants f48¢ are
fABC N <fabc7fa61,87 faB'y7fdﬁ7y> 7 (347)

and yield the structure constants of the unbroken gauge group, the representation matrices
for the massive fields and tensors with three representation indices which will give multi-
flavor couplings involving three massive fields.?” It should be noted that, as in the case of
the gauge theories of the previous section, these objects all obey Jacobi-like relations.

Among the vector multiplets providing the adjoint representation of the unbroken
gauge group K, there is always a preferred multiplet. The abelian vector of this multiplet,
denoted with Ai, gives the U(1) factor which is always part of the unbroken gauge group
K. One of the scalar fields of the preferred multiplet, y2, can be thought of as the Higgs
field. Note that this field is the imaginary part of a four-dimensional complex scalar,
2?2 = 22 + iy?, because the gauge symmetry breaking has a five-dimensional origin.

The next step is to rewrite the covariant derivatives appearing in the Lagrangian before
symmetry breaking as

Duyi + gsWufi‘Py - gs%fiWu
Duyl = Du@ya - i(Tth)a + gsyi(fiwu)oa + gsWufoAOy - gs@yfawu + gs@yfanu )

Du@?j + i(i,um)a - gsyi(Wufi)a + gsWufaﬁpy - gs@yfawu + gs@yfaWu
(3.48)
where D), is the covariant derivative for the unbroken gauge group. We have introduced
the Hermitian matrix m, which is proportional to the mass matrix m for the massive fields,
and is defined as follows,

Tﬁﬁa = ZgSVg(fQﬁa) = 1-— ‘/:92 mﬂa . (349)

23 An alternative notation is to introduce projectors acting in the space spanned by the A, B indices and

to define spectators, unbroken gauge fields and massive vectors accordingly as,
A A 4B A A 4B A A 4B
Al" = (PU) BAP‘ 5 Wl" = (PW) BA//' 5 W}L = (PW) BA[L .

This approach is closer to the paper [19].
21ndices z, v, . .. in pq etc. are not to be confused with the labels of D = 5 scalar fields.
25Such couplings can be non-zero only when the mass of one of the fields equals the sum of the other two.
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Without any loss of generality we will take m to be block-diagonal. The derivative Duml of
the real part of 2! has an analogous expression with the terms proportional to m missing.
The covariant field strengths are rewritten as

]‘—g,, + QQSW[MJMWV]
’F;?I/ = 2D[MWV]04 + QQSW[MfaWy] - gsW,ufaWy . (350)
2D[/.LWS] + ZQSW[,ufaWy] - gsWufaWu

According to the above index decomposition, both period matrix and scalar metric are
split into blocks as

Nap No® Nos g9ij 9" 9is
Nap=| N§ 0 NG|, gy=1|9% 0 g% | . (3.51)
Nab Naﬁ 0 Jaj gaﬁ 0

The full four-dimensional bosonic Lagrangian after dimensional reduction can be obtained
by plugging (3.48), (3.50) and (3.51) into (3.32), and plugging (3.46) and (3.47) into (3.35).
In analogy with our previous paper [27], we then take the following steps after dimensional
reduction to four dimensions:

1. We dualize the graviphoton field F, u_l}‘ Since this field is a spectator (as long as we
are not considering R-symmetry gaugings), this dualization does not interfere with
the gauging procedure.

2. We employ a linear field redefinition to canonically normalize the bosonic Lagrangian
at the base point and to render the supersymmetry transformations diagonal in the
sense that the indices A, B of the fields are not mixed by supersymmetry. Such a
redefinition involves only spectator fields together with the preferred abelian vector
field Ai and takes the following form,

V1-Vi?

Al = (A A V24
AY = 211‘/82(Aul’ +4% 24l
AL = N 12‘/32 (A1 — A% + V2v,A%)
A% = ¥(VSA;1/ — VA% +v24%)

V2 —2V,2

/ /

ot =2l + Va? |
/ /

22 = Vizl' + 22,
1 1 2/
y =y +Vey~,

! /
y? = Viyl + 4%,
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Pra = 1+ ‘/;24)0;(1 s Pya = \V 1+ ‘/:924)0;@ s
Pe =1+ VL, By =1+ VE (3.52)

3. We pick the standard R, gauge and introduce the gauge-fixing term
1—
Lyr= —EGO{GO‘, Gy = D“W(;M + zf(mgo;)a ) (3.53)

If we choose the unitarity gauge, £ — oo, the scalar field go&a acquires an infinite
mass and can be integrated out.

The final expansions for the scalar metric and period matrix which will be used in the
Feynman-rule computation can be found in appendix C. For notational simplicity we do
not put a prime on the fields which appear in the final Lagrangian.

4 Tree-level scattering amplitudes

4.1 Gauge theory amplitudes

In this subsection we evaluate three- and four-point amplitudes in the gauge theories dis-
cussed in section 2. Three-point amplitudes will be the building-blocks used to construct
three-points supergravity amplitudes using the double-copy prescription and, in the N' = 2
case, will lead to the identification of the complete supergravity Lagrangian. Four-point
amplitudes will enable us to study the constraints imposed by color/kinematics duality.
Amplitudes in this section will be written using a metric with mostly-minus signature.

4.1.1 Three points

The completely-massless three-point amplitudes that follow from the YM-scalar theory
described in section 2.5 are, up to field redefinitions, the same as the ones already considered
in [27]. We therefore focus on amplitudes with massive fields.

In the single-flavor case the only non-vanishing amplitudes have two massive and one

massless external states; they are:2
As (19,265, 357) = —SgAFY= A 7 (4:2)
As (147,203, 3%7) = V2ig(kz - )05 %, - (4.3)

In the multi-flavor case, we also have a non-zero amplitude with three massive fields; it is:

N P
A3(1¢372@§,3¢§) = —iAch;ﬁdeB . (4.4)

26We use the following conversion between structure constants of different normalizations:

Jzaiyé _ \/iifdi’é, e — \/aipabe (4.1)
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Inspecting the Lagrangian of the spontaneously-broken YM-scalar theory described in
section 2.4, it is easy to see that the three-point amplitudes are:

As (16, 204, 37°) = —v/2igms™ i (4.5)
As (1A%, 24, 37 ) V2ig(ks - sl)f“ « (4.6)
A3 (16%,2W4, 3W7) = v2igms®(es - e3) e, (4.7)
As (1A%, 2W,, 3T77) = —v/2i (kg 51)(52.53)+(k1-53)(51.52)—(k1.52)(51.53))f@3@.
(4.8)

As for the YM-scalar theory, when more than one flavor is present, there are two additional
non-zero amplitudes,

.Ag(le, QWB’ 3W&) = —\/iig((kiz . 61)(62 . 63) + (k?l . 83)(61 . 82) — (k?l . 62)(61 . 63))!}?%&,
A3(1Wa,2¢3,3¢&) = V2ig(ks - 61)fd:,B : (4.9)

We will see that, in the N' = 2 case, these building blocks will be sufficient to identify the
supergravity obtained from the double-copy prescription.

4.1.2 Four points

Using the four-point amplitudes we can study the constraints imposed by color/kinematics
duality on the theories constructed in section 2. We start from the YM-scalar theory with
explicitly-broken global symmetry and Lagrangian given by (2.42) and compute first the
amplitude between two massive and two massless scalars. To have a non-zero amplitude,
the two masses must be equal:

. A2 ¢ ¥ 1d a Aac A bd
R . . A FO TR *ACA
Ay (1970 2 bb,3 3’4—@ _ ) a B bd'y 2°- B +5a5ab
1(16",207, 3¢, 495) = —50° \ [ (k1+kg)?—m2 7

A2 d Y e a Aac A bd
aa s [ ASFTECYACA
+ fbﬁA fa'yA 2 B ”/2 . +5g6ab
v (k’1—|-]€3) —-m
faéaféﬁ \2
(kl + kg) (

FabCACdFd o4 Q(kl ks — k1 - k4)5a5ab> } .
(4.10)

The numerator factors are naturally organized by the power of . The O()\°) parts of the
numerator factors are the same as in the massless theory and obey the kinematic Jacobi
relations. Imposing color/kinematics duality at O(\?) and taking A% to be invertible leads
to the requirement

F R — F) P + F™F%* =0, (4.11)
i.e. the tensors F@c, F“ﬁa can be seen as the structure constants and representation matrices
of the unbroken global symmetry group, respectively. Similarly, imposing color/ kinematics
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duality on the amplitude with one massless and three massive scalars leads to the identity,
FoYpsP — palpey = pocpf (4.12)

We next turn to amplitudes with four massive fields. The terms with four such fields
in eq. (2.39) may appear mysterious; let us assume therefore a generic dependence on such
fields (constrained by symmetries) and see that the coefficients are fixed by color/kinematics
duality as stated in that equation. Thus, we assume that the Lagrangian contains the

contact terms2?

2 L
g i B e b, B pa : 4 56— el
5 (022° £ 00T’ fh05 + 010" [ 050" [ pa + b S s g 05 1.7 0P s + b4 050" fepa) -
(4.13)
The scattering amplitude of four massive scalars can be cast in the form
A 3 oy . nici | M2C2 | N3C3 | T4C4  N5C5 | NeCe | N7CT
Ay (15,265,357, 472) = —ig? :
41, 205,390, 495) = ~ig" | 5=+ -+ - T - T o T b, T Do
(4.14)

where the terms contributing to the amplitude are shown in figure 5; they correspond to

decomposing each of the s, t and u channels following the representation of the intermediate
state. When more than one mass is present, graphs with different internal mass are regarded
as distinct. The color factors are given by

=P =R a=FREY, e LR
~An o~ R - a e AS ~€
6= fﬂ&feé o= [ 5%, =1 aB’ (4.15)

while the (massless and massive) inverse propagators are
Dy = (k1 +k4)?, Do = D3 = (ki +ks)®> — (m1 —m4)?,
Dy = (k1 +ks)?, Ds=Dg= (ki +ks)>— (m1 —m3)*>, Dr= (k1 +k2)*— (m1+mp)?.
(4.16)
The numerator factors have the following expressions,
T 9=pom i
ny = (ki ks — ki - ko)og00 — ZVF%QF%MMAM =5k + k1) (016585 + b26367)
1 e o1y i «
ng = JAPFGOELS — Sba((ky + ka)? = (i~ ma)?)826y
1 nlNeRnld i «a
ng = Z)‘QFeé F,Yﬂ — §b4((k1 + k’4)2 - (m1 — m4)2)57(5§j,
i n ng a A ac i @ «
ng = (ky ke — Ky - ko)o%85 — ZAQF@@F(S%Z’ A — o (k + k3)? (026985 + b16367) ,
1 nieRnld v «a
ny = ZAQFE’Y F(;B — 5[)4((]{1 + k’3)2 — (m1 — m3)2)55 (55,
1 e 17 i «
neg — Z)\2F’Y Feéﬂ — 5()4((]61 -|— k3)2 — (m1 — m3)2)56 55 y

1 gmng = i
n7 = QNF R = b (k4 ko) = (ma + m2)?) (8505 — 6305) . (4.17)

27 Additionally, we could consider a contact term of the form % f¢p, %" f:@p, but it is possible to show
that it gives vanishing contribution to all amplitudes entering the double-copy construction in the next
section.
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Figure 5. Seven separate contributions to tree amplitudes with four massive scalars. Dashed lines
with arrows denote complex (massive) scalars. In diagram (1) and (4) the exchanged particle is a
sum of a massless scalar and a gluon.

