

LA-UR-17-22363 (Accepted Manuscript)

Resonant Ultrasound Spectroscopy studies of Berea sandstone at high temperature

Davis, Eric Sean
Pantea, Cristian
Sturtevant, Blake
Sinha, Dipen N.

Provided by the author(s) and the Los Alamos National Laboratory (2017-08-04).

To be published in: Journal of Geophysical Research: Solid Earth

DOI to publisher's version: 10.1002/2016JB013410

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-22363>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Resonant Ultrasound Spectroscopy Studies of Berea Sandstone at High Temperature

Eric S. Davis, Blake T. Sturtevant, Dipen N. Sinha, and Cristian Pantea, Materials Physics and Applications, MPA-11, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.

Corresponding Author: Cristian Pantea, Materials Physics Applications, MPA-11, MS D429, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. (pantea@lanl.gov)

1 **Key Points.**

2 • Elastic properties of Berea sandstone were studied at high temperatures
3 • Berea sandstone exhibits anomalous elastic behavior between 375 and 478 K
4 • Room temperature RUS bulk modulus measurements agree well with literature

5

6 **Abstract.** Resonant Ultrasound Spectroscopy was used to determine the elastic moduli of Berea
7 sandstone from room temperature to 478K. Sandstone is a common component of oil reservoirs,
8 and the temperature range was chosen to be representative of typical downhole conditions, down
9 to about 8 km. In agreement with previous works, Berea sandstone was found to be relatively
10 soft with a bulk modulus of approximately 6 GPa as compared to 37.5 GPa for α -Quartz at room
11 temperature and pressure. It was found that Berea sandstone undergoes a ~17% softening in bulk
12 modulus between room temperature and 385 K, followed by an abnormal behavior of similar
13 stiffening between 385 K and 478 K.

14 **Index Terms.**

15 3909 Elasticity and anelasticity,

16 3999 General or miscellaneous

17 5102 Acoustic properties

18 **Key Words.**

19 RUS, Berea sandstone, elastic properties

20

21

22

23

24

25

26

27

29 **1. Introduction**

30 Understanding the mechanical properties of rocks beneath Earth's surface, at
 31 temperatures typically found in oil wells, is of great importance to the oil/gas and geothermal
 32 industry. This knowledge has become even more important with the recent rise of hydraulic
 33 fracturing (fracking) as a preferred method for oil and gas extraction. Sandstone is commonly
 34 found in oil and gas reservoirs [Slatt, 2014] and detailed calculations based on the mechanical
 35 properties of the reservoir's constituent materials are needed to safely and efficiently extract oil
 36 or gas. This requirement creates a great need to determine the elastic properties of the sandstone
 37 not only at room temperature, but also at higher temperatures to simulate downhole conditions as
 38 temperatures quickly rise with increased drilling depth at a rate of approximately 25 kelvin per
 39 kilometer [Finger and Blankenship, 2010].

40 Several earlier studies, briefly described here, were performed on sandstones in order to
 41 determine their mechanical properties under different conditions of pressures and temperatures.
 42 Ulrich and Darling performed a qualitative study on the elastic properties dependence with
 43 temperature for Berea sandstone. The temperature range covered was room temperature to about
 44 8 K. They showed the existence of a hysteresis in elastic properties with cooling vs warming, and
 45 also the presence of an anomalous behavior which indicates that Berea sandstone is softening
 46 with decrease in temperature between 200 K and 60 K. [Ulrich and Darling, 2001]. Liang et al.
 47 discovered that salt rock strength is affected very little by strain rate and that there is a
 48 logarithmic relationship between deformation modulus and loading strain rate [Liang et al.,
 49 2011]. Ten Cate and Shankland explored slow dynamics in Berea sandstone and found that it has
 50 a strong memory of strain history and hysteresis in resonant frequencies with changing strain
 51 amplitude [Ten Cate and Shankland, 1996]. Costin and Holcomb found that cyclic loading can
 52 induce microcrack damage in rocks and cause specimen failure that is inconsistent with results
 53 extrapolated from static tests. Additionally, Costin and Holcomb found that high stress can
 54 destroy discrete memory in rock specimens and reduce stress cycle hysteresis [Costin and
 55 Holcomb, 1981]. Rocks, and particularly sandstone, exhibit several unusual elastic responses to
 56 stress that include nonclassical attenuation, stress-strain hysteresis, slow dynamics, and high
 57 vibrational energy loss due to internal defects [Johnson et al., 1999; Lebedev, 2002]. These
 58 features, combined with the acoustic nonlinearity of the material that is due to the bond system
 59 controlling the elastic properties rather than the grains, result in rock being an extremely difficult
 60 material to study mechanically [Nobili et al., 2005]. These materials merit further study as their
 61 mechanical behavior have a strong temperature dependence. Several factors, such as
 62 temperature, pressure, composition, porosity, moisture etc., are known to affect the elastic
 63 properties of porous materials [Zhang and Bentley, 2003]. Berea sandstone is a relatively soft,
 64 porous material that is highly attenuating to sound and attributes most of its mechanical
 65 properties to quartz, which is its major constituent. Berea sandstone has a porosity of 13% to

66 23% and is composed of 93.13% silica, 3.86% alumina, 0.54% ferrous oxide, 0.25% magnesia,
67 0.11% ferric oxide, and 0.10% calcium oxide (www.bereasandstonecores.com). Berea sandstone
68 exhibits no known temperature induced phase transitions between room temperature and ~846 K.

