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Key Points.

e Elastic properties of Berea sandstone were studied at high temperatures
e Berea sandstone exhibits anomalous elastic behavior between 375 and 478 K
e Room temperature RUS bulk modulus measurements agree well with literature

Abstract. Resonant Ultrasound Spectroscopy was used to determine the elastic moduli of Berea
sandstone from room temperature to 478K. Sandstone is a common component of oil reservoirs,
and the temperature range was chosen to be representative of typical downhole conditions, down
to about 8 km. In agreement with previous works, Berea sandstone was found to be relatively
soft with a bulk modulus of approximately 6 GPa as compared to 37.5 GPa for a-Quartz at room
temperature and pressure. It was found that Berea sandstone undergoes a ~17% softening in bulk
modulus between room temperature and 385 K, followed by an abnormal behavior of similar
stiffening between 385 K and 478 K.

Index Terms.

3909 Elasticity and anelasticity,
3999 General or miscellaneous
5102 Acoustic properties

Key Words.

RUS, Berea sandstone, elastic properties
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1. Introduction

Understanding the mechanical properties of rocks beneath Earth’s surface, at
temperatures typically found in oil wells, is of great importance to the oil/gas and geothermal
industry. This knowledge has become even more important with the recent rise of hydraulic
fracturing (fracking) as a preferred method for oil and gas extraction. Sandstone is commonly
found in oil and gas reservoirs [Slatt, 2014] and detailed calculations based on the mechanical
properties of the reservoir’s constituent materials are needed to safely and efficiently extract oil
or gas. This requirement creates a great need to determine the elastic properties of the sandstone
not only at room temperature, but also at higher temperatures to simulate downhole conditions as
temperatures quickly rise with increased drilling depth at a rate of approximately 25 kelvin per
kilometer [Finger and Blankenship, 2010].

Several earlier studies, briefly described here, were performed on sandstones in order to
determine their mechanical properties under different conditions of pressures and temperatures.
Ulrich and Darling performed a qualitative study on the elastic properties dependence with
temperature for Berea sandstone. The temperature range covered was room temperature to about
8 K. They showed the existence of a hysteresis in elastic properties with cooling vs warming, and
also the presence of an anomalous behavior which indicates that Berea sandstone is softening
with decrease in temperature between 200 K and 60 K. [Ulrich and Darling, 2001]. Liang et al.
discovered that salt rock strength is affected very little by strain rate and that there is a
logarithmic relationship between deformation modulus and loading strain rate [Liang et al.,
2011]. Ten Cate and Shankland explored slow dynamics in Berea sandstone and found that it has
a strong memory of strain history and hysteresis in resonant frequencies with changing strain
amplitude [Ten Cate and Shankland, 1996]. Costin and Holcomb found that cyclic loading can
induce microcrack damage in rocks and cause specimen failure that is inconsistent with results
extrapolated from static tests. Additionally, Costin and Holcomb found that high stress can
destroy discrete memory in rock specimens and reduce stress cycle hysteresis [Costin and
Holcomb, 1981]. Rocks, and particularly sandstone, exhibit several unusual elastic responses to
stress that include nonclassical attenuation, stress-strain hysteresis, slow dynamics, and high
vibrational energy loss due to internal defects [Johnson et al., 1999; Lebedev, 2002]. These
features, combined with the acoustic nonlinearity of the material that is due to the bond system
controlling the elastic properties rather than the grains, result in rock being an extremely difficult
material to study mechanically [Nobili et al., 2005]. These materials merit further study as their
mechanical behavior have a strong temperature dependence. Several factors, such as
temperature, pressure, composition, porosity, moisture etc., are known to affect the elastic
properties of porous materials [Zhang and Bentley, 2003]. Berea sandstone is a relatively soft,
porous material that is highly attenuating to sound and attributes most of its mechanical
properties to quartz, which is its major constituent. Berea sandstone has a porosity of 13% to
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23% and is composed of 93.13% silica, 3.86% alumina, 0.54% ferrous oxide, 0.25% magnesia,
0.11% ferric oxide, and 0.10% calcium oxide (www.bereasandstonecores.com). Berea sandstone
exhibits no known temperature induced phase transitions between room temperature and ~846 K.