Note that this amplitude vanishes unless the masses of the external scalars are related as?®
mi+mo =ms+my . (4.18)

We start by looking at the kinematic counterpart of the color seven-term relation in
eq. (2.25). As explained before, this color identity is to be thought of as a set of three-term
identities. Consequently, different three-term numerator identities need to be imposed for
the various possible choices of masses for the external particles.?” We start by taking
all masses to be equal. In this case, the color factors corresponding to massive t— and
u—channel exchanges vanish, and the seven terms relation collapses to

c1—c4+cer=0. (4.19)
We proceed to impose the corresponding numerator relation

ny—ng+ny=0. (4.20)
At the O(\%) order we obtain the condition

{2(1 — by — by) (ky - k) + (= 1 — by — bs) (ky - @)}5355 (3o 4)=0, (4.21)

28This relation holds because of our choice of masses and gauge-theory representations for the theory
with explicitly-broken global symmetry.

29In principle, imposing several three-term relations on the numerator factors is different from imposing a
single seven-term relation. The former choice is natural in our approach as the various graphs entering the
amplitude presentation have a definite value of the mass for each internal or external line. Hence, graphs
with different external masses are distinct and must be treated separately. Taking into account the possible
values of the external mass, one finds that the color seven-term relation always reduces to three-term
relations, and the corresponding three-term relations need to be imposed on the numerator factors.
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which can be solved by
bs = —1—ba, by =1—bs . (4.22)

The constraint at O(\?) is

A2 (2F1?[§F;]‘3Abm“ ) aﬁﬁ%) — 8m20%57 — (3 > 4) . (4.23)

The mass terms appear in this relation because the masses are chosen to be proportional
to A. This O()\?) identity forces us to pick one of the kinematic group generators, F OO[B ,
to be proportional to the mass matrix; indeed, this has been our choice in section 2.5.
In particular, the proportionality relation between Foa’B and the mass, together with the
relations (4.12), implies
oy _
F57#0 & Me +my =mg, (4.24)
Flol#0 < My = mg.
The right-hand side of (4.23) is cancelled by the terms depending on p in the matrix A
on the left side and the remainder is just a part of the the last identity for the kinematic
algebra in (2.41),

2P0 e AN 1 FLoPFe 0. (4.25)

Next, we consider the cases in which masses are pairwise equal, m; = mg and mo = my
with mq # mo. In this case the seven-term identity reduces to"

cg—c4+cer =0, c3—c4+er=0. (4.26)

Imposing the corresponding numerator identities and repeating the procedure above lead
to the extra condition on the contact-term parameters

b1 = by, (4.27)
together with the relations
_beyaFC(S/BAbaAac + F%ai’yﬁ + Fe aﬁﬁwevd -0,
—Fb o RPN N  FE PR o 4 FoPRe =0 (4.28)
In particular, all numerator relations can be satisfied if we choose by = by =0, by = 1 and
bs = —2 as in the Lagrangian (2.42).

Finally, there are several three-term color relations corresponding to the case in which
all external masses are different,

coa—c5+cr =0, cg—cs+cy =0, co—cg+cy =0, cg—ce+cr=0. (4.29)

The corresponding numerator relations, combined with (4.25), (4.28) and (4.24), are equiv-
alent to a seven-term relation for the global (kinematic) group structure constants,

2Fb[6aﬁ‘c,y]’BAbaAaC + 4[;16[6[041567],3] + F€ QBF€75 —-0. (430)

30There are two distinct cases, according to whether mi — m4 = +Mint Or M1 — M4 = —Mint for some

possible mass of the ¢t-channel particle.
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There exist one more amplitude with four massive scalars,
v oo B oa A g0
As(15, 200,307, 4%9) . (4.31)
Its numerator factors obey an additional relation provided that
FOTFSS — FeBRST = FG R0 (4.32)

Equations (4.11), (4.12), (4.30) and (4.32) are equivalent to requiring that the F-tensors
can be combined to give the structure constants of a larger global symmetry group, which
is broken by the masses of some of the fields (and by the gauge-group representations).
Indeed, this has been our approach in deriving the Lagrangian (2.39).

Next, we analyze scalar amplitudes in the spontaneously-broken YM-scalar theory
reviewed in section 2.4. We specialize to the case in which the theory has only two real
adjoint scalars (i.e. it can be seen as the bosonic part of the spontaneously-broken pure
N =2 SYM theory). There are two non-zero amplitudes with two massive and two massless

scalars,
Ay (1¢%,26% 304, 49°) =
oa ok kg 4 2m2 s o k- ks + 2m2 i~ ok ks — k- k
2 aygba 1 4 b;\/ a & 1 3 abe fé & 1 3 1 4
19 {fﬁ f’y (k1+k4)2—m2+f5f7 (k1+k3)2—m2+f fﬁ (k1+k2)2 }7
Ay (19'4,261% 304, 49°) =
o s~ k1o kg + 2k - K 54 k1 ks+ 2k -k ~or ko kg — k- k
o2 ) Fay b atl R 1 K2 by Fa a3 1 Ra abe fe a k1 K3 1 K4
9 {fﬁ I amr—m2 T 5 Gtk =2 T T v k) }
(4.33)

where ¢V is the fluctuation of the field responsible for symmetry breaking (i.e. the fluctu-
ations of the field which acquires a VEV), ¢! is the other real scalar in the theory and the
masses of the two massive scalars need to be equal to have a non-zero amplitude. These
amplitudes manifestly display color/kinematics duality, as the numerator factors obey the
same relations as the corresponding color factors.

Finally, we consider scalar amplitudes with four massive fields,

A(lpa, 205, 397,47°) - (4.34)

The amplitude can be organized in the form (4.14) with inverse propagators (4.16), color

factors
C1 = f&g&faﬁﬁv C2 = fégdfgﬁﬁv C3 = Jfégafi/ﬁa C4 = fd&dfasﬁ’
s = f* 15 =TT e =15 (4.35)
and numerator factors
iy = ng =ng = — (k1 - ks — mima — k1 - ks — myms) ,
T~L4 = ’I~?,5 = ﬁﬁ = —(2]{,‘1 . /{2 — 2m1m2 + k‘l . k‘3 +m1m3) y
7 = (k1 - ko + 2k1 - ks — mimg + 2mymg) . (4.36)
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It is immediate to verify that these numerators obey the same three-term relations as the
corresponding color factors.

4.2 Supergravity amplitudes

In this section we compare, in explicit examples, the result of the double-copy construction
described in section 2.6 with three- and four-point amplitudes computed from the expected
supergravity Lagrangian derived in section 3 and find the map between the Lagrangian and
double-copy fields.

One of the gauge-theory factors entering the construction is the spontaneously-broken
N =2 SYM theory. The bosonic part of the Lagrangian is shown in section 2.4. We list
here the bosonic fields in four dimensions:

(A%, 6" Wap 00, Wi, 9%, ' =1,2. (4.37)

The other gauge-theory factor is the YM-scalar theory discussed in section 2.5. Its field
content is

(A% @' 0™ o BY) - (4.38)

We will verify that the double-copy of these theories yields the spontaneously-broken
generic Jordan family YMESG theory with general gauge group.

To identify the result of the double-copy construction as one of the supergravities
discussed in section 3, we want the theory to have an uplift to five dimensions. To this end,
we need to single out a particular adjoint scalar which does not enter the trilinear couplings
in eq. (2.39) and hence can combine with the four-dimensional gluons to produce the gluons
of the five-dimensional theory. We will denote this scalar as ¢'%. In contrast, the scalars
corresponding to non-vanishing F%¢ will be denoted as ¢®*, where the index a runs over
the multiplets transforming in the adjoint representation of the unbroken gauge group K
(a=2,3,...,dim(K) + 1) and can also include extra spectator fields, when present. With
a slight change of notation from section 2.5, the global-group generator proportional to
the masses will be denoted as FQO/B . The corresponding scalar field will be called ¢?, while
¢, ¢4, ... will be the other massless scalars partaking to the trilinear interactions controlled
by the F2¢ tensors. This shift of indices is necessary to “align” the gauge-theory global
indices with the supergravity gauge adjoint indices, as the supergravity always has at least
two spectator multiplets.

4.2.1 Three-point amplitudes and double-copy field map

We begin by finding the three-point amplitudes of two massive scalars and a massless non-
spectator scalar in a spontaneously-broken generic Jordan family YMESG theory. There
are two such amplitudes,

_ (R \/igsm =9
Ms (1%,2@5,3?;2) - —z(—) V9T e (4.39)
2/\/1-V2
M; <1<pa,2¢5,3ya) - —z<g> V2gsmE%e . (4.40)
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The first amplitude involves the scalar of the preferred vector multiplet which contains
the fluctuations of the field acquiring a VEV, while the second involves the other massless
scalars transforming in the adjoint representation of the unbroken gauge group. Note that
we need both massive scalars to have the same mass in order for the amplitude to be
NON-ZETOo.