69 Most past studies of Berea sandstone's elastic properties have used pulse-echo, or
70 transmit-receive approaches [Winkler, 1983; Green and Wang, 1994]. Harris and Wang used
71 Differential Acoustic Resonance Spectroscopy (DARS) which allows for a wide variety of
72 sample shapes and quick sample preparation and works by measuring the resonance shift
73 between a fluid-filled cavity and the same cavity with a sample placed inside. This technique has
74 allowed for very low frequency sound speed measurements on rock samples with highly
75 irregular shapes and extremely small dimensions with results comparable to literature values
76 [Harris *et al.*, 2005; Wang *et al.*, 2012]. Hart and Wang measured the poroelastic moduli of
77 Berea sandstone using static stress-strain measurements under varying pore pressure conditions
78 [Hart and Wang, 1995]. Ulrich used Resonant Ultrasound Spectroscopy (RUS) to perform a
79 qualitative study of the behavior of Berea sandstone at low temperatures [Ulrich and Darling,
80 2001], while Ten Cate [Ten Cate and Shankland, 1996] and Johnson [Johnson *et al.*, 2004], used
81 a variation of RUS, Nonlinear RUS (NRUS) to investigate its slow dynamics. Renaud *et al.*
82 [Renaud *et al.*, 2013] used a dynamic acousto-elastic method to investigate the elasticity of dry
83 Berea sandstone as a function of applied low-frequency axial strain.

84 This paper focuses exclusively on high temperature effects, using RUS, a technique
85 known to provide elastic constants with high accuracy [Migliori and Sarrao, 1997] The RUS
86 technique is treated exhaustively in Ref [Migliori and Sarrao, 1997] but is described here briefly
87 for completeness. RUS is used to accurately and nondestructively extract the elastic moduli of a
88 small solid object of well-defined geometry using the material's natural mechanical resonances.
89 In RUS, a swept frequency acoustic signal is applied to the sample through a piezoelectric
90 transducer while the mechanical response is recorded using a second transducer in contact with
91 the sample. This technique can be applied to a wide variety of sample types and geometries with
92 very little material needed and provides the highest accuracy for determination of elastic
93 constants, with typical accuracies of 0.5-1.0% for compressional moduli and .02% for shear
94 moduli from fits with a 0.1-0.2% RMS error [Migliori and Sarrao, 1997; Pandey and Schreuer,
95 2012; Liu *et al.*, 2010; Sedmák *et al.*, 2013]. Additionally, RUS is capable of measurements over
96 a significantly large temperature and pressure range which is important for simulating inner-earth
97 conditions and elucidating effects of changing environment on the mechanical properties of
98 materials.

99 2. Experimental

100 The Berea sandstone sample used in our study was cut and prepared into a rectangular
101 parallelepiped with the dimensions 9.13 x 8.32 x 6.65 mm³. The small sample size was chosen to
102 avoid low frequency resonances which would couple to other parts of the experimental
103 apparatus. Small samples have the added advantage that they are effectively isotropic, a feature

104 that is not necessarily true for a larger sedimentary sample [Sayers *et al.*, 1990]. As the largest
105 wavelength used in this study (12.55mm) is several magnitudes larger than the average grain size
106 of Berea sandstone, isotropy can be assumed for the Berea sample. The sample was mounted
107 between two Boston PiezoOptics, 6 x 2 x 3.25 mm, 1 MHz, 36° Y-cut (P-wave or longitudinally-
108 polarized) LiNbO₃ piezoelectric transducers. In theory, RUS assumes free boundary conditions
109 for the sample. Experimentally, this is achieved by using point contacts between the sample and
110 the transducers. Corner mounting of the transducers was attempted to achieve this condition and
111 to reduce noise from transducer contact, but it was found that such a mounting implementation
112 was not only impractical for the environmental conditions in this study, but also difficult to
113 achieve from the standpoint of obtaining sufficient acoustic signal through the transducer.
114 Consequently, the transducers were affixed with a high temperature epoxy (EPO-TEK, TM112)
115 to the 9.13 x 6.65 mm face parallel to the 9.13 mm side of the sample (Fig. 1). The
116 sample/transducer assembly was placed into a small-diameter tube furnace (Blue M) with a PID
117 controller (Eurotherm 847) for precise temperature manipulation. The furnace environment
118 initially consisted of ambient air and remained unmodified throughout the experiment except by
119 temperature change. Near-sample temperature was obtained using a type-J thermocouple
120 attached to a data acquisition module (MC USB-TC-AI DAQ, Measurement Computing). RUS
121 spectra were obtained using a vector network analyzer (Bode 100, Omicron Lab) connected to a
122 computer for data acquisition. Prior to data collection, the sample was heated to 478 K for a
123 period of two hours to thoroughly dry the sample. After this initial baking, the sample and
124 transducers were brought back to room temperature inside the furnace tube with both ends
125 stuffed with quartz wool. The following day, the sample and transducer were heated to 478 K in
126 less than an hour and then cooled to room temperature over a period of approximately 7 hours.
127 During sample cooling, the furnace temperature was briefly (~5 minutes) stabilized every 5 K so
128 that data could be collected. Each spectrum spanned frequencies between 50 kHz and 170 kHz
129 with 4096 points and the network analyzer had a source power of 12.0 dBm and an IF bandwidth
130 of 100 Hz. Each sweep took approximately four minutes, during which the furnace temperature
131 was stable to within 1 K.