Most past studies of Berea sandstone’s elastic properties have used pulse-echo, or
transmit-receive approaches [Winkler, 1983; Green and Wang, 1994]. Harris and Wang used
Differential Acoustic Resonance Spectroscopy (DARS) which allows for a wide variety of
sample shapes and quick sample preparation and works by measuring the resonance shift
between a fluid-filled cavity and the same cavity with a sample placed inside. This technique has
allowed for very low frequency sound speed measurements on rock samples with highly
irregular shapes and extremely small dimensions with results comparable to literature values
[Harris et al., 2005; Wang et al., 2012]. Hart and Wang measured the poroelastic moduli of
Berea sandstone using static stress-strain measurements under varying pore pressure conditions
[Hart and Wang, 1995]. Ulrich used Resonant Ultrasound Spectroscopy (RUS) to perform a
qualitative study of the behavior of Berea sandstone at low temperatures [Ulrich and Darling,
2001], while Ten Cate [Ten Cate and Shankland, 1996] and Johnson [Johnson et al., 2004], used
a variation of RUS, Nonlinear RUS (NRUS) to investigate its slow dynamics. Renaud et al.
[Renaud et al., 2013] used a dynamic acousto-elastic method to investigate the elasticity of dry
Berea sandstone as a function of applied low-frequency axial strain.

This paper focuses exclusively on high temperature effects, using RUS, a technique
known to provide elastic constants with high accuracy [Migliori and Sarrao, 1997] The RUS
technique is treated exhaustively in Ref [Migliori and Sarrao, 1997] but is described here briefly
for completeness. RUS is used to accurately and nondestructively extract the elastic moduli of a
small solid object of well-defined geometry using the material’s natural mechanical resonances.
In RUS, a swept frequency acoustic signal is applied to the sample through a piezoelectric
transducer while the mechanical response is recorded using a second transducer in contact with
the sample. This technique can be applied to a wide variety of sample types and geometries with
very little material needed and provides the highest accuracy for determination of elastic
constants, with typical accuracies of 0.5-1.0% for compressional moduli and .02% for shear
moduli from fits with a 0.1-0.2% RMS error [Migliori and Sarrao, 1997; Pandey and Schreuer,
2012; Liu et al., 2010; Sedmak et al., 2013]. Additionally, RUS is capable of measurements over
a significantly large temperature and pressure range which is important for simulating inner-earth
conditions and elucidating effects of changing environment on the mechanical properties of
materials.

2. Experimental

The Berea sandstone sample used in our study was cut and prepared into a rectangular
parallelepiped with the dimensions 9.13 x 8.32 x 6.65 mm?. The small sample size was chosen to
avoid low frequency resonances which would couple to other parts of the experimental
apparatus. Small samples have the added advantage that they are effectively isotropic, a feature
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that is not necessarily true for a larger sedimentary sample [Sayers et al., 1990]. As the largest
wavelength used in this study (12.55mm) is several magnitudes larger than the average grain size
of Berea sandstone, isotropy can be assumed for the Berea sample. The sample was mounted
between two Boston PiezoOptics, 6 x 2 x 3.25 mm, 1 MHz, 36° Y-cut (P-wave or longitudinally-
polarized) LiNbO3 piezoelectric transducers. In theory, RUS assumes free boundary conditions
for the sample. Experimentally, this is achieved by using point contacts between the sample and
the transducers. Corner mounting of the transducers was attempted to achieve this condition and
to reduce noise from transducer contact, but it was found that such a mounting implementation
was not only impractical for the environmental conditions in this study, but also difficult to
achieve from the standpoint of obtaining sufficient acoustic signal through the transducer.
Consequently, the transducers were affixed with a high temperature epoxy (EPO-TEK, TM112)
to the 9.13 x 6.65 mm face parallel to the 9.13 mm side of the sample (Fig. 1). The
sample/transducer assembly was placed into a small-diameter tube furnace (Blue M) with a PID
controller (Eurotherm 847) for precise temperature manipulation. The furnace environment
initially consisted of ambient air and remained unmodified throughout the experiment except by
temperature change. Near-sample temperature was obtained using a type-J thermocouple
attached to a data acquisition module (MC USB-TC-AI DAQ, Measurement Computing). RUS
spectra were obtained using a vector network analyzer (Bode 100, Omicron Lab) connected to a
computer for data acquisition. Prior to data collection, the sample was heated to 478 K for a
period of two hours to thoroughly dry the sample. After this initial baking, the sample and
transducers were brought back to room temperature inside the furnace tube with both ends
stuffed with quartz wool. The following day, the sample and transducer were heated to 478 K in
less than an hour and then cooled to room temperature over a period of approximately 7 hours.
During sample cooling, the furnace temperature was briefly (~5 minutes) stabilized every 5 K so
that data could be collected. Each spectrum spanned frequencies between 50 kHz and170 kHz
with 4096 points and the network analyzer had a source power of 12.0 dBm and an IF bandwidth
of 100 Hz. Each sweep took approximately four minutes, during which the furnace temperature
was stable to within 1 K.