It is natural to expect that these amplitudes are reproduced by the double copy

Ax(10.22.30)| |, @ Aa(19.25.36%) | = == (5)amVI+ 27 (4
A3(1<)0’ 2@5 3¢0)‘N: ®¢43(1<,0, 2@5 3925&) N=0 = 7%(5))‘7771}?@6&7 (442)

where we have used eqgs. (4.2) and (2.38). This double-copy can be constructed because
eq. (2.43) guarantees that the massive fields have equal masses. The massless scalar ¢° in
the N = 2 theory is the fluctuation of the field that acquires the VEV, and the scalar ¢?
of the N = 0 theory is the scalar corresponding to the U(1) generator related to the mass.
The amplitudes (4.39), (4.40) are equal to the amplitudes (4.41), (4.42) provided that
we identify
(F)r=20., 0= ﬂv_iv | JABC _ paBC (4.43)
This identification, together with the relation between the gauge-theory mass and preferred
U(1) generator (2.37), leads precisely to the expression for the mass in the spontaneously-
broken supergravity (3.49). The other supergravity amplitudes with two massive fields are:

_ (K o
Mis(Lpq, 287, 3y°) = ‘@(§>m25ﬁa

1 (K
190, 28°,347) = — (= - (ky — ko) 0%
Ms(1pa, 297,3A7) ﬂ<2>m53 (k1 — k2)dj ,
i (K
Ms(1pa, 25°,3A4°) = —E(Q)mgg, (k1 — k2)d5,
) ~
lpa,28°,34%) = — (k= k) A E”
M ( Pay 4P a3 ) \/5(2))\53 (kl k?) B >
70 a i ab 17b «
Ms(1pa, 27, 329) = —5(2)A52-(k1—k3m faxy
Ms(15%,2W;, 32%) = \%( ))\62 k) AR B
Ms(1W,, 2777 347) = — (& —k 59
(1Wa, V2 \2 mes - 2) €1 €2 B
7 240y — b
M3(1Wa,2W ,3A \/>< > k2)€1 6256,
7 K . ab 17b «
M;3 (1Wa72W6 3A%) (5) — ko)eq -52+cychc)A beﬁ ,
M3(1Wa72wﬁ,3$ = - < ) €(k1, ko, €1,€2)03 ,
M3 (1Wa,2W5 3y < )m €1-€2+¢€1-Paga- p1)557
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Ms(1W,, 27 3y7) = mAey - e5 APEL

5l

~.
e Y N YR
[\

Ms(1pa, 2W° 347) = €(ka, ks, €2,€3)05 ,

T NI

\_/\_/\_/ ~—~

Ma(1ga, 207 34%) = V2i( 2 e(ka, k3, £2,3)55 ,

M3(15°%,2W,, 34%) = v2i( & e(ka, k3, e2,€3)05 , (4.44)

0123 _

where the Levi-Civita tensor is normalized as ¢ —1. These amplitudes can be repro-

duced by the double-copy prescription with the following field identification:

%( - i) :¢0‘N:2®A:|:}N:07 Ai :Ai‘/\/:2®¢a‘]\/:0’
iz%(Ai +AL) = 0y © Ax |y taidl = Ax|y_, © 0\
%(y +iaf) = Ay, @A\, %(yo —irl) = A_| L, ® Ay| g (4.45)
Pa = SO‘N:2®‘P&‘N:0» Wo = W‘N:2®‘pa‘/\/:0’
= 2 ® 9% g S VAP L
= ")y ® 0" g vl = =0y @6 \ep-

The field ¢! is a distinguished spectator scalar in the YM-scalar theory which does not enter
the trilinear couplings and is necessary for the theory to have a five-dimensional uplift, and
the index a runs over the vector multiplets transforming in the adjoint representation of
the unbroken gauge group plus extra spectator fields, when present. The free parameter
a = +1 reflects the symmetry ¢! — —¢' of the N' = 0 gauge-theory factor. Note that

01 401 are always present due to the

the spectator vectors A, 101 and spectator scalars x
choice of compact gauging and to the requirement of a five-dimensional uplift.
In the case in which the supergravity has more than one flavor of massive vectors,

additional multi-flavor amplitudes become possible,

7 K -

W, 2Ws,3W ") = — (2 (k1 — ka)er - lic) Fof

Ms( ,2Wg, 3W ) 2\/5(2))\(53 (k1 — ko)e1 - €2 + cyclic) L,

Ms(1Wa, 205,357 = —i@)m ko8 (4.46)
T V2 \2 K

They are reproduced by a double-copy construction with multi-flavor gauge theories.

4.2.2 Four-point amplitudes

To test the identification of parameters and fields constructed in section 4.2.1 we con-
struct selected four-point amplitudes with two and four massive fields and compare them
with the double-copy construction. We start with the supergravity amplitude with four
massive scalars. Using the results from the previous sections, it can be expressed in the
following form,

2
Mi(1pa, 208,377,47") = i[5 <

nlﬁl nQ'FLQ 7”L3ﬁ3 n4'fz4 n5ﬁ5 nﬁfl,ﬁ n7ﬁ7
5 + + + >

Dy Dy D3 Dy Ds Dg D
(4.47)

where the numerators are given by (4.17) and (4.36). It is instructive to verify that all poles

in the above amplitude correspond to the exchange of a particle of the theory. Specifically,

40 —



for a given assignment of external masses, aside from two massless channels, there are three
massive channels with square masses (mj +m2)?, (m1 —m3)? and (m; —my4)2. One can see
that, thanks to the relations (4.24), the numerators ng, ng, ns, ng, ny in (4.17) are either zero
or proportional to inverse propagators when the mass of the intermediate channel is not
one of the masses of the particles in the theory (i.e. one the eigenvalues of the matrix maﬁ ).

We have verified that the expression (4.47) reproduces the one from a Feynman-rule
computation, once the field map (4.45) is employed. The expression for the general four
massive scalar amplitude substantially simplifies in the simplest case in which the super-
gravity has a SU(2) gauge group which is spontaneously-broken to its U(1) subgroup. In
this case only one flavor of massive fields is present, «, 8 = 1, and the structure constants
become

FyY=0, Ff=i. (4.48)

It is also convenient to absorb the p-dependent factor in the definition of A,

A=1+p2\. (4.49)
The amplitude has a simple expression,
ki - ko —m? ki - ko —m?
L L ] . (4.50)
(/{?2 + ]{33) (k?Q + k?4)

In this particular case, all non-zero amplitudes with two massive fields have simple expres-

1 /K\2 ~
Mi(1p, 26,3, 47) = 5 (5 ) (2 = ks - ko) [1 +2

sions, and we list here some of them:

My (127,29, 32", 4¢) = 1(§> —2m +4m ’
2 [ m* m* ko - k3ks - kg
1 0 2— 0 4 — 4 E _2 2_ —
Ma(1y, 25,3, 4¢) = i(5) T Tk ks ks ke (Retka)? |
Lo N2 o k2 ksks - ky
Ma(1a! 25,301 40) = (5 ) | -2 + 45 B
0 5 o2 _ (RN m’ m”
M1y 28.39% 49) = 5 (5 ) A [2+k2-k3 Tk k)
My(1y',2,3y", 4¢) ZZ(§> —(k2+k4)2+4m} )
2 [ )2 m2\2 m2\2 ko - kgks - k4
192,25, 3y, 4¢) = i( ) | -2 —om? - - 4
M4( Y, 29,9Y, 4,0) ’L<2> 2 m 2k - k3 2ks - kg * <k2+k4>2 ’
2 [ \2 Mhs-ky MNhky-ks  ko-ksks-ky
122,925,302, 4p) = i( =) | S — (kg )2+ 222 > :
M4( €T, 20,0, 90) ,L<2> (2 ( 2+ 4) + 2 k2.k3 2 k3-k4+ (k2+k4)2

(4.51)

There also exist amplitudes which vanish due to non-trivial cancellations. Among them
there are

My(12t, 28,322 49) = 0,
My(1y°,25,3y" 4p) = 0,
Ma(1y*, 25,3y, 4p) = 0 . (4.52)
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We have explicitly checked that the result of the double-copy calculation for the amplitudes
listed above matches the given expressions.

As an interesting aside, we note that the double copy of spontaneously-broken YM
theory with itself, namely ¥ ® ¥, is a valid construction in the current treatment. To
understand what the result might be, let us take spontaneously-broken gauge theories with
all masses equal and consider the scattering of four massive scalars. The kinematic numer-
ator factor iy in eq. (4.36) is nonvanishing when (k1 + k2)? = (2m)? and thus the graph 7
in figure 5 exhibits a pole for such momentum configuration. This pole does not contribute
to the gauge-theory amplitude due to the vanishing of the color factor ¢7 in eq. (4.36).
However, through the double copy, this pole features in the corresponding supergravity
amplitude and signals the existence of a state of mass 2m in the spectrum. Such state
is not part of the naive spectrum — the gauge invariant part of the tensor product of
the two gauge-theory spectra; unitarity requires it to be included. The argument can be
repeated starting from higher-point gauge-theory amplitudes and leads to the extension of
the naive spectrum by an infinite number of states with equally spaced masses, m,, = nm
with n integer. These states also carry maximum spin two. Following from the discussion
in appendix B.1 the amplitudes generated by the double-copy construction SY¥N ® SYN
should belong to (D + 1)-dimensional Kaluza-Klein supergravity.

5 Loop amplitudes

Here we work out one of the simpler one-loop amplitudes in explicitly broken YM + ¢3 in
a form that obeys color/kinematics duality. Then, using the corresponding amplitudes in
spontaneously-broken SYM, the double copy gives the one-loop four-vector amplitude in
spontaneously-broken YMESG.

5.1 Omne-loop massless-scalar amplitude in broken YM + ¢3 theory

Consider the one-loop amplitude for four massless external scalars in the explicitly broken
YM + ¢? theory. We write the complete amplitude in the cubic-diagram form (2.1),
decomposed over the massless and massive internal modes,

lloop 4 a’¢ 1 Uze; Nj.a G N, Ci
— 1
2 X /%DS( L. T D) 51

Sy ie{box,tri,bub}

where the first sum runs over the permutations Sy of all four external leg labels. The second
sum runs over the three listed integral topologies (box, triangle, internal bubble diagrams),
and the corresponding symmetry factors are Spox = 8, Sty = 4 and Spyp = 16. The
summation index « labels the massive modes, with mass +m,, inside the loop diagrams.
The numerator without an « index corresponds to massless modes in the loop.

In the canonical order of the external legs, (1,2,3,4), the color factors are

Chox = f&ala f@azd fdagé ]Fé&ﬂ) :
Ctri = f&ldgéfbédfdégéfé&4b ’
Coub = falaZCfbcdfdebfea3a4 ) (52)
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Figure 6. The different types of box diagrams that contribute to the one-loop amplitude with
four massless scalars in explicitly broken YM + ¢? theory. Diagram (a) denotes the sum of all box
diagrams with massless internal states; the contribution (b) is of order A%, (c) is of order A2, and
(d) is of order A\°. Additionally, there are two conjugate diagrams (e), (f) with internal scalars of
mass m,. Dashed lines denote scalar fields, double lines of these corresponds to massive scalars,
while curly lines denote vector fields. Note that quartic-scalar interactions are implicitly included
in these diagrams, according to their power in the A coupling.