132 **3. Results**

133 Based on theoretical calculations, the frequency region studied here covers the first 31
134 resonances for the sample used in this study. In order to reliably determine elastic moduli, it is
135 generally accepted that one must have at least five resonances per elastic modulus [Migliori and
136 Sarrao, 1997]. An isotropic polycrystalline sample, such as the one studied here, has two
137 independent elastic moduli, requiring at least 10 resonances to be taken into account.

138 At each temperature, the RUS spectrum was analyzed using freely available RUS
139 analysis code available at <https://nationalmaglab.org/user-facilities/dc-field/dcfield-techniques/resonant-ultrasound-dc>. As an example of the procedure used, the room temperature
140 data analysis will be described in the next section.
141

142

3.1. Room Temperature

143 The room temperature RUS spectrum is shown in Fig. 2. The quality factor (Q),
144 calculated here as the frequency of a peak divided by its full width at half maximum, ranged
145 from 100-250 depending on the resonance being considered. This Q factor is in agreement with
146 that obtained by Winkler et al. which reported a Q of ~140-170 for dry Berea sandstone at low
147 strain amplitudes [Winkler et al., 1979]. Although Berea sandstone is highly attenuating, it can
148 be seen in Fig. 2 that the resonant frequencies are readily identified, even with the peak
149 broadening associated with a low Q factor and some overlapping of neighboring peaks. For
150 correct mode identification in Berea Sandstone, we used different sets of elastic constants, either
151 from literature [Remillieux et al., 2015; Shankland et al., 1993; Renaud et al., 2013; Winkler et
152 al., 1979; Sayers et al., 1990], or from through-transmission experiments for both compressional
153 and shear waves, performed in our lab. These values provide a reasonable starting guess for
154 forward calculation of the resonant frequencies. Multiple room temperature fittings were
155 performed with a wide variety of C_{ij} values until error minimization between computed and
156 experimental resonances was achieved. Experimental modes corresponding strongly with their
157 calculated room temperature counterparts can then be tracked with temperature as they exhibit
158 only small shifts between successive temperature steps.

159 Table 1 presents the results obtained from a fit to the room temperature experimental
160 resonance data. The fit was calculated using 14 basis functions. The columns in Table 1 are as
161 follows: 1) the resonance number; 2) the experimental resonance frequencies (f_{ex}); 3) resonance
162 frequencies (f_r) calculated from the fitting software; 4) percent error for each resonance, $\%err =$
163 $(f_r - f_{ex})/f_{ex} * 100$; 5) a weighting factor, wt , between 0 and 1 that indicates how heavily the fit
164 procedure should consider each resonance (0 means do not consider, 1 means consider fully); 6)
165 mode symmetry (k) as described in Ref [Migliori and Sarrao]; 7) order (i); and finally 8), the
166 sensitivity of each resonance frequency to the elastic moduli normalized to unity (df/dC_{11} and
167 df/dC_{44}).

168 The root mean square (rms) error of the fit ($\sqrt{\sum_n \frac{(f_r - f_{ex})^2}{n}} \times 100$) shown in the table was
169 0.33%, which gives a high confidence for the calculated values of elastic moduli. As seen in
170 Table 1, two resonances, at 117.03 and 145.32 kHz, were omitted from the calculations. After
171 multiple fitting attempts, these resonances were obvious outliers and could not be fit to better
172 than 1%. Considering that Berea sandstone is a porous material, and the transducers were glued
173 on the sample, it is not unexpected that some resonances will be affected more than others by
174 these artifacts. RUS fits that included anisotropy were also investigated (cubic and hexagonal),
175 but did not lead to significant improvement of the fit or to significant changes in determined
176 elastic moduli. This finding indicates that the earlier-stated assumption that the sample is
177 isotropic on these length scales is reasonable.

178 Once a stable fit was obtained, the room temperature dimensions of the sample were also
179 allowed to vary, resulting in the following dimensions of the sample: $9.05 \times 8.23 \times 6.81 \text{ mm}^3$.
180 These dimensions are different by about 1-2% compared to our measured values. Due to the
181 porous nature of the material, the corners of the sample are not perfectly sharp. Allowing the
182 dimensions to vary in the fitting routine accounts for this artifact to some extent. Thermal
183 expansion of the sample was accounted for in calculation of the elastic moduli for each
184 temperature step using available thermal expansion data [Somerton and Salim, 1961]. The
185 volumetric thermal expansion was estimated as $43.7 \cdot 10^{-6} \text{ K}^{-1}$ from figure 3 in the reference
186 above.

187 The first 25 resonance modes for the sample used in this study are depicted graphically and
188 in order (first left-to-right and then top-to-bottom) in Fig. 3. The graphical representations are
189 calculated using COMSOL Multiphysics. For each mode, the instantaneous particle
190 displacements are shown using a thermometer color scheme where blue is low (cold) and red is a
191 high value (hot). No correlation between face displacement of poorly fitted modes and the face
192 on which the transducers were mounted was found. This is illustrated by comparing table 1 to
193 figure 3 in which poorly fitted modes had a degenerate mode that fit well.