3. Results

Based on theoretical calculations, the frequency region studied here covers the first 31
resonances for the sample used in this study. In order to reliably determine elastic moduli, it is
generally accepted that one must have at least five resonances per elastic modulus [Migliori and
Sarrao, 1997]. An isotropic polycrystalline sample, such as the one studied here, has two
independent elastic moduli, requiring at least 10 resonances to be taken into account.

At each temperature, the RUS spectrum was analyzed using freely available RUS
analysis code available at https://nationalmaglab.org/user-facilities/dc-field/dcfield-
techniques/resonant-ultrasound-dc. As an example of the procedure used, the room temperature
data analysis will be described in the next section.
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3.1. Room Temperature

The room temperature RUS spectrum is shown in Fig. 2. The quality factor (Q),
calculated here as the frequency of a peak divided by its full width at half maximum, ranged
from 100-250 depending on the resonance being considered. This Q factor is in agreement with
that obtained by Winkler et al. which reported a Q of ~140-170 for dry Berea sandstone at low
strain amplitudes [Winkler et al., 1979]. Although Berea sandstone is highly attenuating, it can
be seen in Fig. 2 that the resonant frequencies are readily identified, even with the peak
broadening associated with a low Q factor and some overlapping of neighboring peaks. For
correct mode identification in Berea Sandstone, we used different sets of elastic constants, either
from literature [Remillieux et al., 2015; Shankland et al., 1993; Renaud et al., 2013; Winkler et
al., 1979; Sayers et al., 1990], or from through-transmission experiments for both compressional
and shear waves, performed in our lab. These values provide a reasonable starting guess for
forward calculation of the resonant frequencies. Multiple room temperature fittings were
performed with a wide variety of Cij values until error minimization between computed and
experimental resonances was achieved. Experimental modes corresponding strongly with their
calculated room temperature counterparts can then be tracked with temperature as they exhibit
only small shifts between successive temperature steps.

Table 1 presents the results obtained from a fit to the room temperature experimental
resonance data. The fit was calculated using 14 basis functions. The columns in Table 1 are as
follows: 1) the resonance number; 2) the experimental resonance frequencies (fex); 3) resonance
frequencies (fy) calculated from the fitting software; 4) percent error for each resonance, %err=
(fr-fex)/fex * 100; 5) a weighting factor, wt, between 0 and 1 that indicates how heavily the fit
procedure should consider each resonance (0 means do not consider, 1 means consider fully); 6)
mode symmetry (K) as described in Ref [Migliori and Sarrao]; 7) order (i); and finally 8), the
sensitivity of each resonance frequency to the elastic moduli normalized to unity (df/dC11 and
df/dCaa.)

The root mean square (rms) error of the fit ( ’Z"W %X 100 ) shown in the table was

0.33%, which gives a high confidence for the calculated values of elastic moduli. As seen in
Table 1, two resonances, at 117.03 and 145.32 kHz, were omitted from the calculations. After
multiple fitting attempts, these resonances were obvious outliers and could not be fit to better
than 1%. Considering that Berea sandstone is a porous material, and the transducers were glued
on the sample, it is not unexpected that some resonances will be affected more than others by
these artifacts. RUS fits that included anisotropy were also investigated (cubic and hexagonal),
but did not lead to significant improvement of the fit or to significant changes in determined
elastic moduli. This finding indicates that the earlier-stated assumption that the sample is
isotropic on these length scales is reasonable.
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Once a stable fit was obtained, the room temperature dimensions of the sample were also
allowed to vary, resulting in the following dimensions of the sample: 9.05 x 8.23 x 6.81 mm?.
These dimensions are different by about 1-2% compared to our measured values.  Due to the
porous nature of the material, the corners of the sample are not perfectly sharp. Allowing the
dimensions to vary in the fitting routine accounts for this artifact to some extent. Thermal
expansion of the sample was accounted for in calculation of the elastic moduli for each
temperature step using available thermal expansion data [Somerton and Salim, 1961]. The
volumetric thermal expansion was estimated as 43.7-10° K* from figure 3 in the reference
above.