The denominator factors in the canonical ordering are given by

Dyox = (3030302 | Dy = s03020%, Dy, = 520303,
Dbox,a = (6% - mi)(ﬁ% - mi)(g?’) - mi)(&% - mi) )
Dyia = s(l3 —mZ) (€5 —md) (65 —m2),

Dyub,a = 8°(3 —m2) (65 —m2), (5.3)

where 0; =0 — (k1 + ...+ ki).
In ref. [27] the massless contributions to this amplitude were worked out using the

unitarity method [95]; we quote the result again, in a slightly different form. We write the
box numerator corresponding to massless fields, figure 6(a), as

Npox = nggx +n® 4+ (5.4)

box box ?

where the superscript denotes the order in A. The O(\?*) contribution of the box numerator,
shown in figure 6(b), is entirely expressed in terms of the structure constants of the global

group,

)\4
Miox(1,2,3,430) = T e peosd plase peost, (5.5)
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The O(A\?) numerator contributions, shown in figure 6(c), is given by

)\2
nl(j))x(l’ 2,3, 4; 6) = ﬂ{(Nd) +D— 2) (Fa1a4bea3a2 (é% + &21) + Fraiazb pbasas (g% + g%))
+ 24 (sFaraabphasaz g panash phasasy 4 50304y, (603 — (3 — (3)
+ 69293 Ty 4 (603 — 02 — (%) + §M1% Try3(607 — (3 — 13) (5.6)

+ 6N 92 Trgy (602 — 03— 02) + (34 134 134 £3)(092% Tr 3 + 5“1“3Tr24)} ,
and the O(A") numerator contributions, shown in figure 6(d), is

20 (1,2,3,4,0) = i{aamaam (24t (t — 263 = 263) + 2 (Ny + D — 2) (36343 — 363)
+ (N + D+ 14) (UB + B+ G+ ) - ul + )]
| ga2as garas [243 (s —20% - 2&21) +2(Ny+ D —2) (36353 — 6%6%)
+(Ng+D+14) (s (B + B+ B+ 8) ~u(B+6))]
619249294 |2 (Ny + D — 2) (263 + B363)
~ o+ D) (s (B B) +(BHA) ]} (6

As before ¢; = £ — (k1 + ... + ki) and in eq. (5.6) we use the shorthand notation
Try; = Fbaic peasb - The parameter Ny = 895, is the number of massless scalars in the
D-dimensional theory.

Finally, the numerators of the massive diagrams, figure 6(e) and figure 6(f), are con-
jugates of each other. We explicitly give the one corresponding to figure 6(e),

PPN ~ ~ ~
Nbox,a(1,2,3,4;0) = ZF‘“O{ﬁFaZ’ﬁAYF“PIY5F“‘tS ¢ (no sum «)
)\2
+ ﬂ{Na [Fa1a4bea3a2 (LQ + L4) + Falangba3a4 (Ll 4 Lg)]

+ 8% Tryg (6L3 — Lo — Ly) + 6°2% Trig (6L2 — Ly — L)
4 §eras ﬂ%;a (6Ly — L1 — L3) + 6" ﬁ34;a (6L1 — Lo — Ly)

+ (L1 + Lo + Lg + Ly) (692 ﬁm;a + 6193 ﬁ24;o¢)}
No

o

{(5a1a25a3a4 [2(3L1L3 —L2L4)+t(L1 +L2+L3+L4) —u(Ll +L3)]

0923649 [2(3L0 Ly — Ly L) + (L1 + Lo+ Lz +La) —u(La+La)]

[2(
+ §a10s §azas [2(L1L3 + L2L4) — S(Ll + L3> + t(LQ + L4)]} ) (58)

where L; = (2 —m2 = ({ — (k1 + ... + k;))?> — m? are the inverse propagators of the box
diagram, FP = A% P and we use the shorthand notation T\rij;a = Fur ﬁaé .

Since the mass depends on the index o we do not yet sum over this index; the nu-
merator has to first be combined with the correct denominator factor (this is akin to not

integrating over the loop momenta in numerators when they are not yet combined with
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their denominators). The parameter NN, is introduced to count the degeneracy of massive
scalars corresponding to mass m,. By default N, = 1 since we may formally consider all
masses distinct, but it is useful to keep this parameter around should one choose to do the
bookkeeping differently. As seen, every term in eq. (5.8) depends on the index a.

The conjugated box numerator, corresponding to figure 6(f), can now be obtained by
the identification

ﬁbOX,OL(1727374;£) = nbOX,a(473727 1’ _6) b (59)

or, alternatively, by raising/lowering all the gauge-group indices in npex o corresponding to
matter representations.

The box numerators have been constructed so to manifestly obey color/kinematics du-
ality and satisfy all physical unitarity cuts (this includes all cuts that have no contributions
from tadpoles or external bubbles, which are singular diagrams on shell).?! Note that in
the mgy — 0 limit, there is a term-by-term map between the numerator in eq. (5.8) and the
terms in egs. (5.5)—(5.7), after the gluon loop contributions in the latter expressions have
been excluded. This is consistent with the discussion in appendix B.2.

The numerator factors for the remaining contributing diagrams, the triangles and inter-
nal bubbles, are given by the kinematic Lie algebra relations. For the massless numerators
we have

ntri(ly 2737476) - nbOX(l? 27 37 472) - nbOX(27 17 37476) ’
nbub(1, 2, 3,45 0) = nyi(1,2,3,4;0) — ngyri(1,2,4,3;4) (5.10)

and for the massive ones, we have

ntri,a(la 2,3,4; K) = nbox,a(la 2,3,4; e) - nbox,a(2> 1,3, 4; E) )
nbub,a(la 2,3,4; ‘6) = ntri,a(la 2,3,4; 6) - ntri,oz(la 2,4,3; f) ) (511)

and similarly for the conjugate ones, 7; 4.

31Unlike massless theories, in massive theories bubbles on external lines and tadpoles do not automati-
cally vanish in dimensional regularization. For the current purpose, one may nonetheless ignore them by
considering renormalized gauge-theory amplitudes in a particular scheme (and defining the double copy in
this renormalization scheme).

Graphs with a massive bubble on a massless external leg have the same color structure as the correspond-
ing tree-level graphs (with the bubble removed) and as such they receive contributions from counterterms
that renormalize the gauge-theory action. Since these bubbles integrate to constants, one may choose
counterterms that completely cancel them (this is different from the MS scheme).

Cubic tadpole graphs typically vanish in a gauge theory because of the color factors, but the kinematic
part of them is not automatically zero for massive tadpoles, and thus can potentially contribute to the
gravity amplitude through the double copy. The existence of such a tadpole would indicate the instability
of Minkowski vacuum, and thus we remove them by choosing appropriate gravity counterterms (for the
gauge-theory numerators this implies that we simply drop all tadpoles).

The resulting gravity amplitude inherits the momentum dependence of the underlying gauge-theory ampli-
tude while dropping certain renormalization-dependent constant factors, which from the gravity perspective
are absorbed into the definition of the gravity action.
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Figure 7. The three types of box diagrams in the one-loop four-vector spontaneously-broken
YMESG amplitude. The contributions are, (a) the graviton and massless vector, (b) the massive Wy,
vectors, and (c) the massive W* vectors. These are given by double copies between spontaneously-
broken SYM (left factors) and explicitly broken YM + ¢ theory (right factors). The remaining
triangle and bubble contributions are obtained from the boxes through the Jacobi and commutation
relations of color/kinematics duality. See figure 6 for notation.

5.2 One-loop four-vector Yang-Mills-gravity amplitudes

The double-copy procedure, inherent in color/kinematics duality, provides a straightfor-
ward way to construct loop amplitudes in spontaneously-broken YMESG theory. For
example, figure 7 illustrates how to obtain the different types of contributions — mass-
less graviton and vector multiplets, massive W, and W" multiplets — as double copies
between spontaneously-broken SYM numerators and the explicitly broken YM 4+ ¢? nu-
merators computed in the previous section.

The complete one-loop amplitude with four massless external vectors in spontaneously-
broken YMESG theory, is given by the double-copy form (2.5),

Mltoor — <E>4 D / dP0 1 [nf"Mn, 5 n M, o Y 5 oM T 0
4 2 (27T)D SZ _DZ D’i,a ~ DZ o )

Sy ie{box,tri,bub}

(5.12)
where the sums, symmetry factors, and denominator factors, are the same as in egs. (5.1)

and (5.3). As before, the n; are the numerators of explicitly broken YM + ¢ theory given
SYM

in section 5.1, and the n} are numerators of spontaneously-broken SYM theory and we
identify the combination k\/2 with the supergravity gauge coupling g.

For the one-loop amplitudes, the spontaneously-broken D-dimensional SYM numera-
tors are given by (D + 1)-dimensional SYM numerators with the last component of the

loop momentum interpreted as mass: ¢ — (¢, £m,). We may write the numerators as

ndYM = nPYM(1,2,3,4;4,0),
M = nYM(1,2,3,4;6,my) (5.13)
ﬁlssz = nzSYM(17 27 37 47 67 _ma) )

meaning that the numerators for massive and massless internal states are described by the

same function, only the value of m,, differs between them.??

32Note that the numerators of spontaneously-broken SYM are thus straightforward to obtain from the
massless theory in (D + 1) dimensions, in contrast to the numerators of explicitly broken YM + ¢ theory
which in general have a more complicated relation to the massless numerators.
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Specifying to the maximally supersymmetric case, the box numerator of spontaneously-
broken N/ =4 SYM is given by

n=ASYM(] 93 4 fim) = istAT°(1,2,3,4) = <[1122§ [<?i”>i]> 5(8>(an"|i>> . (5.14)
independent of the mass parameter m, whether zero or not, in agreement with ref. [80].
The corresponding triangle and bubble numerators vanish for this theory. Plugging this
into (5.12) gives the four-vector amplitude in spontaneously-broken A" = 4 YMESG theory.

The N/ = 2 SYM one-loop numerator factors may be written as the difference between
N = 4 SYM and numerator factors for one adjoint N' = 2 hypermultiplet running in
the loop,

w2 V(10,3 4y m) = N1, 2,34 o) — 202 (1,2,3,4365m) . (5.15)

Color/kinematics-satisfying one-loop numerator factors due to one adjoint hypermulti-
plet running in the loop may be found in refs. [15-18]. A manifestly /' = 2-supersymmetric
box numerator valid for D-dimensional loop momenta was given in ref. [17]; introducing
the mass-dependence we find

—om s—0,)? 0 st+ (s 4 £,)?
ﬁéﬁ’ “(1,2,3,4,6,m)= (H12+H34)(2825) + (K23 + H14)§ + (K13 + H24)(2u2u)
K12 + K K23 + K K13 + K
+(M2+m2)( 12 34+ 23 ; 14+ 13u 24)
+ 2ie(kn, ko, kg, ) 22 (5.16)
u

where £y = 20 (k1 + ka), by = 20 - (k2 + k3) and ¢, = 20 - (k1 + k3). The numerator factors
of other box integrals are obtained by relabeling. The parameter u is the component of
the loop momenta that is orthogonal to four-dimensional spacetime, and €(k1, ko, k3, ) =
Y kS KE €, is the Levi-Civita invariant. The external multiplet dependence is captured
by the variables x;j,

iy =~ 00 (X a210) 43)* ) (517)

As before, the triangle and bubble numerators are given by the kinematic Jacobi relations,

n{\r/fQ SYM(l, 2,3,4;0;m) = n/b\{;2 SYM(l, 2,3,4;0;m) — n{;{;2 SYM(2, 1,3,4;¢;m),
=2 SYM(1 9 3 4:0ym) = nN T2 SYM(1,2,3,4: £;m) — n¥m2SYM(1,2,4,3,0,m) , (5.18)

tri

which have no mass-dependence, since the mass term in eq. (5.16) is totally symmetric.