194 The room temperature values of C_{11} and C_{44} were found to be 12.2 and 4.8 GPa, respectively.
195 From these values and the density ($\rho=2115 \text{ kg/m}^3$) determined from the measured mass and the
196 fit dimensions of the sample, the following quantities of interest were calculated: bulk modulus
197 $B = 5.8 \text{ GPa}$, Young's modulus $E = 11.32 \text{ GPa}$, Poisson ratio $\nu = 0.17$, compressional sound
198 speed $v_P = 2402 \text{ m/s}$, shear sound speed $v_S = 1511 \text{ m/s}$ and $v_P/v_S = 1.59$.

199 The room temperature elastic constants C_{11} and C_{44} are within 12% of recently published
200 data on Berea Sandstone [Remillieux *et al.*, 2015], which reports $C_{11} = 10.86 \text{ GPa}$, and $C_{44} = 4.24$
201 GPa. These values lead to similar values for Young's modulus, $E = 10 \text{ GPa}$, and Poisson's ratio,
202 $\nu = 0.18$. The compressional sound speed is in good agreement with Ref Shankland [Shankland
203 *et al.*, 1993] and Renaud [Renaud *et al.*, 2013] who report values of $v_P = 2380 \text{ m/s}$ and $v_P = 2450$
204 m/s, respectively. However, the values determined here differ by as much as 50% when
205 compared to Winkler ($v_P = 1930 \text{ m/s}$) [Winkler *et al.*, 1979] and Sayers ($v_P = 3280-3600 \text{ m/s}$)
206 [Sayers *et al.*, 1990]. Such differences are common in the sandstone literature and can be
207 attributed to different densities and/or porosities of the samples used in each individual study.

208 **3.2. Temperature Dependence**

209 All spectra versus temperature are plotted in figure 4. Each spectrum is plotted at its
210 corresponding temperature with darker color indicating higher amplitude. For example, it can be
211 seen that the most prominent resonance in Fig.2, at approximately 115 kHz, corresponds with the
212 darkest line in Fig. 4. The strong curvature of the resonance position with respect to
213 temperature shows that Berea sandstone has a very significant resonance shifting with
214 temperature. Two prominent resonant frequencies versus temperature are plotted in Figure 5, and

215 show the characteristically strong dependence of resonant frequency on sample temperature
216 mentioned above. The dependence of resonance frequency on temperature can be separated into
217 two distinct regions. Between room temperature and 385 K, the Berea sandstone exhibit behavior
218 of regular solids, i.e. softening as temperature increases. However, between 385 K and 478 K,
219 the material is found to stiffen with temperature. For example, over the first 100 K, the
220 resonances change by < -400 ppm/K. At ~385 K, the resonances begin increasing at a rate > 400
221 ppm/K for the final 100 K considered here. This unexpected behavior was found to be
222 repeatable upon thermal cycling. Additional through-transmission experiments were performed
223 with separate, larger samples (24.80 x 15.86 x 15.86 mm) of Berea sandstone which confirmed
224 the trends seen by these RUS experiments. The results of these experiments are not shown here.
225 Mode stiffening with temperature is unusual and has been observed in few materials [e.g. *Pantea*
226 *et al.*, 2006; *Wang et al.*, 2015; *Hancock et al.*, 2015].

227 A qualitative comparison of our data with Ulrich and Darling (Fig. 6) shows that Berea
228 softens with temperature between 225 K and 385 K, as is typically found in solids. The
229 anomalous stiffening with temperature can also be observed in the figure in two different
230 temperature regions, <200 K and >375 K. Figure 7 presents the bulk modulus value ($B =$
231 $C_{11} - \frac{4}{3}C_{44}$) that was calculated from the determined elastic moduli at each temperature. A
232 quantitative analysis of this data reveals an approximately 17% softening with temperature
233 between room temperature and 385 K, followed by an almost equal percentage of stiffening
234 between 385 K and 480 K. By comparing Fig. 7 with Figs. 4 & 5, it can be seen that the bulk
235 modulus is ~4x more sensitive to changes in temperature than the individual resonance
236 frequencies. This difference can be largely attributed to the fact that the resonance frequencies
237 include a change not only in material stiffness, but also in physical dimension through the
238 coefficients of thermal expansion. Young's modulus and Poisson ratio vary by about 8%, and
239 19% respectively.

240 Compressional (C_{11}) and shear (C_{44}) elastic moduli have a similar qualitative temperature
241 dependence and turnover temperature (Fig. 8). However, C_{11} can be seen to have a significantly
242 larger quantitative temperature dependence, with a ± 1000 ppm/K variability compared to C_{44}
243 which has approximately half of that sensitivity, or $\sim \pm 600$ ppm/K in the same temperature
244 ranges. Considering that Berea sandstone is composed largely of SiO_2 it is perhaps interesting to
245 compare the temperature derivatives of the elastic moduli determined here to the well-known
246 values of these quantities for α -quartz [Bechmann *et al.*, 1962]. Around room temperature, the
247 compressional elastic moduli of α -quartz, C_{11} and C_{33} , have first order temperature coefficients
248 ($\frac{1}{C_{xx}} \frac{dC_{xx}}{dT}$) of -49 ppm/K and -160 ppm/K, respectively. These values are remarkably smaller
249 than the -1000 ppm/K for C_{11} mentioned above. The shear moduli for α -quartz have temperature
250 coefficients ranging from -177 ppm/K for C_{44} to +178 ppm/K for C_{66} [Bechmann *et al.*, 1962].