The first 25 resonance modes for the sample used in this study are depicted graphically and
in order (first left-to-right and then top-to-bottom) in Fig. 3. The graphical representations are
calculated using COMSOL Multiphysics. For each mode, the instantaneous particle
displacements are shown using a thermometer color scheme where blue is low (cold) and red is a
high value (hot). No correlation between face displacement of poorly fitted modes and the face
on which the transducers were mounted was found. This is illustrated by comparing table 1 to
figure 3 in which poorly fitted modes had a degenerate mode that fit well.

The room temperature values of C11 and Ca4 were found to be 12.2 and 4.8 GPa, respectively.
From these values and the density (p=2115 kg/m3) determined from the measured mass and the
fit dimensions of the sample, the following quantities of interest were calculated: bulk modulus
B = 5.8 GPa, Young’s modulus E = 11.32 GPa, Poisson ratio v = 0.17, compressional sound
speed vp = 2402 m/s, shear sound speed vs = 1511 m/s and vp/vs = 1.59.

The room temperature elastic constants C11 and Cas are within 12% of recently published
data on Berea Sandstone [Remillieux et al., 2015], which reports C11 = 10.86 GPa, and Css4 = 4.24
GPa. These values lead to similar values for Young’s modulus, E = 10 GPa, and Poisson’s ratio,
v =0.18. The compressional sound speed is in good agreement with Ref Shankland [Shankland
et al., 1993] and Renaud [Renaud et al., 2013] who report values of vp = 2380 m/s and vp = 2450
m/s, respectively. However, the values determined here differ by as much as 50% when
compared to Winkler (ve = 1930 m/s) [Winkler et al., 1979] and Sayers (vp = 3280-3600 m/s)
[Sayers et al., 1990]. Such differences are common in the sandstone literature and can be
attributed to different densities and/or porosities of the samples used in each individual study.

3.2. Temperature Dependence

All spectra versus temperature are plotted in figure 4. Each spectrum is plotted at its
corresponding temperature with darker color indicating higher amplitude. For example, it can be
seen that the most prominent resonance in Fig.2, at approximately 115 kHz, corresponds with the
darkest line in Fig. 4. The strong curvature of the resonance position with respect to
temperature shows that Berea sandstone has a very significant resonance shifting with
temperature. Two prominent resonant frequencies versus temperature are plotted in Figure 5, and
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show the characteristically strong dependence of resonant frequency on sample temperature
mentioned above. The dependence of resonance frequency on temperature can be separated into
two distinct regions. Between room temperature and 385 K, the Berea sandstone exhibit behavior
of regular solids, i.e. softening as temperature increases. However, between 385 K and 478 K,
the material is found to stiffen with temperature. For example, over the first 100 K, the
resonances change by < -400 ppm/K. At ~385 K, the resonances begin increasing at a rate > 400
ppm/K for the final 100 K considered here. This unexpected behavior was found to be
repeatable upon thermal cycling. Additional through-transmission experiments were performed
with separate, larger samples (24.80 x 15.86 x 15.86 mm) of Berea sandstone which confirmed
the trends seen by these RUS experiments. The results of these experiments are not shown here.
Mode stiffening with temperature is unusual and has been observed in few materials [e.g. Pantea
et al., 2006; Wang et al., 2015; Hancock et al., 2015].

A qualitative comparison of our data with Ulrich and Darling (Fig. 6) shows that Berea
softens with temperature between 225 K and 385 K, as is typically found in solids. The
anomalous stiffening with temperature can also be observed in the figure in two different
temperature regions, <200 K and >375 K.  Figure 7 presents the bulk modulus value (B =

Ci1— 2644) that was calculated from the determined elastic moduli at each temperature. A

quantitative analysis of this data reveals an approximately 17% softening with temperature
between room temperature and 385 K, followed by an almost equal percentage of stiffening
between 385 K and 480 K. By comparing Fig. 7 with Figs. 4 & 5, it can be seen that the bulk
modulus is ~4x more sensitive to changes in temperature than the individual resonance
frequencies. This difference can be largely attributed to the fact that the resonance frequencies
include a change not only in material stiffness, but also in physical dimension through the
coefficients of thermal expansion. Young’s modulus and Poisson ratio vary by about 8%, and
19% respectively.