Plugging the N' = 2 SYM numerators, together with the YM + ¢3 numerators (5.4),
into equation (5.12) gives a four-vector amplitude in the spontaneously-broken N = 2
YMESG theory. The parameter Ny in eq. (5.4) and (5.7) is identified with the number of
massless vector multiplets (i.e. the number of massless vector fields excluding those in the
graviton multiplet). One may verify the construction by observing that the unitarity cuts
of these amplitudes match the direct evaluation of cuts in terms of tree diagrams.
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It is not difficult to integrate the resulting expression and find the divergence of the
four-vector amplitude. As usual, the masses do not enter the UV divergence, which is the
same as that of the unbroken theory; it is naturally organized in the powers of .

e The O(A\?) part of the amplitude is the same as in the MESG theory with the same
field content. The four-vector amplitude diverges in four dimensions and, as a term
in the effective action, the divergence is proportional to the square of the vector field
stress tensor [96, 97].

e The O(\?) part of the amplitude is finite in four (and five) dimensions; it is given
by a combination of the four- and six-dimensional box integrals with tree-level color
structures.

e Since the O(A*) part of the YM + ¢3 numerators is momentum-independent, the
divergence at this order is proportional to the divergence of the four-gluon amplitude
in the N/ = 2 SYM theory. In the UV limit the masses drop out and the sum over
the index « leads to a factor of the index of the adjoint representation, T'(A)§*% =
Fachbcd'

Next consider the maximally-helicity-violating (MHV) amplitude in YMpg theory,
which is the generalization of the bosonic part of SYM theories. For four-dimensional
external states, the one-loop numerator factors may again be written as the difference
between SYM numerators and numerator factors for scalar matter running in the loop,

n?MDR(l, 2,3,4;0;m) = n{\/:‘l SYM(l, 2,3,4;0;m) — 4n£v:2’mat‘(l, 2,3,4;0;m)

+ (24 N) np PR (1,23, 4; 4m) (5.19)
where N é) is the number of real scalars in the loop (also counting the Goldstone boson).
In the gravity theory this number gives the number of real vector fields in the graviton
multiplet.

A box numerator for a four-vector amplitude with a single scalar running in the loop

in the YMpgR theory, valid for D-dimensional loop momenta and four-dimensional external
states, was given in ref. [17],

np PR (1 9 34 f:m) =

02 2(2L+36s) 2L+ 02 —2M? 2L — U5+
~ (Fi2 + f34) (484 B 483 + 252 - 4s

¢ QL —tls— b, +t)  M?
~ (s + iaa) <4t4 - i e

B0y +3s)  Lu(by(2L —4g) — 02 + 02 + 4s(L + £, +2M
_(HBHM)(( ) _ tultu(2L — ) ;s )

4yt 43

8u? 4u

2 —wl, —2Mu
ut ’

2+ 302 + ALt + 8M (b, — 5+ M) es—s>

— 2i6(/€1, kg, k3, 6)(513 - /€24) (520)
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with
L=10?—m? and M =% +m?. (5.21)

In the above non-supersymmetric expressions it is understood that only the vector compo-
nents of x;; should be kept; that is, in eq. (5.19) and eq. (5.20) we take

[12][34] , .4
w1 = gy ay () (ninining ) (mynining) - (5.22)
As before, the box numerator was constructed to obey color/kinematics duality, thus the
triangle and bubble numerators are given by the kinematic Jacobi relations,

Mo PR(1,2, 3,43 6,m) =np PR (1,2, 3,43 4,m) — np o PR(2,1,3,45 6,m)

npPR (1,2, 3, 45 6;m) = n 3 PR (1,2, 3,45 4,m) — )l PR(1,2,4,3;64m) . (5.23)

Plugging the YMpr numerators together with the YM 4+ ¢% numera-
tors (5.4), (5.10), (5.11) in eq. (5.12) gives the four-vector MHV amplitude in a
spontaneously-broken YMpg-Einstein theory.

6 N = 4 supergravity theories

In this section we discuss the application of our results to construction of the amplitudes
of N'= 4 Maxwell-Einstein and Yang-Mills-Einstein supergravity theories. We begin with

a review of the Lagrangians of these theories.?3

6.1 N = 4 Maxwell-Einstein and Yang-Mills-Einstein supergravity theories

The N = 4 Maxwell-Einstein supergravity theories describe the coupling of N' = 4 su-
pergravity to N' = 4 vector multiplets. Their construction and various gaugings in five
dimensions were studied in [98-101]. Our review will follow mainly [100].

The pure N' = 4 supergravity in five dimensions contains one graviton e,™, four
gravitini 1%, six vector fields (A,if, ay), four spin 1/2 fermions x' and one real scalar field a:

(e,um7¢,zaALjaa,u7Xiva>' (61)

Here, p,v,... (m,n,...) denote the five-dimensional curved (flat) indices and the i,j =
1,...,4 are the indices of the fundamental representation of the R-symmetry group USp(4).
The vector field a, is a USp(4) singlet and the vector fields A;] transform in the 5 of
USp(4), i.e.,

Al = —AY, Al Qi =0, (6.2)

where ;5 is the symplectic metric of USp(4) = SO(5). On the other hand an N = 4 vector
multiplet contains the fields

(AM SN Gl ) (6.3)

33Note that the conventions for labeling various quantities used in this section are independent of the
conventions used earlier for AN/ = 2 supergravity theories.
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where A, is a vector field, A? denotes four spin 1/2 fields, and the ¢ are scalar fields in
the 5 of USp(4)

- 90 =0 (6.4)

The total field content of the N' = 4 MESG theory with n vector multiplets can be
labelled as follows

(e™, vis AL au X', N, a, 07), (6.5)
where the index a = 1,...,n counts the number of A/ = 4 vector multiplets whereas the
indices I,J,... =1,..., (5 + n) collectively denote the vector fields A}/ of supergravity

multiplet and the vector fields coming from the vector multiplets. The indices z,y,... =
1,...,5n denotes the scalar fields in the n vector multiplets. The USp(4) indices are raised
and lowered with the symplectic metric €);; and its inverse 0.

TN = Q9T;, T, = TVQy, (6.6)

and the a,b indices are raised and lowered with §7°.
The scalar manifold spanned by the (5n + 1) scalar fields is [98]

SO(5,n)

M = SO(5) x SO(n)

x SO(1,1), (6.7)

where the SO(1, 1) factor corresponds to the USp(4)-singlet scalar field o of the supergravity
multiplet. The metric of the coset part G/H = % of the scalar manifold M
parametrized by the 5n scalars is denoted as g, and the corresponding SO(5) x SO(n)

“vielbeins” as ;ij 1
Jzy = iféja l(llijv (6'8)

An equivalent description uses coset G/H representatives L I~A where I denotes a G =
SO(5,n) index, and A = (ij,a) is a H = SO(5) x SO(n) index. Denoting the inverse of
L4 by Lal,

one can define the vielbeins on G/H and the composite H-connections as follows:

L7, L = Q¥ Top+ QY Ty + P Ty, (6.9)

where (g, T;;) are the generators of the Lie algebra b of H, and %4;; denotes the gener-
ators of the coset part of the Lie algebra g of G. More explicitly the composite SO(n) and
USp(4) connections are given by

QY = L9, L;"=-Q% and QY = L'*9,L;7 = Qi . (6.10)

Furthermore we have )
Pl = LIOuLf" = =5 fi7 0,07 . (6.11)
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The Lagrangian of the five-dimensional A = 4 MESG theory is reproduced in ap-
pendix D following [98, 100]. Its bosonic part can be written as:

_ 1 1 7 ;1 y
€ ! £Basonic = _iR - 122 ajj FJVFMVJ — 12 4 G#VGM (612)
1 1 N L
) ((9Ha)2 — igwyamf‘a“gby + ?e 1 Cije paX F;{VF;;]CL ay ,
where X
¥ o= eva”, (6.13)

and the abelian field strengths of vector fields are defined as

Fl, = (0,A) —0,A]), Gu = (0ua, — dyay), (6.14)
The main constraints imposed by supersymmetry are3*
afy = LZ[”]Ljij—i_L([%L?f’ Cf~ = LZfJLJij —L%L(}, (6.15)

where Cf; is the constant SO(5,n) invariant metric.