251 The great span of values for the temperature coefficients for the α -quartz shear moduli
252 likely reflects little more than the fact that it is highly anisotropic (belonging to crystal point

253 group 32) while the Berea sample studied here is assumed isotropic. However, that both
254 compressional moduli of α -quartz are 3-20 times less sensitive to temperature appears to be more
255 significant. This result reinforces the intuitive belief that the mechanical properties of the
256 constituents of a macroscopic composite such as Berea have little bearing on the mechanical
257 properties of the composite, itself.

258 **4. Summary**

259 Resonant Ultrasound Spectroscopy was used for determination of the elastic moduli of
260 dry Berea sandstone, both at room temperature and at high temperatures characteristics to depths
261 of about 8 km. Sample dimensions were chosen to be relatively small, less than 1 cm on every
262 side, in order to avoid complications brought by low frequencies and to minimize the effects of
263 anisotropy. Room temperature data show that Berea sandstone is a very soft material, with a bulk
264 modulus of only 5.8 GPa. It was found that Berea sandstone undergoes a softening between
265 room temperature and 385 K, followed by an abnormal behavior of stiffening between 385 K and
266 478 K.

267 **Acknowledgements**

268 The authors thank T.J. Ulrich for helpful discussions. This work was partially funded by the U.S.
269 Dept. of Energy. All data found in the results section of this paper is available upon request from
270 the corresponding author.

271

272

References

273 Bechmann, R., A. D. Ballato, and T.J. Lukaszek (1962), Higher-Order Temperature Coefficients
 274 of the Elastic Stiffnesses and Compliances of Alpha-Quartz, *Proceedings of the IRE*,
 275 50(8), 1812-1822, doi: 10.1109/JRPROC.1962.288222

276 Costin, L. S., and D. J. Holcomb (1981), Time-dependent failure of rock under cyclic
 277 loading. *Tectonophysics*, 79(3), 279-296, doi: 10.1016/0040-1951(81)90117-7.

278 Finger, J., and D. Blankenship (2010), Handbook of best practices for geothermal
 279 drilling. *Sandia National Laboratories, Albuquerque*.

280 Green, D. H., and H. F. Wang (1994), Shear wave velocity and attenuation from pulse-echo
 281 studies of Berea sandstone, *J. Geophys. Res.*, 99(B6), 11755–11763,
 282 doi:10.1029/94JB00506.

283 Hancock, J.C., K. W. Chapman, G. J. Halder, C. R. Morelock, B. S. Kaplan, L. C. Gallington, A.
 284 Bongiorno, C. Han, S. Zhou, and A. P. Wilkinson (2015), Large Negative Thermal
 285 Expansion and Anomalous Behavior on Compression in Cubic ReO_3 -Type $\text{A}^{\text{II}}\text{B}^{\text{IV}}\text{F}_6$:
 286 CaZrF_6 and CaHfF_6 , *Chemistry of Materials*, doi: 10.1021/acs.chemmater.5b00662.

287 Harris, J. M., Y. Quan, and C. Xu (2005), Differential Acoustical Resonance Spectroscopy: An
 288 experimental method for estimating acoustic attenuation of porous media. In *2005 SEG
 289 Annual Meeting*. Society of Exploration Geophysicists, doi: 10.1190/1.2147992.

290 Hart, D. J., and H. F. Wang (1995), Laboratory measurements of a complete set of poroelastic
 291 moduli for Berea sandstone and Indiana limestone. *Journal of Geophysical Research: Solid Earth* (1978–2012), 100(B9), 17741-17751, doi: 10.1029/95JB01242.

293 Johnson, P. A., R. A. Guyer, and L. A. Ostrovsky (1999), A nonlinear mesoscopic elastic class of
 294 materials. *AIP Conference Proceedings*, 524, 291-294, doi:
 295 <http://dx.doi.org/10.1121/1.427349>.

296 Johnson, P. A., B. Zinszner, P. Rasolofosaon, F. Cohen-Tenoudji, and K. Van Den Abeele
 297 (2004), Dynamic measurements of the nonlinear elastic parameter α in rock under
 298 varying conditions, *J. Geophys. Res.*, 109, B02202, doi: 10.1029/2002JB002038.

299 Lebedev, A. V. (2002), Method of linear prediction in the ultrasonic spectroscopy of
 300 rock. *Acoustical Physics*, 48(3), 339-346, doi: 10.1134/1.1478120.

301 Liang, W. G., Y. S. Zhao, S. G. Xu, and M. B. Dusseault (2011), Effect of strain rate on the
 302 mechanical properties of salt rock. *International Journal of Rock Mechanics and Mining
 303 Sciences*, 48(1), 161-167, doi: 10.1016/j.ijrmms.2010.06.012.

304 Liu, Y., H. Wu, C. T. Liu, Z. Zhang, and V. Keppens (2008), Physical factors controlling the
305 ductility of bulk metallic glasses. *Applied Physics Letters*, 93(15), 151915, doi:
306 <http://dx.doi.org/10.1063/1.2998410>

307 Migliori, A., and J. L. Sarrao (1997), *Resonant ultrasound spectroscopy: applications to physics,*
308 *materials measurements, and nondestructive evaluation*. Wiley-Interscience

309 Nobili, M., M. Scalerandi, and P. P. Delsanto (2005), Temperature dependence of the elastic
310 properties of hysteretic materials. In *Materials Science Forum* (Vol. 480, pp. 573-578),
311 doi: 10.4028/www.scientific.net/MSF.480-481.573

312 Pandey, C. S., and J. Schreuer, (2012), Elastic and piezoelectric constants of tourmaline single
313 crystals at non-ambient temperatures determined by resonant ultrasound
314 spectroscopy. *Journal of Applied Physics*, 111(1), 013516, doi:
315 <http://dx.doi.org/10.1063/1.3673820>.