Compressional (C11) and shear (Cas) elastic moduli have a similar qualitative temperature
dependence and turnover temperature (Fig. 8). However, C11 can be seen to have a significantly
larger quantitative temperature dependence, with a + 1000 ppm/K variability compared to Cas
which has approximately half of that sensitivity, or ~+ 600 ppm/K in the same temperature
ranges. Considering that Berea sandstone is composed largely of Si0: it is perhaps interesting to
compare the temperature derivatives of the elastic moduli determined here to the well-known
values of these quantities for a-quartz [Bechmann et al., 1962]. Around room temperature, the

compressional elastic moduli of a-quartz, C11 and Css, have first order temperature coefficients
1 dCyy

(c_x dT

than the -1000 ppm/K for C11 mentioned above. The shear moduli for a-quartz have temperature

coefficients ranging from -177 ppm/K for Cas4 to +178 ppm/K for Ces [Bechmann et al., 1962].

) of -49 ppm/K and -160 ppm/K, respectively. These values are remarkably smaller

The great span of values for the temperature coefficients for the a-quartz shear moduli
likely reflects little more than the fact that it is highly anisotropic (belonging to crystal point
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group 32) while the Berea sample studied here is assumed isotropic. However, that both
compressional moduli of a-quartz are 3-20 times less sensitive to temperature appears to be more
significant. This result reinforces the intuitive belief that the mechanical properties of the
constituents of a macroscopic composite such as Berea have little bearing on the mechanical
properties of the composite, itself.

4, Summary

Resonant Ultrasound Spectroscopy was used for determination of the elastic moduli of
dry Berea sandstone, both at room temperature and at high temperatures characteristics to depths
of about 8 km. Sample dimensions were chosen to be relatively small, less than 1 cm on every
side, in order to avoid complications brought by low frequencies and to minimize the effects of
anisotropy. Room temperature data show that Berea sandstone is a very soft material, with a bulk
modulus of only 5.8 GPa. It was found that Berea sandstone undergoes a softening between
room temperature and 385 K, followed by an abnormal behavior of stiffening between 385 K and
478 K.
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Table 1. Room Temperature RUS Fit of Berea Sandstone

n fe(kHz) f.(kHz) %err wt k i df/dCiy df/dCa
1 7259 7285 035 100 4 1 0.00 1.00
2 96.83 9691 0.08 1.00 6 2 0.22 0.78
3 100.81 100.49 -0.32 100 4 2 0.00 1.00
4 103.40 103.35 -0.05 100 7 2 0.32 0.68
5 108.56 10890 0.32 1.00 3 2 0.04 0.96
6 11411 11395 -0.14 100 6 3 0.62 0.38
7 117.03 11828 1.07 0.00 1 2 0.27 0.73
8 120.02 120.05 0.03 100 2 2 0.03 0.97
9 12298 122.19 -0.65 100 5 1 0.06 0.94
10 12451 12435 -0.13 1.00 8 2 0.04 0.96
11 129.25 12882 -0.33 1.00 8 3 0.28 0.72
12 13161 131.16 -0.34 100 5 2 0.20 0.80
13 13288 13297 0.07 100 2 3 0.33 0.67
14 13959 13963 0.03 100 5 3 0.24 0.76
15 14532 14795 181 000 7 3 0.47 0.53
16 151.75 150.84 -0.60 1.00 1 3 0.51 0.49
17 152.52 152.47 -0.04 100 8 4 0.04 0.96
18 154.67 154.15 -0.34 100 5 4 0.59 0.41
19 156.80 156.93 0.09 100 3 3 0.35 0.65
20 159.09 15999 056 100 5 5 0.67 0.33
21 163.73 164.19 0.28 1.00 4 3 0.16 0.84
22 165.76 165.38 -0.23 1.00 6 4 0.24 0.76
23 166.03 166.29 0.16 1.00 2 4 0.05 0.95
24 168.61 169.21 036 100 1 4 0.10 0.90
25 169.58 169.74 0.10 100 7 4 0.14 0.86
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Figure 1. The LiNbOs transducers attached to
opposing faces of the 9.13 x 6.65 x 8.32 mm
Berea sandstone sample using high temperature
epoxy
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Figure 2. A typical RUS spectrum
collected in this study, at room
temperature

Figure 3. Resonance modes for Berea sandstone at
room temperature — modes are in order
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Figure 4. Resonance spectra for
each temperature step. The
amplitudes are normalized to the
highest amplitude at each
temperature. Higher amplitudes are
designated by darker color.
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