Five-dimensional N' = 4 MESG theories can be truncated to N' = 2 MESG theories
with or without A/ = 2 hypermultiplets. To understand the structure of truncations we note
that the pure N = 4 supergravity theory can be truncated to N/ = 2 supergravity coupled
to a single vector multiplet by discarding two of the N = 2 gravitino supermultiplets
where each gravitino multiplet contains a gravitino, two vectors and one spin 1/2 field.
The remaining vector multiplet involves the SO(n, 5) singlet vector a,. On the other hand
an N = 4 vector multiplet decomposes into an N' = 2 vector multiplet plus an N = 2
hypermultiplet which has four scalars. One can discard either the N/ = 2 hypermultiplet
or the N/ = 2 vector multiplet in truncation. If one throws away the N' = 2 hypers from
all the N' = 4 multiplets the resulting theory is an N/ = 2 MESG theory belonging to the
generic Jordan family with the scalar manifold

SO(1,1) x SO(n, 1)
SO(n) ’

MV =

which is unique modulo the embedding of N' = 2 R-symmetry group SU(2) inside USp(4).
On the other hand if one throws away m of the N' = 2 vector multiplets and keeps the
corresponding hypermultiplets the resulting theory is an A/ = 2 MESG theory coupled to
m hypermultiplets with the moduli space:

M Ly, _ SO(L,1) xSO(n —m, 1) SO(m, 4)
Vin—mt1) Hpy = SO(n — m) SO(m) x SO(4)

The N = 2 MESG theory sector of all these truncations is of the generic Jordan type.
The FAF A A term
V2

?6_1 ijéwjpa)\ F}{VF/;Z ay , (6.16)

34The indices I, .J, ... are raised and lowered by ajj and its inverse, e.g. L? = ajj LA,
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of the N/ = 4 MESG theory reduces to
V2

?6_1 Crs hvpad F/ﬁ,Fli ay, (6.17)
where R, S,...=1,2,...(n—m+1). If we denote the singlet vector a,, as Az this implies

that the C-tensor of the A/ = 2 MESG theory is simply given by

V3

CORS = TCRS y

where Crg is proportional to the constant SO(n — m, 1) invariant metric, namely

Cors = ——0ps, 7,8...=12...(n—m). (6.18)

Four-dimensional N = 4 MESG theories and their gaugings were first studied in [102,
103]. Their most general gaugings both in four and five dimensions using the embedding
tensor formalism was given more recently [101]. Under dimensional reduction the five-
dimensional N/ = 4 MESG theory with n vector multiplets leads to the four-dimensional
MESG theory with (n + 1) vector multiplets and the scalar manifold

SO(6,n + 1) SU(1,1)

Mi= 56 xs0m+1) *UA)

. (6.19)

The SU(1, 1) symmetry acts via electric and magnetic dualities and in the symplectic section
that descends directly from five dimensions via dimensional reduction the Lagrangian is
invariant under the five-dimensional U-duality group. These N = 4 MESG theories in four
dimensions can be truncated to N' = 2 MESG theories belonging to the generic Jordan
family with or without hypermultiplets. Truncation to maximal N' = 2 MESG theory with
(n + 1) vector multiplets without hypers is unique modulo the embedding of the N/ = 2
R-symmetry group U(2) inside N’ = 4 R-symmetry group SO(6) = SU(4). The resulting
theory has the scalar manifold

SO(n +1,2) SU(1,1)
SO+ 1) xS0(2) * U(1)

(6.20)

If one retains m, N' = 2 hypermultiplets and (n + 1 — m) vector multiplets in the trunca-
tion the resulting theory is a MESG theory coupled to m hypermultiplets with the scalar

manifold
SO(n+1—m,2) SU(1,1) SO(m, 4)

X X .
SO(n+ 1 —m) x SO(2) U(1) SO(m) x SO(4)
Most general gaugings of A/ = 4 supergravity theories coupled to N' = 4 vector multi-

(6.21)

plets were studied in [101] using the embedding tensor formalism. In this paper we will only
focus on gaugings that lead to N' = 4 supergravity coupled to Yang-Mills gauge theories
with a compact gauge group that allow Minkowski vacua only. For this we will follow the
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work of [100] on gaugings of five-dimensional N' = 4 MESG theories. As was shown by the
authors of [100] gauging with tensors requires an abelian gauge group whose gauge field is
the singlet vector a,. Furthermore gauging a semisimple subgroup of the global symmetry
group SO(5,n) by itself does not require coupling to any tensors and allows Minkowski
vacua only. To gauge a semisimple subgroup Kg of SO(5,7n) one identifies the subset of
vector fields A,{L that transform in the adjoint representation of Kg with the remaining
vector fields being spectators. Since such gaugings do not have tensors we can formally
use the same index 1:, j, ... =1,2,...,n+5 to collectively denote the Kg gauge fields
plus the spectators with the understanding that the structure constants fi jK of the gauge
group vanishes when any one of the indices corresponds to the spectator vector fields. In
this paper we restrict ourselves to gaugings of a compact subgroup K of SO(n) global
symmetry which do not involve any tensor fields and will use this formal trick to simplify
the formulas.

The gauging of a subgroup K requires that all derivatives acting on fields that trans-
form non-trivially under K be covariantized. This is implemented by the following substi-
tutions in the Lagrangian A{: in the standard way:

I I _ ol Jel 4K
F,u,l/ —>‘Fp,u - Fuy+gsAHfjkAy )
OpuLly — DLl = 0L + gs Al fL- LY. (6.22)

The composite USp(4) and SO(n) connections, the vielbein Py
D,, acting on fermions are also modified by the new g5 dependent contributions as reviewed

as well as the derivatives

in appendix D where we also reproduce the Lagrangian of the N' = 4 YMESG theory in
five dimensions following [100]. The bosonic part of the Lagrangian of the YMESG theory
has the form [100]:

1 1 7 i1
e ! LyMESG = *iR — 122 ajj .FLIW]:PWJ — 12_4 G/WG‘LW (6.23)

1 1 .. V2 o -
-3 (8ua)? — 5 P Paij + 5 YOy e P A FLL T ay

o )
—9§< 95¢jA”+* i'}Tm]),

2 2
where
217 K pkligi
Sij = =55 Liaw FrL i L) (6.24)
A pdap Rk
T = =X L LG 3 Ly (6.25)
wii = Plij — 9sAu L §I~<LLI£' (6.26)

The N = 4 Yang-Mills-Einstein supergravity with a compact gauge group K that is a
subgroup of SO(n) can be truncated to N’ = 2 Yang-Mills-Einstein supergravity with the
same gauge group that belongs to the generic Jordan family discussed in section 3. This
truncation is unique for a given compact gauge group K, modulo the equivalence class of
embeddings of K in SO(n) and R symmetry group SU(2) inside USp(4), and assuming
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Vr\VL Ay, X Plid]
Ay | hwoode | Viay | AP
o° Az wi,c ¢[ij],c

Table 4. The spectrum of the D = 4, N' = 4 Maxwell-Einstein and Yang-Mills-Einstein super-
gravity theories from the double-copy construction: one N = 4 supergravity multiplet given by the
second, third and fourth entries of the second line and as many vector multiplets as the range of the
index c of the scalar fields in the non-supersymmetric gauge-theory factor given in the third line.

that the number of spectator vector multiplets is the same in the truncated theory as the
original N' = 4 theory. Conversely one can extend a YMESG theory belonging to the
generic Jordan family to an N' = 4 YMESG theory with the same gauge group. These
results hold true also for the corresponding YMESG theories in four dimensions so long
as one works in the symplectic section that descends directly from five dimensions. The
four-dimensional YMESG theories have one extra spectator vector multiplet coming from
the supergravity multiplet in five dimensions.

The spontaneous symmetry breaking mechanism of N'= 2 YMESG theories induced
by giving a VEV to some of the scalars in the vectors multiplets can be extended to the
N = 4 YMESG theories for compact gauge groups K that are subgroups of SO(n) both
in five as well as in four dimensions. For example the N' = 4 supersymmetric Yang-Mills
theory with gauge group SU(2) spontaneously-broken down to U(1) subgroup by giving a
VEV to one of the scalars leads to a massless gauge multiplet and two massive BPS vector
multiplets which can be written as complex fields carrying opposite U(1) charges. In four
dimensions these charged BPS vector multiplets have 5 massive complex scalars and four
massive fermions [104]. A massive N’ = 4 BPS vector multiplet decomposes into a massive
BPS N = 2 vector multiplet plus a massive N' = 2 BPS hypermultiplet. Therefore a
spontaneously-broken N' =4 YMESG theory can be truncated to a spontaneously-broken
N =2 YMESG theory by throwing away the massive hypermultiplets. The spontaneous
symmetry breaking by giving a VEV to one of the scalars in a gauge vector multiplet breaks
the R-symmetry from SO(6) down to SO(5) = USp(4) in four dimensions and from USp(4)
down to SO(4) in five dimensions.

6.2 More on double copies with A/ = 4 supersymmetry

In the double-copy construction of the amplitudes of N' = 2 MESG theories one gauge-
theory copy is N/ = 2 supersymmetric and the other copy has no supersymmetry. If one
replaces the N/ = 2 gauge-theory factor with an N = 4 supersymmetric theory one obtains
the amplitudes of an N' = 4 MESG theory both in five as well as in four dimensions. The
fields of four-dimensional N' = 4 MESG theory and YMESG theory in terms of those of
N =4 SYM and of the pure YM theory coupled to scalars in a specific way can be obtained
by restricting to the product Vr ® Vg in section 2.6.2 which we give in table 4.

The double-copy construction yields the superamplitudes of N' = 4 MESG theory in
terms of the A/ = 4 SYM superamplitudes and the amplitudes of the dimensional reduction
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of pure YM theory from D = 4 + ny, where ny is the number of vector multiplets. In the
same sense as from a Lagrangian point of view we can truncate these AN/ = 4 supergravity
superamplitudes to a combination of A/ = 2 superamplitudes corresponding to vector
and hypermultiplets that describe the amplitudes of A/ = 2 MESG theory coupled to
hypermultiplets corresponding to the quaternionic manifold %. Special cases
of such amplitudes that arise in N' = 2 MESG theories which are orbifolds of N' = 8
supergravity were discussed in [15, 27].

Similarly, the superamplitudes of N' = 4 YMESG theories can be obtained as double
copies by replacing the N/ = 2 supersymmetric gauge-theory factor by an N = 4 super-
symmetric gauge-theory factor while keeping the A/ = 0 gauge copy as in section 2.3, with
only the ¢ fields but not the ¢ fields. (Keeping both the fields ¢ and ¢ leads to a theory
that does not obey color/kinematics duality.)

Similarly to the unbroken symmetry case, scattering amplitudes with manifest N/ = 4
supersymmetry and spontaneously-broken gauge symmetry can be constructed rather
straightforwardly by replacing the spontaneously-broken N' = 4 SYM theory in place of the
spontaneously-broken N’ = 2 SYM theory in section 2.6. These amplitudes are expected to
describe spontaneously-broken YMESG theories that preserve all N = 4 supersymmetries.
Some of them, such as the anomalous amplitudes discussed in [105] for MESG theories,
are particularly easy to find from the expressions found in sec. 5. Apart from the rational
contribution present in the MESG and unbroken YMESG theories, they will also acquire
nontrivial dependence on the non-zero masses. However, spontaneous partial supersymme-
try breaking is possible in N/ =4 YMESG theories [103, 106, 107]. In particular the work
of [107] studies in depth the breaking of ' = 4 supersymmetry down to N/ = 2 supersym-
metry in N' = 4 supergravity theories. Detailed study of the double-copy construction of
the amplitudes of spontaneously broken N' = 4 YMESG theories with or without partial
supersymmetry breaking is beyond the scope of this paper. It will be studied in a separate
work where we will discuss explicitly these amplitudes and their comparison with a direct
Feynman graph-based calculations.

7 Conclusions and outlook

In this paper we have extended color/kinematics duality and the double-copy construction
to gauge and gravity theories that are spontaneously broken by an adjoint scalar VEV.