316 Pantea, C., A. Migliori, P. B. Littlewood, Y. Zhao, H. Ledbetter, J. C. Lashley, T. Kimura, J.
317 Van Duijin, and G. R. Kowach (2006), Pressure-induced elastic softening of
318 monocrystalline zirconium tungstate at 300 K. *Physical Review B*, 73, 214118, doi:
319 <http://dx.doi.org/10.1103/PhysRevB.73.214118>.

320 Remillieux, M., C., T.J. Ulrich1, C. Payan, J. Rivière, C. R. Lake1, P.-Y. Le Bas (2015),
321 Resonant ultrasound spectroscopy for materials with high damping and samples of
322 arbitrary geometry. *J. Geophys. Res.: Solid Earth, accepted manuscript*, doi:
323 10.1002/2015JB011932.

324 Renaud, G., J. Rivière, P.-Y. Le Bas, and P. A. Johnson (2013), Hysteretic nonlinear elasticity of
325 Berea sandstone at low-vibrational strain revealed by dynamic acousto-elastic testing,
326 *Geophys. Res. Lett.*, 40, 715–719, doi: 10.1002/grl.50150.

327 Sayers, C. M., J. G. Van Munster, and M. S. King (1990), Stress-induced ultrasonic anisotropy
328 in Berea sandstone. In *International Journal of Rock Mechanics and Mining Sciences &*
329 *Geomechanics Abstracts* (Vol. 27, No. 5, pp. 429-436), doi:10.1016/0148-
330 9062(90)92715-Q

331 Sedmák, P., H. Seiner, P. Sedlák, M. Landa, R. Mušálek, and J. Matějíček (2013), Application of
332 resonant ultrasound spectroscopy to determine elastic constants of plasma-sprayed
333 coatings with high internal friction. *Surface and Coatings Technology*, 232, 747-757, doi:
334 10.1016/j.surfcoat.2013.06.091

335 Shankland, T. J., P. A. Johnson, and T. M. Hopson (1993), Elastic wave attenuation and velocity
336 of Berea sandstone measured in the frequency domain. *Geophysical Research*
337 *Letters*, 20(5), 391-394, doi: 10.1029/92GL02758

338 Slatt, R. M. (2013), Stratigraphic Reservoir Characterization for Petroleum Geologists,
339 Geophysicists, and Engineers. *Developments in Petroleum Science*, 61, Elsevier.

340 Somerton, W. H., and M. A. Selim (1961), Additional thermal data for porous rocks—thermal
341 expansion and heat of reaction. *Soc. Pet. Engrs*, <http://dx.doi.org/10.2118/1613-G>.

342 Ten Cate, J. A., and T. J. Shankland (1996), Slow dynamics in the nonlinear elastic response of
343 Berea sandstone. *Geophysical Research Letters*, 23(21), 3019-3022, doi:
344 10.1029/96GL02884.

345 Ulrich, T. J., and T. W. Darling (2001), Observation of anomalous elastic behavior in rock at low
346 temperatures. *Geophysical Research Letters*, 28(11), 2293-2296, doi:
347 10.1029/2000GL012480

348 Wang L, et al., Metal fluorides, a new family of negative thermal expansion materials, *Journal of
349 Materomics* (2015), <http://dx.doi.org/10.1016/j.jmat.2015.02.001>

350 Wang, S. X., J. G. Zhao, Z. H. Li, J. M. Harris, and Y. Quan (2012), Differential Acoustic
351 Resonance Spectroscopy for the acoustic measurement of small and irregular samples in
352 the low frequency range. *Journal of Geophysical Research: Solid Earth* (1978–
353 2012), 117(B6), doi: 10.1029/2011JB008808.

354 Winkler, K., A. Nur, M. Gladwin (1979), Friction and Seismic Attenuation in Rocks. *Nature*,
355 277, 528-531, doi: 10.1038/277528a0.

356 Winkler, K. W. (1983), Frequency dependent ultrasonic properties of high-porosity sandstones,
357 *J. Geophys. Res.*, 88(B11), 9493–9499, doi: 10.1029/JB088iB11p09493.

358 Zhang, J. J., and L. R. Bentley (2003), Pore geometry and elastic moduli in sandstones.
359 *CREWES, University of Calgary*.

360

361

362

363

364

365

366

367

368

Tables

369

Table 1. Room Temperature RUS Fit of Berea Sandstone

370

n	f _{ex} (kHz)	f _r (kHz)	%err	wt	k	i	df/dC ₁₁	df/dC ₄₄
1	72.59	72.85	0.35	1.00	4	1	0.00	1.00
2	96.83	96.91	0.08	1.00	6	2	0.22	0.78
3	100.81	100.49	-0.32	1.00	4	2	0.00	1.00
4	103.40	103.35	-0.05	1.00	7	2	0.32	0.68
5	108.56	108.90	0.32	1.00	3	2	0.04	0.96
6	114.11	113.95	-0.14	1.00	6	3	0.62	0.38
7	117.03	118.28	1.07	0.00	1	2	0.27	0.73
8	120.02	120.05	0.03	1.00	2	2	0.03	0.97
9	122.98	122.19	-0.65	1.00	5	1	0.06	0.94
10	124.51	124.35	-0.13	1.00	8	2	0.04	0.96
11	129.25	128.82	-0.33	1.00	8	3	0.28	0.72
12	131.61	131.16	-0.34	1.00	5	2	0.20	0.80
13	132.88	132.97	0.07	1.00	2	3	0.33	0.67
14	139.59	139.63	0.03	1.00	5	3	0.24	0.76
15	145.32	147.95	1.81	0.00	7	3	0.47	0.53
16	151.75	150.84	-0.60	1.00	1	3	0.51	0.49
17	152.52	152.47	-0.04	1.00	8	4	0.04	0.96
18	154.67	154.15	-0.34	1.00	5	4	0.59	0.41
19	156.80	156.93	0.09	1.00	3	3	0.35	0.65
20	159.09	159.99	0.56	1.00	5	5	0.67	0.33
21	163.73	164.19	0.28	1.00	4	3	0.16	0.84
22	165.76	165.38	-0.23	1.00	6	4	0.24	0.76
23	166.03	166.29	0.16	1.00	2	4	0.05	0.95
24	168.61	169.21	0.36	1.00	1	4	0.10	0.90
25	169.58	169.74	0.10	1.00	7	4	0.14	0.86

382

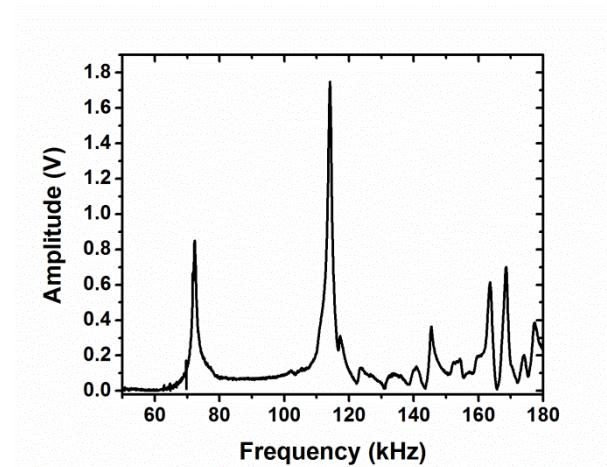
383

384

385

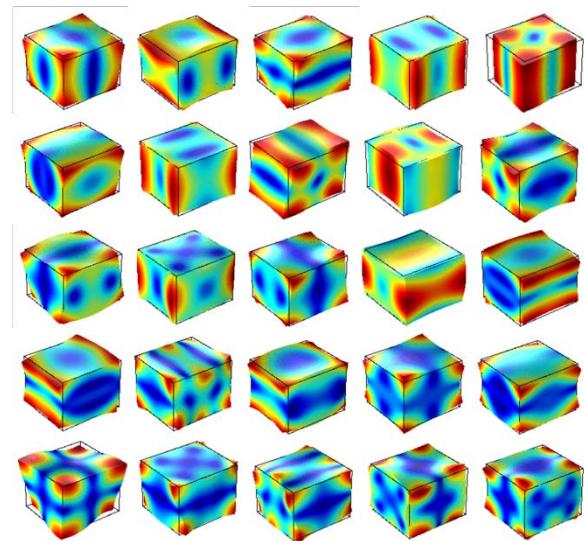
386 **Figures**

Figure 1. The LiNbO₃ transducers attached to opposing faces of the 9.13 x 6.65 x 8.32 mm Berea sandstone sample using high temperature epoxy


387

388

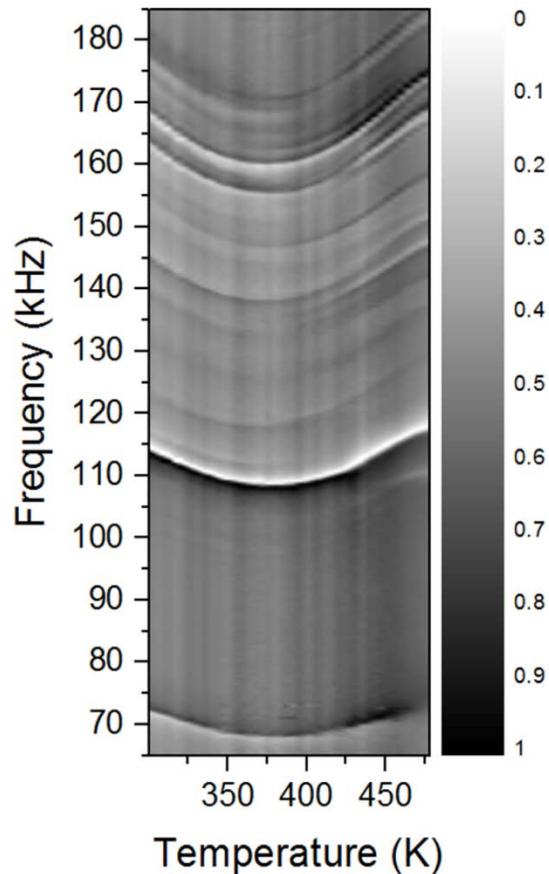
389


390

391

Figure 2. A typical RUS spectrum collected in this study, at room temperature

392


393

394

Figure 3. Resonance modes for Berea sandstone at room temperature – modes are in order