As demonstrated in earlier work [27], abelian and non-abelian gauge theories that cou-
ple to (super)gravity provide a rich class of theories for which both spectra and interactions
appear to exhibit a double-copy structure. The tree-level S matrices and the loop-level in-
tegrands of these YMESG theories can be constructed in terms of the tree-level S matrices
and the loop-level integrands of particular matter-coupled YM theories. Color/kinematics
duality is the main agent behind the consistency of this construction.

In the presence of a non-abelian gauge symmetry it is particularly natural to con-
sider spontaneous symmetry breaking. We observe that the gravity double-copy structure
is present at the level of the spectrum of spontaneously-broken YMESG theories. The
YMESG spectra can be expressed as the tensor product of the spectrum of two types of
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gauge theories: a spontaneously-broken YM theory and a YM theory coupled to massive
scalars charged under a global symmetry. In the latter YM + ¢2 theory, the scalar fields
have acquired mass as a consequence of an explicit breaking of the global symmetry.

The double-copy construction is shown to work for the interacting fields given that
the two gauge-theory factors obey color/kinematics duality of a form specific to broken
gauge theories. As discussed in section 2.4, in addition to the Jacobi relation and com-
mutation relation, there are new types of color-factor relations in a gauge theory spon-
taneously broken by an adjoint scalar VEV. Color/kinematics duality then requires that
corresponding kinematic identities are satisfied by the kinematic numerators of the dia-
grammatic expansion of an amplitude. With the appropriate definition of the numerator
factors, the spontaneously-broken YM theory inherits color/kinematics duality from the
corresponding unbroken (D + 1)-dimensional theory. For the explicitly-broken YM + ¢3
theory, color/kinematics duality acts as a highly non-trivial constraint on the terms in the
Lagrangian that are introduced to break the global symmetry. These terms exhibit certain
similarities with terms appearing in spontaneously-broken gauge theories, but the details
differ significantly. While we do not discuss it in the current work, it should be interesting
to understand these terms as originating from some limiting case (perhaps a double-scaling
limit) of a spontaneously-broken gauge theory.

Using the above gauge-theory ingredients, and building on our earlier work [27], we
discussed in detail the N = 2 generic Jordan family YMESG theories with spontaneously-
broken gauge symmetry and showed that they continue to exhibit a double-copy structure
on the Coulomb branch. By computing three-point and four-point scattering amplitudes
we identified the map relating the double-copy asymptotic states and the asymptotic states
of the supergravity Lagrangian. Similar to the orbifold constructions of ref. [15], the super-
gravity fields are related to bilinears of the gauge theory fields which are neutral under an
appropriately-identified global symmetry. The double-copy construction of the asymptotic
states also follows closely the approach taken in ref. [17]. Similar to the unbroken case [27],
upon comparing the scattering amplitudes we identify the parameters of the supergrav-
ity Lagrangian in terms of the parameters of the two gauge-theory factors. This gives
non-trivial relations between the dimensionful and dimensionless couplings of the various
theories.

The details of the double-copy construction extend to YMESG theories with N < 4
supersymmetry with little change. In this paper, the N/ < 2 YMESG theories have only
been considered as obtained through the double copy, without detailing their Lagrangian
formulation. Nevertheless, as pointed out in ref. [27], the formalism described there should
extend to unbroken N = 1 supersymmetric and non-supersymmetric theories. Since N =
1 YMESG theories have no adjoint scalars they cannot be considered on the Coulomb
branch. For non-supersymmetric YME theories with adjoint scalars, the spontaneously-
broken phase is straightforwardly obtained through the double copy.

We addressed with more details the case of N' = 4 MESG and YMESG theories.
The N/ = 4 MESG theories are obtained as a double-copy of N' =4 SYM theory with the
dimensional reduction of some higher-dimensional pure YM theory [27]. The corresponding
N = 4 YMESG theories are obtained by gauging a subgroup of the global symmetry group,
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which in terms of the double-copy construction amounts to adding a ¢® term to the non-
supersymmetric gauge-theory factor [27]. In analogy with the double-copy construction
for N' = 2 theories, amplitudes in the spontaneously-broken N = 4 theory should be
obtained from a double copy between spontaneously-broken N' = 4 SYM and explicitly
broken YM + ¢3 theory. We leave for future work a thorough understanding of the N = 4
YMESG theories from a Lagrangian perspective, as well as a comparison of the resulting
scattering amplitudes with the results of the double-copy construction outlined here.

To illustrate the power of the double-copy construction we presented several one-loop
four-point amplitudes. For the broken YM + ¢° theory, we considered one-loop diagrams
with external massless scalars, and internal massless vectors and massive scalars. After
double-copying this theory with the corresponding spontaneously-broken N = 4,2 SYM
numerators, we obtained amplitudes in spontaneously broken N = 4,2 YMESG theories.
Corresponding one-loop amplitudes with no supersymmetry were also presented.

A future relevant study would be the case of N' = 2 YMESG theories with hypermulti-
plets in the fundamental representation. A Higgs mechanism with fields in representations
different from the adjoint gives distinct scenarios for breaking the gauge group. It would
be interesting to explore whether gauge theories with a fundamental scalar VEV exhibit
color /kinematics duality, and similarly to check the result of the double-copy construction
against scattering amplitudes evaluated with the corresponding supergravity Lagrangian
as a starting point.
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A Summary of index notation

Here we give a brief summary of the various indices used in the paper, with the exception
of section 6, which follows a different notation consistent with the relevant supergravity
literature. The types of indices are:
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A, B,C=-1,0,...,72 index running over all sugra vectors in 4D,
global gauge-theory index (before symmetry breaking),

I,JJK=0,....n index running over matter vectors in 4D;
index running over all vector fields in 5D,

z,y=1,2,...,n curved target space indices in 5D,

a,b,c index running over massless vectors,

in the Higgsed supergravity;
global index in gauge-theory,

1,7,k index running over massless scalars,
in the Higgsed supergravity;
fundamental global indices in gauge theory,

2,7,k fundamental rep. indices in gauge theory,
a, B, index running over massive fields,

a, b,¢é gauge-theory adjoint indices,

a, B Y gauge-theory matter-representation indices,
m,n,o flavor indices.

With this notation we have

A:(—l, I):(a,a,@):(—l,i,a,&). (A.1)

B Symmetry breaking vs. dimensional compactification

B.1 Spontaneously broken SYM

In this appendix we show that SYM spontaneously-broken by an adjoint scalar VEV is
equivalent to a dimensional compactification (D + 1) — D of SYM such that for each field
the extra-dimensional momentum becomes a mass that is proportional to a U(1) charge.
Consider that the gluons and scalars fields in the higher-dimensional theory satisfy the
following differential equation with respect to a derivative in the internal direction (D +1):

Op+1 (‘252) = gV 45 (2’?) = imAP (2”;) . (B.1)

This means that some fields have a momentum turned on in the internal direction (D +1),
corresponding to the eigenvalues of —gV’ fOAB = imAB. Fields that commute with the
generator t¥ will not have a mass since that implies that fOAB vanish. If needed one can
decompose this equation into massive and massless field, with the corresponding renaming

and complexification as in section 2.4, giving

Ava
Opy1 <¢ad> =0,
w au
Ip+1 ( 3) = —gV %’ (
Pa ®

— H8 —

> = im0 <W5> . (B.2)



However, for the exercise in this appendix it is more convenient to work with the real fields
and mass matrix in eq. (B.1).

The kinetic term of the scalars ¢®>° in (D + 1) dimensions can now be shown to be
identical to a kinetic term in D dimensions plus a ¢*-term containing a VEV:

% (D,u¢afi)2 B % (6D+1¢GA +ngBéAg+l¢aC’>2
% (DM¢GA)2 _ % (z mAB¢aB +ngBC¢0]_§¢aé>2

1 N2 g2
=5 (Do) + Str (VE° + ¢, 6%) (B.3)
where the second term on the first row corresponds to the (D +1) component of the kinetic

term, similarly A% D1 1s the gauge field in that direction. The latter is renamed to gZ)OA

the second line. The full expression for DugbaA can be found in eq. (2.22), remembering
that the global index a does not yet include a = 0.

To get the kinetic term for the ¢° field we need to look at the (D + 1)-dimensional
vector-field kinetic term. It is straightforward to see that it is identical to the D-dimensional
vector-field kinetic term plus the kinetic term of ¢°, including a VEV for the latter,

L (FL) 5 (A~ Op Al + 0P AT )

_ 1 (;clfxy)? N % (9,6° = imA8 43 +ngBéAE¢oé)2

4
Lrray? 1 nA i)

:—Z<}"W) +2<(Du¢) —im Au)
Lrrzay2 1 0 oA’

- (%) +2<(DM¢ + D)) > , (B.4)

where (¢°) = VY. Similar to before, the second term on the first line is the contribution of
the field-strength in the ;4 ® (D + 1) direction, on the second line Aé 41 1s renamed to qﬁOA,
and on the third and fourth lines terms are reassembled into covariant derivatives. Again,
the full expressions for ny and DM)OA can be found in eq. (2.22).

Finally, including the quartic terms for the ¢®>° scalars, the (D + 1)-dimensional
(massless/unbroken) SYM Lagrangian has become a spontaneously-broken D-dimensional

SYM Lagrangian
Lovat = (FA) 42 (00 + Do) )+ Ltr (67 + (67),68 + (¢9)12) + ermions
2
(B.5)
where (¢?) = 590V,

A practical implication of this identification is that scattering amplitudes for SYM
spontaneously-broken by a adjoint scalar VEV can be computed from unbroken (D + 1)-
dimensional SYM given that for each field there is a relation between the internal-space
momentum and a U(1) charge. This relation can be stated as an operator equation, simply
by rewriting the differential equation (B.1) as follows:

ArA
i(pp+1—9Vq) ( g0 ) =0, (B.6)
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where pp1 is the momentum operator pointing in the (D + 1) direction, and ¢ is a U(1)-
charge operator that acts as ¢® = [t°, @], for some field ®. Similarly, we have that pp1® =
m®, where m is the mass of ®, implying that a (massive) field carries the U(1) charge
m/(gV).

For example, for tree amplitudes it is sufficient to impose the constraint (B.6) on the
external states, then the internal states will automatically have this satisfied by virtue of
charge/momentum conservation. Similarly, for loop amplitudes, it is sufficient to have this
constraint imposed once for each independent loop momenta.

B.2 Explicitly broken YM + ¢3

Here we re-derive the Lagrangian (2.39) for explicitly broken YM + ¢3, without explicitly
using color/kinematics duality. Similar to the derivation in section B.1, it is given by a
dimensional compactification (D + 1) — D of the corresponding unbroken theory, after
a proper identification of the extra-dimensional momentum and the U(1) charge of each
field. Although, the details are strikingly different compared to the SYM case.

Consider that the scalars fields in the higher-dimensional theory satisfy the following
differential equation with respect to a derivative in the internal direction (D + 1):

. 1 N ‘ a
Op197% = —ip)\FOABd)Ba = imAByBe. (B.7)

Similar to before we let 50‘1 = A%, represent the gluon that is converted to a scalar upon
dimensional reduction. The covariant derivative, applied in the (D + 1) direction, of the
other scalars is then given by

<5D+1 A% 4 g fibe b, ¢Aé>2

1 N 1
—5((DD+1¢A)G)2 3
1 . Siams N 2
— _ 5(_ *p)\FOAB(ﬁBa + gfab6¢0b¢Ac)
1
2

mACmCB(éAa(bBa + 2gpAFOABfabC¢Oa¢Ab¢BC
g N
_ Efabefecdgi)anbAbgbocgbAd
= — (m ) /3(‘00661905 + gp)\FO Bfabc¢0a—ab —yg fabefecd¢0a¢0cfo¢b d

2 e ~n
_ %fabefecd¢0a¢ab¢00¢ad ] (BS)

On the last line the proper massive fields have been identified (and complexified), and
maﬂ is the proper mass matrix corresponding to these fields, similar to the presentation in
section 2.5.

An important difference from the derivation in section B.1 is that the extra-dimensional
gluon is also charged under the global group, since FO4B =£ ( is assumed in order to have a
mass term. However, in the derivation in eq. (B.8) this field is a U(1) singlet in the p — 0
limit, which appears to be inconsistent with this assumption. To ensure the existence of a

non-singlet scalar in this limit we demand that the true ¢° scalar is a linear combination of
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(ZO and a scalar g/zﬁ\o that was present already before the dimensional compactification. The
non-kinetic terms in the Lagrangian containing ¢ is then,

g)\FOOéﬁfabcas aaabwﬁc B 92fabefecd$0a¢ C¢Qb¢ad - 592fabefecdggOaqsabé;()cqﬁad ) (Bg)

Indeed, if we add the terms in eq. (B.8) and eq. (B.9) and do the unitary rotation

&° 1 1 - ¢°
() (1)(2)

of the two scalars, then only the field ¢° has a cubic interaction, and ¢° becomes a U(1)
singlet of the global group. We may drop the latter field since it can be absorbed into the
freedom of redefining the global group, e.g. G x U(1) — Gj. We then get the following
modification of the covariant derivative considered in eq. (B.8):

1 L9 PP Y S
—=((Dp416™M)%)” = —(m?) PG4 + gA/1+p2F0, P fibegligety f

2
e f&Bé fééci ¢oa d)oe@ai) %éd” . % g2 f&f)é fééci ¢o& (z)al; (Z)Oé d)aci .(B.11)
Compared to a massless unbroken theory, the only new terms in this expression are the
two first ones. It is not surprising that a quadratic mass term appears, but that the cubic
term corresponding to the global-group coupling gets modified by a square-root function
is striking. The remaining two terms are simply a group decomposition of certain quartic
scalar terms already present in the original unbroken Lagrangian (2.34). Ignoring these, we

get the explicitly broken YM + ¢? by adding the above mass-term to the Lagrangian (2.34)
and at the same time swapping the cubic A-dependent term as

gAF®, B fai)a (ﬁad@ai) S%é 5 g Aab Fbaﬁ faBé ¢ad¢o¢i) (pﬁa ’ (B.12)

with A% = §20 4 (\/ 1+ p? — 1)5“050b. Finally, carrying out the full decomposition of ¢pA%
into real and complex massive fields, we obtain precisely the Lagrangian in eq. (2.39).

Even though the terms in the Lagrangian can be obtained as a dimensional compact-
ification of the unbroken (D + 1) dimensional theory, the amplitudes of this theory have
to be treated with some care. The reason is that in the (D + 1)-dimensional theory the
(massive) scalars can potentially source W-bosons that are not part of the explicitly bro-
ken YM + ¢3 theory. Without special treatment of amplitudes in the (D + 1) theory,
such “illegal” particles will appear as intermediate states. An example of such a special
treatment would be to impose the operator equation (B.6), with the gauge-group generator
replaced by the global-group generator t — T°, on all external states in the tree ampli-
tude. Because of T° charge conservation and extra-dimensional momentum conservation,
the internal states will automatically have the correct mass, including gluons which are
singlets of the global group.

In fact, it is no surprise that explicitly broken YM + ¢3 theory cannot be a straightfor-
ward dimensional compactification. If it were then, through the double-copy construction,
the spontaneously broken YMESG would inherit this property. This is impossible, spon-
taneously broken YMESG is clearly not a straightforward dimensional compactification of
a (D + 1)-dimensional theory; for example, it does not have massive modes of gravitons.
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C Expansions for the supergravity Lagrangian

In this appendix we list expansions for the period matrix and scalar metric entering the
supergravity Higgs Lagrangian after the field redefinition (3.52) and up to terms linear in
the physical scalar fields. The non-zero entries of the period matrix are the following,

Noi=—i+0(8%),  Noia=22"+0(¢%),
Nowo=22"+0(¢?),  Nou = 22% + O(¢?),
Non =22 40(¢%), NG =v2@ +igd) + 0(4?),
Noo=—i+0(¢*),  N_15=V2(pap +ipys) + 0(¢%)
Nov = =22+ 0(6%), NP =V2(g! —igl) + O(¢?),
Nip=—i+22240(¢%),  Nog = V2(pap — ipys) + O(¢7) ,

Nap = (—i +2296% + O(¢?) ,
% = (—i+22°)55 + 0(¢%) (C.1)

where the indices a,b run over fields transforming in the adjoint of the unbroken gauge
group and additional (non universal) spectators. Similarly, the scalar metric has non-zero

entries,
900 =1-2V2° + 0(¢?),  gra=—y"+0(¢?),  ga = (1—2y")0% + O(¢?),
g1 =1-2y" + 0(¢?), glﬂ = —@5 +0(¢?), 9% =010- 2y1)5§ +0(¢%) .

915 = ~Pys + 0(6?), (C.2)

Note that the differences between these expansions and the ones in the appendix of [27]
arise because the vector field AL has not been dualized. These expansions are sufficient for
calculating the three-point amplitudes presented in section 4.2.

D Lagrangians of ' = 4 MESG and YMESG theories in five dimensions

The Lagrangian of the five-dimensional N' =4 MESG theory is given by [98, 100]:

e L= —fR— *W THP Dy — i agy FI Fed 42_4 GG
— % ((%a) - 5 XipXi - %j\mﬂ»‘a -5 Pm]szg
— % X'THT 4y Oya 4 iA* THTV ], Py
+ ?EL” FLxi TPTPp,,; — ZL? FIAYTHTPap,,
- 272 X THTP" i Gl + 245\2/52 *XT*XiGpa
- EzL”F X TP — 23§ZL‘; FINT 0y — &%E_QGpaf\i“Fp“/\g
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i oL i e _
+ SSLYELXTINS — SRR (5l s + 2 ]

i _. _
— —= NG [V}, TPy + 207
8v/2 p [wu (U PP

V2 P -
—l—?e ICije“l’”a’\Fil,Fl;{la,\—Fe Ly, (D.1)
where L4 denotes the four fermion terms in the Lagrangian. The supersymmetry trans-

formation laws are given by?>?

1 .
56:7 = i_ll—\n%ﬂ#i,
i I o LAY
0 = Dyei+ Z5L1,Fpy (L7 — 45,077
T E_QGPU(FH'” — 46717)e; + 3-fermion terms,

12v/2
] 3 = ~ 1
oxi = —%@O‘Ei + £ZL~ Flprogi —E_QGPUI‘WQ,

6 lij~ po 2\/6
. 1 =
oA} = iPy;THel — 1 z L‘}Fﬁfafpasi + 3-fermion terms,
I _ ol
0A, =17,

i

22

1 .
60’/»" = %22§ZF’U‘XZ' -

i
do = §€ZX7J)

- i 1 .. ~
OLY = —iLY(508] — ;I Q)N

EQE_Zwﬂi )

OLY = —iLg; &' N, (D.2)
where i 1 i i 1
0], = —%E_lijE_iF”Xj — ST LE Y + S LS TIETUAL (D.3)
and
ia
Y = eV (D.4)

The abelian field strengths of vector fields are defined as
Fl, = (0,A) —0,Al), Gu = (0ua, — dyay), (D.5)
and the covariant derivative, D,, involves the composite connections:
DA} = VA 4 Quid \f + QAL (D.6)

where V, is the Lorentz- and spacetime covariant derivative.
To construct an N = 4 YMESG theory with a semisimple subgroup Kg of the global
symmetry group SO(5,n) as the non-abelian gauge symmetry one replaces all derivatives

35 All symmetrizations (ij) and anti-symmetrizations [ij] are of weight one.
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acting on fields that transform non-trivially under Kg with Kg gauge covariant deriva-
tives [98, 100]. As explained in section 6 this is implemented by the following substitutions
in the Lagrangian:
F/{V —>"T-:£V - F;{u +gSA,{f§[”(A£<7

OpuLly — DLy = 0L + gs Al fL- LY. (D.7)
where f I jf( are non-vanishing only when the indices take values in the adjoint representation
of the semisimple gauge group Kg and vanish whenever any one of the indices labels the
spectator vector fields. The USp(4) and SO(n) connections, as well as the vielbein Py,
are also modified by the new g5 dependent contributions, i.e.,

Q" = Qu’ +9sA Ly [T LY (D.8)
Qo = Qua’ — gs ALY fL- LY, (D.9)
i = Puij = 9s AL fip L (D-10)

The derivatives acting on the fermions get modified accordingly

DuA! = VA + Q7 X + QUPA! (D.11)

where Qm-j and Quab now include the g5 dependent terms.
To restore supersymmetry with the above covariantizations one adds to the Lagrangian
following Yukawa couplings as well as potential terms [98, 100]

AL = ['Yukawa + EPotential ’ (D12)

where

3% _ . o i L . ‘
Lukawa = - 9sSij V"0 +igsTijab Naxib 4 595515 XX + gs T gL TN,

+ V35S LTy — \Q/iggsﬂ‘} XN, (D.13)
and
Lpotential = —gsV = —g3 <—Z Sy AY + %TZ Taij) : (D.14)
Various scalar field dependent quantities above are defined as follows:
Sy = o= L R TALL, (D-15)
T = —S DL Ly (D.16)
Tijap = _%Sijaab — oKLt (D.17)

Furthermore one needs to modify the transformation rules of the fermions as follows:

Snewthpi = 19sSiTue’, (D.18)
(Snew)\g = gsﬂ"}ffja (Dlg)
5neWXi = gs\/gsijgj- (DQO)
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