395

396

397

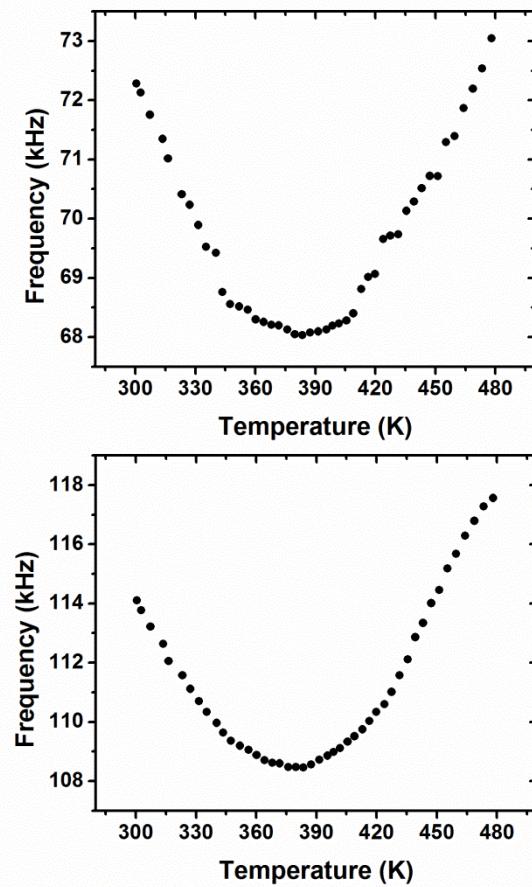
Figure 4. Resonance spectra for each temperature step. The amplitudes are normalized to the highest amplitude at each temperature. Higher amplitudes are designated by darker color.

398

399

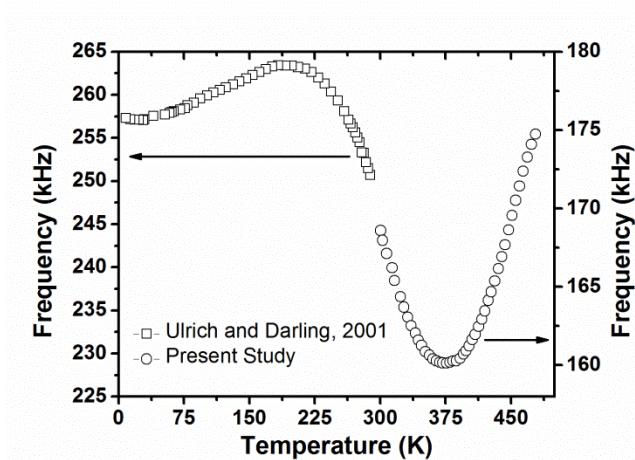
400

401

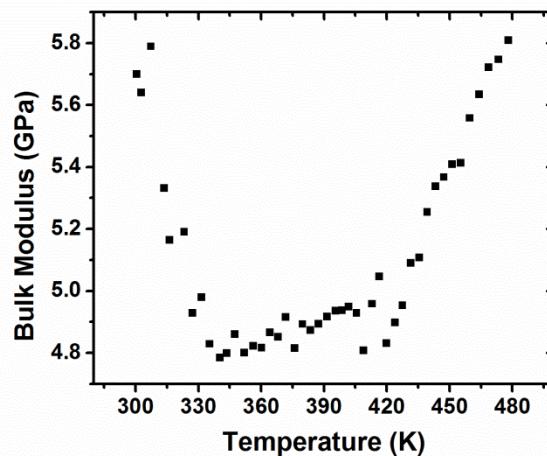

402

403

404


405

406

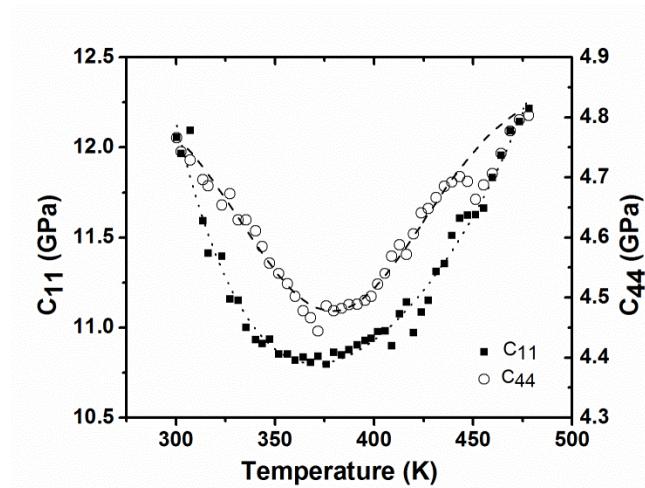

Figure 5. The 1st and 2nd most prominent resonance frequencies (see Fig. 2) plotted vs temperature.

407

Figure 6. One resonant frequency from this study plotted versus temperature together with frequency data from Ulrich and Darling

408

Figure 7. Calculated bulk modulus at each temperature


409

410

411

412

413

Figure 8. Independent elastic moduli C11 and C44 plotted vs temperature. Lines are to guide the reader's eyes